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Let k be a field of characteristic zero and q ∈ k× not a root of unity. We may
obtain non-commutative counterparts of various commutative algebras by twisting the
multiplication using the scalar q: one example of this is the quantum plane kq[x, y],
which can be viewed informally as the set of polynomials in two variables subject to
the relation xy = qyx. We may also consider the full localization of kq[x, y], which
we denote by kq(x, y) or D and view as the non-commutative analogue of k(x, y), and
also the quantization Oq(Mn) of the coordinate ring of n× n matrices over k.

Our aim in this thesis will be to use the language of deformation-quantization to
understand the quantized algebras by looking at certain properties of the commutative
ones, and conversely to obtain results about the commutative algebras (upon which a
Poisson structure is induced) using existing results for the non-commutative ones.

The q-division ring kq(x, y) is of particular interest to us, being one of the easiest
infinite-dimensional division rings to define over k. Very little is known about such
rings: in particular, it is not known whether its fixed ring under a finite group of
automorphisms should always be isomorphic to another q-division ring (possibly for a
different value of q) nor whether the left and right indexes of a subring E ⊂ D should
always coincide.

We define an action of SL2(Z) by k-algebra automorphisms on D and show that
the fixed ring of D under any finite group of such automorphisms is isomorphic to D.
We also show that D is a deformation of the commutative field k(x, y) with respect
to the Poisson bracket {y, x} = yx and that for any finite subgroup G of SL2(Z) the
fixed ring DG is in turn a deformation of k(x, y)G. Finally, we describe the Poisson
structure of the fixed rings k(x, y)G, thus answering the Poisson-Noether question in
this case.

A number of interesting results can be obtained as a consequence of this: in par-
ticular, we are able to answer several open questions posed by Artamonov and Cohn
concerning the structure of the automorphism group Aut(D). They ask whether it is
possible to define a conjugation automorphism by an element z ∈ L\D, where L is a
certain overring of D, and whether D admits any endomorphisms which are not bijec-
tive. We answer both questions in the affirmative, and show that up to a change of
variables these endomorphisms can be represented as non-bijective conjugation maps.

We also consider Poisson-prime and Poisson-primitive ideals of the coordinate rings
O(GL3) and O(SL3), where the Poisson bracket is induced from the non-commutative
multiplication on Oq(GL3) and Oq(SL3) via deformation theory. This relates to one
case of a conjecture made by Goodearl, who predicted that there should be a home-
omorphism between the primitive (resp. prime) ideals of certain quantum algebras
and the Poisson-primitive (resp. Poisson-prime) ideals of their semi-classical limits.
We prove that there is a natural bijection from the Poisson-primitive ideals of these
rings to the primitive ideals of Oq(GL3) and Oq(SL3), thus laying the groundwork for
verifying this conjecture in these cases.
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Chapter 1

Introduction

1.1 Overview

In this thesis we examine the similarities between certain commutative and non-

commutative algebras, with a focus on using the properties of one algebra to un-

derstand the structure of the other. We also focus in detail on one specific non-

commutative division ring, describing in detail some of its subrings and proving some

striking results concerning its automorphism and endomorphism groups.

Throughout, we will assume that k is a field of characteristic zero and q ∈ k× is not a

root of unity. This thesis divides broadly into two parts, one considering the q-division

ring kq(x, y) and the other concerning coordinate rings of matrices and their quantum

analoges. We will now describe each in turn.

We define the quantum plane kq[x, y] as a quotient of the free algebra in two variables,

namely kq[x, y] = k〈x, y〉/(xy − qyx). This is a Noetherian domain for all non-zero q,

and hence by [32, Chapter 6] it has a division ring of fractions. We denote this ring

by kq(x, y) or D, and call it the q-division ring .

When q is not a root of unity, the centre of D is trivial (see, for example, [32, Exercise

6J]) and hence D is a division ring which is infinite-dimensional over its centre. Very

little is known about division rings of this type: for example, if E is a non-commutative

sub-division ring of D, it is known that D must have finite index over E on both the

left and the right [49, Theorem 34], but it is not known if the two indexes must always

12



CHAPTER 1. INTRODUCTION 13

be equal. Similarly, if G is a finite group of automorphisms of D, must its fixed ring

DG = {r ∈ D : g(r) = r ∀g ∈ G} always be another q-division ring (possibly for a

different value of q)?

One of the key motivations in studying division rings such as D is a conjecture made by

Artin concerning the classification of surfaces in non-commutative algebraic geometry.

In [6], Artin conjectured that all the non-commutative surfaces had already been

described (up to birational equivalence, i.e. up to isomorphism of their function fields);

nearly twenty years later, this conjecture still remains open. Restated in terms of

division rings, this says (informally) that the only division rings appearing as function

fields of non-commutative surfaces must have one of the following forms:

• division rings of algebras finite-dimensional over function fields of transcendence

degree 2;

• division rings of Ore extensions of function fields of curves;

• the degree 0 part of the graded division ring of the 3-dimensional Sklyanin algebra

(defined in [52, Example 8.3]).

For a more precise statement of Artin’s conjecture, including the definition of a non-

commutative surface and its function field (which we do not define here as it will not

be used in this thesis) see [6, 52].

From a purely ring-theoretic point of view, one way of approaching Artin’s conjecture

is to examine the subrings of finite index within the division rings appearing on this

list, as such rings must also fit into the framework of the conjecture.

For an arbitrary division ring L and a finite subgroup G of Aut(L), a non-commutative

version of Artin’s lemma [15, §5.2.1] states that the index of the fixed ring LG inside

L must satisfy the inequality [L : LG] ≤ |G|. In particular, since the q-division ring D

is a division ring of an Ore extension of the function field k(y) and hence one of the

rings appearing in Artin’s conjectured list above, its fixed rings under finite groups of

automorphisms are of interest to us.

Chapter 3 proves a number of results concerning the structure of various fixed rings

of the q-division ring, and throws doubt on the idea that the automorphism and
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endomorphism groups of D might be well-behaved by constructing several examples

of counter-intuitive conjugation maps. (Apart from minor modifications, this chapter

has also appeared in the Journal of Algebra as The q-Division Ring and its Fixed

Rings [19].) In Chapter 4 we describe progress towards an alternative method for

understanding fixed rings of D, via Poisson deformation of the function field k(x, y).

We will also consider prime and primitive ideals in quantum matrices and their com-

mutative semi-classical limits, which at first glance seems completely unrelated to

questions concerning the fixed rings of infinite-dimensional division algebras. How-

ever, we will see that both topics can be studied by viewing the non-commutative

algebras as deformations of certain commutative Poisson algebras, and in both cases

we will be interested in moving from the non-commutative structure to the commuta-

tive one and back in order to better understand the properties of both.

In particular, one of the main tools in understanding prime and primitive ideals in

quantum algebras is the stratification theory due to Goodearl and Letzter, which is

described in detail in [11] and provides tools for describing the prime and primitive

ideals of our algebra in terms of certain localizations. In this thesis our aim will be to

develop a commutative Poisson version of the results in [29], which explicitly describes

the primitive ideals of quantum GL3 and SL3, and hence prove that there is a natural

bijection between the two sets.

This is one small part of a larger conjecture, which in the case of quantum algebras

and their semi-classical limits was stated by Goodearl in [25]. We describe this in

more detail in §2.3.3, but informally stated the conjecture predicts the existence of a

homeomorphism between the prime ideals of a quantum algebra and the Poisson-prime

ideals of its semi-classical limit. By [25, Lemma 9.4], this is equivalent to the existence

of a bijection Φ between the two sets such that both Φ and Φ−1 preserve inclusions.

Approaching the question by direct computation of small-dimensional examples has

been successful for e.g. SL2 and GL2, and so extending this analysis to SL3 and GL3

is a natural next step.

In Chapter 5 we consider the relationship between the ideal structure of the quantum

algebras Oq(GL3) and Oq(SL3) and Poisson ideal structure of their commutative coun-

terparts O(GL3) and O(SL3), which we view as Poisson algebras for an appropriate



CHAPTER 1. INTRODUCTION 15

choice of Poisson bracket. By explicitly describing generators for the Poisson-primitive

ideals of O(GL3) and O(SL3) and combining this with results of [29], we prove that

there is a natural bijection these two sets. We hope that in future work this can be

extended to verify Goodearl’s conjecture in these cases.

Finally, in Appendix A we provide the code we have used for computations in the

computer algebra system Magma, which allows us to perform computations in the

q-division ring by embedding it into a larger ring of non-commutative power series

and to verify that certain ideals are prime in the commutative algebra O(M3). In

Appendix B we collect together several figures relating to the H-prime computations

in Chapter 5.

1.2 Notation

In this section we outline the notation and definitions we will need.

Important Global Convention 1. Throughout, fix k to be a field of characteristic

zero and q ∈ k× not a root of unity, that is qn 6= 1 for all n ≥ 1.

In §5 we will further restrict our attention to the case where k is algebraically closed.

Let R be any ring, α an endomorphism of R and δ a left α-derivation. The (left) Ore

extension R[x;α, δ] is an overring of R, which is free as a left R-module with basis

{1, x, x2, . . . } and commutation relation

xr = α(r)x+ δ(r).

We write R[x;α] or R[x; δ] when δ = 0 or α = 1 respectively.

The ring kq[x, y] can be viewed as the Ore extension k[y][x;α], where α is the auto-

morphism defined on k[y] by α(y) = qy. For r ∈ kq[x, y], let degx(r) be the degree of

r as a polynomial in x.

We say that a multiplicative subset S of a ring R satisfies the right Ore condition if

∀r ∈ R and x ∈ S, ∃s ∈ R and y ∈ S such that ry = xs. (1.2.1)
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If S consists only of regular elements then satisfying (1.2.1) is a sufficient (and indeed

necessary) condition for the existence of the localization RS−1 [32, Theorem 6.2]. A

left Ore set is defined symmetrically, and S is simply called an Ore set if it satisfies

both the left and the right Ore condition.

More generally, we call a multiplicative set S in R a right denominator set if it satisfies

the right Ore condition and also the right reversibility condition:

If r ∈ R and x ∈ S such that xr = 0, then there exists x′ ∈ S such that rx′ = 0.

This allows us to form a right ring of fractions for R with respect to S even if S

contains zero-divisors [32, Theorem 10.3]. The left denominator set is again defined

symmetrically, and S is a denominator set if it satisfies the denominator set conditions

on both sides. We note that in a left/right Noetherian ring, the left/right Ore condition

implies the left/right reversibility condition, and hence all Ore sets are denominator

sets in this case [32, Proposition 10.7].

By localizing kq[x, y] at the set of all its monomials, which is clearly both left and right

Ore since monomials are normal in kq[x, y], we obtain the ring of quantum Laurent

polynomials kq[x
±1, y±1]. This ring sits strictly between kq[x, y] and the division ring

kq(x, y), and the properties of it and its fixed rings are studied in [8].

The q-division ring D = kq(x, y) embeds naturally into a larger division ring, namely

the ring of Laurent power series

kq(y)((x)) =

{∑
i≥n

aix
i : n ∈ Z, ai ∈ k(y)

}
(1.2.2)

subject to the same relation xy = qyx. It is often easier to do computations in

kq(y)((x)) than in D, and we will identify elements of D with their image in kq(y)((x))

without comment.

We will also need a generalization of the quantum plane, namely the uniparameter

quantum affine space kq[x1, . . . , xn]. Here q is an additively anti-symmetric n × n

matrix, and the relations are given by

xixj = qaijxjxi,

where aij denotes the (i, j)th entry of q.
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The coordinate ring of the 2 × 2 matrices over a field k is simply the polynomial

ring in four variables, that is O(M2) = k[x11, x12, x21, x22]. The quantized version of

this algebra is defined in [11, Example I.1.6] to be the quotient of the free algebra

k〈X11, X12, X21, X22〉 by the six relations

X11X12 − qX12X11, X12X22 − qX22X12,

X11X21 − qX21X11, X21X22 − qX22X21,

X12X21 −X21X12, X11X22 −X22X11 − (q − q−1)X12X21;

(1.2.3)

for some q ∈ k×. This algebra is denoted by Oq(M2). From this construction we

may obtain the quantum m × n matrices Oq(Mm×n) as the algebra in mn variables

{Xij : 1 ≤ i ≤ m, 1 ≤ j ≤ n}, subject to the condition that any set of four variables

{Xij, Xim, Xlj, Xlm} with i < l and j < m should satisfy the relations (1.2.3).

When m = n, we write Oq(Mn) for Oq(Mn×n) and define the quantum determinant to

be

Detq =
∑
π∈Sn

(−q)l(π)X1,π(1)X2,π(2) . . . Xn,π(n), (1.2.4)

where Sn is the symmetric group on n elements and l(π) denotes the length of the

permutation π ∈ Sn. The quantum determinant is central inOq(Mn) (see, for example,

[11, I.2.4]), and hence the set {1, Detq, Det2q, . . . } is an Ore set inOq(Mn) and 〈Detq−1〉

defines an ideal in Oq(Mn). We therefore define quantum GLn and quantum SLn as

follows:

Oq(GLn) := Oq(Mn)[Det−1
q ], Oq(SLn) := Oq(Mn)/〈Detq − 1〉.

We may also generalise the definition of quantum determinant to obtain a notion of

minors in Oq(Mn). Using the notation of [29], if I and J are subsets of {1, . . . , n}

of equal cardinality then we define the quantum minor [I|J ]q to be the quantum

determinant in the subalgebra of Oq(Mn) generated by {Xij : i ∈ I, j ∈ J}. We will

use the same notation for quantum minors of Oq(GLn) and Oq(SLn), where we simply

mean the image of [I|J ]q in the appropriate algebra.

Since we will work primarily with 3× 3 quantum matrices, we will often drop the set

brackets in our notation and, for example, write [12|13]q for the minor [{1, 2}|{1, 3}]q.

Similarly, let Ĩ denote the set {1, . . . , n}\I, and so that [12|13]q may also be denoted
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by [3̃|2̃]q. Since 1 × 1 minors are simply the generators Xij, we will use the notation

[i|j]q and Xij interchangeably.

If R is any ring and z an invertible element, we denote the resulting conjugation map

on R by

cz : r 7→ zrz−1 ∀r ∈ R.

Since we will define conjugation maps on D with z ∈ kq(y)((x))\D, the following

distinction will be important: we call a conjugation map cz an inner automorphism of

R if z, z−1 ∈ R.

Meanwhile, if G is a subgroup of Aut(R) we define the fixed ring to be

RG = {r ∈ R : g(r) = r, ∀g ∈ G}.

If G = 〈ϕ〉 is cyclic, we will also denote the fixed ring by Rϕ.

Let spec(R) be the set of prime ideals in a ring R, and prim(R) the set of primitive

ideals. The Zariski topology is defined on spec(R) by defining the closed sets to be

those of the form

V (I) = {P ∈ spec(R) : P ⊇ I}

for some ideal I of R. This induces a topology on prim(R), where the closed sets are

simply those of the form V (I) ∩ prim(R) for some closed set V (I) in spec(R).

1.3 Results on the structure of the q-division ring

As described in §1.1, we are interested in understanding the structure of fixed rings of

division rings. In particular, we will focus on the q-division ring D = kq(x, y) and its

fixed rings under finite groups of automorphisms, with a view to establishing whether

and how these fixed rings fit into the list predicted by Artin’s conjecture.

We first describe the existing results along these lines. In the simplest case, where the

group of automorphisms restricts to automorphisms of the quantum plane, we have a

full description of the fixed rings DG given by the following theorem.
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Theorem 1.3.1. [4, Proposition 3.4] Let k be a field of characteristic zero, and q ∈ k×

not a root of unity. Denote by Rq the quantum plane kq[x, y] and by Dq its full ring

of fractions. Then:

(i) For q′ ∈ k, we have Dq
∼= Dq′ if and only if q′ = q±1, if and only if Rq

∼= Rq′.

(ii) For all finite subgroups G of Aut(Rq), DG
q
∼= Dq′ for q′ = q|G|.

However, D admits many other automorphisms of finite order which are not covered

by this theorem. The following theorem by Stafford and Van den Bergh considers one

such example:

Theorem 1.3.2. [52, §13.6] Let τ be the automorphism defined on D by

τ : x 7→ x−1, y 7→ y−1

Then the fixed ring Dτ is isomorphic to D as k-algebras.

The map τ is an example of a monomial automorphism, i.e. one where the images of

x and y are both monomials (up to scalars). In contrast to Theorem 1.3.1, the value

of q in Dτ does not depend on the order of τ . In a private communication to Stafford,

Van den Bergh posed the question of whether the same result holds for the order 3

automorphism σ : x 7→ y, y 7→ (xy)−1; we answer this in §3.2 as part of the following

general theorem:

Theorem 1.3.3 (Theorem 3.1.1, Theorem 3.2.9). Let k be a field of characteristic

zero and q ∈ k×.

(i) Define an automorphism of D by

ϕ : x 7→ (y−1 − q−1y)x−1 y 7→ −y−1

and let G be the group generated by ϕ. Then DG ∼= D as k-algebras.

(ii) Suppose k contains a third root of unity ω, and both a second and third root of

q. If G is a finite group of monomial automorphisms of D then DG ∼= D as

k-algebras.
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This suggests that for finite groups of automorphisms which do not restrict to kq[x, y],

we should expect the fixed ring to again be q-division for the same value of q. There

are several difficulties standing in the way of proving a general theorem of this form,

however: in particular, the full automorphism group of D is not yet fully understood,

and the methods used in the proof of Theorem 1.3.3 involve direct computation with

elements of D and do not easily generalise to automorphisms of large order.

In §2.1.2 we describe what is currently known about Aut(D), based on work by Alev

and Dumas in [3] and Artamonov and Cohn in [5]. In §3.3 we demonstrate why the

structure of this group remains mysterious, by proving the following counter-intuitive

result:

Theorem 1.3.4 (Theorem 3.3.10). Let k be a field of characteristic zero and q ∈ k×

not a root of unity. Then:

(i) The q-division ring D admits examples of bijective conjugation maps by elements

z ∈ kq(y)((x))\D; these include examples satisfying zn ∈ D for some positive n,

and also those such that zn 6∈ D for all n ≥ 1.

(ii) D also admits an endomorphism which is not an automorphism, which can be

represented in the form of a conjugation map.

Both parts of Theorem 1.3.4 illustrate different problems with understanding the au-

tomorphism group Aut(D). Part (i) means that we must distinguish between the

concepts of “bijective conjugation map” and “inner automorphism” when considering

automorphisms of D, and raises the possibility that these non-inner conjugation auto-

morphisms may be examples of wild automorphisms (see §2.1). Meanwhile, part (ii) of

the theorem flies in the face of our most basic intuitions concerning conjugation maps,

and also allows us to construct interesting new division rings such as the following:

if cz is a conjugation map predicted by Theorem 1.3.4 (ii), then we can consider the

limits ⋂
i≥0

ziDz−i and
⋃
i≥0

z−iDzi,

about which very little is currently known.
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1.3.1 Methods for computation in the q-division ring

As noted above, one of the reasons that so many apparently-simple questions concern-

ing D remain open is that direct computation in non-commutative division rings is

extremely difficult. By [32, Corollary 6.7], if R is a right Noetherian domain then the

set S := R\{0} forms a right Ore set, i.e. satisfies the right Ore condition defined in

(1.2.1).

This condition is what makes the addition and multiplication well-defined in the local-

ization RS−1: for example, when computing the product of two fractions ab−1cd−1, the

Ore condition (1.2.1) guarantees the existence of u ∈ R, v ∈ S such that b−1c = uv−1

and hence

ab−1cd−1 = au(dv)−1 ∈ RS−1.

The problem is that this is not a constructive result, and in practice finding the values

of u and v is often all but impossible. In order to get around this problem, we embed

D into a larger division ring, namely the ring of Laurent power series

kq(y)((x)) =

{∑
i≥n

aix
i : ai ∈ k(y), n ∈ Z

}
(1.3.1)

where x and y are subject to the same relation xy = qyx. Addition and multiplication

in this ring can be computed term-by-term, where each step involves only monomials

in x (see Appendix A for further details on this).

Computing in kq(y)((x)) can therefore be reduced to computation of the coefficients

for each power of x, and in Appendix A we provide the code used to implement this

approach in the computer algebra system Magma. We also prove several results which

allow us to pull the answers of our computations back to elements in D, which we

state next.

Theorem 1.3.5. (Theorem A.1.1) Let K be a field, α an automorphism on K and

K[x;α] the Ore extension of K by α. Denote by K(x;α) the division ring of K[x;α]

and K[[x;α]] the power series ring into which K[x;α] embeds.

The power series
∑

i≥0 aix
i ∈ K[[x;α]] represents a rational function Q−1P in K(x;α)

if and only if there exists some integer n, and some constants c1, . . . , cn ∈ K (of which
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some could be zero) such that for all i ≥ 0 the coefficients of the power series satisfy

the linear recurrence relation

ai+n = c1α(ai+(n−1)) + c2α
2(ai+(n−2)) + · · ·+ cnα

n(ai).

If this is the case, then P is a polynomial of degree ≤ n− 1 and Q = 1−
∑n

i=1 cix
i.

Theorem 1.3.6. (Theorem A.1.4) Keep the same notation as Theorem 1.3.5. A power

series
∑

i≥0 aix
i satisfies a linear recurrence relation

ai+n = c1α(ai+(n−1)) + c2α
2(ai+(n−2)) + · · ·+ ckα

k(ai)

if and only if there exists some m ≥ 1 such that the determinants of the matrices

∆k =


αk(a0) αk−1(a1) . . . α(ak−1) ak

αk(a1) αk−1(a2) . . . α(ak) ak+1

...
. . .

...

αk(ak) αk+1(ak+1) . . . α(a2k−1) a2k


are zero for all k ≥ m.

Since we cannot in practice compute infinitely many terms of a series or infinitely

many determinants of matrices, these results only provide the tools which allow us to

approximate computation in D and kq(y)((x)). However, we may then use the intuition

gained from these computations to prove results by more standard methods.

1.3.2 Approaching D via Poisson deformation

An alternative method of understanding D while avoiding the difficulties imposed

by the non-commutativity is to translate the problem to a related commutative ring

where localization is better behaved, and then use deformation theory to pull the

results back to D. In [7], Baudry constructed the algebra of q-commuting Laurent

polynomials kq[x
±1, y±1] as a deformation of the commutative algebra k[x±1, y±1], and

proved that for certain finite groups of automorphisms G the fixed ring kq[x
±1, y±1]G

is in turn a deformation of k[x±1, y±1]G.

In Chapter 4 we build on Baudry’s result to prove the corresponding result for D,

and describe partial results towards understanding fixed rings DG as deformations of

commutative rings. In particular, we prove the following result:
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Theorem 1.3.7. (Proposition 4.1.8, Theorem 4.1.12) Let k(x, y) be the field of ratio-

nal functions in two commuting variables with Poisson bracket defined by {y, x} = yx,

and G a finite subgroup of SL2(Z) acting on k(x, y) by Poisson monomial automor-

phisms and on D by monomial automorphisms. Then D is a deformation of k(x, y),

and the fixed ring DG is a deformation of k(x, y)G.

The Poisson bracket on k(x, y) captures some of the non-commutative behaviour of

D, while on the other hand its commutative multiplication makes it a far easier ring

to work with. Theorem 1.3.7 tells us that if we can describe the Poisson structure of

k(x, y)G and the possible Poisson deformations of this structure, this will allow us to

also understand the fixed ring DG.

In §4.2 we achieve the first of these for the case of finite groups of monomial auto-

morphisms on k(x, y) with respect to the Poisson bracket {y, x} = yx, by proving the

following result.

Theorem 1.3.8. (Theorem 4.2.1) Let k be a field of characteristic zero which contains

a primitive third root of unity ω, and let G be a finite subgroup of SL2(Z) which acts

on k(x, y) by Poisson monomial automorphisms as defined in Definition 4.1.10. Then

there exists an isomorphism of Poisson algebras k(x, y)G ∼= k(x, y).

Unfortunately we have not yet managed to describe the possible deformations of

k(x, y)G, which means that we cannot yet replace the results of Chapter 3 with this

alternative Poisson approach. However, the proof of Theorem 1.3.8 is far simpler and

more intuitive than the proof of Theorem 1.3.3, which suggests that this may be a

better way to approach a general theorem concerning the structure of fixed rings DG

for arbitrary finite G.

1.4 Primitive ideals in O(GL3) and O(SL3)

In Chapter 5 we apply the deformation theory techniques explored in the previous

chapter to a completely different setting: the quantum algebras Oq(Mn), Oq(GLn)

and Oq(SLn) defined in §1.2 and their commutative counterparts O(Mn), O(GLn)
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and O(SLn). Informally, by letting q = 1 we obtain the standard coordinate rings

of Mn, GLn and SLn, but as in §1.3.2 this process induces a Poisson bracket on the

commutative algebra which retains a “first order impression” of the non-commutative

multiplication.

This relationship between the non-commutative and Poisson structures seems to force

the ideal structures of the two algebras to match up quite closely: in the case of

Oq(SL2) and O(SL2), for example, it is fairly easy to show directly that there is

a homeomorphism from the prime ideals of Oq(SL2) to the Poisson-prime ideals of

O(SL2), and further that this restricts to a homeomorphism from primitive ideals to

Poisson-primitive ideals [25, Example 9.7]. Goodearl has conjectured in [25, Conjec-

ture 9.1] that the existence of this homeomorphism should be a general phenomenon,

extending not just to all algebras of quantum matrices but other types of quantum

algebra as well (the precise definition of “quantum algebra” remains an open question;

some examples and common properties of these algebras are discussed in §2.3.1).

Let A denote a quantum algebra and B its semi-classical limit, and denote the set of

Poisson-primes in B by Pspec(B); note that for all of the algebras we are interested

in, a Poisson-prime ideal is simply a prime ideal in the usual commutative sense which

is closed under the Poisson bracket. By [25, Lemma 9.4], a bijection Φ : spec(A) →

Pspec(B) is a homeomorphism if any only if Φ and Φ−1 both preserve inclusions,

hence for low dimensional examples of algebras A and B it is a valid tactic to try to

obtain generating sets for all of the (Poisson-)primes and check the inclusions directly.

The aim of computing these examples explicitly is to provide evidence in favour of the

conjecture, and also to provide intuition for a more general proof (or disproof) in the

future.

In [29], Goodearl and Lenagan give explicit generating sets for the primitive ideals

of Oq(GL3) and Oq(SL3) and lay the foundations for a full description of the prime

ideals. In Chapter 5 we make use of their results and also techniques from deformation

theory to obtain the corresponding description of Poisson-primitive ideals in O(GL3)

and O(SL3). We obtain the following theorem:

Theorem 1.4.1. [Corollary 5.4.4] Let k be algebraically closed of characteristic 0 and

q ∈ k× not a root of unity. Let A denote Oq(GL3) or Oq(SL3), and let B denote
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the semi-classical limit of A. Then there is a bijection of sets between prim(A) and

Pprim(B), which is induced by the “preservation of notation map”

A→ B : Xij 7→ xij, [̃i|̃j]q 7→ [̃i|̃j].

Here [̃i|̃j]q denotes a quantum minor in A as defined in §1.2, and [̃i|̃j] is the corre-

sponding minor in B with q = 1.

Although we are not able to verify that this bijection is actually a homeomorphism,

Theorem 1.4.1 does make it extremely likely that Goodearl’s conjecture is true in these

cases.

Note that the statement of [25, Lemma 9.4] relating homeomorphisms to bijections

preserving inclusions of primes does not restrict to the corresponding statement for

primitives; in order to verify the conjecture we would therefore need to prove that

the bijection in Theorem 1.4.1 was a homeomorphism using other techniques, or first

extend it to a bijection on prime ideals. With this in mind, we also prove the following

result for O(SL3):

Proposition 1.4.2. [Proposition 5.3.19] For any Poisson H-prime Iω in O(SL3), the

quotient O(SL3)/Iω is a commutative UFD.

The corresponding quantum version is proved in [10, Theorem 5.2]. We hope to use

these results in future work to pull back generating sets for prime ideals to Oq(SL3)

(resp. generating sets for Poisson-primes in O(SL3)); currently these are only known

up to certain localizations. This would allow us to extend the bijection in Theo-

rem 1.4.1 to a bijection spec(Oq(SL3))→ Pspec(O(SL3)).



Chapter 2

Background Material

The aim of this chapter is to provide the background material upon which the following

chapters are built. We begin in §2.1 with an introduction to the concept of tame

and wild automorphism groups, and focus in particular on what is known about the

automorphism groups of q-commuting structures related to the q-division ring. In

§2.1.2 we outline work done by Artamonov and Cohn in [5], upon which our results in

§3.3 concerning strange conjugation maps of kq(x, y) are based.

In §2.2 we introduce Poisson algebras and Poisson deformation, which is the tool

that will allow us to move between commutative and non-commutative algebras and

compare the properties of the two. Finally, in §2.3 we introduce stratification theory

and H-primes for both quantum and Poisson algebras; this is an extremely powerful

theory which allows us to partition the spectrum (respectively, Poisson spectrum) of

certain types of algebra into smaller, more manageable pieces and hence describe the

prime and primitive (resp. Poisson-prime and Poisson-primitive) ideals of the algebra.

Recall that as per Important Global Notation 1 we assume throughout that k is a field

of characteristic zero and q ∈ k× is not a root of unity.

26
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2.1 On automorphism groups: tame, wild and the

q-division ring

One way to get a feel for the structure of an algebra is to describe its automorphism

group: the set of all possible k-linear automorphisms that can be defined on it, which

is a group under composition of maps. One way to waste a lot of time, on the other

hand, is to try to describe an automorphism group that can’t be described: informally,

a wild automorphism group.

The definition of tame and wild automorphisms varies from algebra to algebra, but the

common theme is as follows: the tame automorphisms should be those in the group

generated by some “natural” or “elementary” set of generators, while any remaining

automorphisms not covered by this description are called “wild”. This concept is best

illustrated by examples.

Notation 2.1.1. If R is a k-algebra, the notation Aut(R) will always mean the group

of k-linear automorphisms of R.

Example 2.1.2. Let k[x, y] be the commutative polynomial ring in two variables.

Define two subgroups of Aut(k[x, y]) as follows:

A =
{

(x, y) 7→ (λ1x+ λ2y + λ3, µ1x+ µ2y + µ3) : λ1µ2 6= λ2µ1, λi, µi ∈ k
}
,

B =
{

(x, y) 7→ (λx+ µ, ηy + f(x)) : λ, η ∈ k×, µ ∈ k, f(x) ∈ k[x]
}

;

the affine and triangular automorphism respectively. The tame automorphisms of

k[x, y] are defined to be those in the group generated by A∪B; it is a well-known result

(due to Jung [39] in characteristic 0 and van der Kulk [55] in arbitrary characteristic)

that the group of tame automorphisms equals the whole group Aut(k[x, y]).

Example 2.1.3. More generally, let k[x1, . . . , xn] be the polynomial ring in n vari-

ables, and take the tame automorphism group to be that generated by all elementary

automorphisms of the form

(x1, . . . , xi, . . . , xn) 7→ (x1, . . . , λxi + f, . . . , xn)

for 1 ≤ i ≤ n, λ ∈ k× and f ∈ k[x1, . . . , xi−1, xi+1, . . . , xn]; in two variables this

coincides with the group defined in Example 2.1.2 (see, e.g., [50]). In [46], Nagata
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conjectured that the automorphism

(x, y, z) 7→
(
x+ (x2 − yz)z, y + 2(x2 − yz)x+ (x2 − yz)2z, z

)
(2.1.1)

in k[x, y, z] should be wild, a conjecture which remained open for over 30 years before

being settled. In [51], it was shown that Nagata’s automorphism is stably tame, i.e.

becomes tame when new variables (upon which (2.1.1) acts as the identity) are added.

However, it was not until 2003 that Shestakov and Umirbaev finally proved in [50]

that the Nagata automorphism (2.1.1) is indeed wild, and hence the polynomial ring

in three variables admits wild automorphisms.

Other examples of algebras with tame automorphism groups include the free algebra

in two variables [44], the commutative field k(x, y) in two variables [36] and the first

Weyl algebra A1(k) [14, §8]; examples of algebras with wild automorphisms include

U(sl2), the enveloping algebra of the Lie algebra sl2 [38].

