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I Evaluation algorithms common in topology
I Examples: Kauffman bracket, HOMFLY polynomial
I Idea:

. → number
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Skein theory for the D2n planar algebra
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Skein theory for the ADE planar algebras
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The Temperley-Lieb planar algebra

I For each k, T L2k is an algebra over C(q). As a vector
space, T L2k is spanned by diagrams with k nonintersecting
strands. The multiplication operation is vertical stacking.
We also have the following ”bubble bursting” relation:

. = δ · . , where δ = q + q−1

.
2

= . = δ · . ∈ T L6

I These vector spaces assemble together into a planar algebra
with T L0 ∼= C(q).



. . . . . .

The Temperley-Lieb planar algebra

I For each k, T L2k is an algebra over C(q). As a vector
space, T L2k is spanned by diagrams with k nonintersecting
strands. The multiplication operation is vertical stacking.
We also have the following ”bubble bursting” relation:

. = δ · . , where δ = q + q−1

.
2

= . = δ · . ∈ T L6

I These vector spaces assemble together into a planar algebra
with T L0 ∼= C(q).



. . . . . .

The Temperley-Lieb planar algebra

I For each k, T L2k is an algebra over C(q). As a vector
space, T L2k is spanned by diagrams with k nonintersecting
strands. The multiplication operation is vertical stacking.
We also have the following ”bubble bursting” relation:

. = δ · . , where δ = q + q−1

.
2

= . = δ · . ∈ T L6

I These vector spaces assemble together into a planar algebra
with T L0 ∼= C(q).



. . . . . .

The Temperley-Lieb planar algebra

I For each k, T L2k is an algebra over C(q). As a vector
space, T L2k is spanned by diagrams with k nonintersecting
strands. The multiplication operation is vertical stacking.
We also have the following ”bubble bursting” relation:

. = δ · . , where δ = q + q−1

.
2

= . = δ · . ∈ T L6

I These vector spaces assemble together into a planar algebra
with T L0 ∼= C(q).



. . . . . .

The Temperley-Lieb planar algebra

I .. := iq 1
2. − iq− 1

2. ∈ T L4

This satisfies R2 and R3.
For R1, we get a positive twist factor iq3/2.

I Jones-Wenzl projections.
For each k there is a unique element pk ∈ T L2k such that:

I p2
k = pk

I pk is uncappable.

.. pk = zero

It follows that:

pk = ..... +
∑

αQ · Q, where each Q contains a cap.
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Temperley-Lieb when q is a root of unity

If q = eiπ/n+1, then pn becomes negligible. So for T L at this
value of q, we must add the relation pn = zero (this gives us the
An planar algebra). For example, if q = eiπ/6, then T L will have
the relations:

I . = δ · .

I .. p5 = zero
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The D2n planar algebra (P)

Fix n = 2 and q = eiπ/6. Define P to be the planar algebra
generated by a single S-box in P4 subject to the following
relations:

I . = δ · .

I .. p5 = zero

I ..S = zero

I ..S = i · ..S

I .
.S

.S
= .. p2
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An example of evaluating a diagram using the relations:

.

.S
.S.S

.S

→ .

. p
2

. p
2

∈ T L0
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But what about:

.

.S.S

.S

.S.S

.S
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Partial braiding

Theorem
The relations imply the following partial braiding:

..S = ..S

. . . .
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Example of the jellyfish algortihm

.
.S

.S
.S

.S

.1 .2 .3 .4

.S
.S.S

.S

→ .

.S .S .S.S
. . . .

.S .S .S
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Will there always be an S2?

.

.S .S .S .S .S .S .S



. . . . . .

Will there always be an S2?

.

.S .S .S .S .S .S .S



. . . . . .

Will there always be an S2?

.

.S .S .S .S .S .S .S



. . . . . .

Will there always be an S2?

.

.S .S .S .S .S .S .S



. . . . . .

Will there always be an S2?

.

.S .S .S .S .S .S .S



. . . . . .

Will there always be an S2?

.

.S .S .S .S .S .S .S



. . . . . .

Will there always be an S2?

.

.S .S .S .S .S .S .S



. . . . . .

The jellyfish algorithm

Part I

I Draw an arc for each S-box

I Order the arcs

I Drag the S-boxes in order
under any strands

I Evaluate crossings

I Go to Part II

Part II

I If there are zero S-boxes, evaluate
as in T L

I If there is a cap on an S-box,
evaluate as zero

I If there are two or more S-boxes
I Pick a pair of S-boxes connected

by at least two strands
I Choose two strands connecting

the pair and replace with a p2

I Put in the correct coefficient
I Start Part II again
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Change the ordering of the arcs
Fact (for our value of q):

Idea: Add a p4 along an S-box arc. Do this for each arc crossing
that needs to be changed, then use the above fact.
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Alter the path of an arc
Notice that

implies:

Thus we have all three Reidemeister moves for the S-box arcs.
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Check the algorithm respects the relations

Fix n = 2 and q = eiπ/6. Define P to be the planar algebra
generated by a single S-box in P4 subject to the following
relations:

I . = δ · .

I .. p5 = zero

I ..S = zero

I ..S = i · ..S

I .
.S

.S
= .. p2



. . . . . .

Check the algorithm respects the relations

Fix n = 2 and q = eiπ/6. Define P to be the planar algebra
generated by a single S-box in P4 subject to the following
relations:

I . = δ · .

I .. p5 = zero

I ..S = zero

I ..S = i · ..S

I .
.S

.S
= .. p2



. . . . . .

Check the algorithm respects the relations

Fix n = 2 and q = eiπ/6. Define P to be the planar algebra
generated by a single S-box in P4 subject to the following
relations:

I . = δ · .

I .. p5 = zero

I ..S = zero

I ..S = i · ..S

I .
.S

.S
= .. p2



. . . . . .

Check the algorithm respects the relations

Fix n = 2 and q = eiπ/6. Define P to be the planar algebra
generated by a single S-box in P4 subject to the following
relations:

I . = δ · .

I .. p5 = zero

I ..S = zero

I ..S = i · ..S

I .
.S

.S
= .. p2



. . . . . .

Check the algorithm respects the relations

Fix n = 2 and q = eiπ/6. Define P to be the planar algebra
generated by a single S-box in P4 subject to the following
relations:

I . = δ · .

I .. p5 = zero

I ..S = zero

I ..S = i · ..S

I .
.S

.S
= .. p2



. . . . . .

Check the algorithm respects the relations

Fix n = 2 and q = eiπ/6. Define P to be the planar algebra
generated by a single S-box in P4 subject to the following
relations:

I . = δ · .

I .. p5 = zero

I ..S = zero

I ..S = i · ..S

I .
.S

.S
= .. p2



. . . . . .

Summary

We have just proved the following:

Theorem
The defined planar algebra is not trivial

This is part of the Kuperberg program:
Give a presentation for every interesting planar algebra, and
prove as much as possible about the planar algebra using only its
presentation.
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Thank You
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[m + 1] · ..pm+1

....

....
= [m + 1] · .. pm

....

....
− [m] · .

. pm

. pm

....

....

....

[m] · .. pm

.· · ·

.· · ·
= [m + 1] · ..pm−1

.· · ·

.· · ·
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.

.S.S

.S

.S.S

.S


