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jellyfish algorithm” introduced



The Temperley-Lieb planar algebra

» For each k, T Loy is an algebra over C(q). As a vector
space, T Loy, is spanned by diagrams with k nonintersecting
strands. The multiplication operation is vertical stacking.
We also have the following ”"bubble bursting” relation:
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» These vector spaces assemble together into a planar algebra
with 7Ly = C(g).
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The Temperley-Lieb planar algebra

> \/:: z’qé> < iq %\/6714
AN

This satisfies R2 and R3.
For R1, we get a positive twist factor ig>/2.

> Jones-Wenzl projections.
For each k there is a unique element p; € T Lo such that:

> pi=p,
> p; is uncappable.

N
pk = Zero
It follows that:

P = |+ D ag- @, where each @ contains a cap.




Temperley-Lieb when ¢ is a root of unity

If g= ¢™/"1 then p,, becomes negligible. So for T L at this
value of ¢, we must add the relation p, = zero (this gives us the
A, planar algebra). For example, if ¢ = ¢/ then T £ will have
the relations:
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generated by a single S-box in P4 subject to the following
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Fix n =2 and ¢ = ¢™/6. Define P to be the planar algebra
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An example of evaluating a diagram using the relations:

BN
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Partial braiding

Theorem
The relations imply the following partial braiding:

Ry
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Example of the jellyfish algortihm
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The jellyfish algorithm
Part I

» Draw an arc for each S-box

Order the arcs

v

v

Drag the S-boxes in order
under any strands

v

Evaluate crossings

Go to Part II

v
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Go to Part II » Choose two strands connecting
the pair and replace with a p,
» Put in the correct coefficient

» Start Part II again
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Change the ordering of the arcs

Fact (for our value of q):
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Idea: Add a p, along an S-box arc. Do this for each arc crossing
that needs to be changed, then use the above fact.
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Alter the path of an arc
Notice that

[ P4 ] \"104' '\ \' P ]\ 2
= XK -

implies:

Thus we have all three Reidemeister moves for the S-box arcs.
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Summary

We have just proved the following:

Theorem
The defined planar algebra is not trivial

This is part of the Kuperberg program:

Give a presentation for every interesting planar algebra, and
prove as much as possible about the planar algebra using only its
presentation.



Thank You

I also want to thank my advisor

tephen Bigelow.
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