2.1.1 Automorphisms of q-commuting structures

Since we will be interested in automorphisms of q-commuting algebras, let us examine

what is already known about them in more detail. The automorphism group of the

quantum plane kq[x, y] is particularly easy to understand: for q 6= ±1 it admits only

automorphisms of scalar multiplication, i.e. maps of the form

x 7→ αx, y 7→ βy, (α, β) ∈ (k×)2,

and hence Aut(kq[x, y]) ∼= (k×)2 [1, Proposition 1.4.4]. This is far smaller than the

automorphism group of the commutative polynomial ring k[x, y], which is a result of

the restrictions imposed by the lack of commutativity: the images of x and y must

q-commute in kq[x, y], for example. Since any homomorphism from kq[x, y] to itself

must preserve the set of normal elements, and it is shown in [15, Proposition 4.1.1]

that the only normal elements in kq[x, y] are the monomials, the possible images of x

and y are immediately restricted to pairs of q-commuting monomials. Of such pairs,

the only ones ones defining an invertible map of kq[x, y] are x and y themselves; this

provides an elementary proof of the result in [1].
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With this analysis in mind, upon moving up to the quantum torus kq[x
±1, y±1] we may

define a new set of automorphisms of the form

x 7→ ybxd, y 7→ yaxc; a, b, c, d ∈ Z, ad− bc = 1. (2.1.2)

We observe that since

(ybxd)(yaxc) = qadyabxcd = qad−bc(yaxc)(ybxd),

the condition ad − bc = 1 is both necessary and sufficient for the map defined in

(2.1.2) to be a well-defined homomorphism. Since we may define the inverse map on

kq[x
±1, y±1] by

x 7→ qmyax−b, y 7→ qnydx−c

for some m,n ∈ Z depending on the values of {a, b, c, d}, the maps defined in (2.1.2)

define a set of automorphisms on kq[x
±1, y±1] which correspond to elements of the

group SL2(Z).

We will examine these automorphisms in more detail in Chapter 3, where we will

refine the definition (2.1.2) slightly in order to define an embedding of SL2(Z) into

Aut(kq[x
±1, y±1]). For now, it suffices to observe that

Aut(kq[x
±1, y±1]) ∼= (k×)2 o SL2(Z),

which is proved in [15, §4.1.1].

The full structure of the automorphism group of the q-division ring D is not yet

known; we outline existing results in this area in §2.1.2. Many of these results make

use of techniques originally developed for describing the automorphism group of a

much larger division ring, namely the division ring of Laurent power series

Lq = k((y))((x)) =

{∑
i≥n

aix
i : n ∈ Z, ai ∈ k((y)), xy = qyx

}
.

This is a generalization of the ring kq(y)((x)) defined in (1.2.2), where here we allow

coefficients in k((y)) instead of k(y).

A key point when doing computations in Lq and its subring kq(y)((x)) is that one can

often specify just the first term in a power series and then construct the rest of the
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coefficients recursively to satisfy a desired property. For example, given an element

g = λy +
∑
i≥1

gix
i ∈ Lq, (2.1.3)

one may construct a second element f =
∑

i≥n fix
i which q-commutes with it by

expanding out the expression fg−qgf = 0 and solving term-by-term for the coefficients

of f . Indeed, we see that

0 = fg − qgf

=
∑
i≥n

fix
i

(
λy +

∑
j≥1

gjx
j

)
− q

(
λy +

∑
j≥1

gjx
j

)∑
i≥n

fix
i

=
∑
i≥n

λ(qi − q)yfixi +
∑
i≥n+1

(
i−1∑
k=n

fkα
k(gi−k)

)
xi, (2.1.4)

where α denotes the map y 7→ qy on k((y)).

The coefficient of xn in (2.1.4) is λ(qn − q)yfnxn, which is zero if and only if n = 1

since q is not a root of unity. Having set n = 1, we may choose f1 ∈ k((y)) arbitrarily,

provided it is non-zero. Now by considering the coefficient of xm for any m ≥ 2 in

(2.1.4) and recalling that n = 1, we can see that

fm = −
m−1∑
k=1

fkα
k(gm−k)λ

−1(qm − q)−1y−1,

which is uniquely determined by g and the choice of the coefficient f1.

In [3], Alev and Dumas use techniques of this form to describe the automorphism group

of Lq. They first show that if θ is an automorphism on Lq then θ(x) and θ(y) must take

the forms of the elements f and g described in the above discussion [3, Lemme 2.6].

By considering the expansion of the equation zθ(y) = yz for some unknown z ∈ Lq,

they are then able to describe necessary and sufficient conditions for θ to be an inner

automorphism. This result is recorded in the following lemma.

Lemma 2.1.4. [3, Lemme 2.6] For all θ ∈ Aut(Lq), there exists some β ∈ k× and

two sequences (ai)i≥1, (bi)i≥1 of elements in k((y)) with a1 6= 0, such that the image of

θ has the form

θ(x) =
∑
i≥1

aix
i, θ(y) = βy +

∑
i≥1

bix
i. (2.1.5)

Further, θ is an inner automorphism if and only if it satisfies the following two con-

ditions:
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1. β = qn for some n ∈ Z;

2. there exists some u ∈ k((y))× such that a1α(u) = u.

Alev and Dumas define the set of elementary automorphisms on Lq to be those of the

form

{ϕα,f : x 7→ f(y)x, y 7→ αy : α ∈ k×, f ∈ k((y))×}, (2.1.6)

and observe that the automorphism group of Lq is tame in the following theorem.

Theorem 2.1.5. [3, Théorème 2.7] The automorphism group of Lq is generated by

the elementary automorphisms and inner automorphisms, and hence Aut(Lq) is tame.

The proof follows from Lemma 2.1.4 by observing that the image of x and y from (2.1.5)

can be transformed using an elementary automorphism to obtain elements satisfying

a1 = 1, β = 1. These elements clearly satisfy the conditions required to be the image

of an inner automorphism, and hence we have constructed the inverse of our original

automorphism as the product of an elementary and an inner automorphism.

We can also easily obtain the same result for the slightly smaller ring kq(y)((x)):

Theorem 2.1.6. Define the set of elementary automorphisms on kq(y)((x)) to be those

of the form

{ϕα,f : x 7→ f(y)x, y 7→ αy : α ∈ k×, f ∈ k(y)×}.

Then the automorphism group of kq(y)((x)) is generated by elementary and inner au-

tomorphisms, and hence Aut
(
kq(y)((x))

)
is tame.

We will not prove this here as it will not be used in this thesis. However, it follows

easily from the results in [3] by observing that the proofs for Lq up to and including

Théorème 2.7 make no use of the properties of k((y)) except that it is a field, and hence

work without modification for kq(y)((x)) as well.

2.1.2 The automorphisms of kq(x, y)

One would hope that given our understanding of the automorphism groups of various

subrings and overrings of the q-division ring D, the description of Aut(D) would
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follow easily; unfortunately, this is not the case. For example, in Proposition 3.3.5

we will construct an example of a conjugation automorphism on D which satisfies the

conditions of Lemma 2.1.4 but is not an inner automorphism on D: the conjugating

element z is in kq(y)((x))\D, so the map is inner as an automorphism of kq(y)((x)) but

not as an automorphism of D.

Let X, Y be a pair of q-commuting generators for D. In this section we will outline

the existing results which partially describe the structure of Aut(D).

In [3] Alev and Dumas construct a set of generators for the tame automorphism group

by analogy to the automorphism group of k(x, y), while in [5] Artamonov and Cohn

define a different but possibly more natural set of elementary automorphisms. We will

use the definition from [5] here; in Lemma 3.3.1 we will show that the two definitions

in fact coincide, thus justifying this choice.

Definition 2.1.7. The following automorphisms of D are called elementary :

τ : X 7→ X−1, Y 7→ Y −1

hX : X 7→ b(Y )X, Y 7→ Y, b(Y ) ∈ k(Y )×

hY : X 7→ X, Y 7→ a(X)Y, a(X) ∈ k(X)×

Call an automorphism of D tame if it is in the group generated by the elementary

automorphisms and the inner automorphisms.

In [5], progress is made towards describing the automorphism group Aut(D) in terms

of the elementary automorphisms and certain types of conjugation maps. Since we

will build on this work in §3.3, we give a brief outline of their results here.

Let θ be a homomorphism from D to itself. As for Lq in §2.1.1, Artamonov and Cohn

try to understand θ by applying elementary transformations and conjugation maps to

the images θ(X) and θ(Y ) until they arrive back at the original generators X and Y .

More generally, let f , g be a pair of elements in kq(X, Y ) such that fg = qgf and

identify them with their image in kq(Y )((X)) as follows:

f = amX
m +

∑
i>m

aiX
i, g = bnX

n +
∑
j>n

bjX
i.
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We may assume that am and bn are both non-zero. For any r ∈ Z, we have

grf = cm+rnX
m+rn + [higher terms]

f rg = dn+rmX
n+rm + [higher terms]

where cm+rn, dn+rm ∈ k(Y )×. As described in [5, §3], we may therefore apply a carefully

chosen sequence of elementary transformations to f and g so that at each step the

lowestX-degree of one element in the pair is closer to zero than before, while preserving

the two properties that (i) the pair of elements q-commute, and (ii) they generate the

same ring as the original pair. It is clear that this process must terminate in a finite

number of steps, when the X-degree of one element reaches 0.

Using the fact that our pair of elements still q-commute, [5, Proposition 3.2] shows

that these elements must have the form

F = fsX
s +
∑
i≥s

fiX
i, G = λY s +

∑
i≥1

giX
i, (2.1.7)

where s = ±1, λ ∈ k× and fi, gi ∈ k(Y ) for all i ≥ s. In other words, for any

q-commuting pair (f, g) of elements in D, there exists a sequence of elementary trans-

formations that reduces (f, g) to a pair (F,G) of the form (2.1.7). Further, we may

apply two more elementary transformations to ensure that fs and λ are both 1.

The next proposition completes the process by showing that we may always construct

an element of kq(y)((x)) that conjugates the pair (F,G) back to (Xs, Y s).

Proposition 2.1.8. [5, Proposition 3.3] Let F , G ∈ kq(Y )((X)) be q-commuting ele-

ments of the form (2.1.7), where we may assume without loss of generality that λ = 1,

fs = 1. Then there exists an element z ∈ kq(Y )((X)) defined by

z0 = 1; zn = Y −s(1− qs)−1

gn +
∑

i+j=n
i,j>0

zjα
j(gi)

 for n ≥ 1;

z :=
∑
i≥0

ziX
i.

(2.1.8)

such that

zFz−1 = fsX
s, zGz−1 = λY s.
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The element z is constructed recursively by solving the equation zG = Y sz for co-

efficients of z, in a similar manner to the process described in 2.1.1. That we must

also have zFz−1 = fsX
s in this case is a consequence of the fact that zFz−1 must

q-commute with zGz−1 = λY s. The main theorem of [5] (which is stated next) is now

an easy consequence.

Theorem 2.1.9. [5, Theorem 3.5] Let θ : D → D be a homomorphism. Then there

exists a sequence of elementary automorphisms ϕ1, . . . , ϕn, an element z ∈ kq(y)((x))

constructed as in Proposition 2.1.8, and ε ∈ {0, 1} such that

θ = ϕ1ϕ2 . . . ϕncz−1τ ε, (2.1.9)

where cz−1 denotes conjugation by z−1 and τ : x 7→ x−1, y 7→ y−1 is the elementary

automorphism defined in Definition 2.1.7.

This is not sufficient on its own to prove that Aut(D) is tame, as it is not clear whether

we must have z ∈ D whenever θ is an automorphism. Indeed, as we will see in §3.3, it

is possible to construct automorphisms of D in this manner where z ∈ kq(y)((x))\D;

it remains an open question whether automorphisms of this form can be decomposed

further into a product of elementary and inner automorphisms, or whether D admits

wild automorphisms.

2.2 Quantization-deformation

Intuitively, if we set q = 1 in kq(x, y) we recover the commutative field of rational

functions in two variables, and so we would expect the structures of these two rings

to be similar to some extent. This type of example is the motivation for the theory

of deformation-quantization, which seeks to describe this relationship formally. Quan-

tization also has uses in many areas of physics, for example quantum mechanics: a

classical system is often represented as families of smooth functions on a manifold

while a quantum one involves certain non-commuting operators on a Hilbert space,

but the two should be related in the sense that as the deforming parameter t (often

denoted by the Planck constant ~ in this context) tends to zero, we recover the original

classical system (see, e.g. [54, §4] for more details on this).
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The deformations of a commutative algebra R are closely linked to the possible Poisson

structures that can be defined on R, so we begin in §2.2.1 by defining the notion

of a Poisson algebra and elementary definitions relating to this. In §2.2.2 we define

deformation-quantization formally in terms of star products on power series, and finally

in §2.2.3 we give several examples which will form a recurring theme in future chapters.

2.2.1 Poisson algebras

A Poisson bracket on a k-algebra A is a skew-symmetric bilinear map {·, ·} : A×A→ A

which satisfies the conditions of a Lie bracket:

{a, a} = 0 ∀a ∈ A

{a, {b, c}}+ {b, {c, a}}+ {c, {a, b}} = 0 ∀a, b, c ∈ A

and also satisfies the Leibniz identity:

{a, bc} = {a, b}c+ b{a, c} ∀a, b, c ∈ A. (2.2.1)

Intuitively, (2.2.1) says that {a, ·} and {·, b} are derivations of A for any a or b in A.

If A is an associative k-algebra with a Poisson bracket, we call A a Poisson algebra.

Although this definition makes sense for non-commutative algebras, for the purposes

of this thesis we will always assume that our Poisson algebras are commutative.

Many of the standard algebraic concepts and definitions can be extended in a very

natural way to the case of Poisson algebras. We make the following definitions:

Definition 2.2.1. Let A be a Poisson algebra. We call an ideal I ⊂ A a Poisson ideal

if it is also closed under the Poisson bracket, that is {I, A} ⊆ I. A Poisson ideal I

is called Poisson-prime if whenever J , K are Poisson ideals satisfying JK ⊆ I then

J ⊆ I or K ⊆ I.

In the case where A is commutative Noetherian and k has characteristic zero, the set

of Poisson-prime ideals coincides with the set of Poisson ideals which are prime in

the standard commutative sense [24, Lemma 1.1]. We may therefore use the terms

“Poisson-prime” and “prime Poisson” interchangeably.
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Given a Poisson algebra A and a Poisson ideal I we may form the quotient A/I, which

by [15, §3.1.1] is again a Poisson algebra. The bracket on A/I is induced from that of

A via the definition

{a+ I, b+ I} := {a, b}+ I. (2.2.2)

Similarly, if A is a commutative domain and S a multiplicatively-closed subset of A,

then the Poisson bracket extends uniquely to the localization AS−1 as follows:

{as−1, bt−1} = {a, b}s−1t−1 − {a, t}bs−1t−2 − {s, b}as−2t−1 + {s, t}abs−2t−2. (2.2.3)

This formula is an easy consequence of the quotient rule for derivatives (see, for ex-

ample, [15, §3.1.1]).

A homomorphism ϕ : A → B is a homomorphism of Poisson algebras if it respects

the Poisson brackets of each structure, i.e. ϕ({a1, a2}A) = {ϕ(a1), ϕ(a2)}B. Using this

definition it is easy to see that if G is a group of Poisson automorphisms on a Poisson

algebra A, then the fixed ring

AG = {a ∈ A : g(a) = g ∀g ∈ G}

is closed under the Poisson bracket: for a, b ∈ AG, we have g({a, b}) = {g(a), g(b)} =

{a, b}. Hence AG is again a Poisson algebra.

We may therefore formulate a Poisson version of Noether’s problem as in [15, §5.5.1]:

Question 2.2.2. If F is a field equipped with a Poisson bracket and G is a finite

group of Poisson automorphisms, under what conditions is there an isomorphism of

Poisson algebras FG ∼= F?

A full answer to this question is not known even in the case of fields of transcendence

degree 2: while Castelnuovo’s theorem (see [15, §5.1.1]) guarantees the existence of

an isomorphism of algebras, the two fields need not have the same Poisson structure

in general. Existing results in this direction are summarised in [16, §3], including the

following example where F and FG have non-isomorphic Poisson structures:

Theorem 2.2.3. [16, §3] Let F = k(x, y) with the Poisson bracket {y, x} = yx, and

let G be a finite group of Poisson automorphisms defined on the polynomial ring k[x, y]

and extended to F . Let u and v be a pair of generators for FG, i.e. FG = k(u, v), then
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the Poisson bracket on FG is given by {v, u} = |G|.vu, where |G| denotes the order of

the group G.

By [26, Corollary 5.4], the Poisson algebra FG in Theorem 2.2.3 cannot be Poisson-

isomorphic to F unless |G| = 1. Since (for example) the group generated by the

automorphism x 7→ −x, y 7→ −y is non-trivial and satisfies the conditions of Theo-

rem 2.2.3, it is possible to answer the Poisson-Noether question in the negative even

for fields of transcendence degree 2.

On the other hand, in Chapter 4 we will show that for the field k(x, y) and Poisson

bracket {y, x} = yx there is a Poisson isomorphism k(x, y)G ∼= k(x, y) for all finite

groups of Poisson monomial automorphisms on k(x, y).

2.2.2 Formal deformation

The theory of quantization-deformation can range from the extremely general and

formal formulations (e.g. Kontsevich’s Formality Theorem in [40]) to the informal

notion given in Definition 2.2.6 below, and the notation and terminology can vary

wildly. A common theme, however, is to construct the deformation of a ring R by

defining a new product (the “star product”) on the power series ring R[[t]], and it is

this approach we describe below. For a more detailed description, see for example [20]

and [22, §7], or for the case where we instead consider a smaller ring R[t] or R[t±1] see

e.g. [15, §3].

Let R be an associative k-algebra, and form the ring of power series R[[t]] over R in

the central variable t. Let

πi : R×R→ R, i ≥ 1

be a sequence of bilinear maps, and use these to define a new multiplication on R[[t]]

(the star product) by

a ∗ b = ab+ π1(a, b)t+ π2(a, b)t
2 + π3(a, b)t

3 + . . . ∀a, b ∈ R

a ∗ t = (a ∗ 1)t
(2.2.4)

We are interested in defining star products which are associative, or more generally are

associative up to a certain degree. Since R[[t]] is N-graded we may solve the equality
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a ∗ (b ∗ c) = (a ∗ b) ∗ c term by term, which at each step will allow us to impose

restrictions on the πi to ensure that the product is associative up to that degree.

Using (2.2.4) to expand out the products a ∗ (b ∗ c) and (a ∗ b) ∗ c, we see that

a ∗ (b ∗ c) = a ∗ (bc+ π1(b, c)t+ π2(b, c)t
2 + . . . )

= abc+ π1(a, bc)t+ π2(a, bc)t
2 + . . .

+ aπ1(b, c)t+ π1(a, π1(b, c))t
2 + . . .

+ aπ2(b, c)t
2 + . . .

= abc+
(
aπ1(b, c) + π1(a, bc)

)
t (2.2.5)

+
(
π2(a, bc) + π1(a, π1(b, c)) + aπ2(b, c)

)
t2 + . . . ,

and similarly,

(a∗b)∗c = abc+
(
π1(ab, c)+π1(a, b)c

)
t+
(
π2(ab, c)+π1(π1(a, b), c)+π2(a, b)c

)
t2 + . . . .

(2.2.6)

The star product is always associative in degree 0 since our original algebra R was

assumed to be associative. Using (2.2.5) and (2.2.6), we see that the t term in a ∗ (b ∗

c)− (a ∗ b) ∗ c is zero if π1 satisfies the following property:

aπ1(b, c)− π1(ab, c) + π1(a, bc)− π1(a, b)c = 0. (2.2.7)

In other words, π1 must be a 2-cocycle in the Hochschild cohomology of R, which we

define next.

Let A be an associative k-algebra. Define a chain complex by

0 −→ A
d0−→ Homk(A,A)

d1−→ Homk(A
⊗2, A)

d2−→ Homk(A
⊗3, A)

d3−→ . . . ,

where the maps are defined by

d0a(b) = ba− ab,

dnf(a1, . . . , an+1) = a1f(a2, . . . , an+1) +
n∑
i=1

(−1)if(a1, . . . , aiai+1, . . . , an+1)

+ (−1)n+1f(a1, . . . , an)an+1.

(2.2.8)
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Definition 2.2.4. The nth Hochschild cohomology of A with coefficients in A is defined

to be

HHn(A) := ker(dn)/im(dn−1),

where the di, i ≥ 0 are defined as in (2.2.8). (For more details on the Hochschild

cohomology, see for example [22, §5].)

Applying this definition to π1 ∈ Homk(R
⊗2, R), we see that

d2π1(a, b, c) = aπ1(b, c)− π1(ab, c) + π1(a, bc)− π1(a, b)c,

and hence (2.2.7) is satisfied if and only if π1 ∈ ker(d2). In fact, a long but elementary

calculation shows that if two such cocycles differ by a coboundary (i.e. they represent

the same class in HH2(R)) then they define the same star product modulo t2 up to

a change of variables (see, for example, [20, §3]). We may therefore view π1 as an

element of HH2(R).

Moving on to terms in t2, we see that the star product is associative up to degree 2

if π1 ∈ HH2(R) and there exists some π2 ∈ Homk(R
⊗2, R) satisfying the following

equation:

aπ2(b, c)− π2(ab, c) + π2(a, bc)− π2(a, b)c = π1(π1(a, b), c)− π1(a, π1(b, c)). (2.2.9)

The map defined by the RHS of (2.2.9) (which we will denote by f) is in ker(d3)

whenever π1 ∈ ker(d2) [20, §2], which is true here by assumption. Rewriting (2.2.9)

as d2(π2) = f , we see that a π2 satisfying this equation exists if and only if f ∈ im(d2)

as well. This says that a map π2 making the star product associative up to degree 2

exists if and only if f is zero in HH3(R).

The third Hochschild cohomology HH3(R) is therefore referred to as the obstruction

to extending the deformation: if it is trivial then there will always exist some π2

satisfying (2.2.9), but if it is non-zero then it is possible that for certain choices of π1

we will have f 6= 0 in HH3(R). In fact this observation holds more generally as well:

if the star product is associative up to degree n− 1, then whether it will extend to an

associative product in degree n is controlled by the obstruction in HH3(R) [20, §5].

We may also consider the question of when the star product is commutative, or (since

a commutative star product is in some sense the trivial one) how far from commutative
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it is. By applying (2.2.4) to the expression a ∗ b− b ∗ a, we see that

a ∗ b− b ∗ a = ab− ba+
(
π1(a, b)− π1(b, a)

)
t+
(
π2(a, b)− π2(b, a)

)
t2 + . . .

If the original ring R is commutative then the commutator a ∗ b− b ∗ a is in the ideal

tR[[t]], which allows us to make the following definition.

Definition 2.2.5. [22, §7.1] Suppose that R[[t]] has a star product as defined in (2.2.4),

and suppose further that R is commutative and π1 is not identically zero on R. Then

we can define a Poisson bracket on R by

{a, b} =
1

t
(a ∗ b− b ∗ a) mod tR[[t]]

for all a, b ∈ R.

This Poisson bracket captures a first-order impression of the star product on R[[t]].

Conversely, we may also start with a commutative Poisson algebra R and define a star

product on R[[t]] by

a ∗ b = ab+ {a, b}t+ π2(a, b)t
2 + . . . .

Since the equality

a{b, c} − {ab, c}+ {a, bc} − {a, b}c = 0

follows immediately from the Leibniz identity (2.2.1), a star product defined from a

Poisson bracket in this manner will always be associative to at least degree 1.

This formal definition of deformation is often quite difficult to work with. However,

for certain nice rings and star products it may be that we do not require the whole

power series ring, but can instead construct a k[t] or k[t±1] algebra B to play the part

of R[[t]]. One advantage of this approach is that by constructing B as an associative

algebra directly we need not worry about the Hochschild cohomology at all; another

is that we can now form ideals generated by polynomials of the form t− λ for certain

λ ∈ k×, and hence quotients of the form B/(t−λ)B. This allows us to define a slightly

more informal notion of quantization-deformation as follows, based on the convention

in [15, §3.2.1].
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Definition 2.2.6. Let R be a commutative Poisson algebra, and B an algebra con-

taining a central, non-invertible, non-zero divisor element h such that B/hB ∼= R as

Poisson algebras (where the bracket on B/hB is induced by the commutator in B as

in Definition 2.2.5). If λ ∈ k× is such that h − λ generates a proper, non-zero ideal

in B then we call the algebra Aλ := B/(h − λ)B a deformation of R. In the other

direction, if S is a subset of k× such that Aλ is defined for each λ ∈ S then we call R

the semi-classical limit of the family of algebras {Aλ : λ ∈ S}.

This definition of deformation turns out to be sufficient for our purposes in this thesis,

and it is this definition we will mean when we consider D as a deformation of a

commutative algebra in Chapter 4.

Remark 2.2.7. It is often the case that certain choices of λ in the above definitions

will give rise to degenerate or undesirable deformations; to avoid this, we will always

ensure that the polynomial h− λ is invertible in B for those choices of scalar.

2.2.3 Examples

We illustrate Definition 2.2.6 with a few examples, one closely related to the q-division

ring and one concerning quantum matrices.

Example 2.2.8. This example is due to Baudry in [7, §5.4.3].

Let B be the ring defined by

B = k〈x±1, y±1, z±1〉/(xz − zx, yz − zy, xy − z2yx) (2.2.10)

This is clearly a domain, and the element h := 2(1− z) is central and non-invertible.

For λ ∈ k×, λ 6= 2, the quotient B/(h − λ)B is isomorphic to the quantum torus

kq[x
±1, y±1] for q = (1− 1

2
λ)2. We exclude λ = 2 because h− 2 is invertible in B.

When λ = 0, the image of z in the quotient B/λB is 1 and we recover the stan-

dard commutative Laurent polynomial ring k[x±1, y±1]. Further, we can compute the

induced Poisson bracket as follows:

yx− xy = (1− z2)yx =
1

2
(1 + z)hyx (2.2.11)
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and therefore {y, x} = yx mod hB, since z = 1 when h = 0.

This shows that kq[x
±1, y±1] is a deformation of the commutative torus k[x±1, y±1]

with respect to the Poisson bracket {y, x} = yx.

Example 2.2.9. Recall that the ring of quantum 2× 2 matrices Oq(M2) is given by

the quotient of the free algebra k〈X11, X12, X21, X22〉 by the six relations

X11X12 − qX12X11, X12X22 − qX22X12,

X11X21 − qX21X11, X21X22 − qX22X21,

X12X21 −X21X12, X11X22 −X22X11 − (q − q−1)X12X21;

(2.2.12)

for some q ∈ k×. We can observe that when q = 1 we recover the commutative

coordinate ring O(M2), and in [25, Example 2.2(d)] the quantum matrices Oq(M2) are

viewed as a deformation of O(M2) as follows.

Let k[t±1] be the Laurent polynomial ring in one variable t, and let B be the algebra

in four variables Y11, Y12, Y21, Y22 over k[t±1] subject to the same relations as (2.2.12)

but with q replaced by t. Then h := t − 1 is clearly central, non-invertible and a

non-zero-divisor in B, and

B/hB ∼= O(M2), B/(h− λ)B ∼= Oq(M2)

for q = 1 + λ. This process induces a Poisson bracket on O(M2), which is defined by

{x11, x12} = x11x12, {x12, x22} = x12x22,

{x11, x21} = x11x21, {x21, x22} = x21x22,

{x12, x21} = 0, {x11, x22} = 2x12x21.

(2.2.13)

We will consider algebras with this Poisson structure in more detail in Chapter 5.

2.3 Prime and primitive ideals of quantum algebras

and their semi-classical limits

Let A be an algebra and ϕ an automorphism defined on A. Then ϕ must preserve

the structure of A in certain ways: for example, it must map prime ideals to prime
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ideals and primitives to primitives. Stratification theory, which is due predominantly

to Goodearl and Letzter in the case of quantum algebras [23, 30], seeks to exploit this

observation by using the action of a group H on A to partition spec(A) into more

readily understood strata based on orbits under the action of H.

In this section we set up the definitions and notation required to state the Stratification

Theorem for both quantum algebras and Poisson algebras, and describe how we can

use this result and the Dixmier-Moeglin equivalence to identify and understand the

primitive (respectively Poisson-primitive) ideals in an algebra. In §2.3.1 we describe

the quantum version of these results, and in §2.3.2 we give the corresponding Poisson

formulation. Finally, in §2.3.3 we give several examples of algebras to which these

results can be applied, and discuss a conjecture made by Goodearl on the relationship

between the prime and Poisson-prime ideals of these algebras.

2.3.1 The Stratification Theorem and Dixmier-Moeglin Equiv-

alence for quantum algebras

While much of the following theory has been developed in quite a general setting – for

example, many of the following results make no assumption on the field k except that

it be infinite – we will quickly restrict our attention to a setting relevant to quantum

algebras.

We begin by making some definitions.

Definition 2.3.1. Let A be a k-algebra and H a group acting on A by k-algebra

automorphisms. If a ∈ A is such that h.a = λha for all h ∈ H (where λh ∈ k× may

depend on h) then we call a an eigenvector for H. The map fa : H → k× : h 7→ λh is

called the eigenvalue of a, and Afa = {x ∈ A : h.x = fa(h)x} the eigenspace associated

to a.

Definition 2.3.2. Let H be an affine algebraic group over k. A homomorphism

f : H → k× is called a rational character if f is also a morphism of algebraic varieties.

If H = (k×)r is an algebraic torus acting by k-algebra automorphisms on A and k is

an infinite field, we say H is acting rationally if A is the direct sum of its eigenspaces

with respect to H and all its eigenvalues are rational characters.
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Remark 2.3.3. This definition of rational action is a specific case of a more general

definition; for further details and proof of the equivalence of the two definitions under

the conditions of Definition 2.3.2, see [11, Definition II.2.6, Theorem II.2.7].

Following the example of [10, §3], we will restrict our attention to algebras and actions

satisfying the following set of conditions. These conditions embody many of the desired

characteristics of quantum algebras, and hence it makes sense to restrict our attention

to algebras of this form.

Conditions 2.3.4. We will assume the following conditions throughout this section.

• A is a Noetherian k-algebra, satisfying the non-commutative Nullstellensatz over

k (see Remark 2.3.5);

• k is an algebraically closed field of characteristic 0;

• H = (k×)r is an algebraic torus acting rationally on A by k-algebra automor-

phisms.

Remark 2.3.5. The precise statement of the non-commutative Nullstellensatz can be

found in [11, Definition II.7.14]; informally stated, it requires that every prime ideal of

A is an intersection of primitive ideals, and that the endomorphism rings of irreducible

A-modules are all algebraic over k. As the next theorem demonstrates, every quantum

algebra of interest to us satisfies the Nullstellensatz and hence it is not a restrictive

condition to assume in this context.

Theorem 2.3.6. [11, Corollary II.7.18] The following are all examples of algebras

which satisfy the non-commutative Nullstellensatz over k.

1. kq[x1, . . . , xn] and its localization kq[x±1
1 , . . . , x±1

n ];

2. Oq(Mn), Oq(GLn) and Oq(SLn);

3. Oλ,p(Mn), Oλ,p(GLn), Oλ,p(SLn), i.e. the multiparameter versions of (2) (see

[11, §I.2]).

Our first aim is to pick out certain ideals which are stable under the action of H, and

use these to break up spec(A) into more manageable pieces.
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Definition 2.3.7. We call an ideal I a H-stable ideal if h(I) = I for all h ∈ H, and

say I is H-prime if whenever J , K are H-stable ideals such that JK ⊆ I then J ⊆ I

or K ⊆ I as well. An algebra is called H-simple if it admits no non-trivial H-primes.

Denote the set of H-primes in A by H-spec(A). It is clear that any H-stable prime

ideal of A will be H-prime; the converse is not true in general but holds under the

assumption of Conditions 2.3.4 [11, Proposition II.2.9]. We will therefore treat the

concepts of “H-prime” and “H-stable prime” as interchangeable in what follows.

We define the rational character group X(H) to be the set of rational characters of H;

in the case where H = (k×)r this is the free abelian group Zr [11, Exercise II.2.E]. By

[11, Lemma II.2.11], rational actions of H on A correspond to gradings of A by X(H),

a fact which is used heavily in the proof of the Stratification Theorem [11, §II.3]. This

also implies that an ideal I is H-stable with respect to a given H-action if and only

if it is homogeneous with respect to the induced X(H)-grading [11, Exercise II.2.I], a

fact which we shall make use of in Chapter 5.

The set of H-primes of an algebra may be used to stratify spec(A) as follows. Let J

be a H-stable ideal of A, and define the stratum associated to J by

specJ(A) =

{
I ∈ spec(A) :

⋂
h∈H

h(I) = J

}
(2.3.1)

In other words, specJ(A) is the set of prime ideals of A such that J is the largest

H-stable ideal contained in them. It is clear from the definition in (2.3.1) that J must

be a H-prime and that the strata associated to different H-primes will be disjoint, and

so we obtain a stratification of spec(A) by the H-primes as follows:

spec(A) =
⊔

J∈Hspec(A)

specJ(A).

Similarly, we obtain a stratification of the primitive ideals by defining

primJ(A) = specJ(A) ∩ prim(A)

for J ∈ H-spec(A).

We may now state the Stratification Theorem, which gives us a way to understand the

prime ideals in each stratum specJ(A).
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Theorem 2.3.8 (Stratification Theorem). [11, Theorem II.2.13]

Assume Conditions 2.3.4, and let J ∈ H-spec(A). Then

(i) The set EJ of all regular H-eigenvectors in A/J is a denominator set in A/J (see

§1.2 for the definition of denominator set), and the localization AJ := A/J
[
E−1
J

]
is H-simple (with respect to the induced H-action).

(ii) specJ(A) is homeomorphic to spec(AJ) via localization and contraction, and

spec(AJ) is homeomorphic to spec(Z(AJ)) via contraction and extension.

(iii) The centre Z(AJ) is a Laurent polynomial ring in at most r variables over the

fixed field Z(AJ)H = Z(Fract(A/J))H. The inteterminates can be chosen to be

H-eigenvectors with linearly independent H-eigenvalues.

In [29, §3.2], Goodearl and Lenagan observe that the denominator set EJ can be

replaced with a smaller subset EJ without affecting the conclusions of the theorem,

provided EJ is also a denominator set such that the localization A/J
[
E−1
J

]
is H-

simple. For sufficiently nice algebras (such as those considered in [29]), this allows us to

compute the localizations A/J
[
E−1
J

]
explicitly by chosing denominator sets generated

by finitely many normal H-eigenvectors. In many cases (see §2.3.3 below) we will also

see that Z(AJ)H = k, in which case specJ(A) is homeomorphic to an affine scheme.

Using the Stratification Theorem we may describe the prime ideals of A up to lo-

calization, but on its own this tells us very little about which primes are primitive.

The Dixmier-Moeglin equivalence, which was formulated originally by Dixmier and

Moeglin in the context of enveloping algebras and extended to quantum algebras by

Goodearl and Letzter in [30], gives us a number of equivalent criteria for a prime ideal

to be primitive: one algebraic criterion, one topological, and one formulated in terms

of H-strata.

Before we can state the Dixmier-Moeglin equivalence for quantum algebras, we require

one more set of definitions.

Definition 2.3.9. Let A be a Noetherian k-algebra. A prime ideal P in A is called

rational if Z(Fract(A/P )) is algebraic over k, where Fract(A/P ) denotes the simple
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Artinian Goldie quotient ring of A/P . Meanwhile, we say that P is locally closed if

the singleton {P} is is the intersection of an open set and a closed set in spec(A) with

respect to the Zariski toplogy.

Theorem 2.3.10 (Dixmier-Moeglin Equivalence). [11, Theorem II.8.4]

Apply the assumptions of Conditions 2.3.4, and further assume that H-spec(A) is

finite. Let J be a H-prime, and P ∈ specJ(A). Then the following are equivalent:

(i) P is a primitive ideal of A;

(ii) P is locally closed in A;

(iii) P is rational in A;

(iv) P is a maximal element of specJ(A).

The final condition of this theorem is of most interest to us: combined with Theo-

rem 2.3.8 above, this says that primJ(A) is homeomorphic to the set of maximal ide-

als of a commutative Laurent polynomial ring Z(AJ)H[x±1
1 , . . . , x±1

n ] for some n ≥ 0.

When Z(AJ)H = k, this will allow us to describe the elements of primJ(A) explicitly

as the pullbacks to A of ideals of the form 〈x1 − λ1, . . . , xn − λn〉, where λi ∈ k× for

1 ≤ i ≤ n.

2.3.2 Stratification of Poisson algebras

Since quantum algebras are often constructed as deformations of commutative coordi-

nate rings, we might expect that the Poisson bracket induced as in Definition 2.2.5 on

the semi-classical limit will give rise to a Poisson ideal structure mirroring the ideal

structure in the quantum algebra. And indeed, it turns out that once we define a

suitable analogue of primitive ideal we can obtain a Poisson version of all the results

described in the previous section, which we will summarise here.

We will assume in this section that k is (as always) a field of characteristic zero and

R is a commutative Poisson algebra.
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Recall from §2.2.1 that we observed “prime Poisson” and “Poisson-prime” ideals were

equivalent notions for a Noetherian algebra in characteristic zero. On the other hand, it

is noted in [37, Definition 1.6] that the maximal Poisson ideals (maximal ideals which

are closed under the Poisson bracket) need not coincide with the Poisson-maximal

ideals (ideals maximal in the set of Poisson ideals). Since primitive ideals in a commu-

tative algebra are precisely the maximal ones, this suggests we should take a different

approach to defining a Poisson analogue of primitive ideals. The following definition

is originally due to Oh [47, Definition 1.2]:

Definition 2.3.11. Let I be an ideal in a commutative Poisson algebra R. Define the

Poisson core of I to be the largest Poisson ideal contained in I; since the sum of two

Poisson ideals is again a Poisson ideal, the Poisson core is uniquely defined. We call

an ideal Poisson primitive if it is the Poisson core of a maximal ideal.

Clearly every maximal Poisson ideal is Poisson primitive, but the set of Poisson-

primitive ideals in R is strictly greater than the set of Poisson-maximal ideals when-

ever R admits a maximal ideal which isn’t a Poisson ideal. By [47, Lemma 1.3], every

Poisson-primitive ideal is Poisson-prime.

We may also define a Poisson equivalent of the centre, namely the Poisson centre

PZ(R) :=
{
r ∈ R : {r, s} = 0 ∀s ∈ R

}
. (2.3.2)

Let H = (k×)r be an algebraic torus acting on a commutative Noetherian Poisson

algebra R by Poisson automorphisms. Then we may make many of the same definitions

and observations for H as we did in the quantum case above:

• We say H acts rationally if R is the direct sum of its eigenspaces and all the

eigenvalues of H are rational, i.e. morphisms of algebraic varieties.

• By replacing “prime” with “Poisson prime” in Definition 2.3.7 we obtain the

notion of Poisson H-prime; if H acts rationally on a commutative Noetherian

Poisson algebra R, then Poisson H-primes are equivalent to Poisson ideals which

are stable under the action of H and prime in the conventional commutative

sense (see [24, Lemma 3.1]).
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• Denote the set of Poisson prime ideals in R by Pspec(R) and the set of Poisson

primitive ideals by PPrim(R), and equip both with the Zariski topology as in

§1.2.

• We call R a Poisson H-simple algebra if it has no non-trivial Poisson H-primes.

As in §2.3.1, we may use the Poisson H-primes to stratify Pspec(R) and PPrim(R)

by making the following definitions: for J ∈ H-Pspec(R), we define

PspecJ(R) = {P ∈ Pspec(R) :
⋂
h∈H

h(P ) = J},

PprimJ(R) = PspecJ(R) ∩ Pprim(R),

so that we obtain partitions of Pspec(R) and Pprim(R) as follows:

Pspec(R) =
⊔

J∈HPspec(R)

PspecJ(R), Pprim(R) =
⊔

J∈HPspec(R)

PprimJ(R).

We may now state the Poisson versions of the Stratification Theorem and Dixmier-

Moeglin equivalence.

Theorem 2.3.12 (Stratification Theorem for Poisson algebras). [24, Theorem 4.2]

Let R be a Noetherian Poisson k-algebra, with H = (k×)r an algebraic torus acting

rationally on R by Poisson automorphisms. Let J be a Poisson H-prime of R, and let

EJ be the set of all regular H-eigenvectors in R/J . Then

(i) PspecJ(R) is homeomorphic to Pspec(RJ) via localization and contraction, where

RJ := R/J
[
E−1
J

]
;

(ii) Pspec(RJ) is homeomorphic to spec(PZ(RJ)) via contraction and extension;

(iii) PZ(RJ) is a Laurent polynomial ring in at most r indeterminates over the fixed

field PZ(RJ)H = PZ(Fract(R/J))H. The indeterminates can be chosen to be

H-eigenvectors with Z-linearly independent H-eigenvalues.

As in the quantum version of the Stratification Theorem, we may replace EJ by a

subset EJ provided the localization R/J
[
E−1
J

]
remains Poisson H-simple (a proof of

this is given in §5.3).
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Theorem 2.3.13 (Dixmier-Moeglin equivalence for Poisson algebras). [24, Theo-

rem 4.3]

Let R be an affine Poisson k-algebra, and H = (k×)r acting rationally on R by Poisson

automorphisms. Assume that R has only finitely many Poisson H-primes, and let J

be one of them. For P ∈ PspecJ(R), the following conditions are equivalent:

(i) P is locally closed in Pspec(R);

(ii) P is Poisson primitive;

(iii) PZ(Fract(R/P )) is algebraic over k;

(iv) P is maximal in PspecJ(R).

As we will see in the next section, for appropriately-chosen pairs of quantum and

Poisson algebras the similarities between the two theories can in fact extend even

further than this.

2.3.3 Examples and a conjecture

We begin this section by defining some specific examples of group actions on quantum

and Poisson algebras which are covered by the framework of §2.3.1 and §2.3.2.

Let Oq(kn) = kq[x1, . . . , xn] be the quantum affine space defined in §1.2. Then we

may define an action of H = (k×)r on Oq(kn) by

h = (α1, . . . , αn) ∈ H, h.xi = αixi. (2.3.3)

On Oq(Mn) we may define an action of H = (k×)2n by

h = (α1, . . . , αn, β1, . . . , βn) ∈ H, h.Xij = αiβjXij. (2.3.4)

It is clear from the definition of the quantum determinant in (1.2.4) that Detq is an

eigenvector for this action, and hence (2.3.4) extends uniquely to an action onOq(GLn)

as well [11, II.1.15]. The action (2.3.4) does not descend immediately to an action on
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Oq(SLn), however, since Detq − 1 is not an eigenvector. Instead, we define an action

of the subgroup

H′ = {(α1, . . . , αn, β1, . . . , βn) ∈ (k×)2n : α1α2 . . . βn = 1}

on Oq(SLn) in the natural way, by defining

h = (α1, . . . , αn, β1, . . . , βn) ∈ H′, h.Xij = αiβjXij

as before, where Xij now denotes generators in Oq(SLn). By [11, II.1.16], H′ is

isomorphic to the torus (k×)2n−1.

There are of course many more quantum algebras than the four types considered

here, including multiparameter versions of each of the above algebras, and these are

discussed further in [11]. We now focus in more detail on the properties of the above

algebras and their H-actions.

Let A denote any one of the algebras Oq(kn), Oq(Mn), Oq(GLn) and Oq(SLn), and let

H be the corresponding algebraic torus acting on A as defined above. Then A satisfies

a number of useful properties:

• A is Noetherian and satisfies the non-commutative Nullstellensatz over k [11,

Corollary II.7.18];

• The action of H defined above is a rational action on A [11, II.2.12];

• A has finitely many H-primes [11, Theorem II.5.14, II.5.17];

• All prime ideals of A are completely prime [11, Corollary II.6.10];

• Z(AJ)H = k for any J ∈ H-spec(A) [11, Corollary II.6.5, II.6.6].

These algebras are therefore covered by the framework of the Stratification Theorem

and Dixmier-Moeglin equivalence outlined in §2.3.1.

We may also consider the semi-classical limits of these algebras. The semi-classical

limit of kq[x1, . . . , xn] is the polynomial ring in n variables, which we denote by O(kn).

It has a Poisson bracket given by

{xi, xj} = aijxixj,
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where aij is the (i, j)th entry of the matrix q. Moreover the action of H = (k×)n on

Oq[x1, . . . , xn] defined in (2.3.3) induces an action of H by Poisson automorphisms on

O(kn) [26, §2.2].

The semi-classical limit of Oq(Mn) is O(Mn), which is isomorphic to the polynomial

ring on the n2 variables {xij : 1 ≤ i, j ≤ n}. The Poisson bracket induced on O(Mn) by

this process satisfies the property that for any set of four variables {xij, xim, xlj, xlm},

the subalgebra of O(Mn) generated by them is Poisson-isomorphic to O(M2) (as de-

fined in (2.2.13)). By [26, §2.3], the action of H = (k×)2n defined in (2.3.4) induces an

action of H by Poisson automorphisms on O(Mn).

Finally, since the Poisson bracket on O(Mn) induces a unique Poisson bracket on

a localization or quotient as described in §2.2.1, we obtain the semi-classical lim-

its O(GLn) and O(SLn) as the localization O(GLn) = O(Mn)[Det−1] (where the

determinant Det may be obtained by setting q = 1 in (1.2.4)) and the quotient

O(SLn) = O(Mn)/〈Det− 1〉. The actions of algebraic tori on Oq(GLn) and Oq(SLn)

defined above induce actions by Poisson automorphisms on O(GLn) and O(SLn).

Example 2.3.14. Let H = (k×)4 act rationally on Oq(GL2) by k-algebra automor-

phisms as defined in (2.3.4), and let J be a H-prime ideal in Oq(GL2). If X11 ∈ J or

X22 ∈ J , then since X11X22−X22X11 = (q− q−1)X12X21 we have X12X21 ∈ J as well;

as noted above, all prime ideals of Oq(GL2) are completely prime and hence X12 ∈ J or

X21 ∈ J . Similarly, if for example 〈X11, X12〉 ⊆ J then Detq = X11X22− qX12X21 ∈ J

and so J = Oq(GL2). Continuing in this manner (for details, see [11, Example II.2.14])

we find that Oq(GL2) admits only four H-primes, namely:

0, 〈X12〉, 〈X21〉, 〈X12, X21〉.

Meanwhile, let H = (k×)4 act on O(GL2) by Poisson automorphisms as described

above. Since {x11, x22} = 2x12x21, a similar line of reasoning to the above yields

precisely four Poisson H-primes in O(GL2):

0, 〈x12〉, 〈x21〉, 〈x12, x21〉.

Goodearl observes in [25, §9.8] that with a bit more work we in fact obtain a homeomor-

phism from spec(Oq(GL2)) to Pspec(O(GL2)), which restricts to a homeomorphism

of primitive/Poisson-primitive ideals as well.
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In [25], Goodearl makes the following conjecture:

Conjecture 2.3.15. [25, Conjecture 9.1] Let k be an algebraically closed field of char-

acteristic zero, and A a generic quantized coordinate ring of an affine variety V over

k. Then A should be a member of a flat family of k-algebras with semiclassical limit

O(V ), and there should be compatible homeomorphisms prim(A) → P.prim(O(V ))

and spec(A)→ P.spec(O(V )).

This conjecture has so far only been verified for a few algebras, foremost among them

the quantum affine spaces kq[x1, . . . , xn] and similar spaces [31]. For quantum matrices,

the conjecture can be verified by direct computation forOq(GL2) (as in Example 2.3.14

above) and Oq(SL2) (e.g. [34]); meanwhile, in [47, Theorem 2.12] Oh constructs an

explicit bijection between spec(Oq(M2)) and Pspec(O(M2)) but does not verify that

it is a homeomorphism. A general technique to handle n×n matrices has not yet been

discovered.

In [28], Goodearl and Lenagan describe generating sets for the 230H-primes ofOq(M3),

of which 36 continue to be H-primes in Oq(GL3) and Oq(SL3) [28, §3]. In [29], they

build on this to give explicit generators for all of the primitive ideals in Oq(GL3) and

Oq(SL3); further, these generating sets are described in the algebra itself rather than

generators in some localization.

In Chapter 5 we perform a similar analysis to [29] for the Poisson algebras O(GL3)

and O(SL3), thus laying the groundwork for verifying Conjecture 2.3.15 in these cases

in the future.



Chapter 3

The q-Division Ring: Fixed Rings

and Automorphism Group

As described in Chapter 1, the q-division ring D = kq(x, y) features in Artin’s conjec-

tured classification of finitely-generated division rings of transcendence degree 2, and

hence so do subrings of finite index within D. One way of constructing such subrings is

to consider fixed rings of D under finite groups of automorphisms, and in this chapter

we describe the structure of many rings of this type: in §3.1 we consider the fixed

ring of an automorphism of order 2 which does not restrict to an automorphism of

kq[x
±1, y±1], and in §3.2 we describe the fixed rings under finite groups of monomial

automorphisms.

While the fixed ring Dτ for τ : x 7→ x−1, y 7→ y−1 was originally described in [52,

Example 13.6] using techniques from non-commutative algebraic geometry, we take

a more ring-theoretic approach and construct pairs of q-commuting generators for

each of the fixed rings under consideration. This approach is possible since we can

reduce the question to three specific cases: the automorphism τ above, a monomial

automorphism of order 3 and a non-monomial automorphism of order 2 defined in

(3.1.1) below. In each case we will describe an explicit isomorphism between D and

its fixed ring.

The study of these fixed rings leads naturally on to an examination of the automor-

phisms and endomorphisms of D, since both involve looking for q-commuting pairs of

54
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elements satisfying certain properties. In §3.3 we show that the structure of Aut(D)

is far from easy to understand: indeed, as we show in Proposition 3.3.7 we can no

longer rely on conjugation maps to necessarily even be bijective! We also construct

examples of conjugation automorphisms onD by elements z ∈ kq(y)((x))\D (see Propo-

sition 3.3.5 and Proposition 3.3.9), thus raising the possibility that D may admit wild

automorphisms.

These examples of conjugation maps were constructed in order to answer several open

questions posed by Artamonov and Cohn in [5] concerning the structure of Aut(D);

in particular, we show that their conjectured set of generators for the automorphism

group in fact generate the whole endomorphism group End(D). These results indicate

that the structure of Aut(D) is an interesting question to study in its own right, and

we list a number of new open questions arising from the results of this chapter in §3.4.

Excluding Proposition 3.2.2 and Lemma 3.3.1, this chapter has also appeared in the

Journal of Algebra as The q-Division Ring and its Fixed Rings ; see [19]. As per Global

Convention 1, we continue to assume that k has characteristic zero and q ∈ k× is not

a root of unity.

3.1 An automorphism of kq(x, y) and its fixed ring

In Theorem 1.3.1 we saw that for finite groups of automorphisms G defined on the

quantum plane kq[x, y] and extended to D, the fixed ring DG is isomorphic to kp(x, y)

for p = q|G|, while for the automorphism τ above the fixed ring Dτ is isomorphic to D

with the same value of q (Theorem 1.3.2). This suggests that the structure of the fixed

ring may be related to which subrings of D the automorphisms can be restricted to,

and raises the natural question: can we define an automorphism of finite order on D

which does not restrict to an automorphism of kq[x
±1, y±1], and what is the structure

of its fixed ring?

This section provides the answer to this question for one such automorphism of D,

which is defined as follows:

ϕ : x 7→ (y−1 − q−1y)x−1, y 7→ −y−1. (3.1.1)
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Since x only appears once in the image, it is easy to see that these images q-commute

and so this is a homomorphism. We can also easily check that it has order 2, since

ϕ2(x) = ϕ
(

(y−1 − q−1y)x−1
)

= (−y + q−1y−1)x(y−1 − q−1y)−1

= (q−1y−1 − y)(q−1y−1 − y)−1x

= x

and it is therefore an automorphism on D. The aim of this section is to prove the

following result.

Theorem 3.1.1. Let G be the group generated by ϕ. Then DG ∼= D as k-algebras.

Before tackling the proof of this theorem, we will need some subsidiary results.

Recall that the algebra generated by two elements u, v subject to the relation uv −

qvu = λ (for some λ ∈ k×) is called the quantum Weyl algebra. This ring also has a full

ring of fractions, which can be seen to be equal to D by sending u to the commutator

uv − vu [2, Proposition 3.2].

We will construct a pair of elements in DG which satisfy a quantum Weyl relation and

show that they generate the fixed ring. A simple change of variables then yields the

desired isomorphism.

In order to simplify the notation, set Λ = y−1− q−1y. Inspired by [53] and [52, §13.6],

we define our generators using a few simple building blocks. We set

a = x− Λx−1, b = y + y−1, c = xy + Λx−1y−1

h = b−1a, g = b−1c
(3.1.2)

and verify that h and g satisfy the required properties.

Lemma 3.1.2. The elements h and g are fixed by ϕ and satisfy the relation

hg − qgh = 1− q.

Proof. The first statement is trivial, since ϕ acts on a, b and c as multiplication by

−1.
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After multiplying through by b, we see that the equality hg− qgh = 1− q is equivalent

to

ab−1c− qcb−1a = (1− q)b

which allows us to verify it by direct computation. Indeed,

ab−1c = (x− Λx−1)(y + y−1)−1(xy + Λx−1y−1)

=
(

(qy + q−1y−1)−1x− Λ(q−1y + qy−1)−1x−1
)(
xy + Λx−1y−1

)
= q2y(qy + q−1y−1)−1x2 + α(Λ)(qy + q−1y−1)−1y−1

− Λ(q−1y + qy−1)−1y − q2y−1Λα−1(Λ)(q−1y + qy−1)−1x−2

(3.1.3)

qcb−1a = q(xy + Λx−1y−1)(y + y−1)−1(x− Λx−1)

= q
(
qy(qy + q−1y−1)−1x+ qΛy−1(q−1y + qy−1)−1x−1

)(
x− Λx−1

)
= q2y(qy + q−1y−1)−1x2 − q2yα(Λ)(qy + q−1y−1)−1

+ q2Λy−1(q−1y + qy−1)−1 − q2y−1Λα−1(Λ)(q−1y + qy−1)−1x−2

(3.1.4)

Putting these together, we see that the terms in x2 and x−2 cancel out, leaving us with

ab−1c− qcb−1a = α(Λ)(qy + q−1y−1)−1(y−1 + q2y)

− Λ(q−1y + qy−1)−1(y + q2y−1)

= α(Λ)q − Λq

= (q−1y−1 − y)q − (y−1 − q−1y)q

= (1− q)b

Let R be the division ring generated by h and g; it is a subring of DG, and the next

step is to show that these two rings are actually equal. We can do this by checking

that [D : R] = 2, since R ⊆ DG ( D will then imply R = DG.

Lemma 3.1.3. (i) The following elements are all in R:

x+ Λx−1, y − y−1, xy − Λx−1y−1.

(ii) Let b = y + y−1 as in (3.1.2). Then b2 ∈ R and R〈b〉 = D.

Proof. (i) We begin by proving directly that y − y−1 ∈ R, as the others will follow

easily from this. Indeed, we will show that

y − y−1 = (hg − 1)−1(qg2 − h2).



CHAPTER 3. THE q-DIVISION RING 58

Using the definitions in (3.1.2) this is equivalent to checking that

(ab−1c− b)(y − y−1) = qcb−1c− ab−1a. (3.1.5)

Expanding out the components on the right in (3.1.5), we get

qcb−1c = q(xy + Λx−1y−1)(y + y−1)−1(xy + Λx−1y−1)

=
(
q2y(qy + q−1y−1)−1x+ q2y−1Λ(qy−1 + q−1y)−1x−1

)
(xy + Λx−1y−1)

= q2(qy + q−1y−1)−1yx2y + q2α(Λ)(qy + q−1y−1)−1

+ q2Λ(qy−1 + q−1y)−1 + q2Λα−1(Λ)(qy−1 + q−1y)−1y−1x−2y−1

ab−1a = (x− Λx−1)(y + y−1)−1(x− Λx−1)

=
(

(qy + q−1y−1)−1x− Λ(q−1y + qy−1)−1x−1
)

(x− Λx−1)

= q2(qy + q−1y−1)−1yx2y−1 − α(Λ)(qy + q−1y−1)−1

− Λ(q−1y + qy−1)−1 + q2Λα−1(Λ)(q−1y + qy−1)−1y−1x−2y

so that the difference qcb−1c− ab−1a is

qcb−1c− ab−1a = q2y(qy + q−1y−1)−1x2(y − y−1)

− q2Λα−1(Λ)y−1(qy−1 + q−1y)−1x−2(y − y−1)

+ (q2 + 1)
(
α(Λ)(qy + q−1y−1)−1 + Λ(qy−1 + q−1y)−1

) (3.1.6)

Meanwhile, using the expression for ab−1c obtained in (3.1.3), we find that

(ab−1c− b)(y − y−1) =

q2y(qy + q−1y−1)−1x2(y − y−1)

− q2Λα−1(Λ)y−1(q−1y + qy−1)−1x−2(y − y−1)

+
(
α(Λ)(qy + q−1y−1)−1y−1 − Λ(q−1y + qy−1)−1y − y − y−1

)
(y − y−1)

(3.1.7)

Comparing the expressions in (3.1.6) and (3.1.7) it is immediately clear that the terms

involving x2 and x−2 are equal. This leaves just the terms involving only powers of y

to check; each of these are elements of k(y) and therefore commutative, so it is now a

simple computation to check that both expressions reduce to the form

(1 + q)(y − y−1)(y + y−1)(q + q−1)

(qy + q−1y−1)(qy−1 + q−1y)
.
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Thus (ab−1c− b)(y− y−1) = qcb−1c−ab−1a as required. This proves that y− y−1 ∈ R.

Inside D we can notice that

y−1h+ q−1g = (y + y−1)−1
(
y−1(x− Λx−1) + q−1(xy + Λx−1y−1)

)
= (y + y−1)−1

(
y−1x− Λy−1x−1 + yx+ Λy−1x−1

)
= (y + y−1)−1(y−1 + y)x

= x.

(3.1.8)

and so Λx−1 = ϕ(y−1h+ q−1g) = q−1g − yh. Putting these together we get

x+ Λx−1 = (y−1 − y)h+ 2q−1g ∈ R

and similarly,

xy − Λx−1y−1 = 2qh+ (y − y−1)g ∈ R.

(ii) It’s clear that b = y + y−1 6∈ R since R is a subring of Dϕ and b is not fixed by ϕ.

However, (y + y−1)2 = (y − y−1)2 + 4, hence b2 ∈ R by (i).

To prove that R〈b〉 = D it is enough to show that x, y ∈ R〈b〉. This is now clear,

however, since y = 1
2
(y−y−1)+ 1

2
(y+y−1) ∈ R〈b〉, hence by (3.1.8), x = y−1h+q−1g ∈

R〈b〉 as well.

Since we are working with fixed rings, the language of Galois theory is a natural choice

to use here, and in [13, §3.6] we find conditions for a quotient of a general Ore extension

R[u; γ, δ]/(u2 + λu+ µ) to be a quadratic division ring extension of R. (Note that the

language of [13] is that of right Ore extensions, so we make the necessary adjustments

below to apply the results to left extensions.)

When char k 6= 2, such an extension will be Galois if and only if δ is inner [13,

Theorem 3.6.4(i)] so here it is sufficient to only consider the case when δ = 0. Further,

since b2 ∈ R by Lemma 3.1.3 (ii), we see that b satisfies a quadratic equation over R

with λ = 0, which allows us to simplify matters even further.

The next result is a special case of [13, Theorem 3.6.1], which by the above discussion

is sufficient for our purposes.
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Proposition 3.1.4. Let K be a division ring, γ an endomorphism on K and µ ∈ K×.

The ring T := K[u; γ]/(u2 +µ) is a quadratic division ring extension of K if and only

if T has no zero-divisors and µ, γ satisfy the following two conditions:

1. µr = γ2(r)µ for all r ∈ K;

2. γ(µ) = µ.

Proof. By [13, Theorem 3.6.1] and replacing right Ore extensions with left, the ring

K[u; γ, δ]/(u2 + λu + µ) is a quadratic division ring extension of K if and only if it

contains no zero divisors and γ, δ, λ and µ satisfy the equalities

γδ(r) + δγ(r) = γ2(r)λ− λγ(r),

δ2(r) + λδ(r) = γ2(r)µ− µr,

δ(λ) = µ− γ(µ)− (λ− γ(λ))λ,

δ(µ) = (λ− γ(λ))µ.

Once we impose the conditions δ = 0, λ = 0 the result follows immediately.

Viewing R as a subring of D, we can set u = b, µ = −b2. The following choice of γ is

suggested by [53].

Lemma 3.1.5. Let b, h and g be as defined in (3.1.2), and R the division ring gener-

ated by h and g inside D. Then the conjugation map defined by

γ(r) = brb−1 ∀r ∈ R

is a well-defined automorphism on R.

Proof. It is sufficient to check that the images of the generators of R under γ and γ−1

are themselves in R, i.e. that

γ(h) = (ab)b−2 γ(g) = (cb)b−2

γ−1(h) = b−2(ab) γ−1(g) = b−2(cb)

are all in R.
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By Lemma 3.1.3 (ii) we already know that b2 ∈ R. As for ab and cb, they decompose

into elements of R as follows:

ab = (x− Λx−1)(y + y−1)

= xy + xy−1 − Λx−1y − Λx−1y−1

= 2(xy − Λx−1y−1)− (x+ Λx−1)(y − y−1) ∈ R

cb = (xy + Λx−1y−1)(y + y−1)

= xy2 + x+ Λx−1 + Λx−1y−2

= (xy − Λx−1y−1)(y − y−1) + 2(x+ Λx−1) ∈ R

(3.1.9)

by Lemma 3.1.3 (i). Therefore γ is a well-defined bijection on R, and since conjugation

respects the relation hg − qgh = 1− q, it is an automorphism on R.

We are now in a position to prove Theorem 3.1.1.

Recall that R ⊆ DG is a division ring with generators h and g, which satisfy a quantum

Weyl relation hg−qgh = 1−q. We can make a change of variables h 7→ 1
1−q (hg−gh) so

that R has the structure of a q-division ring [2, Proposition 3.2]. (The only exception

is when q = 1, where this change of variables does not make sense; however, since h

and g already “q-commute” in this case we can simply set f := h.)

Define the automorphism γ as in Lemma 3.1.5 and set µ := −b2 ∈ R. The extension

L := R[b; γ]/(b2 + µ) is a subring of the division ring D, and therefore has no zero

divisors. Further,

γ2(r)µ = −(b2rb−2)b2 = −b2r = µr ∀r ∈ R

and similarly γ(µ) = µ. Therefore by Proposition 3.1.4, L is a quadratic division ring

extension of R. Since it is a subring of D containing both R and b, by Lemma 3.1.3

(ii) we can conclude that L = D.

Now since R ⊆ DG ( D = L, and the extension R ⊂ L has degree 2, we must have

R = DG and Theorem 3.1.1 is proved.
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3.2 Fixed rings of monomial automorphisms

Theorem 3.1.1 came about as a result of a related question, namely: if we take an

automorphism of finite order defined on kq[x
±1, y±1] and extend it to D, what does its

fixed ring look like?

As discussed in [15, §4.1.1], the automorphism group of kq[x
±1, y±1] is generated by

automorphisms of scalar multiplication and the monomial automorphisms (see Defi-

nition 3.2.3 below). Since the case of scalar multiplication has been covered in Theo-

rem 1.3.1, in this section we will focus on monomial automorphisms with the aim of

proving Theorem 1.3.3.

For the remainder of this section we will assume that k contains a square root of q,

denoted by q̂. The following result appeared originally in [7, §5.4.2] for the case of

kq[x
±1, y±1]; since we have exchanged the roles of x and y and extended the result to

D we provide a full proof of the result here.

Notation 3.2.1. In order to make the computations more readable in the following

proposition, we define the notation

expq̂ [m] := q̂m.

Proposition 3.2.2. The group SL2(Z) acts by algebra automorphisms on the q-

division ring D. The action is defined by

g.y = expq̂ [ac] yaxc, g.x = expq̂ [bd] ybxd, g =

a b

c d

 ∈ SL2(Z), (3.2.1)

or more generally for any m,n ∈ Z:

g.(ymxn) = expq̂ [(am+ bn)(cm+ dn)−mn] yam+bnxcm+dn. (3.2.2)

Proof. Let g, g′ ∈ SL2(Z), which we write as follows:

g =

a b

c d

 , g′ =

a′ b′

c′ d′

 .

The following equality will be useful for computations.

g′g =

a′a+ b′c a′b+ b′d

ac′ + d′c c′b+ d′d

 . (3.2.3)
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In order to show that SL2(Z) acts by algebra automorphisms on D, we need to check

that

1. g.(xy − qyx) = 0 in D, so g is an algebra automorphism on D;

2. g′.(g.x) = (g′g).x and g′.(g.x) = (g′g).y in D.

The first equality can be verified by direct computation as follows:

g.(xy − qyx) = expq̂ [bd] ybxdexpq̂ [ac] yaxc − expq̂ [2] expq̂ [ac] yaxcexpq̂ [bd] ybxd

= expq̂ [ac+ bd]
(
expq̂ [2ad] ya+bxc+d − expq̂ [2 + 2cb] ya+bxc+d

)
= 0

since ad = bc+ 1.

It will be useful to verify (3.2.2) before tackling condition (2) above. Indeed,

g.(ymxn) =
(
expq̂ [ac] yaxc

)m(
expq̂ [bd] ybxd

)n
= expq̂ [acm+ bdn] expq̂ [2acm(m− 1)/2] yamxcmexpq̂ [2bdn(n− 1)/2] ybnxdn

= expq̂
[
acm2 + bdn2 + 2cbmn

]
yam+bnxcm+dn

(3.2.4)

Recalling that ad− bc = 1, we can observe that

acm2 + bdn2 + 2cbmn = (am+ bn)(cm+ dn)−mn

Substituting this into (3.2.4), we obtain the equality (3.2.2).

This simplifies the computations involved in (2) considerably: using (3.2.2) and (3.2.3)

we can now see that

g′.(g.x) = g′.
(
expq̂ [bd] ybxd

)
= expq̂ [bd] expq̂ [(a′b+ b′d)(c′b+ d′d)− bd] ya

′b+b′dxc
′b+d′d,

(g′g).x = expq̂ [(a′b+ b′d)(c′b+ d′d)] ya
′b+b′dxc

′b+d′d,

and

g′.(g.y) = g′
(
expq̂ [ac] yaxc

)
= expq̂ [ac] expq̂ [(a′a+ b′c)(c′a+ d′c)− ac] ya′a+b′cxc′a+d′c,

(g′g).y = expq̂ [(a′a+ b′c)(ac′ + d′c)] ya
′a+b′cxac

′+d′c.

From this we can conclude that g′.(g.x) = (g′g).x and g′.(g.x) = (g′g).y, and hence

that the definition in (3.2.1) does indeed define an action of SL2(Z) on D.
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Using this result, we may refine the definition of a monomial automorphism given in

§2.1.1 as follows:

Definition 3.2.3. We call an automorphism of kq[x
±1, y±1] or D a monomial auto-

morphism if it is defined by an element of SL2(Z) as in (3.2.1).

It is well known that up to conjugation, SL2(Z) has only four non-trivial finite sub-

groups: the cyclic groups of orders 2, 3, 4 and 6 (see, for example, [43, §1.10.1]).

Table 3.1 lists conjugacy class representatives for each of these groups, and we will use

the same symbols to refer to both these automorphisms and their extensions to D.

Order Automorphism
2 τ : x 7→ x−1, y 7→ y−1

3 σ : x 7→ y, y 7→ q̂y−1x−1

4 ρ : x 7→ y−1, y 7→ x
6 η : x 7→ y−1, y 7→ q̂yx

Table 3.1: Conjugacy class representatives of finite order monomial automorphisms
on kq[x

±1, y±1].

As noted in [8, §1.3], it is sufficient to consider the fixed rings for one representative

of each conjugacy class. We will therefore approach Theorem 1.3.3 by examining the

fixed rings of D under each of the automorphisms in Table 3.1 in turn.

By Theorem 1.3.2, we already know that Dτ ∼= D. This is proved by methods from

noncommutative algebraic geometry in [52, §13.6], but the authors also provide a pair

of q-commuting generators for Dτ , namely

u = (x− x−1)(y−1 − y)−1, v = (xy − x−1y−1)(y−1 − y)−1. (3.2.5)

We can use this and Theorem 3.1.1 to check that the fixed ring of D under an order

4 monomial automorphism is again isomorphic to D.

Theorem 3.2.4. Let ρ be the order 4 automorphism on D defined by

ρ : x 7→ y−1, y 7→ x.

Then Dρ ∼= D as k-algebras.
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Proof. We can first notice that ρ2 = τ , so the fixed ring Dρ is a subring of Dτ . By [52,

§13.6], Dτ = kq(u, v) with u, v as in (3.2.5), so it is sufficient to consider the action of

ρ on u and v. By direct computation, we find that

ρ(u) = (y−1 − y)(x−1 − x)−1 = −u−1

ρ(v) = (y−1x− yx−1)(x−1 − x)−1 = (u−1 − qu)v−1

i.e. ρ acts as ϕ from (3.1.1) on kq−1(v, u), which by Theorem 1.3.1 is isomorphic to

kq(u, v). Now by Theorem 3.1.1, Dρ ∼= Dϕ ∼= D.

We now turn our attention to the fixed ring of D under the order 3 automorphism

σ defined in Table 3.1, where matters become significantly more complicated. At-

tempting to construct generators by direct analogy to the previous cases fails, and

computations become far more difficult as both x and y appear in the denominator

of any potential generator. While the same theorem can be proved for this case, our

chosen generators are unfortunately quite unintuitive.

For the following results, we will assume that k contains a primitive third root of unity,

denoted ω. As with Theorem 3.1.1, we define certain elements which are fixed by σ or

are acted upon as multiplication by a power of ω. We set

a = x+ ωy + ω2q̂y−1x−1

b = x−1 + ωy−1 + ω2q̂yx

c = y−1x+ ωq̂3y2x+ ω2q̂3y−1x−2

θ1 = x+ y + q̂y−1x−1

θ2 = x−1 + y−1 + q̂yx

θ3 = y−1x+ q̂3y2x+ q̂3y−1x−2

(3.2.6)

The elements θ1, θ2 and θ3 are fixed by σ, while σ acts on a, b and c as multiplication

by ω2. We can further define

g = a−1b

f = θ2 − ω2θ1g + (ω2 − ω)q̂−1(ω2g2 + q̂2g−1)
(3.2.7)

Proposition 3.2.5. Let k be a field of characteristic 0 that contains a primitive third

root of unity ω and a square root of q, denoted by q̂. The elements f and g in (3.2.7)

are fixed by σ and satisfy fg = qgf .
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Proof. As always the first statement is clear: σ acts on a and b by ω2 and therefore

fixes g, and since θ1 and θ2 are already fixed by σ we can now see that σ(f) = f .

To verify the second statement, we need to understand how g interacts with θ1 and

θ2. Simple multiplication of polynomials yields the identities

aθ1 = θ1a+ (ω − ω2)(q̂ − q̂−1)b

aθ2 = q̂2θ2a+ (q̂−2 − q̂2)c

θ1b = q̂2bθ1 + ω(q̂−2 − q̂2)c

θ2b = bθ2 + (ω2 − ω)(q̂ − q̂−1)a

and hence

gθ1 = q̂−2θ1g − q̂−2ω(q̂−2 − q̂2)a−1c− (ω − ω2)q̂−2(q̂ − q̂−1)g2

gθ2 = q̂−2θ2g − (ω2 − ω)(q̂ − q̂−1)− q̂−2(q̂−2 − q̂2)a−1cg

since g = a−1b.

Now by direct computation, we find that

q̂2gf = q̂2gθ2 − q̂2ω2gθ1g + (w2 − w)q̂(ω2g3 + q̂2)

= θ2g − (ω2 − ω)(q̂ − q̂−1)q̂2 − (q̂−2 − q̂2)a−1cg

− ω2θ1g
2 + (q̂−2 − q̂2)a−1cg + ω2(ω − ω2)(q̂ − q̂−1)g3

+ (ω2 − ω)q̂(ω2g3 + q̂2)

= θ2g − ω2θ1g
2 + (ω2 − ω)q̂−1(ω2g3 + q̂2)

= fg

Theorem 3.2.6. Let k, f and g be as in Proposition 3.2.5. Then the division ring

kq(f, g) generated by f and g over k is equal to the fixed ring Dσ, and hence Dσ ∼= D

as k-algebras.

Proof. We claim that it suffices to prove kq[x
±1, y±1]σ ⊂ kq(f, g). Indeed, kq[x

±1, y±1]

is a Noetherian domain, and therefore both left and right Ore, while 〈σ〉 is a finite

group. We can therefore apply [18, Theorem 1] to see that

Q
(
kq[x

±1, y±1]σ
)

= Dσ
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where Q(R) denotes the full ring of fractions of a ring R. Hence if kq[x
±1, y±1]σ ⊂

kq(f, g), we see that

Q(kq[x
±1, y±1]σ) ⊆ kq(f, g) ⊆ Dσ ⇒ kq(f, g) = Dσ.

We will show that kq[x
±1, y±1]σ is generated as an algebra by the elements θ1, θ2 and

θ3 from (3.2.6), and then check that these three elements are in kq(f, g).

By [8, Théorème 2.1], kq[x
±1, y±1]σ is generated as a Lie algebra with respect to the

commutation bracket by seven elements:

R0,0 = 1, R1,0 = x+ y + q̂y−1x−1, R1,1 = x−1 + y−1 + q̂yx,

R1,2 = y−1x+ q̂3y2x+ q̂3y−1x−2, R1,3 = y−1x2 + q̂5y3x+ q̂8y−2x−3,

R2,0 = x2 + y2 + q̂4y−2x−2, R3,0 = x3 + y3 + q̂9y−3x−3.

and so it is also generated as a k-algebra by these elements. R1,0, R1,1 and R1,2 are

precisely the aforementioned elements θ1, θ2 and θ3, and it is a simple computation to

verify that R1,3, R2,0 and R3,0 are in the algebra generated by these three.

It is clear from the definition of f that once we have found either θ1 or θ2 in kq(f, g)

we get the other one for free, and we can also observe that

θ1θ2 − q̂2θ2θ1 = (q̂−2 − q̂2)θ3 − 3q̂2 + 3 ∈ kq(f, g)

so θ3 ∈ kq(f, g) follows from θ1, θ2 ∈ kq(f, g). Unfortunately there seems to be no easy

way to make the first step, i.e. verify that either θ1 or θ2 is in kq(f, g).

In fact, the element θ1 can be written in terms of f and g as in the following equality;

this is the result of a long and tedious calculation, and was verified using the computer

algebra system Magma (v2.18) and the methods described in Appendix A. We find

that

θ1 = (ω − ω2)−1q̂−2g−1f + (ω2q̂ + ωq̂−1)g + (q̂ + q̂−1)g−2

+(ω − ω2)
(
q̂−2g3 + (q̂2 + 1) + q̂4g−3

)
f−1.

Therefore θ1 ∈ kq(f, g), and the result now follows.
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Remark 3.2.7. By analogy to the pairs of generators in (3.2.5) and Theorem 3.1.1,

we might hope to find similarly intuitive generators for Dσ. Having set g := a−1b as

in the proof above, computation in Magma shows that there does exist a left fraction

f ′ ∈ Dσ such that f ′g = qgf ′; unfortunately, f ′ takes 9 pages to write down. In

the interest of brevity, we chose to use here the less intuitive f defined in (3.2.7); the

original f ′ can be found in Appendix A.3.

In a similar manner to Theorem 3.2.4, we can now describe the one remaining fixed

ring Dη using our knowledge of the fixed rings with respect to monomial maps of order

2 and 3.

Theorem 3.2.8. Let η be the order 6 map defined in Table 3.1, and suppose k contains

a primitive third root of unity and both a second and third root of q. Then Dη ∼= D as

k-algebras.

Proof. We first note that η3 = τ , so Dη = (Dτ )η. Take u, v in (3.2.5) as our generators

of Dτ , and now we can observe that the action of η on u and v is as follows:

η(u) = (y−1 − y)(q̂−1x−1y−1 − q̂yx)−1

= −q̂(y−1 − y)(xy − x−1y−1)−1

= −q̂v−1

η(v) = (q̂y−1yx− q̂−1yx−1y−1)(q̂−1x−1y−1 − q̂yx)−1

= −q(x− x−1)(xy − x−1y−1)−1

= −v−1u

Let p = 3
√
q−1. By making a change of variables u1 = −p−1q̂−1u, v1 = pv in Dτ =

kq(u, v), we see that η acts on Dτ as

η(u1) = v−1
1 , η(v1) = q̂−1v−1

1 u1

This is a monomial map of order 3 and so its fixed ring is isomorphic to Dσ, as noted

in [8, §1.3]. Now by Theorem 3.2.6 and Theorem 1.3.2, Dη = (Dτ )η ∼= (Dτ )σ ∼= Dτ ∼=

D.

Theorem 3.2.9. Let k be a field of characteristic zero, containing a primitive third

root of unity ω and both a second and a third root of q. If G is a finite group of

monomial automorphisms of D then DG ∼= D as k-algebras.
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Proof. Theorems 3.2.4, 3.2.6, 3.2.8 and [52, §13.6].

Finally, by combining Theorem 3.1.1 and Theorem 3.2.9, we obtain Theorem 1.3.3 as

promised in Chapter 1.

3.3 Consequences for the automorphism group of

D

The construction of q-commuting pairs of elements is closely linked to questions about

the automorphisms and endomorphisms of the q-division ring: such maps are defined

precisely by where they send the two generators of D, and naturally these images must

q-commute. Despite similarities to the commutative field k(x, y) a full description of

the automorphism group Aut(D) remains unknown, with a major stumbling block

being understanding the role played by conjugation maps.

Intuition suggests that “inner automorphism” and “conjugation” should be synony-

mous; certainly all conjugation maps should be bijective, at the very least. Here we

challenge this intuition by showing that the conjugation maps described in Proposi-

tion 2.1.8 not only gives rise to conjugations which are not inner, but also conjugation

maps which are well-defined endomorphisms (not automorphisms) on D. This provides

answers to several of the questions posed at the end of [5] (outlined in Questions 3.3.2

below), while also raising several new ones.

Let X and Y be a pair of q-commuting generators for D, or a pair of commutative

generators for k(x, y), as appropriate. We continue to assume that q is not a root of

unity.

The first question that must be answered when considering the automorphism group

of D is how to define the subgroup of tame automorphisms. As noted in §2.1.2, this is

approached in different ways by Alev and Dumas in [3] and Artamonov and Cohn in

[5]; our initial aim is to show that these two approaches in fact define the same group

of automorphisms.



CHAPTER 3. THE q-DIVISION RING 70

Alev and Dumas proceed by analogy to the commutative case k(X, Y ), where the

automorphism group is known to be generated by the fractional linear transformations :

X 7→ αX + βY + γ

α′′X + β′′Y + γ′′
, Y 7→ α′X + β′Y + γ′

α′′X + β′′Y + γ′′
, for


α β γ

α′ β′ γ′

α′′ β′′ γ′′

 ∈ PGL3(k)

(3.3.1)

and triangular automorphisms which preserve the embedding k(Y ) ⊂ k(X, Y ):

X 7→ a(Y )X + b(Y )

c(Y )X + d(Y )
, Y 7→ αY + β

γY + δa(Y ) b(Y )

c(Y ) d(Y )

 ∈ PGL2(k(Y )),

α β

γ δ

 ∈ PGL2(k).

(3.3.2)

If we try to view these as maps on D instead, the images of X and Y face the additional

restriction of being required to q-commute; as demonstrated in [3, Propositions 1.4,

1.5], this severely restricts what forms the automorphisms can take. It is shown in [3]

that a map given by (3.3.1) only defines an automorphism on D if it takes one of the

following three forms:

X 7→ λX, Y 7→ µY,

X 7→ λY −1, Y 7→ µY −1X,

X 7→ λY X−1, Y 7→ µX−1,

(3.3.3)

where λ, µ ∈ k×. This corresponds to the subgroup (k×)2oC3 of (k×)2oSL2(Z), where

C3 is the group of order 3 generated by the monomial automorphism corresponding

to the matrix ( −1 −1
1 0 ). Meanwhile, the automorphisms of D corresponding to those of

the form (3.3.2) are precisely the ones generated by the following automorphisms:

ψX : X 7→ a(Y )X, Y 7→ αY, a(Y ) ∈ k(Y )×, α ∈ k×,

τ : X 7→ X−1, Y 7→ Y −1
(3.3.4)

Let H1 denote the subgroup of Aut(D) generated by automorphisms of the form (3.3.3)

and (3.3.4).

Recall from Definition 2.1.7 that Artanomov and Cohn defined the elementary auto-

morphisms of D to be those of the form

τ : X 7→ X−1, Y 7→ Y −1,

ϕX : X 7→ b(Y )X, Y 7→ Y, b(Y ) ∈ k(Y )×,

ϕY : X 7→ X, Y 7→ a(X)Y, a(X) ∈ k(X)×.

(3.3.5)
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Let H2 denote the group generated by automorphisms of the form (3.3.5).

Lemma 3.3.1. The groups H1 and H2 defined above are equal.

Proof. We first show that H2 ⊆ H1. By taking α = 1 in (3.3.4) we immediately obtain

τ and all automorphisms of the form ϕX , so we need only show that we can construct

all automorphisms of the form ϕY from elements of H1. We start by defining

σ : X 7→ Y −1, Y 7→ Y −1X ∈ H1

ψ1 : X 7→ Y X, Y 7→ Y ∈ H1,

and observe that ρ := ψ1 ◦ σX : 7→ Y −1, Y 7→ X ∈ H1. Now for an arbitrary

automorphism ψX of the form (3.3.4) we may combine it with ρ to obtain

ρ−1 ◦ ψX ◦ ρ : X 7→ X, Y 7→ a(X−1)Y ∈ H1;

since a(Y ) ∈ k(Y )× was arbitrary, we see that H2 ⊆ H1. Conversely, to show H1 ⊆ H2

we need only obtain the automorphisms from (3.3.3), which can be decomposed as

follows: define

ϕ1 : X 7→ µ−1λY X, Y 7→ Y ∈ H2,

ϕ2 : X 7→ X, Y 7→ µ−1X−1Y ∈ H2,

so that

ϕ2 ◦ τ ◦ ϕ1 : X 7→ λY −1, Y 7→ µY −1X

is also in H2 as required.

This justifies the choice to call an automorphism of D elementary if it is of the form

(3.3.5), and tame if it is in the group generated by the elementary automorphisms and

the inner automorphisms on D.

Recall from Theorem 2.1.9 that any homomorphism from D to itself can be decom-

posed as a product of elementary automorphisms and a conjugation map cz, where z is

constructed as in Proposition 2.1.8. The following questions are posed by Artamonov

and Cohn in [5].

Questions 3.3.2.
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1. Does there exist an element z satisfying the recursive definition (2.1.8), such that

z 6∈ kq(X, Y )? What if zn ∈ kq(X, Y ) for some positive integer n?

2. Does there exist an element z from (2.1.8) such that z−1kq(X, Y )z ( kq(X, Y )?

3. The group of automorphisms of kq(X, Y ) is generated by elementary automor-

phisms, conjugation by some elements of the form z, and τ . Find a set of defining

relations for this generating set.

We first note that (3) needs rephrasing, since we can provide affirmative answers for

both (1) and (2). Indeed, we will construct examples of conjugation automorphisms

cz satisfying z2 ∈ D (Proposition 3.3.5) and zn 6∈ D for all n ≥ 1 (Proposition 3.3.9),

and also a conjugation endomorphism such that z−1Dz ( D (Proposition 3.3.7).

In light of this, (3) should be modified to read:

4. Under what conditions is cz an automorphism of D rather than an endomor-

phism? Using this, give a set of generators and relations for Aut(D).

For each of our examples below, we start by defining a homomorphism ψ on D and

then verify that the image of the generators of D under ψ have the form (2.1.7). This

allows us to use Proposition 2.1.8 to construct z as in (2.1.8) such that ψ = cz−1

(possibly after a change of variables in D to ensure the leading coefficients are both

1). The final step in each proof is checking whether z ∈ D, for which we will use the

following lemmas.

Lemma 3.3.3. Let z1, z2 ∈ kq(Y )((X)). If the conjugation maps cz1 and cz2 have the

same action on D = kq(X, Y ), then z1 and z2 differ only by a scalar.

Proof. If cz1 = cz2 , then z1Y z
−1
1 = z2Y z

−1
2 , i.e. z−1

2 z1Y = Y z−1
2 z1. Similarly z−1

2 z1

commutes with X, so z−1
2 z1 is in the centralizer of D in kq(Y )((X)), which we write as

C(D).

We now verify that C(D) = k. Indeed, if u =
∑

i≥n aiX
i ∈ C(D), then u must

commute with Y , i.e.

Y
∑
i≥n

aiX
i =

∑
i≥n

aiX
iY =

∑
i≥n

qiaiY X
i
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Since q is not a root of unity, we must have ai = 0 for all i 6= 0, i.e. u = a0 ∈ k(Y ).

Since u is now in D and must commute with both X and Y , u ∈ Z(D) = k. The

result now follows.

Recall that for r ∈ kq[X, Y ], degX(r) denotes the degree of r as a polynomial in X.

This extends naturally to a notion of degree on kq(X, Y ) by defining

degX(t−1s) := degX(s)− degX(t),

where s, t ∈ kq[X, Y ]. We note that this definition is multiplicative.

Lemma 3.3.4. If cz is an inner automorphism on kq(X, Y ), then cz(Y ) = v−1u

satisfies degX(u) = degX(v).

Proof. We can write the commutation relation in D as Y X = β(X)Y , where β is the

automorphism X 7→ q−1X, Y 7→ Y . Let cz be an inner automorphism on D, so that

z = t−1s ∈ D for s, t ∈ kq[X, Y ]. Thus the image of Y under cz is

cz(Y ) = t−1sβ(s)−1β(t)Y (3.3.6)

Since β does not affect the X-degree of a polynomial and degX is multiplicative, it is

clear from (3.3.6) that degX(cz(y)) = 0 and hence degX(u) = degX(v) as required.

We are now in a position to answer Questions 3.3.2 (1) and (2).

Proposition 3.3.5. Let D and ϕ be as in Theorem 3.1.1, and set E = Dϕ. With an

appropriate choice of generators for E, the map

γ : E → E : r 7→ (y−1 + y)r(y−1 + y)−1

defined in Lemma 3.1.5 is an automorphism of the form cz−1, with z defined as in

(2.1.8). Further, we have z 6∈ E while z2 ∈ E. This provides an affirmative answer to

Question 3.3.2 (1).

Proof. E is a q-division ring by Theorem 3.1.1, and γ is an automorphism by Lemma 3.1.5.

Write E = kq(f, g), where f := 1
1−q (hg − gh) as in the proof of Theorem 3.1.1, which

allows us to use the methods of [5].
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In order to check that γ has the form described by (2.1.8), by Proposition 2.1.8 it is

sufficient to check that γ(f), γ(g) are of the following form:

γ(f) = f s +
∑
i>s

aif
i, γ(g) = gs +

∑
i≥1

bif
i, s ∈ {±1}, ai, bi ∈ k(g). (3.3.7)

Recall that γ(g) = (cb)b−2, which can be written in terms of h and g using Lemma 3.1.3

and (3.1.9). From the definition f = 1
1−q (hg − gh) we find that h = g−1(1 − f), and

after some rearranging we obtain

b2 = (q3 − g4)(q7 − g4)q−6g−3f−2 + [higher terms in f ]

cb = (q3 − g4)(q7 − g4)q−7g−3f−2 + [higher terms in f ]

Therefore the lowest term of γ(g) = (cb)b−2 is qg, which can easily be transformed

into the form given in (3.3.7) by a simple change of variables.

By [5, Proposition 3.2], it now follows that γ(f) must have the form

γ(f) = b1f +
∑
i>1

bif
i, b1, bi ∈ k(g).

Again, we can make a change of variables in kq(f, g) using elementary automorphisms

to obtain b1 = 1 while simultaneously ensuring that γ(g) remains in the form (3.3.7).

Now by [5, Theorem 3.5], γ = cz−1 with z constructed as in Proposition 2.1.8.

By Lemma 3.3.3, y+ y−1 and z differ by at most a scalar. Since y+ y−1 6∈ E, γ = cz−1

defines an automorphism of E with z 6∈ E.

Finally, we have already noted in Lemma 3.1.3 (ii) that b2 = (y − y−1)2 + 4 ∈ E, and

so z2 ∈ E as well.

Remark 3.3.6. It is worth noting that this phenomenon of non-inner conjugations

cannot happen when q is a root of unity. Indeed, if qn = 1 for some n, then D is a

finite dimensional central simple algebra over its centre and by the Skolem-Noether

theorem every automorphism of D should be inner. The automorphism γ is still a

well-defined automorphism on D in this case, but the difference is that now D has

a non-trivial centre: since yn − y−n is a central element we can replace y + y−1 with

(y + y−1)(yn − y−n) in the definition of γ without affecting the map at all. We now

have

(y + y−1)(yn − y−n) = yn+1 − y−(n+1) + yn−1 − y−(n−1) ∈ kq(x, y)G
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and so γ is indeed an inner automorphism in this case.

Proposition 3.3.7. Let D = kq(x, y). Then there exists z ∈ kq(y)((x)) such that

z−1Dz ( D. This provides an affirmative answer to Question 3.3.2(2).

Proof. We can view the isomorphism θ : D
∼−→ DG from Theorem 3.1.1 as an endo-

morphism on D, and so θ decomposes into the form (2.1.9) with z constructed as in

(2.1.8). Since θ is not surjective, and cz−1 is the only map in the decomposition not

already known to be an automorphism, we must have z−1Dz ( D.

Propositions 3.3.5 and 3.3.7 illustrate some of the difficulties involved in giving a set

of relations for Aut(D): not only is it possible for both endomorphisms and automor-

phisms to arise as conjugations cz for z 6∈ D, but as we show next, it turns out to

be quite easy to define an automorphism σ on D which is a product of elementary

automorphisms, but also satisfies ψ = cz−1 with zn 6∈ D for any n ≥ 1.

Example 3.3.8. We define maps by

h1 : x 7→ (1 + y)x, y 7→ y,

h2 : x 7→ x, y 7→ (1 + x)y,

h3 : x 7→ 1

1 + y
x, y 7→ y,

which are all elementary automorphisms on kq(x, y). Let ψ = h3 ◦ h2 ◦ h1, so that

ψ(x) = x+
qy

(1 + y)(1 + qy)
x2,

ψ(y) = y +
qy

1 + y
x.

is an automorphism on kq(x, y). These have been chosen so that ψ(x), ψ(y) are already

in the form (2.1.7), so there exists z ∈ kq(y)((x)) defined by (2.1.8) such that ψ = cz−1 .

Since ψ(y) is a polynomial in x of non-zero degree, ψ is not an inner automorphism

by Lemma 3.3.4.

In fact, ψn(y) is a polynomial in x of degree n. The key observation in proving this is
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to notice that (1 + y)−1x is fixed by ψ. Indeed,

ψ((1 + y)−1x) =

[
1 + y +

qy

1 + y
x

]−1 [
x+

qy

(1 + y)(1 + qy)
x2

]
=

[(
1 +

qy

(1 + y)(1 + qy)
x

)
(1 + y)

]−1 [
1 +

qy

(1 + y)(1 + qy)
x

]
x

= (1 + y)−1x.

If we write ψ(y) = y(1 + q(1 + y)−1x), it is now clear by induction that

ψn(y) = ψn−1(y)(1 + q(1 + y)−1x) (3.3.8)

is polynomial in x of degree n.

Proposition 3.3.9. With ψ as in Example 3.3.8 and D = kq(x, y), ψ = cz−1 is an

example of a conjugation automorphism satisfying zn 6∈ D for all n ≥ 1.

Proof. By (3.3.8), ψn(y) = z−nyzn is a polynomial in x of degree n so by Lemma 3.3.4

we have zn 6∈ D for all n ≥ 1.

Combining these results, we obtain the theorem promised in the introduction.

Theorem 3.3.10. Let k be a field of characteristic zero and q ∈ k× not a root of

unity. Then:

(i) The q-division ring D admits examples of bijective conjugation maps by elements

z 6∈ D; these include examples satisfying zn ∈ D for some positive n, and also

those such that zn 6∈ D for all n ≥ 1.

(ii) D also admits an endomorphism which is not an automorphism, which can be

represented in the form of a conjugation map.

Proof. Propositions 3.3.5, 3.3.7, 3.3.9.

We have seen that the set of generators for Aut(D) proposed by Artamonov and Cohn

in [5] in fact generate the whole endomorphism group End(D). On the other hand,

Theorem 3.3.10 also suggests that if we restrict our attention to the group generated by
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the elementary and inner automorphisms only, this may generate a proper subgroup

of Aut(D) rather than the whole group.

A good test case for this question would be the automorphism γ in Proposition 3.3.5:

can it be decomposed into a product of elementary automorphisms and inner auto-

morphisms? The next proposition indicates one way of approaching this question.

Proposition 3.3.11. Let cz be a bijective conjugation map on kq(x, y). Suppose that

cz fixes some element r ∈ kq(x, y)\k, and that there is a product ϕ of elementary

automorphisms such that r is the image of x or y under ϕ. Then cz decomposes as a

product of elementary automorphisms.

Proof. Suppose first that ϕ(x) = r. Define u := ϕ(x), v := ϕ(y); since ϕ is a product

of elementary automorphisms, this gives rise to a change of variables in kq(x, y), i.e.

kq(x, y) = kq(u, v).

We would like to show that cz acts as an elementary automorphism on u and v. While

z is an element of kq(y)((x)) and is not necessarily in kq(v)((u)), cz is still a well-defined

automorphism on kq(u, v) and so cz(v) = zvz−1 ∈ kq(u, v).

Meanwhile cz fixes u, which q-commutes with both v and cz(v); it is easy to see that

u must therefore commute with cz(v)v−1. The centralizer of u in kq(u, v) is precisely

k(u), so cz(v)v−1 = a(u) ∈ k(u). Now

cz(u) = u, cz(v) = cz(v)v−1v = a(u)v

is elementary as required.

Let a(x) ∈ k(x) be the element obtained by replacing every occurrence of u in a(u) by

x. We can define an elementary automorphism on kq(x, y) by h : x 7→ x, y 7→ a(x)y,

which allows us to write the action of cz as follows:

cz(u) = u = ϕ ◦ h(x), cz(v) = a(u)v = ϕ(a(x)y) = ϕ ◦ h(y).

Hence cz ◦ϕ = ϕ◦h, and so cz = ϕ◦h◦ϕ−1 is a product of elementary automorphisms

as required. The case ϕ(y) = r follows by a symmetric argument.

We note that the automorphism γ from Proposition 3.3.5 fixes y − y−1 ∈ E, but it is

not clear whether y − y−1 satisfies the hypotheses of Proposition 3.3.11.
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3.4 Open Questions

While the results of §3.3 answer the questions raised by Artamonov and Cohn at the

end of [5], they trigger a number of interesting new open questions. We finish this

chapter by listing some of these questions.

Questions 3.4.1.

1. Is there an algorithm to identify elements fixed by a given conjugation map cz

and establish whether they satisfy the hypotheses of Proposition 3.3.11?

2. Does every conjugation automorphism cz with z 6∈ D decompose into a product

of elementary automorphisms and an inner automorphism? In particular, does

γ from Lemma 3.1.5 decompose in this fashion?

3. An automorphism of order 5 is defined on D in [16, §3.3.2] by

π : x 7→ y, y 7→ x−1(y + q−1).

Based on preliminary computations we conjecture that Dπ ∼= D as well. Does

D admit any other automorphisms of finite order, and in particular any such

automorphisms with fixed rings which are not q-division?

4. The “non-bijective conjugation” map in Proposition 3.3.7 gives rise to a doubly-

infinite chain of q-division rings

. . . ( z2Dz−2 ( zDz−1 ( D ( z−1Dz ( z−2Dz2 ( . . .

What can be said about the limits⋃
i≥0

z−iDzi and
⋂
i≥0

ziDz−i ?



Chapter 4

Poisson Deformations and Fixed

Rings

The results of Chapter 3 demonstrate that while it is possible to understand certain

classes of fixed rings of the q-division ring D by direct computation, this approach

rapidly grows more difficult as the complexity of the automorphisms increase and it

is highly unlikely to lead to a general theorem on the possible structures of DG for

arbitrary finite G. In this chapter we discuss a different approach to this question,

which uses deformation theory to reframe the problem in terms of Poisson structures

on certain commutative algebras and the possible deformations of these structures.

This approach is inspired by the work of [7], which considered a similar problem on

the q-commuting Laurent polynomial ring kq[x
±1, y±1].

In §4.1 we prove that the q-division ring is a deformation (in the sense of Defini-

tion 2.2.6) of the commutative field of fractions in two variables k(x, y), with respect

to the Poisson bracket {y, x} = yx. Further, we show that for finite groups G of mono-

mial automorphisms the fixed ring DG is in turn a deformation of k(x, y)G. This allows

us to break down the problem of describing fixed rings DG into two sub-problems: de-

scribing the Poisson structure of the commutative fixed rings k(x, y)G, and describing

the possible deformations of these fixed rings.

The first of these is precisely the Poisson equivalent of the Noether problem for k(x, y):

given a field of fractions k(x, y) with an associated Poisson structure, and a finite group

79
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of Poisson automorphisms G, does there exist an isomorphism of Poisson algebras

k(x, y)G ∼= k(x, y)? In §4.2 we will show that when G is any finite group of Poisson

monomial automorphisms (see Definition 4.1.10 for the precise definition) and the

bracket on k(x, y) is given by {y, x} = yx then we can always find such an isomorphism.

While we cannot yet describe all the possible Poisson deformations in this situation,

and hence these results do not yet provide a full alternative proof to the results of

Chapter 3, we will see that the proofs in §4.2 are shorter and more intuitive than their

q-commuting counterparts. This suggests that Poisson deformation may be a more

fruitful avenue to explore in seeking a general classification of the structure of fixed

rings of D under finite groups of automorphisms.

4.1 A new perspective on D

Recall the setup of Example 2.2.8, where we saw that the ring kq[x
±1, y±1] can be

viewed quite concretely as a deformation of the commutative Poisson algebra k[x±1, y±1]

via the ring

B = k〈x±1, y±1, z±1〉/(xz − zx, yz − zy, xy − z2yx). (4.1.1)

By localizing B at an appropriate Ore set, we may construct a larger ring D such that

both D = kq(x, y) and the commutative field k(x, y) can be realised as factor rings of

D. The next section is devoted to the proof of this result.

4.1.1 The q-division ring as a deformation of k(x, y)

We will begin by proving that B is a Noetherian UFD (see Definition 4.1.2 below),

and then use certain properties of this class of rings to construct an appropriate Ore

set C of B to localize at. This will give rise to the ring D := BC−1, which we will use

to show that D is a deformation of k(x, y).

Definition 4.1.1. An element p of a ring R is called prime if pR = Rp is a height 1

completely prime ideal of R.
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Let C(P ) denote the set of elements which are regular mod P , and set C =
⋂
C(P )

where P runs over all height 1 primes of R. We will sometimes write C(R) for C when

we need to specify which ring it comes from.

Definition 4.1.2. A prime Noetherian ring R is called a Noetherian UFD if it has at

least one prime ideal of height 1 and satisfies the following equivalent conditions:

1. Every height 1 prime of R is of the form pR for some prime element p of R;

2. R is a domain and every non-zero element of R can be written in the form

cp1 . . . pn, where p1, . . . , pn are prime elements of R and c ∈ C.

This definition was introduced by Chatters in [12]. In particular, commutative rings

which are UFDs in the conventional sense satisfy this definition [12, Corollary 2.4];

in this case, the elements of C are the units in R. This need not be true for non-

commutative UFDs: instead, the set C forms an Ore set in R [12, Proposition 2.5] and

the localization RC−1 is both a Noetherian UFD [12, Theorem 2.7] and a principal

ideal domain [21, Corollary 1].

Returning to the ring B defined in (4.1.1), our first aim will be to show that it is a

Noetherian UFD. We will show that it satisfies condition (1) of Definition 4.1.2. It is

without a doubt a prime Noetherian ring, so we need only describe its height 1 prime

ideals.

By standard localization theory (see for example [32, Theorem 10.20]), the prime ideals

of B are in 1-1 correspondence with those prime ideals of the ring

S := k〈x, y, z±1〉/(xz − zx, yz − zy, xy − z2yx)

which do not contain x or y. Hence we will restrict our attention to the prime ideals

of S.

If we define R = k[y, z±1], then S can be viewed as an Ore extension

S = R[x;α], α : R→ R : y 7→ z2y, z 7→ z. (4.1.2)

The primes of S which do not contain x can be understood using the following results.
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Definition 4.1.3. Let R be a commutative Notherian ring, I an ideal of R and α

an endomorphism. Call I an α-invariant ideal if α−1(I) = I, and α-prime if I is α-

invariant and whenever J and K are two other ideals satisfying α(J) ⊆ J and JK ⊆ I,

then J ⊆ I or K ⊆ I as well. Finally, we call R an α-prime ring if 0 is an α-prime

ideal.

The following theorem is stated in slightly greater generality in [35]; we quote here

only the part required for our analysis of the primes of S.

Theorem 4.1.4. [35, Theorem 4.1,4.2] Let R be a commutative ring, α an endo-

morphism of R, and S = R[x;α]. If I is a prime ideal of S not containing x, then

J = I ∩ R is an α-prime ideal of R. Conversely, if J is an α-prime ideal of R, then

SJS is a prime ideal of S.

Theorem 4.1.5. [35, Theorem 4.3] Let R be an α-prime Noetherian ring, where α is

an endomorphism of infinite order. Then the only prime of S = R[x;α] not containing

x which lies over (0) in R is (0).

The following lemma uses these results to show that all non-zero primes of S must

contain (at least) one of x, y or an irreducible polynomial in z.

Lemma 4.1.6. With S = R[x;α] as in (4.1.2), let P be a non-zero prime ideal of

S which does not contain x. Then P must contain y or some element p(z) which is

irreducible in k[z±1].

Proof. By Theorems 4.1.4 and 4.1.5, I = P ∩ R is a non-zero α-prime ideal of R; we

will show that I must contain one of the required elements, and hence so will P .

Let f ∈ I be an element of minimal y-degree; we will first show that f = g(z)yn for

some g(z) ∈ k[z±1] and n ≥ 0. If degy(f) = 0 then this is clear, so suppose that f has

the form

f = gn(z)yn + · · ·+ g1(z)y + g0(z), gi(z) ∈ k[z]

for some n ≥ 1 and gn(z) 6= 0. Since I is α-invariant and α is an automorphism we

must have α(f)− z2nf ∈ I as well, which has degree < n and so must be zero by the

minimality of n. Comparing coefficients, we see that

gi(z)(z2i − z2n) = 0, 0 ≤ i < n
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which implies that gi(z) = 0 for all i < n. Thus f = gn(z)yn as required.

Let gn(z) = up1(z)p2(z) . . . pr(z) be the factorization of gn(z) into irreducible polyno-

mials, with pi(z) ∈ k[z±1] irreducible and u ∈ k[z±1]×. All that remains is to observe

that the ideals pi(z)R and yR are all α-invariant (indeed, they are α-prime) and hence

the α-prime ideal I must by definition contain one of these ideals.

Proposition 4.1.7. The ring B defined in (4.1.1) is a Noetherian UFD, and its height

1 prime ideals are precisely those generated by irreducible polynomials in k[z±].

Proof. Combining Theorem 4.1.4, Theorem 4.1.5 and Lemma 4.1.6, we see that every

non-zero prime ideal of S = R[x;α] must contain (at least) one of x, y or some

irreducible p(z) ∈ k[z±1]. Since prime ideals of B are in 1-1 correspondence with

prime ideals of S which do not contain x or y (where the correspondence is the natural

one given by localization and contraction as in [32, Theorem 10.20]) it must follow

that every prime ideal of B contains some irreducible polynomial in z. On the other

hand, we can easily check that every irreducible polynomial p(z) ∈ k[z±1] generates a

height 1 prime ideal in B.

Since every non-zero prime in B must contain an irreducible polynomial p(z) ∈ k[z±1],

and p(z)B is prime for any such p(z), it follows that the height 1 primes of B are

precisely the set {p(z)B : p(z) is irreducible in k[z±1]}. Finally, since z is central in

B these are all completely prime ideals, and therefore the p(z) are prime elements in

the sense given in Definition 4.1.1. It is now clear that B satisfies condition (1) of

Definition 4.1.2, and hence it is a Noetherian UFD.

By [12, Proposition 2.5] we can now form the localization

D := BC−1, (4.1.3)

where C =
⋂
C(P ) for P running through all height 1 primes of B. By [21, Corollary 1]

every left or right ideal in D is two-sided and principal; more precisely, we can see that

every left or right ideal is generated by a polynomial in z. In particular, it is clear

that for any λ ∈ k× the factor ring D/(z − λ)D must be a division ring.

We will restrict our attention to the case where q is not a root of unity and the base

field k admits an element q̂ such that q̂2 = q. As in Example 2.2.8, we will make
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k(x, y) into a Poisson algebra by defining {y, x} = yx; as in [26, Equation 0-3], this

extends to a general formula for the bracket of two polynomials as follows:

{a, b} = yx
∂a

∂y

∂b

∂x
− yx∂a

∂x

∂b

∂y
(4.1.4)

and this can be extended to the whole field k(x, y) using the formula in (2.2.3).

We are now in a position to prove one of the main results of this section. The proof is

based on the corresponding result in [7, §5.4.3] for k[x±1, y±1].

Proposition 4.1.8. Let k(x, y) be the field of rational functions in two commuting

variables with Poisson bracket defined by {y, x} = yx. Then D is a deformation of

k(x, y) via the ring D from (4.1.3).

Proof. We need to show that D contains some central, non-invertible, non-zero-divisor

element h such that D/hD ∼= k(x, y) as Poisson algebras (where the Poisson bracket

on D/hD is induced as in Definition 2.2.5), and D/(h − λ)D ∼= D as algebras for

appropriate values of q and λ.

As in [7, §5.4.3], we set h = 2(1− z). It is clear that D is a domain and h is central.

By Proposition 4.1.7, the polynomial z − λ generates a height 1 completely prime

ideal of D for any λ ∈ k×; in particular, 〈h〉 = 〈z − 1〉 is a proper ideal and so h is

non-invertible.

The set of ideals {〈z − λ〉 : λ ∈ k×} is equal to the set {〈h − µ〉 : µ ∈ k\{2}}. We

have already noted that the quotient D/(h − µ)D for µ 6= 2 must be a division ring;

we can further observe that since x and y satisfy xy = (1 − 1
2
µ)2yx in this ring, we

have a sequence of embeddings

kq[x
±1, y±1] ↪→ D/(h− µ)D ↪→ D

for q = (1 − 1
2
µ)2. By the universality of localization this second embedding must

be an isomorphism, that is D/(h − µ)D ∼= D. In particular, when µ = 0 there is an

isomorphism of algebras D/hD ∼= k(x, y).

All that remains is to check that this process induces the correct Poisson bracket on

D/hD, and to do this it suffices to check that we obtain the correct Poisson bracket
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on the generators x and y. As elements of D, we have

yx− xy = (1− z2)yx =
1

2
(1 + z)hyx

and therefore according to the formula in Definition 2.2.5,

{y, x} =
1

2
(1 + z)yx mod hD

= yx

since h = 0 in D/hD implies z = 1. We therefore have an isomorphism of Poisson

algebras between k(x, y) with the multiplicative Poisson bracket {y, x} = yx and

D/hD with induced Poisson bracket, and the result is proved.

4.1.2 The fixed ring DG as a deformation of k(x, y)G

The results of §4.1.1 allow us to understand the q-division ring D as a deformation

of the Poisson algebra k(x, y) with bracket defined by {y, x} = yx. However, for

certain finite groups of automorphisms G we can extend this result to obtain further

information, namely by using a subring of the ring D from (4.1.3) to describe the fixed

ring DG as a deformation of k(x, y)G.

We will be interested in monomial actions on k(x, y) and D, which have already been

considered in §3.2 in the case of the q-division ring. For the Poisson algebra k(x, y)

these are defined using the following proposition, which is the Poisson equivalent of

Proposition 3.2.2.

Proposition 4.1.9. The group SL2(Z) acts by Poisson automorphisms on the com-

mutative Poisson field k(x, y) with bracket {y, x} = yx, where the action is defined

by

g.y = yaxc, g.x = ybxd, g =

a b

c d

 ∈ SL2(Z), (4.1.5)

or more generally for any m,n ∈ Z:

g.(ymxn) = yam+bnxcm+dn
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Proof. We define

g =

a b

c d

 , g′ =

a′ b′

c′ d′

 ∈ SL2(Z)

and we are required to prove that

1. g.{y, x} = {g.y, g.x}, i.e. g is a Poisson automorphism on k(x, y);

2. g′.(g.x) = (g′g).x and g′.(g.x) = (g′g).y in k(x, y), i.e. this defines an action of

SL2(Z) on k(x, y).

Using (4.1.4), we can observe that the action of our Poisson bracket on monomials is

{yaxc, ybxd} = (ad− bc)ya+bxc+d. Now

g.{y, x} = g.yx = yaxcybxd,

{g.y, g.x} = {yaxc, ybxd} = (ad− bc)ya+bxc+d,

and hence g.{y, x} = {g.y, g.x} since ad− bc = 1. Thus g ∈ SL2(Z) defines a Poisson

automorphism on k(x, y).

For the reader’s convenience, we record again the product of the matrices g and g′:

g′g =

a′a+ b′c a′b+ b′d

ac′ + d′c c′b+ d′d

 .

The computation to verify condition (2) is now a simple one. Indeed,

g′.(g.x) = g′.(ybxd) = yba
′
xbc
′
ydb
′
xdd

′
= yba

′+db′xbc
′+dd′ = (g′g).x

g′.(g.y) = g′.(yaxc) = yaa
′
xac

′
ycb
′
xcd

′
= yaa

′+cb′xac
′+cd′ = (g′g).y

Definition 4.1.10. Let θ be a Poisson automorphism on k(x, y). We call θ a Poisson

monomial automorphism if it can be represented by an element of SL2(Z) with the

action defined in Proposition 4.1.9.

The corresponding action of SL2(Z) on D can be defined in a very similar way to that

of the action on D. Here z takes on the role of q̂ and we define the action to be

g.y = zacyaxc, g.x = zbdybxd, g.z = z, where g =

a b

c d

 ∈ SL2(Z). (4.1.6)



CHAPTER 4. POISSON DEFORMATIONS AND FIXED RINGS 87

Since z is central and invertible in D, the proof that this defines an action of SL2(Z)

on D follows identically to that of Proposition 3.2.2.

Given that z is fixed by the action of SL2(Z), the ideals (h−λ)D are stable under this

action and so the definition in (4.1.6) induces an action by Poisson automorphisms

on D/hD and an action by algebra automorphisms on D/(h− λ)D. It is easy to see

that these actions agree with those defined in Proposition 3.2.2 and Proposition 4.1.9.

Therefore if G is a finite subgroup of SL2(Z) we will assume that it acts on each of

the rings k(x, y), D and D according to definitions (4.1.5), (3.2.1), (4.1.6) respectively,

without distinguishing between them unnecessarily.

Before proving our main result of this section (Theorem 4.1.12) we state one additional

technical lemma which will be used in the proof of the theorem. The proof for this

result can be found in [15].

Lemma 4.1.11. [15, §3.2.3] Let G be a finite group. If

0 −→ A
α−→ B

β−→ C −→ 0

is an exact sequence of G-modules, then the induced sequence

0 −→ AG
α′−→ BG β′−→ CG −→ 0

is exact.

Theorem 4.1.12. Let G be a finite subgroup of SL2(Z). Then the fixed ring DG is

a deformation of k(x, y)G, where the Poisson bracket on k(x, y)G is induced by the

bracket {y, x} = yx on k(x, y).

Proof. Let G be a finite subgroup of SL2(Z) acting on k(x, y), D and D by monomial

automorphisms. Then 0→ hD→ D→ D/hD→ 0 is an exact sequence ofG-modules,

and hence by Lemma 4.1.11 we have another exact sequence

0 −→ hDG −→ DG −→ (D/hD)G −→ 0. (4.1.7)

This gives rise to an isomorphism of rings DG/hDG ∼= (D/hD)G, which will be an

isomorphism of Poisson algebras if the brackets on DG/hDG and (D/hD)G agree.
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This is easy to see, however, since both brackets are induced by commutators which

can each be computed in the same ring D.

Since D/hD ∼= k(x, y) by Proposition 4.1.8 and this isomorphism is clearlyG-equivariant,

we obtain isomorphisms of Poisson algebras DG/hDG ∼= (D/hD)G ∼= k(x, y)G.

By a similar argument, we obtain an isomorphism of algebras DG/(h − λ)DG ∼= DG,

for λ = 2(1− q̂). Thus the fixed ring of the deformation is a deformation of the fixed

ring, as required.

4.2 Fixed rings of Poisson fields

The results of §4.1 translate the problem of understanding the fixed ring DG into two

sub-problems:

1. Understanding the Poisson structure of the fixed ring k(x, y)G;

2. Describing all the possible deformations of this ring.

In this section we will focus on the first of these problems.

It is standard that k(x, y)G ∼= k(x, y) as algebras for any finite group G, but this does

not guarantee that their Poisson structures will also agree. Even for the case of finite

groups of monomial automorphisms, until now only the Poisson structure of k(x, y)τ

was known. In this section we will extend this to a description of the fixed rings of all

finite groups of monomial Poisson automorphisms on k(x, y); in addition to being an

interesting result in its own right, this will demonstrate that with the right techniques

it is a genuine simplification to consider the structure of commutative Poisson fixed

rings rather than their q-commuting equivalents.

The aim of this section will be to prove the following theorem, which we will approach

on a case by case basis as in Chapter 3.

Theorem 4.2.1. Let k be a field of characteristic zero which contains a primitive

third root of unity ω, and let G be a finite subgroup of SL2(Z) which acts on k(x, y) by

Poisson monomial automorphisms as defined in Definition 4.1.10. Then there exists

an isomorphism of Poisson algebras k(x, y)G ∼= k(x, y).
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At first glance it is not clear that describing the Poisson structure of k(x, y)G should be

any easier than describing the algebra structure of DG: all we have done is replace the

requirement to find two elements f, g ∈ DG such that fg = qgf with the requirement

that we find two elements in k(x, y)G such that {g, f} = gf . However, by exploiting

both the q-commuting structure of D and the ease of computation in k(x, y) we can

develop a method which often produces suitable Poisson generators for the fixed rings.

The key idea is that by using a technique inspired by the work of Alev and Dumas in [3]

and Artamonov and Cohn in [5], we can construct potential q-commuting generators

for DG by constructing them term by term in kq(y)((x)), and then replace q̂ by 1

throughout to obtain elements of k(x, y) with the desired properties. We describe this

approach in more detail next.

In Appendix A.2 we define the Magma procedure qelement, which accepts as input

an element of the form

g = λy +
∑
i≥1

aix
i ∈ kq(y)((x)), λ ∈ k×, ai ∈ k(y) (4.2.1)

and constructs another power series f ∈ kq(y)((x)) such that fg = qgf . We note that

f need not represent an element of D even if g does. Appendix A.1 also describes

results which allow us to test if f ∈ D and if so, writes it as a left fraction f = v−1u;

however, as demonstrated by the example in Appendix A.3 even quite simple products

of non-commutative fractions become unmanageably complicated when forced into the

form of a single left fraction. Verifying that f ∈ DG or proving that kq(f, g) = DG is

essentially impossible in this situation.

On the other hand, commutative fractions are far easier to multiply and factorize, and

elements which were unmanageably large in D often reduce to quite simple elements

of k(x, y) upon replacing q̂ by 1 (recall that q̂ denotes a square root of q). Further,

if f , g ∈ D satisfy fg = qgf and it makes sense to replace q̂ by 1 in these elements

(denoted here by f and g) then the construction of the Poisson bracket as the image

of a commutator in D guarantees that {g, f} = gf (this claim is illustrated more

rigorously in Lemma 4.2.2).

Therefore if G is a finite subgroup of SL2(Z) acting on k(x, y) by Poisson monomial

automorphisms and we expect that the fixed ring k(x, y)G will be Poisson-isomorphic
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to k(x, y), we may apply the following procedure to attempt to construct generators

for k(x, y)G.

1. Choose a fraction g ∈ DG of the form (4.2.1).

2. Apply procedure qelement in Magma to construct f ∈ kq(y)((x)) such that

fg = q̂2gf .

3. Use procedure checkrationalL to check whether f ∈ D (within the limits of the

computer’s computational power); if true, use findrationalL to write f = v−1u

for v, u ∈ kq[x, y].

4. If possible, replace q̂ by 1 in f and g and check whether f ∈ k(x, y)G.

We note that having already proved the q-commuting version of Theorem 4.2.1, we

could simply take the q-commuting generators obtained for the corresponding results

in Chapter 3 and set q̂ = 1 in order to obtain Poisson generators. However, since

the motivation for studying these Poisson fixed rings is to demonstrate that we can

understand subrings of D via the Poisson structure of subrings of k(x, y), for the

purposes of this section we will (mostly) ignore the results of §3.2 and proceed using

qelement and the approach outlined above.

Recall that up to conjugation, the group SL2(Z) admits only four non-trivial finite

subgroups: the cyclic groups of order 2, 3, 4 and 6. As in Chapter 3, it therefore suffices

to describe the fixed rings of k(x, y) with respect to one Poisson automorphism of each

conjugacy class, which are listed in Table 4.1 below.

Order Automorphism
2 τ : x 7→ x−1, y 7→ y−1

3 σ : x 7→ y, y 7→ (xy)−1

4 ρ : x 7→ y−1, y 7→ x
6 η : x 7→ y−1, y 7→ xy

Table 4.1: Conjugacy class representatives of finite order Poisson monomial automor-
phisms on k(x, y).

We have already noted that the fixed ring under the automorphism τ of order 2 has

been described in [7]; the proof involves certain clever factorizations and manipulations
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of equalities in k(x, y)τ and does not generalize easily to automorphisms of higher order.

A simpler description of k(x, y)τ may be obtained by using the pair of elements defined

in (3.2.5); since we will use this description of k(x, y)τ in later results, the next lemma

provides a proof of this statement.

Lemma 4.2.2. Let u, v ∈ k(x, y) be defined by

u =
x− x−1

y−1 − y
, v =

xy − (xy)−1

y−1 − y
, (4.2.2)

and let τ be as in Table 4.1. Then k(u, v) = k(x, y)τ and {v, u} = vu.

Proof. It is clear that u, v ∈ k(x, y)τ . The claim that {v, u} = vu may be verified

computationally using the formula (4.1.4), but since no polynomials in q appear in the

denominator of u or v we may also prove this claim as follows. Let

uq = (x− x−1)(y−1 − y)−1, vq = (xy − x−1y−1)(y−1 − y)−1

be elements of D; by [52, §13.6] we know that uqvq = qvquq. These lift without

modification to elements uz and vz of the ring D from Theorem 4.1.8, where uzvz =

z2vzuz. Recall that we defined h = 2(1 − z) and that D/hD ∼= k(x, y) as Poisson

algebras; hence

{v, u} =
1

h
(vzuz − uzvz) mod hD

=
1

2(1− z)
(1− z2)vzuz mod hD

=
1

2
(1 + z)vzuz mod hD

= vu,

since h = 0 implies z = 1 in D/hD.

Finally, we need to prove that k(u, v) = k(x, y)τ . Since k(u, v) ⊆ k(x, y)τ ( k(x, y)

and [k(x, y) : k(x, y)τ ] = 2, if we can show that [k(x, y) : k(u, v)] ≤ 2 as well then it

must follow that k(u, v) = k(x, y)τ . We define a polynomial in k(u, v)[t] by

mx(t) = vt2 + (v2 − u2 + 1)t+ v, (4.2.3)

which has x as a root (this can be seen by direct computation in k(x, y)). Since k(u, v)

is a subring of k(x, y)τ and x is not fixed by τ , we cannot have x ∈ k(u, v) and so

(4.2.3) must be irreducible, i.e. it is the minimal polynomial for x over k(u, v).
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Therefore the Galois extension k(u, v)(x) has order 2 over k(u, v). Observe further

that k(u, v)(x) = k(x, y) since

1 + vx

ux
=
y−1 − y + x2y − y−1

x2 − 1

=
(x2 − 1)y

x2 − 1

= y,

and hence y ∈ k(u, v)(x). This implies that [k(x, y) : k(u, v)] = 2 and so k(u, v) =

k(x, y)τ as required. Finally, since u and v satisfy {v, u} = vu the isomorphism

k(x, y) ∼= k(x, y)τ is in fact an isomorphism of Poisson algebras.

We now turn our attention to the order 3 case, which caused such problems in the

q-division ring. As observed in Remark 3.2.7, the unintuitive generator f used in

Theorem 3.2.6 had its roots in a single left fraction constructed using qelement; the

full definition of this element is given in Appendix A.3 and takes 9 pages to write down

fully. However, since the Poisson bracket captures only a first-order impression of the

non-commutative structure in D and multiplication of fractions is far less complicated

in k(x, y), it is perhaps unsurprising that upon replacing q̂ with 1 in this 9 page element

we obtain a far simpler element which satisfies our requirements in the Poisson case.

Having set q̂ = 1 in the elements appearing in Appendix A.3, we obtain two elements

in k(x, y) of the form

f = a2b/c2, g = b/a, (4.2.4)

where

a = x+ ωy + ω2(xy)−1,

b = x−1 + ωy−1 + ω2xy,

c = xy−1 + xy2 + x−2y−1 − 3,

(4.2.5)

in a similar manner to the q-commuting case. Observe that σ acts on a and b as

multiplication by ω2 and fixes c.

We note that since our Magma functions can only approximate computations in

kq(y)((x)), the above on its own is not a proof: we still need to verify that f and

g from (4.2.4) do indeed generate the fixed ring k(x, y)σ. This is the purpose of the

next result.
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Proposition 4.2.3. Let k be a field of characteristic 0 containing a primitive third

root of unity ω, and let f and g be defined as in (4.2.4). Then the Poisson subalgebra

of k(x, y) generated by f and g is equal to k(x, y)σ, and there is an isomorphism of

Poisson algebras k(x, y)σ ∼= k(x, y).

Proof. Since σ acts on a and b as multiplication by ω2 and fixes c, it is clear that

σ(f) = f and σ(g) = g. Using the formula for the bracket of two elements given in

(4.1.4) it follows by a long yet elementary computation (which we do not reproduce

here) that {g, f} = gf .

The proof that k(f, g) = k(x, y)σ follows in a similar manner to the corresponding

q-commuting case. Indeed, we find that the fixed ring k[x±1, y±1]σ is generated as an

algebra by the three standard generators

p1 := x+ y + (xy)−1

p2 := x−1 + y−1 + xy

p3 := y−1x+ y2x+ y−1x2 + 6

(see, for example, [15, §4.2.2]) and hence it suffices to show that p1, p2 and p3 are in the

Poisson algebra k(f, g). This can now be observed by direct computation, however,

since

p1 =
ω(g3 + 1)2f 2 + g(2− g3)f + ω2g2

fg3

p2 =
ω2(g3 + 1)2f 2 + g(2g3 − 1) + ωg2

fg2

p3 =
1

2
(p1p2 − {p2, p1}+ 9)

are all in the Poisson algebra k(f, g), as required.

Corollary 4.2.4. Let the field k be as in Proposition 4.2.3, and η the Poisson mono-

mial automorphism of order 6 in Table 4.1. Then the fixed ring k(x, y)η is isomorphic

to k(x, y) as Poisson algebras.

Proof. As in Theorem 3.2.8, we observe that η3 = τ and so k(x, y)η = (k(x, y)τ )η.

Thus it suffices to consider k(u, v)η, where k(u, v) = k(x, y)τ as in Lemma 4.2.2. We

may make a change of variables u′ := −u−1 without affecting the structure of k(u, v):
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using the formula in (4.1.4) we can easily see that {v, u′} = −vu′ and hence k(u, v)

and k(v, u′) are Poisson-isomorphic. Now the action of η on u′ and v is as follows:

η(u′) = (xy − (xy)−1)/(y−1 − y)

= v;

η(v) = (y−1yx− y(yx)−1)/(xy − (xy)−1)

= v−1u−1.

Hence η acts on k(u′, v) as the order 3 map σ, and therefore by Lemma 4.2.2 and

Proposition 4.2.3 we have isomorphisms of Poisson algebras k(x, y)η = (k(x, y)τ )η ∼=

k(u′, v)σ ∼= k(x, y).

We have only one case left to consider: the Poisson monomial automorphisms of order

4. As in Proposition 4.2.3, we proceed by first considering the corresponding map on

the q-division ring, and then formally constructing a pair of q-commuting elements in

Magma and replacing q̂ by 1 throughout to obtain appropriate generators for the fixed

ring.

Let ρ be the automorphism of order 4 defined in Table 4.1, that is

ρ : x 7→ y−1, y 7→ x.

As in Corollary 4.2.4, we may begin by observing that ρ2 = τ and hence restrict our

attention to the action of ρ on the elements u and v from Lemma 4.2.2. We find that

ρ(u) =
y − y−1

x−1 − x
= −u−1

ρ(v) =
yx−1 − y−1x

x− x−1
= (u−1 − u)v−1.

Let ϕ be the map defined on k(u, v) by

ϕ : u 7→ −u−1, v 7→ (u−1 − u)v−1. (4.2.6)

This must be a Poisson homomorphism since it is induced by the action of the Poisson

automorphism ρ on k(u, v), and an easy computation shows that ϕ2 = id; hence ϕ is

an automorphism of order 2 on k(u, v), and k(x, y)ρ = k(u, v)ϕ. We may also define

an automorphism corresponding to ϕ on the q-division ring kq(u, v), namely

ϕq : u 7→ −u−1, v 7→ (u−1 − qu)v−1;
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note that up to a change of variables this is precisely the automorphism considered in

§3.1.

Define an element in kq(u, v) by

gq = (u− ϕq(u))(v − ϕq(v))−1 = (u+ u−1)(v − (u−1 − qu)v−1)−1,

which as always is fixed by ϕq since the map acts on each component as multiplication

by -1. The element gq has been chosen precisely because it has the form (4.2.1) when

embedded into kq(v)((u)), so we may use qelement to construct some fq ∈ kq(v)((u))

such that fqgq = qgqfq. Finally, upon setting q = 1, we obtain the elements

f =
(u2 + uv2 − 1)2u

(u2v2 − u2 − 2u− 1)(u2v2 + u2 − 2u+ 1)
, g =

(u2 + 1)v

u2 + uv2 − 1
, (4.2.7)

which satisfy the required properties as demonstrated by the following lemma.

Lemma 4.2.5. The elements f and g in (4.2.7) are fixed by ϕ and satisfy {g, f} = gf .

Proof. We begin by computing the action of ϕ on the various polynomials appearing

in f and g.

ϕ((u2 + 1)v) = (u−2 + 1)(u−1 − u)v−1

= u−3v−1(1− u2)(1 + u2)

ϕ(u2 + uv2 − 1) = u−2 − u−1(u−1 − u)2v−2 − 1

= u−3v−2(uv2 − 1− u4 + 2u2 − u3v2)

= u−3v−2(1− u2)(u2 + uv2 − 1)

ϕ(u2v2 − u2 − 2u− 1) = u−2(u−1 − u)2v−2 − u−2 + 2u−1 − 1

= u−4v−2(1 + u4 − 2u2 − 22v2 + 2u3v2 − u4v2)

= u−4v−2(−(u− 1)2(u2v2 − u2 − 2u− 1))

Similarly, ϕ(u2v2 + u2 − 2u+ 1) = u−4v−2((u+ 1)2(u2v2 + u2 − 2u+ 1)).

Putting these together, it is now easy to see that

ϕ(f) =
−u−1u−6v−4(1− u2)2(u2 + uv2 − 1)2

−u−8v−4(1 + u)2(1− u)2(u2v2 − u2 − 2u− 1)(u2v2 + u2 − 2u+ 1)

=
(u2 + uv2 − 1)2u

(u2v2 − u2 − 2u− 1)(u2v2 + u2 − 2u+ 1)

= f,
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and similarly,

ϕ(g) =
u−3v−1(1− u2)(1 + u2)

u−3v−2(1− u2)(u2 + uv2 − 1)

=
(1 + u2)v

(u2 + uv2 − 1)

= g.

Direct computation (e.g. in Magma) using the formula in (4.1.4) demonstrates that

{g, f} = gf as required.

All that remains is to show that k(f, g) = k(x, y)ρ. Since k(x, y)ρ = k(u, v)ϕ and ϕ

has order 2, it suffices to verify that [k(u, v) : k(f, g)] = 2, which can be done using

(commutative) Galois theory.

Proposition 4.2.6. Let k be a field of characteristic zero, and ρ the Poisson monomial

automorphism of order 4 in Table 4.1. Then k(x, y)ρ ∼= k(x, y) as Poisson algebras.

Proof. By the preceding discussion and Lemma 4.2.5, all that remains to show is that

[k(u, v) : k(f, g)] = 2, where f and g are the elements defined in (4.2.7), u and v are

from Lemma 4.2.2 and ϕ is the Poisson automorphism of order 2 defined in (4.2.6).

We define a polynomial in k(f, g)[t] by

mu(t) = ft2 − (fg2 − f + 1)(fg2 + f + 1)t− f,

which has u as a root. Since we cannot have u ∈ k(f, g), we conclude in the same

manner as Lemma 4.2.2 that mu(t) must be the minimal polynomial for u over k(f, g).

Now we may see that the Galois extension k(f, g)(u) is equal to k(u, v), since direct

computation shows that

v = (fg3 + fgu+ g)/(fu− 1).

Thus k(f, g) ⊆ k(u, v)ϕ $ k(u, v) with [k(u, v) : k(f, g)] = 2, and since there can be

no intermediate extension we must have k(f, g) = k(u, v)ϕ, as required.

Finally, by combining Lemma 4.2.2, Proposition 4.2.3, Proposition 4.2.6 and Corol-

lary 4.2.4 the proof of Theorem 4.2.1 is complete.
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As a result of the computations done to understand the fixed ring k(x, y)ρ, we also

obtain the following corollary of Proposition 4.2.6, which is the Poisson analogue of

Theorem 3.1.1:

Corollary 4.2.7. There is an isomorphism of Poisson algebras k(u, v)ϕ ∼= k(u, v).

This suggests that, as in the q-commuting case, we should look for a Poisson isomor-

phism from a general fixed ring k(x, y)G to k(x, y) whenever G is a finite group of

Poisson automorphisms which do not restrict to k[x, y]. Since the Poisson automor-

phism group of k(x, y) with respect to the bracket {y, x} = yx is known (see [9]),

proving a theorem of this form for the Poisson case may be a more attractive problem

to tackle than the corresponding q-commuting one.



Chapter 5

Poisson Primitive Ideals in O(GL3)

and O(SL3)

In Chapter 4 we viewed the q-division ring D as a deformation of the commutative

Poisson field k(x, y) with the aim of learning more about the structure of D. In this

chapter we will take the opposite view: starting with a non-commutative algebra, we

will use the language of deformation to better understand the structure of its semi-

classical limit.

Much of the work in this chapter is based on the corresponding results for the quantum

algebras Oq(M3), Oq(GL3) and Oq(SL3) in [28, 29]. In the first of these papers,

Goodearl and Lenagan define a rational action of an algebraic torus H on Oq(M3) and

construct generating sets of quantum minors for each of the 230H-prime ideals. In [29]

they focus on Oq(GL3), which admits a much more manageable 36 H-primes, and use

this and the Stratification Theorem to find generating sets for all of the primitive ideals

of O(GL3). Finally, these results are extended to Oq(SL3) by use of the isomorphism

Oq(GL3) ∼= Oq(SL3)[z
±1] from [42].

Our aim will be to perform a similar analysis for the Poisson algebras O(GL3) and

O(SL3), with a view to eventually verifying Conjecture 2.3.15 for the case of GL3 and

SL3. We will find that the Poisson structure of O(GL3) and O(SL3) matches up very

closely with the non-commutative structure of Oq(GL3) and Oq(SL3) in almost all

respects, although we will see in §5.3.3 that occasionally we will need to apply quite

98



CHAPTER 5. POISSON PRIMITIVE IDEALS IN O(GL3) AND O(SL3) 99

different techniques to the quantum case to prove the corresponding Poisson result.

Important Global Convention 2. Throughout this chapter, we will assume that k

is an algebraically closed field of characteristic zero. The assumption that q ∈ k× is

not a root of unity remains in force.

This chapter references several large figures, which have been collected together in

Appendix B for convenience. Figures of this type are referenced as Figure B.n. Note

that there is also a List of Figures on page 5.

5.1 Background and initial results

We begin by making formal the view of O(Mn) as the semi-classical limit of the

quantum matrices Oq(Mn) (for the definition of Oq(Mn), see §1.2).

Definition 5.1.1. Define Rn to be the k[t±1]-algebra in n2 variables {Yij : 1 ≤ i, j ≤

n}, subject to the same relations as Oq(Mn) but with every occurence of q replaced

by the variable t.

This is a generalization of the setup from §2.2.3, and it is easy to see that in this case

we obtain an isomorphism of k-algebras

Oq(Mn) ∼= Rn/(t− q)Rn.

Meanwhile, when we quotient out the ideal (t−1)Rn we obtain the commutative coor-

dinate ring O(Mn). Using the semi-classical limit process defined in Definition 2.2.5,

this induces a Poisson bracket on O(Mn), which we will take as our definition of the

Poisson structure on O(Mn). By direct computation, we find that for any set of four

generators {xij, xim, xlj, xlm} with i < l and j < m the Poisson bracket is defined by

{xij, xim} = xijxim, {xim, xlm} = ximxlm,

{xim, xlj} = 0, {xij, xlm} = 2ximxlj.
(5.1.1)

Recall from §1.2 that [I|J ]q denotes a quantum minor in Oq(Mn): here I and J

are ordered subsets of {1, . . . , n} of equal cardinality, and [I|J ] is defined to be the
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quantum determinant on the subalgebra of Oq(Mn) generated by {Xij : i ∈ I, j ∈ J}.

Recall also that Ĩ denotes the complement of the set I in {1, . . . , n} and that we will

often drop the set notation for ease of notation: for example, the minor [{1, 2}|{2, 3}]

could be denoted by [12|23] or [3̃|1̃].

Notation 5.1.2. In order to easily distinguish between elements of the different types

of algebra, the generators of Rn will be denoted by Yij, the generators of Oq(Mn) by

Xij and those of O(Mn) by xij. Minors in each algebra will be denoted by [I|J ]t,

[I|J ]q and [I|J ] respectively. Finally, elements of Oq(GLn) or Oq(SLn) will use the

same notation as that of Oq(Mn), where they will always be understood to mean

“the image of this element in the appropriate algebra”, and similarly for O(GLn) and

O(SLn).

Notation 5.1.3. Since most of this chapter is concerned specifically with 3 × 3 ma-

trices, we will often drop the subscript and simply write R for R3 in order to simplify

the notation.

The algebrasO(Mn) andOq(Mn) admit a number of automorphisms and anti-automorphisms,

which will allow us to reduce the number of cases we check. We first define on Oq(Mn)

the maps

τ : Xij 7→ Xji,

ρ : Xij 7→ Xn+1−j,n+1−i.

The map τ defines an automorphism of Oq(Mn) corresponding to the transpose opera-

tion on matrices, while ρ defines an anti-automorphism corresponding to transposition

along the reverse diagonal. Both of these maps have order 2. By [29], the action of

these maps on minors and on Detq is as follows:

τ([I|J ]q) = [J |I]q; τ(Detq) = Detq;

ρ([I|J ]q) = [w0(J)|w0(I)]q; ρ(Detq) = Detq;

where w0 denotes the permutation ( 1 2 ... n
n n−1 ... 1 ) ∈ Sn, i.e. the “longest element” of Sn.

Oq(Mn) admits the structure of a bialgebra but does not have an antipode map; on

Oq(GLn) and Oq(SLn) we obtain a genuine Hopf algebra structure by defining the
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antipode:

S : Xij 7→ (−q)i−j [̃j |̃i]qDet−1
q .

By [29], the action of S on minors is as follows:

S([I|J ]q) = (−q)
P
I−

P
J [J̃ |Ĩ]Det−1

q , S(Detq) = Det−1
q .

These maps induce (anti-)automorphisms of Poisson algebras on O(Mn), O(GLn) and

O(SLn) as appropriate (just replace Xij in the definitions by xij, and q by 1), and

we denote these maps by the same symbols as the quantum case. We note that when

we ignore the Poisson structure on the semi-classical limits and simply view them as

commutative algebras, the distinction between automorphism and anti-automorphism

disappears and each of the maps τ , ρ and S are simply automorphisms of commutative

algebras.

Finally, we observe that while S has infinite order as a map on Oq(GLn) or Oq(SLn),

the antipode of any commutative Hopf algebra has order 2 [45, Corollary 1.5.12].

5.1.1 Commutation relations and interactions for minors

To save us from excessive computation in future sections, it will be useful to obtain

some identities concerning how certain (n − 1) × (n − 1) minors interact with the

generators xij under the Poisson bracket. In [29, §1.3] a number of identities for

Oq(Mn) are listed, and we will use these to derive Poisson versions of these equalities.

We are interested in computing the bracket {xij, [l̃|m̃]} for 1 ≤ i, j, l,m ≤ n. Suppose

first that j = m and i 6= l; by [29, E1.3c], we have the following equality in Oq(Mn):

Xij[l̃|̃j]q = q[l̃|̃j]qXij + (q − q−1)
∑
s<j

(−q)s−j[l̃|s̃]qXis (i 6= l). (5.1.2)

The key point here is that we may replace q by t and Xij by Yij in (5.1.2) and obtain

an equality which is valid in Rn. We may then use Definition 2.2.5 and (5.1.2) to
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compute {xij, [l̃|̃j]} for i 6= l as follows:

{xij, [l̃|̃j]} = (t− 1)−1
(
Xij[l̃|̃j]t − [l̃|̃j]tXij

)
mod t− 1

= (t− 1)−1

(
(t− 1)[l̃|̃j]tXij + t−1(t2 − 1)

∑
s<j

(−t)s−j[l̃|s̃]tXis

)
mod t− 1

= [l̃|̃j]xij + 2
∑
s<j

(−1)s−j[l̃|s̃]xis.

Applying a similar process to the other equalities in [29, §1.3], we obtain the following

list of relations:

{xij, [l̃|m̃]} = 0 (i 6= l, j 6= m) (5.1.3)

{xij, [̃i|m̃]} = −2
∑
s>i

(−1)s−i[s̃|m̃]xsj − [̃i|m̃]xij (j 6= m) (5.1.4)

= 2
∑
s<j

(−1)s−j[l̃|s̃]xis + [l̃|̃j]xij

{xij, [l̃|̃j]} = 2
∑
s<j

(−1)s−j[l̃|s̃]xis + [l̃|̃j]xij (i 6= l) (5.1.5)

= −2
∑
s>j

(−1)s−j[l̃|s̃]xis − [l̃|̃j]xij

{xij, [̃i|̃j]} = 2

(∑
s<i

(−1)s−ixsj[s̃|̃j]−
∑
t>j

(−1)j−txit [̃i|t̃]

)
(5.1.6)

= 2

(∑
t<j

(−1)j−txit [̃i|t̃]−
∑
s>i

(−1)s−ixsj[s̃|̃j]

)
.

Definition 5.1.4. Let R be a commutative Poisson algebra. We call an element r ∈ R

Poisson central if {r, s} = 0 for all s ∈ R, and Poisson normal if {r, s} ∈ rR for all

s ∈ R.

When i 6= l and j 6= k, the variable xij appears as part of the expansion of the minor

[l̃|m̃] and so we may view (5.1.3) as a relation in a subalgebra of O(Mn) isomorphic to

O(Mn−1). The minor [l̃|m̃] plays the role of the (n− 1)× (n− 1) determinant Det in

this copy of O(Mn−1), and by (5.1.3) its bracket with any generator xij in O(Mn−1) is

zero. Hence we may conclude that the determinant Det is Poisson central in O(Mn),

and therefore in O(GLn) as well.

We now specialise to the case n = 3. Since we will mostly be interested in ideals of

O(GL3) and O(SL3) (and their quantum counterparts) it will be useful to have some
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results on when Poisson-prime (resp. prime) ideals contain the 3× 3 determinant Det

(resp. the 3× 3 quantum determinant Detq).

Lemma 5.1.5. If P is a Poisson-prime ideal in O(M3) and P contains at least one

of:

x11, x22, x33, [1̃|1̃], [2̃|2̃], [3̃|3̃]

then Det ∈ P as well.

Proof. Using the identities in (5.1.6), we see that

{x11, [1̃|1̃]} = 2x21[2̃|1̃]− 2x31[3̃|1̃]

and hence

Det = x11[1̃|1̃]− 1

2
{x11, [1̃|1̃]}

is in the Poisson-prime ideal P whenever x11 or [1̃|1̃] is. Since τ fixes Det, by applying

τ to the above equalities we immediately obtain the same conclusion for x33 and [3̃|3̃].

Next, we can observe that

x22x33 −
1

2
{x22, x33} = [1̃|1̃],

and so x22 ∈ P implies Det ∈ P as well.

Finally, suppose [2̃|2̃] ∈ P . Applying the identities in (5.1.5), we see that

{x12, [2̃|2̃]} = −2[2̃|1̃]x11 + [2̃|2̃]x12, {x32, [2̃|2̃]} = 2[2̃|3̃]x33 − [2̃|2̃]x32,

and hence both [2̃|1̃]x11 and [2̃|3̃]x33 are in P as well. Since P is also prime, we must

have [2̃|1̃] ∈ P or x11 ∈ P , and similarly for [2̃|3̃] and x33. If x11 or x33 ∈ P then

Det ∈ P as well, so suppose that [2̃|1̃] and [2̃|3̃] are in P instead. Since our initial

hypothesis was that [2̃|2̃] ∈ P , we once again obtain

Det = x21[2̃|1̃]− x22[2̃|2̃] + x23[2̃|3̃] ∈ P.

Lemma 5.1.6. If Q is a prime ideal in Oq(M3) and Q contains at least one of:

X11, X22, X33, [1̃|1̃]q, [2̃|2̃]q, [3̃|3̃]q,

then Detq ∈ Q as well.
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Proof. The quantum proof follows in a very similar manner to the Poisson proof. From

the equalities in [29, E1.3a], we obtain

Detq = [1̃|1̃]qX11 + q−1(q − q−1)−1(X11[1̃|1̃]q − [1̃|1̃]qX11)

= [3̃|3̃]qX33 + q(q − q−1)−1(X33[3̃|3̃]q − [3̃|3̃]qX33),

while from the definition of quantum minor and the defining relations of Oq(M3) we

have

[1̃|1̃]q = X22X33 − qX23X32

= X22X33 − q(q − q−1)−1(X22X33 −X33X22).

Hence Detq is in the prime ideal Q whenever any one of X11, X22, X33, [1̃|1̃]q or [3̃|3̃]q

is.

Now suppose that [2̃|2̃]q ∈ Q and recall from §2.3.3 that all prime ideals in Oq(M3)

are completely prime. Using the identities from [29, §1.3], we find that

X12[2̃|2̃]q − q[2̃|2̃]qX12 = −q−1(q − q−1)[2̃|1̃]qX11

X32[2̃|2̃]q − q−1[2̃|2̃]qX32 = q(q − q−1)[2̃|3̃]qX33,

and so [2̃|1̃]qX11, [2̃|3̃]qX33 ∈ Q. If X11 or X33 are in Q then Detq ∈ Q by the above;

if not, then both [2̃|1̃]q and [3̃|2̃]q are in Q and hence by [29, E1.3a],

Detq = −q−1X21[2̃|1̃]q +X22[2̃|2̃]q − qX32[3̃|2̃]q ∈ Q.

It is noted in [29, §2.4] that [3̃|1̃]q and [1̃|3̃]q are normal in Oq(M3). Since we will want

to use [3̃|1̃] and [1̃|3̃] as generators of Poisson ideals, we prove the corresponding result

for O(M3).

Lemma 5.1.7. The minors [1̃|3̃] and [3̃|1̃] are Poisson-normal in O(M3), and hence

in O(GL3) and O(SL3) as well.

Proof. We will prove this for [3̃|1̃], since the corresponding result for [1̃|3̃] will then

follow by applying τ .



CHAPTER 5. POISSON PRIMITIVE IDEALS IN O(GL3) AND O(SL3) 105

We first need to check that {xij, [3̃|1̃]} ∈ [3̃|1̃]O(M3) for 1 ≤ i, j ≤ 3, which is simple

to verify using (5.1.3) - (5.1.6); indeed:

{xij, [3̃|1̃]} = 0 i 6= 3, j 6= 1

{x3j, [3̃|1̃]} = x3j[3̃|1̃] j 6= 1

{xi1, [3̃|1̃]} = xi1[3̃|1̃] i 6= 3

{x31, [3̃|1̃]} = 0.

Thus [3̃|1̃] is Poisson normal in O(M3), and hence in O(SL3) as well. Further, for any

a ∈ O(M3) we have

{aDet−1, [3̃|1̃]} = {a, [3̃|1̃]}Det−1 − {Det, [3̃|1̃]}aDet−2 = {a, [3̃|1̃]}Det−1

by (2.2.3) and the fact that Det is Poisson central. It therefore follows that [3̃|1̃] is

Poisson normal in O(GL3) as well.

In many cases, we will want to take the existing analysis done in [29] and transfer it

directly to the semi-classical limits. The following results will show that the process

of taking semi-classical limits commutes with both localization and taking quotients.

This will be useful when we apply the stratification theory described in §2.3.1-2.3.2 to

Oq(GL3) and O(GL3).

Proposition 5.1.8. Let R be a ring (possibly non-commutative), I an ideal of R and

X a right denominator set in R. Then there is an isomorphism of rings

(R/I)[X−1] ∼= RX−1/IX−1,

i.e. the processes of localizing and taking quotients commute.

Proof. By [32, Corollary 10.13], RX−1 is a flat left R-module, i.e. if

0 −→ A −→ B −→ C −→ 0

is an exact sequence of right R-modules, then the localizations also form an exact

sequence

0 −→ AX−1 −→ BX−1 −→ CX−1 −→ 0
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In particular, if we choose A = I, B = R and C = (R/I) and equip each with the

natural (R,R)-bimodule structure and natural maps between them, then we obtain

an isomorphism of R-modules

(R/I)X−1 ∼= RX−1/IX−1

Since the natural module homomorphisms defined above are simultaneously ring ho-

momorphisms, this is in fact an isomorphism of rings, thus proving the result.

Note that if I ∩X 6= ∅, this reduces to the statement that the zero ring is isomorphic

to itself. This is reassuring but unhelpful, so we will always ensure that I ∩ X = ∅

when applying this result (in particular, the following theorem).

Proposition 5.1.9. Let B be a k[t±1]-algebra and S ⊂ k\{0, 1} a set of scalars such

that none of the elements {t−q : q ∈ S∪{1}} are invertible in B. Suppose further that

B/(t− 1)B is commutative, and write A := B/(t− 1)B, Aq := B/(t− q)B for q ∈ S.

Finally, let X be an Ore set of regular elements in B such that X ∩ (t− q)B = ∅ for

all q ∈ S ∪ {1}, and let Xq denote the image of X in B/(t− q)B for S ∪ {1}. Under

these conditions, localizing A at X1 is equivalent to localizing Aq at Xq and then taking

the semi-classical limit.

Proof. Applying Proposition 5.1.8, we obtain isomorphisms of rings

Aq[X
−1
q ] ∼= B[X−1]/(t− q)B[X−1] and A[X−1

1 ] ∼= B[X−1]/(t− 1)B[X−1].

In order to establish the result, we just need to check that the Poisson bracket {·, ·}1 in-

duced on B[X−1]/(t−1)B[X−1] from the commutator in B[X−1] (as in Definition 2.2.5)

agrees with the Poisson bracket {·, ·}2 induced on A and extended to A[X1]
−1 by

(2.2.3).

We will use the fact that {uv−1, ·} and {·, uv−1} are always derivations for any uv−1

to show that both Poisson brackets are defined by their restriction to A. In particular,

for any derivation δ on a commutative ring in which some elements are invertible, it

follows easily from the definition that δ must satisfy the equality

δ(rs−1) = δ(r)s−1 − δ(s)rs−2.
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Hence, to compute {ab−1, cd−1}1 for any ab−1, cd−1 ∈ B[X−1]/(t− 1)B[X−1], we may

view it as a derivation in first one then the other variable to obtain

{ab−1, cd−1}1 = {ab−1, c}1d−1 − {ab−1, d}1cd−2

= {a, c}1b−1d−1 − {a, d}1cb−1d−2 − {b, c}1ab−2d−1 + {b, d}1acb−2d−2.

This agrees precisely with the definition of {ab−1, cd−1}2 obtained using the formula

(2.2.3) to extend a Poisson bracket to a localization, and hence it suffices to check that

{a, c}1 = {a, c}2 for all a, c ∈ A. This follows trivially from the definition of the two

brackets in terms of commutators on B and B[X−1], however.

Proposition 5.1.10. Let A, Aq and B be as in Proposition 5.1.9, and let I be an ideal

of B such that t− q 6∈ I for any q ∈ S ∪ {1}. Denote by Iq the image of I + 〈t− q〉 in

B/(t− q)B for q ∈ S ∪ {1}. Then the semi-classical limit of the quotient Aq/Iq is the

same as the quotient of the semi-classical limit A by the ideal I1, i.e. taking quotients

and semi-classical limits commute.

Proof. Using the Third Isomorphism Theorem we easily obtain the isomorphisms of

rings

B/I
/

(t− 1)B/I ∼= A/I1 and B/I
/

(t− q)B/I ∼= Aq/Iq.

As above, we just need to check that the two Poisson brackets induced on A/I1 agree.

By taking the quotient first, a Poisson bracket is induced directly on A/I1 from the

semi-classical limit process as follows: for a+ I, b+ I ∈ B/I, we have

{a+ I, b+ I}1 :=
1

t− 1

(
(a+ I)(b+ I)− (b+ I)(a+ I)

)
mod t− 1

=
1

t− 1
(ab− ba+ I) mod t− 1

=
1

t− 1
(ab− ba) + (I + 〈t− 1〉) mod t− 1

Meanwhile, A already has a Poisson bracket {·, ·}2 induced from Aq, and this induces

a unique Poisson bracket on the quotient A/I1 using the formula from (2.2.2):

{a+ I1, b+ I1}2 = {a, b}2 + I1

=
( 1

t− 1
(ab− ba) mod t− 1

)
+ I1.

Since the image of the ideal I+ 〈t−1〉 modulo t−1 is I1, we see that {·, ·}1 and {·, ·}2
are equal on A/I1.
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5.2 H-primes

As described in the introduction to this chapter, our aim is to apply the Poisson

Stratification Theorem to O(GL3) and O(SL3) in a similar manner to the quantum

algebras in [29]. As in the quantum case, we will make use of the fact that these two

algebras can be related via an isomorphism O(GLn) ∼= O(SLn)[z±1]; it will turn out

that some results are easier to prove in O(GL3) and others in O(SL3), so it will be

useful to be able to move between the two as required. We prove the existence of a

Poisson version of this isomorphism in Lemma 5.2.5 below.

Our first aim will be to define a rational action of a torus H on O(GL3) and O(SL3)

and to identify the Poisson H-primes: Poisson prime ideals which are stable under

the action of H. This is complicated slightly by the fact that the standard action of

H = (k×)2n on O(GLn) does not restrict directly to an action on O(SLn); however,

we will show in §5.2.2 that for an appropriate action of a torus H′ ∼= (k×)2n−1 there is

a natural bijection from the H-primes of O(GLn) to the H′-primes of O(SLn).

5.2.1 H-primes of O(GL3)

As described in [11, II.1.15, II.2.6], the torus H = (k×)2n acts rationally on Oq(GLn)

by

h.Xij = αiβjXij, where h = (α1, . . . , αn, β1, . . . , βn) ∈ H. (5.2.1)

This also defines an action of H on O(GLn), by replacing Xij with xij in (5.2.1) above.

By [27, §2.2], this defines a rational action of H on O(GLn).

We will now restrict our attention to the case where n = 3.

Since we are using the same action ofH onOq(GL3) andO(GL3), we would expect that

H-primes of Oq(GL3) should match up bijectively with Poisson H-primes in O(GL3).

In this section we will show that every H-prime of Oq(GL3) defines a distinct Poisson

H-prime when its generators are viewed as elements of O(GL3), and in Theorem 5.3.13

we will show that O(GL3) admits no other Poisson H-primes.

The 36 H-primes in Oq(GL3) are described in [29, Figure 1], which we reproduce in

Figure B.1 in Appendix B. Each ideal is represented pictorially by a 3 × 3 grid of



CHAPTER 5. POISSON PRIMITIVE IDEALS IN O(GL3) AND O(SL3) 109

dots: a black dot in position (i, j) denotes the element Xij, and a square represents a

2× 2 quantum minor in the natural way. For example, the ideal in position (231, 231)

denotes the ideal generated by X31 and [3̃|1̃]q.

We will adopt the indexing convention used in [29] for these ideals. H-primes are

indexed by elements ω = (ω+, ω−) ∈ S3×S3, where we write permutations in S3 using

an abbreviated form of 2-line cycle notation, e.g. 321 represents the permutation

1 7→ 3, 2 7→ 2, 3 7→ 1. The ideal Iω will denote the ideal generated by the elements

in position ω = (ω+, ω−) of Figure B.1, where it will always be clear from context

whether we mean an ideal in Oq(GL3) or O(GL3).

We may first observe that each of these ideals are generated only by (quantum) minors,

which are eigenvectors for the action of H, and hence the corresponding generator sets

in O(GL3) also generate H-stable ideals. Further, as the next lemma verifies, the

resulting ideals are all closed under the Poisson bracket of O(GL3) as well.

Lemma 5.2.1. Let ω ∈ S3 × S3, and let Iω be the ideal of O(M3) generated by the

elements in position ω from Figure B.1. Then Iω is a Poisson ideal in O(M3), and

hence induces a Poisson ideal in O(GL3) as well.

Proof. We write Iω = 〈f1, . . . , fn〉, where the fi are the minors depicted in position ω

of Figure B.1; it suffices to check that {fr,O(M3)} ∈ Iω for 1 ≤ r ≤ n. We first note

that this is immediate for fr = [1̃|3̃] or [3̃|1̃], since by Lemma 5.1.7 these elements are

Poisson-normal in O(M3) and O(GL3).

Now consider the case where fr = xij for some 1 ≤ i, j ≤ 3 and 1 ≤ r ≤ n. We

need to check that {xij, xkl} ∈ I for 1 ≤ k, l ≤ 3, which is easy to see when i = k, or

j = l, or i < k and j > l (or vice versa): in these cases the Poisson bracket is either

multiplicative or zero on the given elements. The only remaining cases are when i < k

and j < l, or i > k and j > l, i.e. xkl is diagonally below and to the right or above

and to the left of xij. Since the Poisson bracket is anti-symmetric, we may assume

that i < k and j < l. In this case,

{xij, xkl} = 2xilxkj

and from Figure B.1 we can observe directly that whenever this situation occurs for
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a generator of Iω, we have xil or xkj ∈ I as well and the ideal is closed under Poisson

bracket as required.

This shows that each of the 36 ideals listed in Figure B.1 are Poisson ideals in O(M3),

and by using the formula (2.2.3) for the unique extension of the bracket to a localization

we see that the induced ideals in O(GL3) are also Poisson ideals.

It is observed in [29, §1.5] that the maps τ , ρ and S preserve H-stable subsets of

Oq(GL3) with respect to the action defined in (5.2.1); since this follows purely from

considering the action of H on generators, the same observation holds true for O(GL3)

since the action of H is the same. In particular, if ϕ is some combination of τ , ρ and

S, and I, J are H-primes (respectively Poisson H-primes) such that ϕ(I) = J then

this induces an (anti-)isomorphism of algebras (resp. Poisson algebras)

ϕ : Oq(GL3)/I → Oq(GL3)/J, resp. O(GL3)/I → O(GL3)/J.

By direct computation, we find that the 36 ideals in Figure B.1 form 12 orbits under

combinations of τ , ρ and S, and hence it often suffices only to consider the structure

or properties of O(GL3)/Iω or Oq(GL3)/Iω for one example from each orbit. Since

we will regularly use this fact to simplify case-by-case analyses in various proofs, in

Figure B.2 we present a diagram of these orbits. Note that we will always use the first

ideal listed in Figure B.2 when we require a representative for a given orbit.

Most of the arrows in Figure B.2 are immediately clear from the definitions of τ , ρ

and S; the five which are not clear are justified in the following lemma.

Lemma 5.2.2. We have the following equalities in Oq(GL3) and O(GL3):

(S ◦ ρ)(I132,312) = I213,231

(S ◦ ρ)(I231,132) = I312,213

(S ◦ ρ)(I231,213) = I312,132

(S ◦ ρ)(I213,312) = I132,231

S(I231,123) = I312,123

Proof. We will prove the first equality, as the others follow by almost identical argu-

ments. Consider first the case of Oq(GL3); note that ρ(I132,312) = 〈X13, X31, X32〉, so
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what we need to prove is that

S(〈X13, X31, X32〉) = I213,231.

In other words, we need to check that

〈[3̃|1̃]q, [1̃|3̃]q, [2̃|3̃]q〉 = 〈X31, X32, [3̃|1̃]q〉. (5.2.2)

Since [1̃|3̃]q = X21X32 − qX22X31 and [2̃|3̃]q = X11X32 − qX12X31, the ⊆ direction is

clear. Conversely, using the formulas from [29, §1.3] we can observe that

q2[1̃|3̃]qX12 − q[2̃|3̃]qX22 = −[3̃|3̃]qX32,

q2[1̃|3̃]qX11 − q[2̃|3̃]qX21 = −[3̃|3̃]qX31.
(5.2.3)

[3̃|3̃]qX32 and [3̃|3̃]qX31 are therefore in 〈[3̃|1̃]q, [1̃|3̃]q, [2̃|3̃]q〉. This is a prime ideal since

it is the image of a prime ideal under the automorphism S ◦ρ, and hence is completely

prime since all primes of Oq(GL3) are completely prime by [11, Corollary II.6.10]. By

Lemma 5.1.6 no non-trivial prime in Oq(GL3) can contain [3̃|3̃]q, and so X32, X31 are

both in 〈[3̃|1̃]q, [1̃|3̃]q, [2̃|3̃]q〉. The equality (5.2.2) is now proved, and the other four

equalities follow by similar arguments.

Finally, the Poisson proof is almost unchanged from the quantum version, except that

we use Lemma 5.1.5 instead of Lemma 5.1.6 and instead of the equalities in (5.2.3),

we observe that

x31 = Det−1([1̃|2̃][2̃|3̃]− [2̃|2̃][1̃|3̃]),

x32 = Det−1([1̃|1̃][2̃|3̃]− [2̃|1̃][1̃|3̃]),

which can be easily seen by applying S to the equalities [1̃|3̃] = x21x32 − x22x31,

[2̃|3̃] = x11x32 − x12x31.

We will now proceed to check that the ideals appearing in Figure B.1/Figure B.2 are

indeed distinct Poisson prime ideals which are invariant under the action of H. We

have already checked that they are Poisson H-ideals, so all that remains is to verify

that they are prime (in the standard commutative sense) and distinct.

Lemma 5.2.3. The ideals generated in O(M3) by the sets of generators listed in

Figure B.1 are pairwise distinct and do not contain the 3× 3 determinant Det. They

therefore generate 36 pairwise distinct H-ideals in O(GL3).
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Proof. The proof that the ideals are distinct closely follows the corresponding quantum

proof from [28, §3.6]. Indeed, we can define two projections

θ1 : O(M3)→ B1 = k[x12, x13, x22, x23], θ2 : O(M3)→ B2 = k[x21, x22, x31, x32]

where each map fixes xij if it exists in the target ring and maps it to zero otherwise. It

suffices to view these as maps of commutative algebras rather than Poisson algebras.

If we consider the images of the ideals from Figure B.1 under θ1 and θ2, it is clear that

θ1 sends all ideals in a given column to the same ideal in B1, and the images of ideals

from different columns are distinct in B1. Similarly θ2 sends every ideal from a given

row of Figure B.1 to one ideal in B2, and ideals from different rows are mapped to

distinct ideals in B2. Hence two ideals in different columns or different rows must be

distinct in O(M3), and therefore all 36 of the ideals in the table are distinct.

By observation, we can see that all of the ideals in Figure B.1 are contained inside the

ideal

◦•••◦•••◦

I123,123

and hence it suffices to check that Det 6∈ I123,123. This is equivalent to checking

that Det 6= 0 in O(M3)/I123,123, but since O(M3)/I123,123
∼= k[x11, x22, x33] we have

Det = x11x22x33 6= 0 in this ring. The result now follows.

Lemma 5.2.4. Each of the 36 ideals whose generators are listed in Figure B.1 are

prime ideals in both O(M3) and O(GL3).

Proof. By Lemma 5.2.3 none of the ideals in Figure B.1 contain the determinant Det,

so by [32, Theorem 10.20] they will be prime in O(M3) if and only if they are prime in

O(GL3). We can therefore immediately observe that the 25 ideals generated only by

1× 1 minors are prime in O(M3) since the quotient O(M3)/Iω is simply a polynomial

ring in fewer variables, and hence the extensions of these ideals to O(GL3) are prime

as well.

Next consider the ideal
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◦◦•◦◦

I231,231

in O(M3). In the subalgebra of O(M3) generated by {x12, x13, x22, x23} the minor [3̃|1̃]

plays the role of the 2 × 2 determinant, which we will denote temporarily by Det2.

This generates a prime ideal in O(M2), and hence as commutative algebras we have

an isomorphism

O(M3)/I231,231
∼= (O(M2)/Det2) [x11, x21, x32, x33],

where the latter ring is a polynomial extension of a domain. The ideal I231,231 is

therefore prime in O(M3) and hence in O(GL3) as well.

Let I now be one of the 10 remaining ideals from Figure B.1; using the symmetries

listed in Figure B.2 there is always another ideal J among the 26 already considered

such that O(GL3)/I is isomorphic as commutative algebras to O(GL3)/J . The ideal

I is therefore prime in O(GL3) and hence in O(M3) as well.

We have constructed here 36 examples of Poisson H-primes in O(GL3), but we post-

pone the proof that O(GL3) admits no more such primes until §5.3.2.

5.2.2 H-primes in O(SL3)

As noted above, when working with O(SLn) for any n we cannot use the action of H =

(k×)2n defined in (5.2.1) for O(Mn) and O(GLn) as it does not give rise to an action on

O(SLn): in the notation of (5.2.1), we would have h.Det = α1 . . . αnβ1 . . . βnDet 6= h.1

in general. Instead, we restrict our attention to a subset

H′ = {h ∈ H : α1 . . . αnβ1 . . . βn = 1} ⊂ H

and take the induced action of H′ on O(SLn), that is:

h.xij = αiβjxij, h = (α1, . . . , αn, β1, . . . , βn) ∈ H′. (5.2.4)

The problem with this definition is it is not immediately clear how to connect the

H-primes of O(Mn) or O(GLn) with the H′-primes of O(SLn). In [11, Lemma II.5.16]
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and [41, §2], it is shown that by applying the natural projection map to theH-primes of

Oq(GLn) we obtain precisely the H′-primes of Oq(SLn), and we adapt their argument

to the Poisson case here.

We begin by establishing a Poisson version of the isomorphismOq(SLn)[z±1] ∼= Oq(GLn)

from [42].

Lemma 5.2.5. Let O(SLn) and O(GLn) be Poisson algebras, where the Poisson

bracket in each case is the one induced by (5.1.1). Define O(SLn)[z±1] = O(SLn) ⊗

k[z±1], and extend to it the Poisson bracket from O(SLn) by defining z to be Poisson

central: {z, a} = 0 for all a ∈ O(SLn). Then there is an isomorphism of Poisson

algebras O(SLn)[z±1]→ O(GLn), defined by

θ : O(SLn)[z±1] −→ O(GLn)

x1j 7→ x1jDet
−1

xij 7→ xij (i 6= 1)

z 7→ Det.

Proof. By taking q = λ = 1 in [42], we immediately get that θ is an isomorphism of

commutative algebras, and we need only check that it respects the Poisson bracket.

Let δij denote the Kronecker delta, i.e. δij = 1 when i = j and δij = 0 otherwise, and

recall that the determinant Det is Poisson central in O(GLn).

For xij, xlm ∈ O(SLn) we have

θ{xij, xlm} =


θ(xijxlm) (i = l or j = m)

0 (i > l, j < m or i < l, j > m)

2θ(ximxlj) (i < l, j < m or i > l, j > m)

=


xijxlmDet

−δ1iDet−δil (i = l or j = m)

0 (i > l, j < m or i < l, j > m)

2ximxljDet
−δ1iDet−δil (i < l, j < m or i > l, j > m)

, (5.2.5)

while

{θ(xij), θ(xlm)} = {xijDet−δ1i , xlmDet
−δ1l}

= {xij, xlm}Det−δ1iDet−δ1l , (5.2.6)
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since Det is Poisson central. Using the definition of the Poisson bracket in O(GLn),

it is clear that (5.2.5) and (5.2.6) are equal. Finally, we see that

θ{xij, z} = θ(0) = 0 = {xijDet−δ1i , Det} = {θ(xij), θ(z)},

for all xij ∈ O(SLn), and θ is therefore an isomorphism of Poisson algebras as required.

We can now define an action of H on O(SLn)[z±1] by conjugating the standard action

of H on O(GLn) with θ, i.e. for h ∈ H we define

h.f = θ−1 ◦ h ◦ θ(f) ∀f ∈ O(SLn)[z±1]. (5.2.7)

This also restricts to an action of H on O(SLn). Indeed, by working through the

definition in (5.2.7), we find that

h.x1j = α1βj(α1 . . . αnβ1 . . . βn)−1x1j,

h.xij = αiβjxij (i 6= 1).
(5.2.8)

The next two lemmas show that the set of H′-primes in O(SLn) coincides with the

set of H-primes, which in turn coincides with the set of H-primes of O(SLn)[z±1].

This approach is based on the corresponding quantum result outlined in [11, Lemma

II.5.16, Exercise II.5.H].

Lemma 5.2.6. Let ρ1 : H → Aut(O(SLn)) be the homomorphism of groups induced by

the action defined in (5.2.8) above, and ρ2 : H′ → Aut(O(SLn)) be the homomorphism

induced by the standard action defined in (5.2.4). Then im(ρ1) = im(ρ2) and hence

H-Pspec(O(SLn)) = H′-Pspec(O(SLn)).

Proof. Since H′ ⊂ H and for h ∈ H′ we have α1 . . . αnβ1 . . . βn = 1, it is easy to see

that ρ1(h) = ρ2(h) for all h ∈ H′ and hence im(ρ2) ⊆ im(ρ1). Conversely, if h ∈ H\H′

then the action of h on O(SLn) is the same as the action of

h′ = ((α2 . . . αnβ1 . . . βn)−1, α2, . . . , βn) ∈ H′

and so im(ρ1) ⊆ im(ρ2) as well. Thus an ideal of O(SLn) is fixed by H′ if and only if

it is fixed by the action of H given in (5.2.7).
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Lemma 5.2.7. The mapping ϕ : P 7→ P [z±1] defines a bijection betweenH-Pspec(O(SLn))

and H-Pspec(O(SLn)[z±1]).

Proof. This proof is based on the non-commutative argument in [41, Lemma 2.2]. Since

z is Poisson central and a H-eigenvector it is clear that ϕ sends Poisson H-primes to

Poisson H-primes and so ϕ is well-defined.

We claim that the inverse map is Q 7→ Q ∩ O(SLn). To prove this, we need to show

that

P [z±1] ∩ O(SLn) = P ∀P ∈ H-Pspec(O(SLn))

(Q ∩ O(SLn))[z±1] = Q ∀Q ∈ H-Pspec(O(SLn)[z±1])
(5.2.9)

and for this it will suffice to check the following statement:

For all Q ∈ H-Pspec(O(SLn)[z±1]) and for all f = f1z
k1 + · · ·+fnz

kn ∈ Q,

then fi ∈ Q ∩ O(SLn) for all i.

The statement is clear when n = 1, since z is invertible in O(SLn)[z±1]. Now assume

it is true for all sums of length n− 1, and let

f = f1z
k1 + · · ·+ fnz

kn

where we may assume without loss of generality that the ki are distinct and the

fi ∈ O(SLn) for all i. Let h = (2, 1, . . . , 1) ∈ H; observe from (5.2.7) and (5.2.8) that

h fixes all of O(SLn) but acts on z as multiplication by 2. Since Q is a H-stable ideal,

we have

f − 2−knh.f =
n∑
i=1

fi(1− 2ki−kn)zki ∈ Q.

The final term in this sum is zero, leaving us with a sum of length n − 1; by the

inductive assumption, we therefore have (1 − 2ki−kn)fi ∈ Q for 1 ≤ i ≤ n − 1. Since

the ki are distinct and the fi are in O(SLn), we can conclude that fi ∈ Q ∩ O(SLn)

for 1 ≤ i ≤ n− 1.

Now we have fnz
kn = f − f1z

k1 − · · · − fn−1z
kn−1 ∈ Q and so fn ∈ Q ∩ O(SLn) as

required.

It is now easy to verify that the two equalities in (5.2.9) above are true, and the result

follows.
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Now we are in a position to compare the H-primes of O(GLn) and the H′-primes of

O(SLn) directly, which we address in Proposition 5.2.8 next.

Let π : O(Mn) → O(SLn) be the natural quotient map, which extends uniquely by

localization theory to a Poisson homomorphism O(GLn) → O(SLn); we will denote

this map by π as well. The map θ continues to denote the isomorphism of Poisson

algebras O(SLn)[z±1]→ O(GLn) from Lemma 5.2.5.

Proposition 5.2.8. The mapping P 7→ θ(P [z±1]) is a bijection of sets from the Pois-

son H′-primes of O(SLn) to the Poisson H-primes of O(GLn), and the inverse map

is given by Q 7→ π(Q).

Proof. By Lemmas 5.2.6 and 5.2.7, the H′-primes of O(SLn) are in bijection with the

H-primes of O(SLn)[z±1]. Further, it is clear from the definition of the H-action on

O(SLn) in (5.2.7) that θ commutes with the action of H, and so we easily obtain the

promised bijection H′-Pspec(O(SLn)→ H-Pspec(O(GLn)).

In [29, Proposition 2.5], it is proved that Q 7→ π(Q) is the inverse mapping to P 7→

θ(P [z±1]) in the case of quantum GLn and SLn; however, since their proof relies only

on looking at the action of θ and h ∈ H on monomials and makes no use of the q-

commuting structure, we can observe that the same proof works without modification

for the Poisson case.

5.3 Poisson primitive ideals

Once we have identified all of the H-primes in an algebra, the Stratification Theorem

(Theorem 2.3.8) gives us a way of understanding its prime and primitive ideals – up to

localization, at least. By the Stratification Theorem we know that if Iω is a H-prime

in Oq(GL3), then the prime ideals in the stratum

specω(Oq(GL3)) =

{
P ∈ spec(Oq(GL3)) :

⋂
h∈H

h(P ) = Iω

}

correspond homeomorphically to the prime ideals in Z
(Oq(GL3)/Iω

[
E−1
ω

])
, where Eω

denotes the set of all regular H-eigenvectors in Oq(GL3)/Iω.
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Notation 5.3.1. While the notation
(
R/I

)[
E−1

]
eliminates any possible ambiguity,

the brackets are cumbersome and we will often simply write R/I
[
E−1

]
instead; this

will always denote the localization of R/I at the set E ⊂ R/I.

Goodearl and Lenagan prove in [29, §3.2] that we may replace Eω with a subset Eω,

provided that Eω is still an Ore set (in a Noetherian ring, this is equivalent to being

a denominator set by [32, Proposition 10.7]) such that the localization is H-simple.

For each H-prime Iω, they construct an Ore set Eω satisfying these properties which

is generated by finitely many normal elements. This allows them to compute the

localizations and their centres explicitly, and hence pull back the generators of the

primitive ideals in the localizations to generators in Oq(GL3) itself.

Our aim in this section is to build on the work of [29] to obtain a situation where we

can develop the quantum and Poisson results simultaneously. We start by modifying

the Ore sets of [29] so that our localizations Oq(GL3)/Iω
[
E−1
ω

]
are always quantum

tori of the form kq[z±1
1 , z±1

2 , . . . , z±1
n ], i.e. localizations of quantum affine spaces at the

set of all their monomials. The correspondence between prime and primitive ideals

of a quantum torus and Poisson prime/primitive ideals of its semi-classical limit is

already well understood (see for example [47, 31]), and combined with the following

slight generalizations of the Poisson Stratification Theorem this allows us to easily pull

back the results to O(GL3).

Proposition 5.3.2. Let R be a commutative Noetherian Poisson algebra upon which

an algebraic torus H = (k×)r acts rationally by Poisson automorphisms, and let J

be a Poisson H-prime in R. Suppose that EJ is a multiplicative set generated by H-

eigenvectors in R/J such that the localization RJ := R/J
[
E−1
J

]
is Poisson H-simple.

Then the stratum PspecJ(R) = {P ∈ Pspec(R) :
⋂
h∈H h(P ) = J} is homeomorphic

to Pspec(RJ) via localization and contraction.

Proof. By standard ring theory (e.g. [32, Theorem 10.20]) there is an inclusion-

preserving bijection given by extension and contraction between {P/J ∈ spec(R/J) :

P/J ∩ EJ = ∅} and spec(RJ), and using the definition in (2.2.3) for the extension of

a Poisson bracket to a localization it is easy to see that this restricts to a bijection on

Poisson primes.
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We therefore need to prove that whenever EJ satisfies the conditions of the proposition,

we have an equality of sets

{P/J ∈ Pspec(R/J) :
⋂
h∈H

h(P/J) = 0} = {P/J ∈ Pspec(R/J) : P/J ∩ EJ = ∅};

(5.3.1)

this will be sufficient, since PspecJ(R) corresponds precisely to the first set in (5.3.1).

If P/J ∈ Pspec(R/J) satisfies P/J ∩EJ 6= ∅, then P/J contains a H-eigenvector and

it is clear that
⋂
h∈H h(P/J) 6= 0. Conversely, if

⋂
h∈H h(P/J) 6= 0, then P/J contains

a non-trivial H-prime in R/J . The ideal P/J must therefore become trivial upon

extension to RJ = R/J
[
E−1
J

]
since RJ is Poisson H-simple, and so P/J ∩EJ 6= ∅.

The Poisson Stratification Theorem also describes a homeomorphism between the

Poisson primes of R/J
[
E−1
J

]
(where EJ is the multiplicative set generated by all H-

eigenvectors in R/J) and the primes of the Poisson centre PZ
(
R/J

[
E−1
J

])
. While it

is routine to modify existing quantum proofs to replace EJ by EJ in this result as

well, we will not need this level of generality in this chapter. As noted above, our

localizations R/J
[
E−1
J

]
will always be semi-classical limits of quantum tori and so it

suffices to use the following result by Oh.

Proposition 5.3.3. Let R = k[z±1
1 , . . . , z±1

n ] be a commutative Laurent polynomial

ring with a multiplicative Poisson bracket, i.e.

{xi.xj} = λijxixj λij ∈ k for all i, j.

Then there is a homeomorphism between Pspec(R) and spec(PZ(R)) given by contrac-

tion and extension, and this restricts to a homeomorphism Pprim(R) ≈ max(PZ(R)).

Proof. [47, Lemma 2.2, Corollary 2.3].

Now suppose that R is a commutative affine Noetherian Poisson k-algebra which has a

rational H-action and only finitely many Poisson H-primes, and suppose further that

for a H-prime J there is a multiplicative set of H-eigenvectors in R/J such that the

localization R/J
[
E−1
J

]
has the form given in Proposition 5.3.3. The Dixmier-Moeglin

equivalence (Theorem 2.3.13) applies to algebras of this type, and so we also obtain

a homeomorphic correspondence between the Poisson primitive ideals in the stratum

corresponding to J and the maximal ideals of PZ
(
R/J

[
E−1
J

])
.
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ω Eω+ Eω−
321 X31, [1̃|3̃]q [3̃|1̃]q, X13

231 X21, X32 [2̃|1̃]q, X13

312 X31, [2̃|3̃]q X23, X12

132 X11, X32, [1̃|1̃]q [1̃|1̃]q, X23, X11

213 X21, [3̃|3̃]q, X33 X33, X12, [3̃|3̃]q
123 X11, X22, X33 X11, X22, X33

Table 5.1: Original generators for Ore sets in Oq(GL3) (see [29, Figure 3]).

5.3.1 The quantum case

We begin by summarising the work of Goodearl and Lenagan in [29], which allows us

to set up the appropriate notation and present the results in a convenient form for

transferring to the Poisson case.

The original Ore sets from [29, Figure 3] are reproduced in Table 5.1 for the reader’s

convenience. Let ω = (ω+, ω−) ∈ S3 × S3; the Ore set Eω corresponding to the ideal

Iω is generated by Eω+ ∪Eω− from Table 5.1. The elements in each Eω+ are viewed as

coset representatives in the factor ring Oq(GL3)/Iω+,321, since for any ω− ∈ S3 we have

Iω+,321 ⊆ Iω+,ω− ; similarly, the elements of Eω− are viewed as coset representatives in

Oq(GL3)/I321,ω− .

These Ore sets satisfy all of the required properties: the induced action of H on

the localization is rational, the localization map Oq(GL3)/Iω → Oq(GL3)/Iω
[
E−1
ω

]
is

always injective, and the localization is H-simple (see [29, §3.2]).

The generators in Table 5.1 have also been chosen to exploit the symmetries induced

τ , ρ and S: as discussed in [29, §3.3], in most cases it is immediately clear that a map

Iω1 → Iω2 in Figure B.2 will also map the corresponding Ore set Eω1 to Eω2 , and hence

induce (anti-)isomorphisms of the localizations

Oq(GL3)/Iω1

[
E−1
ω1

]
−→ Oq(GL3)/Iω2

[
E−1
ω2

]
.

These symmetries become less obvious when ω± = 231 or 312, so our first aim will be

to modify the generators of these sets slightly (without changing the overall Ore set)

in order to make it clear that these symmetries do actually induce (anti-)isomorphisms

in these cases.
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ω Eω+ Eω−

321 X31, [1̃|3̃]q [3̃|1̃]q, X13

231 X21, X32 [2̃|1̃]q, [3̃|2̃]q
312 [1̃|2̃]q, [2̃|3̃]q X23, X12

132 X11, X32, [1̃|1̃]q [1̃|1̃]q, X23, X11

213 X21, [3̃|3̃]q, X33 X33, X12, [3̃|3̃]q
123 X11, X22, X33 X11, X22, X33

Table 5.2: Modified generators for Ore sets in Oq(GL3).

First we observe by direct calculation that

[2̃|3̃]q[1̃|2̃]q = DetqX31 −X11[1̃|3̃]qX33 (5.3.2)

[3̃|2̃]q[2̃|1̃]q = DetqX13 −X11[3̃|1̃]qX33 (5.3.3)

We would like to replace X31 by [1̃|2̃]q in the set of generators for E312+ from Table 5.1.

Since we are viewing elements of E312+ as coset representatives modulo I312,321 =

〈[1̃|3̃]q〉 as explained above, by reducing (5.3.2) mod [1̃|3̃]q it is clear that we may

substitute [1̃|2̃]q for X31 in the generating set for E312+ without changing the Ore set

at all. Similarly, we may replace X13 by [3̃|2̃]q in E231− .

We may therefore take the elements in Table 5.2 as the generators for our Ore sets

instead of those in Table 5.1, where Eω is the multiplicative set generated by Eω+∪Eω−
as before.

We now obtain the following equalities (based on [29, §3.3]) with no restriction on ω+

or ω−:

τ(Ey,z) = Ez−1,y−1

S(Ey,z) = Ey−1,z−1

ρ(Ey,z) = Ew0y−1w0,w0z−1w0

(5.3.4)

As before, w0 denotes the transposition (13) ∈ S3.

The arrangement of maps between H-primes in Figure B.2 have been chosen to be

compatible with (5.3.4), so whenever there is a map from ω1 to ω2 in Figure B.2 this

induces an isomorphism or anti-isomorphism

Oq(GL3)/Iω1

[
E−1
ω1

]
→ Oq(GL3)/Iω2

[
E−1
ω2

]
.

When considering the structure of the localization Oq(GL3)/Iω
[
E−1
ω

]
and its centre,

it now suffices to consider one example from each orbit in Figure B.2 since the other
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cases in the same orbit can easily be obtained by applying the appropriate (anti-

)isomorphisms.

We will now make two final changes to these Ore sets, to ensure that the generating

sets are as simple as possible and that the localization we obtain is a quantum torus.

First, whenever the determinant Detq decomposes as a product X11[1̃|1̃]q or X11X22X33

modulo a H-prime Iω, it is redundant to include these factors in the Ore set since they

are already invertible, so we remove them from our generating sets for simplicity.

Second, when computing the centres of each localization in [29, §4], Goodearl and

Lenagan first invert up to 4 additional elements in order to obtain a quantum torus

and hence simplify the computation of the centres; we will add these elements to our

Ore sets as well.

These changes are summarised in Figure B.3.

Notation 5.3.4. For the remainder of the chapter, Eω will denote the multiplicative

set generated by the elements in Figure B.3 in the row corresponding to Iω, which

are viewed as elements in the factor ring Oq(GL3)/Iω. Ore sets for the remaining 24

H-primes can be obtained by applying the appropriate combination of τ , ρ and S from

Figure B.2. In order to simplify the notation, we define

Aω := Oq(GL3)/Iω
[
E−1
ω

]
. (5.3.5)

Based on the computations in [29, §4], Figure B.4 lists the generators of the quantum

torus Aω for one example of ω from each orbit defined in Figure B.2. As always,

generators for the algebras Aω not listed in this figure can be obtained using τ , ρ and

S as appropriate, and the q-commuting relations between pairs of generators in a given

ring Aω can easily be computed using the relations in Oq(M3) and deleting any terms

which appear in the ideal Iω.

We also reproduce in Figure B.5 the generators for the centres Z(Aω), which appear

in [29, Figure 5]. Observe that for ω = (123, 123), the image of Detq in Oq(GL3)/Iω is

Detq = X11X22X33 and the centre is generated by X11, X22 and X33; we can therefore

replace (for example) X33 by Detq in the list of generators, and this we shall do. We

make a similar change when ω = (132, 132) or (123, 132), so that Detq appears as a
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generator of the centre in all 36 cases; this will make it simpler to transfer our results

to O(SL3) in future sections.

It is the description of the centres Z(Aω) which are of the most use to us: they

are commutative Laurent polynomial rings, and so when k is algebraically closed the

maximal ideals of a given algebra Z(Aω) = k[Z±1
1 , . . . , Z±1

n ] are precisely those of the

form

mλ = 〈Z1 − λ1, . . . , Zn − λn〉, λ = (λ1, . . . , λn) ∈ k×, 1 ≤ i ≤ n. (5.3.6)

From Figure B.5, we can observe that each Zi has the form EiF
−1
i , where Ei and

Fi are both normal elements of Oq(GL3)/Iω. The key result of [29] is that for each

ω ∈ S3 × S3 and each maximal ideal (5.3.6) in Z(Aω), we have

mλ ∩ Oq(GL3)/Iω = 〈E1 − λ1F1, . . . , En − λnFn〉,

(see [29, §5]). By the Stratification Theorem these describe all of the primitive ideals

in Oq(GL3).

5.3.2 From quantum to Poisson

Our eventual aim is to show that there is a natural bijection between prim(Oq(GL3))

and Pprim(O(GL3)), and similarly for SL3. The next step is therefore to obtain a

description of the Poisson primitive ideals in algebra O(GL3); however, rather than

simply repeat the analysis of [29] and replace “quantum” by “Poisson” throughout,

we will take a shortcut using Proposition 5.1.9 and the close relationship between

quantum and Poisson tori originally described in [47].

We will start by checking that the Ore sets Eω lift to Ore sets in the formal k[t±1]-

algebra that governs the deformation process. Using this, we will show that by taking

the semi-classical limit of the quantum tori appearing in Figure B.4, we obtain the

same algebras as if we had localized the Poisson algebras O(GL3)/Iω at the sets in

Figure B.3 (now viewed as elements of the corresponding Poisson algebra). This

will give us Poisson H-simple localizations O(GL3)/Iω
[
E−1
ω

]
with a structure which

is already well understood from the quantum case, and we may use these algebras to

describe the Poisson-prime and Poisson-primitive ideals of O(GL3).



CHAPTER 5. POISSON PRIMITIVE IDEALS IN O(GL3) AND O(SL3) 124

Recall from Definition 5.1.1 that R is the k[t±1]-algebra on 9 generators Yij, 1 ≤ i, j ≤ 3

such that R/(t − q)R ∼= Oq(M3) and R/(t − 1)R ∼= O(M3). By a slight abuse of

notation we will also denote by Iω the ideals in R corresponding to the 36 ideals in

Figure B.1, obtained by replacing Xij by Yij and [̃i|̃j]q by [̃i|̃j]t in the generating sets.

Since we have expanded our Ore sets Eω to include elements which are not nor-

mal in O(GL3)/Iω, we have to work slightly harder to verify that the corresponding

multiplicative sets in R/Iω are also Ore sets. We will approach this in a round-

about manner, by constructing iterated Ore extensions with exactly the properties

that R/Iω[E−1
ω ] would have if it exists; hence by the universality of localization this

algebra is R/Iω[E−1
ω ] and Eω must be an Ore set.

The following two results encapsulate the process we will use.

Lemma 5.3.5. Let α be an endomorphism and δ an α-derivation on a ring R, and

suppose that X is an Ore set in R. If α extends to an endomorphism of R[X−1] then

δ extends to an α-derivation of R[X−1].

Proof. If α extends to R[X−1], then α(x)−1 is defined for all x ∈ X. If δ also extended

to R[X−1] then it would have to satisfy the following equality for any x ∈ X:

0 = δ(1) = δ(xx−1) = α(x)δ(x−1) + δ(x)x−1,

and hence

δ(x−1) = −α(x)−1δ(x)x−1

is uniquely determined. Since α(x)−1 exists by assumption, this is well-defined and δ

extends as required.

Corollary 5.3.6. If R[z;α, δ] is an Ore extension of a ring R and X is an Ore set in

R, then the extension R[X−1][z;α, δ] exists (with the natural extension of α and δ to

R[X−1]) if and only if α(x)−1 is defined for each x ∈ X.

Proof. The extension R[X−1][z;α, δ] exists if and only if α is an endomorphism of

R[X−1] and δ is an α-derivation of R[X−1]. By Lemma 5.3.5, this happens if and only

if α is defined on X−1.
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Let Fω denote the multiplicative set generated in R/Iω by taking the corresponding set

of generators from column 3 of Figure B.3 and applying the rewriting rule Xij 7→ Yij,

[̃i|̃j]q 7→ [̃i|̃j]t. We are now in a position to verify that the Fω are indeed Ore sets in

R/Iω. We begin by considering our usual 12 cases, that is the ones listed explicitly in

Figure B.3.

Proposition 5.3.7. For the 12 examples of Fω induced by the elements listed in Fig-

ure B.3, Fω is an Ore set in R/Iω.

Proof. As described above, our approach will be to construct k[t±1]-algebras with

precisely the properties that R/Iω[F−1
ω ] will have if it exists; by universality the local-

ization therefore must exist, which is possible if and only if Fω is an Ore set.

We begin with the case ω = (321, 321), and we will compute this case in detail as all of

the others follow by a very similar method. Note that Iω = (0), so we identify R/(0)

with R. We need to show that the localization R[Y −1
11 , Y

−1
12 , Y

−1
21 , [3̃|3̃]−1

t ] exists.

We start by defining the following algebra:

R1 := k[t±1, Y ±1
11 ][Y ±1

12 ;α0][Y
±1
21 ;α1],

where the k[t±1]-linear automorphisms α0 and α1 are defined by

α0 : Y11 7→ t−1Y11,

α1 : Y11 7→ t−1Y11, Y12 7→ Y12.

We next define

R2 := R1[Y22;α2, δ2],

α2 : Y11 7→ Y11, Y12 7→ t−1Y12, Y21 7→ t−1Y22;

δ2 : Y11 7→ (t−1 − t)Y12Y21, Y12 7→ 0, Y21 7→ 0.

It is easy to see that R2
∼= R2[Y

−1
11 , Y

−1
12 , Y

−1
21 ] (recall R2 is the k[t±1]-algebra giving

rise to the deformation Oq(M2)). Since [3̃|3̃]t plays the role of the 2 × 2 determinant

in R2, it is central and therefore invertible, and we define

R3 = R2[[3̃|3̃]−1
t ].
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We have now inverted all the required elements; the next step is to verify that we

can adjoin the remaining generators {Y13, Y31, Y23, Y32, Y33} to R3 via Ore extensions

in the appropriate way, checking at each step that the Ore extension makes sense on

the inverted elements. To do this we will rely heavily on Corollary 5.3.6, which tells us

that if α is an endomorphism and δ an α-derivation on a ring R and X is an Ore set,

then it suffices to check that α is defined on X−1 in order to construct R[X−1][z;α, δ].

We define

R4 := R3[Y13;α3][Y31;α4];

α3 : Y11 7→ t−1Y11, Y12 7→ t−1Y12;

α4 : Y11 7→ t−1Y11, Y21 7→ t−1Y21;

(5.3.7)

where each αi acts as the identity on any generators not listed in (5.3.7). These

automorphisms are clearly defined on Y −1
11 , Y −1

12 and Y −1
21 , and α3([3̃|3̃]t) = α4([3̃|3̃]t) =

t−1[3̃|3̃]t also poses no problems. The algebra R4 therefore makes sense, and we proceed

to adjoin Y23:

R5 := R4[Y23;α5, δ5];

α5 : Y13 7→ t−1Y13, Y21 7→ t−1Y21, Y22 7→ t−1Y22;

δ5 : Y11 7→ (t−1 − t)Y13Y21, Y12 7→ (t−1 − t)Y13Y22;

(5.3.8)

where α5 acts as the identity on any generators not listed in (5.3.8), and δ5 acts as 0

on any generators not listed. We observe that α5([3̃|3̃])−1 = t[3̃|3̃]−1
t is defined, so R5

is a genuine Ore extension. Similarly, we set

R6 := R5[Y32;α6, δ6];

α6 : Y31 7→ t−1Y31, Y22 7→ t−1Y22, Y12 7→ t−1Y12;

δ6 : Y21 7→ (t−1 − t)Y22Y31, Y11 7→ (t−1 − t)Y12Y31.

The only remaining variable to adjoin is Y33, which proceeds in a very similar manner:

define

R7 := R6[Y33;α7, δ7];

α7 : Y23 7→ t−1Y23, Y13 7→ t−1Y13, Y32 7→ t−1Y32, Y31 7→ t−1Y31;

δ7 : Y11 7→ (t−1 − t)Y13Y31, Y12 7→ (t−1 − t)Y13Y32, Y21 7→ (t−1 − t)Y23Y31,

Y22 7→ (t−1 − t)Y23Y32.
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Here α7 acts as the identity on each of our elements of interest Y11, Y12, Y21 and [3̃|3̃]t,

and so again by Corollary 5.3.6 the definition of R7 makes sense.

Observe that the variables {Yij : 1 ≤ i, j ≤ 3} in R7 satisfy exactly the same relations

as those in R, and so we have R7 = R[F−1
321,321] as required. Since the localization

R[F−1
321,321] exists if and only if F321,321 is an Ore set in R, the result is proved for this

case.

The six cases ω = (321, 312), (231, 312), (321, 132), (321, 123), (132, 312) and (132, 132)

follow by almost identical methods: in each case R/Iω can be identified with an iterated

Ore extension in ≤ 8 variables, and by choosing the order of the variables carefully the

generators of Fω can easily be inverted early on in the process to construct R/Iω[F−1
ω ].

In four more cases, namely ω = (123, 312), (213, 132), (123, 132) and (123, 123), the

set Fω is empty and there is nothing to prove. This leaves us with only the case

ω = (231, 231) to consider.

The ideal I231,231 is generated by Y31 and [3̃|1̃]t, and F231,231 is the multiplicative set

generated by Y33 and [1̃|1̃]t. By a similar method to the above we may easily construct

R[F−1
231,231], and by Proposition 5.1.8 we have

(
R[F−1

231,231]
)
/I231,231

∼= R/I231,231[F
−1
231,231].

All that remains is to check that we have not constructed the zero ring, i.e. that

I231,231 ∩ F231,231 = ∅, but this is easy to check using the grading on R. The ring

R/I231,231[F
−1
231,231] therefore exists, and F231,231 is an Ore set.

LetDett denote the 3×3 determinant in R. This is central in R, since the computations

involved in verifying its centrality in Oq(M3) continue to be valid if we replace q by

t. Similarly, Dett remains central and non-zero modulo each Iω, and we may form the

algebras

R/Iω[F−1
ω , Det−1

t ] ∼=
(
R[Det−1

t ]
)
/Iω[F−1

ω ].

Having now inverted Dett, we may now use the (anti-)isomorphisms of Figure B.2 once

again: this tells us that Fω is in fact an Ore set in R[Det−1
t ]/Iω for all ω ∈ S3 × S3.

We can now obtain the result we have been working towards:
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Corollary 5.3.8. Let R and Fω be as above, and let F ′ω denote the multiplicative set

in R := R[Det−1
t ]/Iω generated by the corresponding elements in the second column of

Figure B.3. Then R[F−1
ω , F ′−1

ω ] exists, and Fω ∪ F ′ω is an Ore set in R.

Proof. Since Fω is an Ore set in R = R[Det−1
t ]/Iω by Proposition 5.3.7 and comments

following the proof, we need only check that F ′ω is an Ore set in R[F−1
ω ]. This is

easy to check, however, since the generators of F ′ω are normal in R (this can be seen

by using the relations in R and deleting any terms which are in Iω) and therefore it

automatically forms an Ore set. That the union of two Ore sets is an Ore set follows

by the universality of localization.

Proposition 5.3.9. For each ω ∈ S3×S3, let E ′ω be the multiplicative set in O(GL3)/Iω

generated by the set of elements indicated in Figure B.3, viewed as elements in the Pois-

son algebra O(GL3)/Iω rather than Oq(GL3)/Iω. Then the localization of O(GL3)/Iω

at the set E ′ω is precisely the semi-classical limit of the corresponding quantum torus

Aω in Figure B.4.

Proof. By lifting the generators of the H-prime Iω to R, which is possible since the

generators are always quantum minors, we can observe that t− q and t− 1 are not in

the resulting ideal (here q can be any non-zero non-root of unity in k). By Proposi-

tion 5.1.10 we must have that O(GL3)/Iω is the semi-classical limit of Oq(GL3)/Iω.

Now consider the elements of Eω lifted to R/Iω; these are still Ore sets by Proposi-

tion 5.3.8 and we can easily check that the conditions of Proposition 5.1.9 are satis-

fied. By Proposition 5.1.9, the localization of the semi-classical limit O(GL3)/Iω at

the set E ′ω is therefore the same as the semi-classical limit of the localized algebra

Oq(GL3)/Iω
[
E−1
ω

]
.

Corollary 5.3.10. The localization O(GL3)/Iω
[
E−1
ω

]
is Poisson H-simple.

Proof. By Proposition 5.3.9, the algebra O(GL3)/Iω
[
E−1
ω

]
is a commutative Laurent

polynomial ring k[z±1
1 , . . . , z±1

m ] with the multiplicative Poisson bracket {zi, zj} =

πijzizj for some appropriate set of scalars {πij}. (The precise values of the πij do

not matter here, but can be computed easily from the q-commuting structure of the
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corresponding Aω.) By [24, Example 4.5], a Poisson algebra of this form is Poisson

H-simple.

Notation 5.3.11. From now on, we will use the notation Eω interchangeably for the

Ore set in Oq(GL3)/Iω and for the multiplicative set E ′ω defined in Proposition 5.3.9;

it should always be clear from context whether we mean Eω as a set in Oq(GL3)

or O(GL3). We will retain the notation Aω = Oq(GL3)/Iω
[
E−1
ω

]
, and define Bω :=

O(GL3)/Iω
[
E−1
ω

]
for the corresponding Poisson algebra.

We may now tackle the proof that O(GL3) admits only the 36 Poisson H-primes

displayed in Figure B.1, which has been postponed until now because it uses the

Poisson H-simplicity of the localizations Bω. We will first require one more lemma,

which we prove next.

Lemma 5.3.12. Let P be a non-trivial Poisson H-prime in O(GL3). Then:

(i) If X12 or X23 ∈ P then X13 ∈ P as well;

(ii) If X21 or X32 ∈ P then X31 ∈ P as well.

Proof. Since P is closed under Poisson brackets, if X12 or X23 ∈ P then {X12, X23} =

2X13X22 ∈ P as well. The ideal P is also assumed to be prime in the commutative

sense and so X13 or X22 ∈ P as well, but by Lemma 5.1.5, any Poisson prime in

O(GL3) containing X22 also contains Det. Since P is non-trivial by assumption, we

can conclude X13 ∈ P . The statement (ii) follows by a similar argument.

Theorem 5.3.13. The Poisson algebra O(GL3) admits only 36 Poisson H-primes,

and these are the 36 ideals appearing in Figure B.1.

Proof. Suppose P is a non-trivial Poisson H-prime in O(GL3) which is not one of the

36 appearing in Figure B.1; we will use the Ore sets from Figure B.3 to show that this

is a contradiction. The key observation is that if J is a Poisson H-prime appearing in

Figure B.1 such that J ⊂ P , then P is a non-trivial Poisson H-prime in O(GL3)/J

and therefore must contain one of the elements in the Ore set associated to J since

the localization is Poisson H-simple.
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We start the process by noting that 0 ⊂ P , and so by the observation above P must

contain one of the elements in the first row of Figure B.3. By Lemma 5.1.5 P cannot

contain either X11 or [3̃|3̃] since it is non-trivial, while by Lemma 5.3.12 if P contains

X12 or X21 then it must also contain X13 or X31 respectively. Therefore P must contain

one of X13, X31, [1̃|3̃] or [3̃|1̃], each of which generate a Poisson H-prime appearing in

Figure B.1.

We may now iterate this argument: suppose P contains a known H-prime J of height

n (i.e. one from Figure B.1). If J appears in Figure B.3 then P must contain one of

the elements listed in the row corresponding to J , and by applying Lemmas 5.1.5 and

5.3.12 as above we find that P must contain a known H-prime of height n+ 1 as well.

On the other hand, if J does not appear in Figure B.3 then there exists some com-

bination ϕ of the maps τ , ρ and S from Figure B.2 such that ϕ(J) does appear in

Figure B.3 and ϕ(J) ⊂ ϕ(P ). The ideal ϕ(P ) must be a Poisson H-prime, since τ , ρ

and S are Poisson morphisms that preserve H-stable subsets, and ϕ(P ) cannot appear

in Figure B.1 otherwise P would as well.

Now, by a similar argument ϕ(P ) must contain a known H-prime K of height n + 1

as above, and so ϕ−1(K) ⊂ P where K is a known H-prime of height n+ 1.

This process must terminate since O(GL3) has finite Krull dimension; this is a con-

tradiction and so the unknown Poisson H-prime P does not exist.

Combining Proposition 5.3.9 and Theorem 5.3.13, we are now well on our way towards

understanding the Poisson primitive ideals of O(GL3). The next step is to understand

the similarity between Z(Aω) and PZ(Bω).

Proposition 5.3.14. For each ω ∈ S3 × S3, the Poisson centre of Bω is equal to the

algebra obtained by taking the centre of the corresponding quantum algebra Aω and

renaming the generators by applying the rule Xij 7→ xij, [̃i|̃j]q 7→ [̃i|̃j].

Proof. Fix an ω ∈ S3 × S3. From Figure B.4, Aω = kq[W±1
1 , . . . ,W±1

n ] is a quantum

torus, where q = (aij) is an additively antisymmetric matrix and WiWj = qaijWjWi.

(The values of the aij can easily be calculated as in [29], but since their precise values

have no impact on the proof and will not be used subsequently we do not define them
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here.) By Proposition 5.3.9, Bω is the semi-classical limit of Aω, and we can therefore

easily compute its Poisson bracket as follows. Write Bω = k[w±1
1 , . . . , w±1

n ], where wi

is the image of Wi under the rewriting map Xij 7→ xij, and now we can observe that

{wi, wj} =
1

t− 1
(WiWj −WjWi) mod (t− 1)

=
1

t− 1
(taij − 1)WjWi mod (t− 1)

= (1 + t+ · · ·+ taij−1)WiWj mod (t− 1)

= aijwiwj.

Let Zn be the free abelian group of rank n with basis {ei}ni=1. Then we may define

two maps as follows:

σ : Zn × Zn → k× : (ei, ej) 7→ qaij ,

u : Zn × Zn → k : (ei, ej) 7→ aij.

These define an alternating bicharacter and an antisymmetric biadditive map respec-

tively (for definitions, see [47, §2]; that σ and u satisfy the required properties follows

directly from the q-commuting structure of Aω and the Poisson structure of Bω). We

define two subsets of Zn as follows:

Zn
σ = {λ ∈ Zn : σ(λ, µ) = 1 ∀µ ∈ Zn},

Zn
u = {λ ∈ Zn : u(λ, µ) = 0 ∀µ ∈ Zn}.

By [47, §2.5], the centre of Aω is generated by the monomials {W λ : λ ∈ Zn
σ} (where

we use the standard multi-index notation for monomials), while by [47, Lemma 2.1]

the Poisson centre of Bω is generated by the monomials {wλ : λ ∈ Zn
u}.

It is clear from our definitions of σ and u that Zn
σ = Zn

u in this case, and the result

now follows.

With this description for the Poisson centres PZ(Bω) in hand, we are now in a position

to apply the Poisson Stratification theorem and obtain a description of the Poisson-

primitive ideals of O(GL3).

Theorem 5.3.15. Let ω ∈ S3 × S3, and let Iω be the corresponding Poisson H-prime

of O(GL3) listed in Figure B.1. Then the Poisson-primitive ideals in the stratum

Pprimω(O(GL3)) =

{
P ∈ Pprim(O(GL3)) :

⋂
h∈H

h(P ) = Iω

}
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correspond precisely to ideals of the form(
n∑
i=1

(zi − λi)Bω

)
∩ O(GL3)/Iω, (λ1, . . . , λn) ∈ (k×)n, (5.3.9)

where PZ(Bω) = k[z±1
1 , . . . , z±1

n ] is the Poisson centre of Bω, and the generators zi

(1 ≤ i ≤ n) are given in Figure B.5.

Conversely, every Poisson primitive ideal of O(GL3) has this form (for an appropriate

choice of ω).

Proof. By Propositions 5.3.2 and 5.3.3 there are homeomorphisms

Pspecω(O(GL3)) ≈ Pspec(Bω) ≈ spec(PZ(Bω)), (5.3.10)

given by localization/contraction and contraction/extension respectively. By the Pois-

son Dixmier-Moeglin equivalence (Theorem 2.3.13), this restricts to a homeomorphism

Pprimω(O(GL3)) ≈ max(PZ(Bω)).

In Proposition 5.3.14 we have described the Poisson centre PZ(Bω): it is the Laurent

polynomial ring k[z±1
1 , . . . , z±1

n ] in the generators zi listed in Figure B.5 (viewed as

elements ofO(GL3) rather thanOq(GL3)). Since k is algebraically closed, the maximal

ideals of PZ(Bω) are precisely those of the form
n∑
i=1

(zi − λi)PZ(Bω), (λ1, . . . , λn) ∈ (k×)n.

By applying the homeomorphisms in (5.3.10) we therefore obtain the description of

the Poisson-primitive ideals given in (5.3.9).

In §5.4 we will build on this result to obtain generating sets in O(GL3) (rather than

in a localization) for the Poisson-primitive ideals. First, however, we will turn our

attention briefly to O(SL3) and use our existing results to say something about the

properties of the quotients O(SL3)/Iω.

5.3.3 O(SL3)/Iω is a UFD for each ω

One consequence of the previous section is that we can use the localizationsO(SL3)/Iω
[
E−1
ω

]
to learn more about the structure of various factor rings of O(SL3). In particular, we

will show that O(SL3)/Iω is a UFD for each of the 36 Poisson H-primes Iω.
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Recall from Definition 4.1.2 that a Noetherian UFD is a prime Noetherian ring A such

that every height 1 prime ideal is generated by a single prime element, i.e. some p ∈ A

such that pA = Ap and A/pA is a domain. When A is commutative this coincides

with the standard definition of UFD [12, Corollary 2.4].

We will make extensive use of the following two results, which are generalizations of

Nagata’s lemma [17, Lemma 19.20].

Lemma 5.3.16. [41, Lemma 1.4] Let A be a prime Noetherian ring and x a nonzero,

non-unit, normal element of A such that 〈x〉 is a completely prime ideal of A. Denote

by Ax−1 the localization of A at powers of x. Then:

(i) If P is a prime ideal of A not containing x and such that the prime ideal PAx−1

of Ax−1 is principal, then P is principal.

(ii) If Ax−1 is a Noetherian UFD, then so is A.

Proposition 5.3.17. [41, Proposition 1.6] Let A be a prime Noetherian ring and sup-

pose that d1, . . . , dt are nonzero normal elements of A such that the ideals d1A, . . . , dtA

are completely prime and pairwise distinct. Denote by T the right quotient ring of

A with respect to the right denominator set generated by d1, . . . , dt. Then if T is a

Noetherian UFD, so is A.

Note that when A is a commutative ring the conditions of Proposition 5.3.17 reduce

to requiring A to be a Noetherian domain, and from Lemma 5.3.16 we recover the

standard statement of Nagata’s lemma.

In [10, Theorem 5.2], Brown and Goodearl prove that Oq(SL3) is a Noetherian UFD.

However, their proof does not generalize directly to the commutative case as it makes

use of stratification theory, which cannot be used to understand the commutative ring

structure of O(SL3) as it does not “see” the non-Poisson prime ideals.

To illustrate this, we begin by proving the following general proposition for quantum

algebras; this underpins the proof that Oq(SL3) is a Noetherian UFD but is not

expanded upon in [10].

Proposition 5.3.18. Let A be a prime Noetherian ring with a H-action, which sat-

isfies the conditions of the Stratification Theorem (Theorem 2.3.8), has only finitely
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many H-primes and such that all prime ideals are completely prime. Let I be a H-

prime in A. Then the quotient A/I is a Noetherian UFD if and only if each height 1

H-prime in A/I is generated by a single normal element.

Proof. Since prime ideals are completely prime, it suffices to check that every height

1 prime is principal; the condition that each height 1 H-primes in A/I is generated by

a single normal element is therefore clearly necessary.

However, we will now show that this condition is also sufficient. Indeed, assume that

all height 1 H-primes in A/I (of which there are only finitely many) are principally

generated, and let {u1, . . . , un} be a set of normal generators for them. We therefore

only need to focus on the height 1 primes which do not contain a non-zero H-prime

in A/I, i.e. we need to show that all of the height 1 primes in the set

X = {P/I : P is prime and
⋂
h∈H

h(P/I) = 0} (5.3.11)

are principally generated.

By the Stratification Theorem, there are homeomorphisms

X ≈ spec
(
A/I
[
E−1

])
≈ spec

(
Z
(
A/I
[
E−1

]))
(5.3.12)

where the first homeomorphism is given by localization and contraction, and the second

is given by contraction and extension. Here E is any denominator set of regular H-

eigenvectors in A/I such that the localization A/I
[
E−1

]
is H-simple. Further, by the

Stratification Theorem Z
(
A/I
[
E−1

])
is always a Laurent polynomial ring in finitely

many variables.

Let EI be the multiplicative set in A/I generated by {u1, . . . , un}; since the ui are

normal and A/I is Noetherian this is automatically a denominator set, and by defini-

tion the localization A/I
[
E−1
I

]
must beH-simple. However, it now follows immediately

that every height 1 prime in A/I
[
E−1
I

]
must be principally generated, since by (5.3.12)

all primes of A/I
[
E−1
I

]
are centrally generated and the centre is a commutative UFD.

Finally, since EI was generated by the set {u1, . . . , un} which satisfies the conditions

of Proposition 5.3.17, we can apply this result to conclude that all height 1 primes in

the set X must be principal as well.
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In [10], Brown and Goodearl prove that each height 1 H-prime in Oq(SL3)/Iω is

generated by a single normal normal element, thus proving that Oq(SL3)/Iω is a

Noetherian UFD for each H-prime Iω [10, Theorem 5.2]. It is now clear from the proof

that a Poisson version of Proposition 5.3.18 is not sufficient to verify that O(GL3)/I

or O(SL3)/I are commutative UFDs for Poisson H-primes I, since this approach can

only tell us about the height 1 Poisson primes.

Instead, for each PoissonH-prime Iω ofO(SL3), we will show that the generators of the

corresponding Ore set Eω from Figure B.3 satisfies the conditions of Nagata’s lemma

(Proposition 5.3.17). Since the localizations O(SL3)/Iω
[
E−1
ω

]
are isomorphic to Lau-

rent polynomial rings over k by Proposition 5.3.9, it will then follow that O(SL3)/Iω

must be a UFD for each ω as well.

Proposition 5.3.19. For any PoissonH-prime Iω in O(SL3), the quotient O(SL3)/Iω

is a commutative UFD.

Proof. Let ω ∈ S3×S3, and let Eω denote the multiplicative set of H-eigenvectors for

O(GL3) defined in Figure B.3. Let π be the natural map O(GL3) → O(SL3), and

observe that π(Eω) defines a set of H′-eigenvectors in O(SL3). Using the fact from

Proposition 5.1.8 that quotient and localization commute, we see that

O(SL3)/Iω
[
π(Eω)−1

] ∼= (O(GL3)/(Iω, Det− 1)
)[
π(Eω)−1

]
∼=
(
O(GL3)/Iω

[
E−1
ω

])
/(Det− 1)

∼= Bω/(Det− 1)

Now consider the generators for Bω given in Figure B.4. In each case, Det appears

as a generator or can be obtained by a change of variables: for example, when ω =

(321, 132) the image of Det is x11[1̃|1̃] and both x11 and [1̃|1̃] appear as generators, so

we may replace either x11 or [1̃|1̃] by Det without affecting the structure of Bω.

It is now clear that Bω/(Det − 1) is a Laurent polynomial ring in n − 1 variables

whenever Bω is a Laurent polynomial ring in n variables. These are commutative

UFDs, and we apply the generalization of Nagata’s lemma in Proposition 5.3.17: if we

can show that the generators of the Ore set π(Eω) each generate distinct prime ideals

in O(SL3)/Iω, then O(SL3)/Iω will itself be a UFD.
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Since we are only concerned with the commutative algebra structure of O(SL3)/Iω

we may ignore the Poisson structure and view the Poisson (anti-)isomorphisms in

Figure B.2 just as isomorphisms of commutative rings; hence up to isomorphism there

are only 12 cases to consider.

Let Iω be one of the 12 ideals in Figure B.3 (which correspond precisely to the 12

isomorphism classes). First, when ω = (321, 321) or (123, 123), we have O(SL3)/Iω ∼=

O(SL3) or k[x±1
11 , x

±1
22 ] respectively, and these are clearly both UFDs. For the remaining

10 cases, let Xω be the set of generators for the corresponding Ore set from Figure B.3;

we will show that the elements of Xω generate pairwise distinct prime ideals.

We first consider the elements appearing in the second column of Figure B.3; we will

show that they generate distinct H′-primes. Whenever ω 6= (231, 231), if gω appears

in column 2 and row Iω then Iω+〈gω〉 is easily seen to be a H′-prime in O(SL3); hence

〈gω〉 is prime in O(SL3)/Iω. Similarly, any two such ideals are distinct in O(SL3) and

hence distinct in O(SL3)/Iω as well.

For ω = (231, 231), we need to check that Q1 := Iω + 〈[2̃|1̃]〉 and Q2 := Iω + 〈[3̃|2̃]〉 are

genuine H′-primes in O(SL3). We note that

Q1 = 〈[3̃|1̃], [2̃|1̃], x13〉 = S(P ),

where P := 〈x12, x13, [1̃|3̃]〉 is a H′-prime, and S is as always the antipode map. As

observed in §5.1, we have ρ2 = S2 = id since O(SL3) is commutative; using Figure B.2,

it is now clear that S(P ) = ρ−2◦S−1(P ) = I231,132 and hence Q1 = I231,132. By a similar

argument, Q2 = I231,213.

Thus in each of the 10 cases of interest to us, the elements in the second column of

Figure B.3 generate distinct height 1 H′-primes in O(SL3)/Iω. We now consider the

elements in the third column of Figure B.3 for each case; these split into four broad

groups, which we treat separately.

Case I: ω = (123,132), (213,132) or (123,312).

In each of these cases third column of Figure B.3 is empty and there is nothing to

check.

Case II: ω = (132,132), (132,312), (321,123), (321,132) or (231,312).
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The relevant information from Figure B.3 can be summarised as follows:

ω

◦•••◦◦•◦◦
◦◦••◦◦•◦◦

◦••◦◦•◦◦◦
◦••◦◦◦◦◦◦

◦◦•◦◦◦•◦◦

(132, 132) (132, 312) (321, 123) (321, 132) (231, 312)

Elements to check x33 x33 x21 x32, x33 x33, [1̃|1̃]

Consider first ω = (132,132). We need to show that x33 is prime in O(SL3)/I132,132;

this is equivalent to checking that B := O(SL3)/(I132,132, x33) is a domain. Observe

that Det = x11x23x32 = 1 in B, and so

B ∼= k[x±1
11 , x22, x

±1
23 ]

is easily seen to be a domain.

The other cases proceed similarly: in each case, we observe that Det becomes a mono-

mial modulo the element we would like to check is prime, so the quotient is simply a

localization of a polynomial ring. The only case requiring some care is checking that

[1̃|1̃] is prime in (231,312): here Det = −x12x21x33 = 1 and so

B := O(SL3)/(I231,312, [1̃|1̃]) ∼= k[x11, x
±1
21 , x22, x23, x32, x

±1
33 ]/(x22x33 − x23x32).

However, since x33 is invertible we can observe that x22 = x−1
33 x23x32 and hence

B ∼= k[x11, x
±1
12 , x

±1
21 , x23, x32, x

±1
33 ]

is a domain.

Case III: ω = (231,231).

◦◦•◦◦

(231, 231)

We need to verify that x33 and [1̃|1̃] are prime in O(SL3)/Iω, i.e. that

B1 := O(SL3)/(I231,231, x33), B2 := O(SL3)/(I231,231, [1̃|1̃])

are both domains. For B1, we observe that the image of the determinant Det in this

quotient ring is −x32[3̃|2̃]; this will allow us to identify a subalgebra of B1 with O(GL2)
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as follows. Write O(GL2) = k[a, b, c, d][(ad − bc)−1], then identify {x11, x13, x21, x23}

in B1 with {a, b, c, d} in O(GL2), and −x32 with (ad− bc)−1.

Under this identification we obtain an isomorphism of commutative algebras

B1
∼= O(GL2)[x12, x22]/(x11d− bx22).

As a polynomial extension of a UFD, O(GL2)[x12, x22] is a UFD itself, so we can apply

Eisenstein’s criterion to see that (x11d−bx22) generates a prime ideal inO(GL2)[x12, x22].

Hence B1 is a domain as required.

Similarly, we obtain the isomorphism

B2
∼= O(GL2)[x11, x22, x23]/(ax23 − bx22, x22d− x23c).

In order to simplify this quotient, we can observe that

d(ax23 − bx22) + b(x22d− x23c) = (ad− bc)x23,

c(ax23 − bx22) + a(x22d− x23c) = (ad− bc)x22.
(5.3.13)

Since ad−bc is invertible, we see from (5.3.13) that (ax23−bx22, x22d−x23c) is nothing

but the ideal (x22, x23). It is now clear that B2
∼= O(GL2)[x11] is a domain, as required.

Case IV: ω = (321,312).

◦◦•◦◦◦◦◦◦

(321, 312)

There are three elements that we need to check are prime: x11, x21 and [3̃|3̃]. By a

similar analysis to Case III, we obtain

O(SL3)/(I321,312, x11) ∼= O(GL2)[x22, x32],

O(SL3)/(I321,312, [3̃|3̃]) ∼= O(GL2)[x21, x22, x33]/(ax22 − bx21),

which we have already observed are domains. Finally, we consider

B := O(SL3)/(I321,312, x21)

∼= O(M3)/(Det− 1, x13, x21)

∼= k[x11, x12, x22, x23, x31, x32, x33]/(x11[1̃|1̃] + x12x23x31 − 1).
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We are factoring by an element which is linear as a polynomial in x11, with coefficients

in k[x12, x22, x23, x31, x32, x33]. It will therefore be irreducible (and hence prime since

we are working in a commutative polynomial ring) if [1̃|1̃] = x22x33 − x23x32 and

x12x23x31− 1 have no non-invertible factors in common, but this is immediately clear.

B is therefore a domain, as required.

This covers all of the 10 isomorphism classes of algebras O(SL3)/Iω under considera-

tion: in each case, the set Xω satisfies the conditions of Proposition 5.3.17 as required.

We therefore conclude that O(SL3)/Iω is a UFD for any ω ∈ S3 × S3.

It is quite easy to prove a similar result for O(GL3)/Iω, although we will not do so here.

While it has so far been easier to work with O(GL3) rather than O(SL3), the advan-

tages of O(SL3) would become clear if we moved on to consider the Poisson-prime ide-

als rather than the Poisson-primitives: since the Poisson centres PZ
(
O(SL3)/Iω

[
E−1
ω

])
are Laurent polynomial rings on at most two variables (rather than three variables for

GL3) the non-maximal prime ideals will have height ≤ 1 and can therefore be under-

stood (to some extent at least).

Our first aim, however, is to understand the Poisson-primitive ideals in terms of gen-

erators within O(GL3) or O(SL3) themselves rather than a localization of these rings.

This is the focus of the next section.

5.4 Pulling back to generators in the ring

While Theorem 5.3.15 gives a full description of the Poisson-primitive ideals ofO(GL3),

it only tells us the generators of each ideal up to localization. The aim of this section

is to obtain a description for the Poisson-primitive ideals in terms of generating sets

in O(GL3) itself, in a similar manner to the quantum case covered in [29].

For ω ∈ S3 × S3 write PZ(Bω) = k[z±1
1 , . . . , z±1

n ], where the zi have the form listed in

Figure B.5. Each zi is written in the form eif
−1
i , where ei and fi are both elements

of the Ore set Eω. Since k is algebraically closed, the maximal ideals of PZ(Bω) are

precisely those of the form

Mλ = 〈z1 − λ1, . . . , zn − λn〉, λ = (λ1, . . . , λn) ∈ (k×)n.
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and so by Proposition 5.3.3 the Poisson primitive ideals of Bω are simply the extensions

of these ideals to Bω, i.e.

Pλ := MλBω, λ = (λ1, . . . , λn) ∈ (k×)n.

By Proposition 5.3.2 and Theorem 2.3.13, these in turn correspond homeomorphically

to the Poisson primitive ideals

Pprimω(O(GL3)) = {P/Iω : P ∈ Pprim(O(GL3)), P ⊇ Iω,
⋂
h∈H

h(P/Iω) = 0}

Our aim is therefore to find generators for the Poisson primitive ideals Pλ∩O(GL3)/Iω

for λ ∈ (k×)n and for each ω ∈ S3 × S3. Similarly to [29], we will show that

Pλ ∩ O(GL3)/Iω = 〈e1 − λ1f1, . . . , en − λnfn〉. (5.4.1)

The first step, quite naturally, is to check that the ideals on the RHS of (5.4.1) are

closed under the Poisson bracket in O(GL3)/Iω.

Lemma 5.4.1. Let PZ(Bω) = k[(e1f
−1
1 )±1, . . . , (enf

−1
n )±1], for ω ∈ S3 × S3 and the

choices of eif
−1
i given in Figure B.5. Then for any λ = (λ1, . . . , λn) ∈ (k×)n, the ideal

Qλ := 〈e1 − λ1f1, . . . , en − λnfn〉 (5.4.2)

is a Poisson ideal in O(GL3)/Iω.

Proof. We first observe that each fi is Poisson normal in O(GL3)/Iω (see Defini-

tion 5.1.4 for the definition of Poisson normal). This is clear when fi = x13 or x31,

since these both generate Poisson primes in O(GL3). By direct computation we see

that x21 and x32 are Poisson normal modulo x31, while x12 and x23 are Poisson nor-

mal modulo x13. This covers all the denominators appearing in Figure B.5, and since

Poisson isomorphisms and anti-isomorphisms must map Poisson normal elements to

Poisson normal elements, the same conclusion follows for the other 24 cases.

Let e−λf be one of the generators appearing in (5.4.2); we will not need to work with

more than one generator at once so we may dispense with the subscripts. Since ef−1

is Poisson central in Bω = O(GL3)/Iω
[
E−1
ω

]
, for all a ∈ O(GL3)/Iω we have

0 = {ef−1, a} = {e, a}f−1 − {f, a}ef−2,
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and hence

{e, a}f = {f, a}e.

Combining this with the fact that f is Poisson normal in O(GL3)/Iω, we see that

{e− λf, a}f = {e, a}f − λ{f, a}f

= {f, a}e− λ{f, a}f

= (e− λf){f, a}

= (e− λf)raf

for some element ra ∈ O(GL3)/Iω which depends on a. Since O(GL3)/Iω is a domain,

we thus obtain {e− λf, a} = (e− λf)ra for any a ∈ O(GL3)/Iω. It is now clear that

the ideal in (5.4.2) is always a Poisson ideal in O(GL3)/Iω.

Proposition 5.4.2. Let ω ∈ S3×S3 and write PZ(Bω) ∼= k[(e1f
−1
1 )±1, . . . , (enf

−1
n )±1],

where the values of eif
−1
i are from Figure B.5 as before. Then Pλ ∩O(GL3)/Iω = Qλ,

where Qλ is defined as in (5.4.2).

Proof. Note that when we extend the ideal Qλ to Bω by localization, we get QλBω =

Pλ. Our aim is therefore to prove that

QλBω ∩ O(GL3)/Iω = Qλ,

which is equivalent by [32, Theorem 10.18] to verifying that the elements of Eω ⊂

O(GL3)/Iω are regular modulo Qλ. Since O(GL3) is commutative, it suffices to show

that Qλ is a prime ideal in O(GL3)/Iω.

We will consider the 12 cases listed in Figure B.5; the other 24 follow will then follow

by the isomorphisms and anti-isomorphisms τ , ρ and S.

We deal first with the cases where Qλ = 〈Det− λ1〉, that is the four cases

ω = (231, 312), (321, 132), (123, 312), (213, 132),

Note that Qλ is a prime ideal if and only if h(Qλ) is, where h = (λ1, 1, 1, 1, 1, 1) ∈ H.

We have h(Qλ) = 〈Det− 1〉, and O(GL3)/(Iω, h(Qλ)) ∼= O(SL3)/Iω; since (the image

of) the H-prime Iω is prime in O(SL3) by Proposition 5.2.8, this is a domain and we

are done.

We next consider the four cases
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◦••◦◦•◦◦◦
◦•••◦◦•◦◦

◦•••◦◦••◦
◦•••◦•••◦

(321, 123) (132, 132) (123, 132) (123, 123)

where in each case we can describe the structure of O(GL3)/(Iω, Qλ) explicitly and

verify that it is a domain.

(321,123): We have Qλ = 〈Det − λ1, x22[1̃|3̃] − λ2x31〉, and we may assume that

λ1, λ2 = 1 by applying the automorphism h = (1,
√
λ2, λ1

√
λ2
−1
, 1, 1, 1) to Qλ. The

image of Det modulo I321,123 is x11x22x33, so we have

O(GL3)/(I321,123, h(Qλ)) ∼= O(M3)/(I321,123, x11x22x33 − 1, x22[1̃|3̃]− x31)

∼= k[x±1
11 , x21, x

±1
22 , x31, x32]/(x22[1̃|3̃]− x31).

(5.4.3)

We can write the generator of the quotient ideal as

x22[1̃|3̃]− x31 = −x31(x
2
22 + 1) + x22x21x32, (5.4.4)

which is linear as a polynomial in x31 over the commutative UFD k[x±1
11 , x21, x

±1
22 , x32].

Since it is clear that the coefficients (x2
22 + 1) = (x22 + i)(x22 − i) and x22x21x32 have

no non-invertible factors in common, (5.4.4) is irreducible and hence prime. The ring

(5.4.3) is therefore a domain, as required.

(132,132): In this case Qλ = 〈Det − λ1, x11 − λ2, x23 − λ3x32〉, which we replace by

h(Qλ) = 〈Det − 1, x11 − 1, x23 − λ3x32〉 under the action of h = (λ2, 1, λ1λ
−1
2 , 1, 1, 1).

We also observe that O(SL3)/I132,132
∼= O(GL2) as commutative algebras, where we

identify (x22, x23, x32, x33) with (a, b, c, d) and x11 with (ad− bc)−1. Now

O(GL3)/(I132,132, h(Qλ)) ∼= O(SL3)/(I132,132, x11 − 1, x23 − λ3x32)

∼= O(GL2)/((ad− bc)−1 − 1, b− λ3c)

∼= O(SL2)/(b− λ3c),

and this is a domain since b− µc is a prime ideal in O(SL2) for all µ ∈ k×.

(123,132): We have Qλ = 〈Det− λ1, x11− λ2〉, and as always we may assume without

loss of generality that λ1 = 1. Since the image of Det in O(GL3)/I123,132 is x11x22x33,

it is now clear that

O(GL3)/(I123,132, Qλ) ∼= O(SL3)/(I123,132, x11 − λ2) ∼= k[x±1
11 , x

±1
22 , x23]/(x11 − λ2)
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is a domain.

(123,123): With Qλ = 〈Det− λ1, x11 − λ2, x22 − λ3〉, we obtain

O(GL3)/(I123,123, Qλ) ∼= k[x±1
11 , x

±1
22 ]/(x11 − λ2, x22 − λ3)

in the same manner as the previous case.

Four cases remain:

◦◦◦◦◦◦◦◦◦
◦◦•◦◦◦◦◦◦

◦◦•◦◦
◦◦••◦◦•◦◦

(321, 321) (321, 312) (231, 231) (132, 312)

In [29] these cases are dealt with by showing that the generators of the Ore set Eω are

regular modulo Q′λ, where they make clever use of the maps τ , ρ and S to verify that

certain elements are not in various ideals, and repeatedly apply the observation that if

an element x is regular modulo 〈y〉 then y is regular modulo 〈x〉. This proof is almost

entirely independent of the specific quantum algebra setting and can be applied to

O(GL3) and O(SL3) with minimal modification.

Verifying this is long and tedious and not especially illuminating, however, so we

will simply observe that in our commutative setting we can check that the ideals Q′λ

are indeed prime using the Magma computer algebra system. The relevant code is

reproduced in Appendix A.4.

Hence Qλ is prime in each of the 12 cases from Figure B.5, and the remaining 24 cases

are handled by the (anti-)isomorphisms displayed in Figure B.2.

Proposition 5.4.2 gives us explicit sets of generators for the ideals Pλ ∩ O(GL3)/Iω,

which by the Poisson Stratification Theorem correspond precisely to the Poisson-

primitive ideals in the stratum Pprimω(O(GL3)). Since we have chosen our elements

carefully to ensure that the first generator is always Det − λ1, we also obtain the

corresponding description of Poisson-primitive ideals in O(SL3). This is summarised

in the following theorem.

Theorem 5.4.3. Let ω ∈ S3 × S3, and let PZ(Bω) = k[(e1f
−1
1 )±1, . . . , (enf

−1
n )±1] as

in Figure B.5. Then
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(i) The Poisson-primitive ideals in the stratum Pprimω(O(GL3)) corresponding to

the H-prime Iω have the form

Iω + 〈e1 − λ1f1, . . . , en − λnfn〉, (λ1, . . . , λn) ∈ (k×)n, (5.4.5)

and these are all the Poisson-primitive ideals in this stratum.

(ii) The Poisson-primitive ideals in the stratum Pprimω(O(SL3)) corresponding to

the H′-prime Iω (now viewed as an ideal in O(SL3)) are precisely those of the

form

Iω + 〈e2 − λ2f2, . . . , en − λnfn〉, (λ2, . . . , λn) ∈ (k×)n−1.

Proof. Combine Proposition 5.4.2 and Theorem 5.3.15.

Comparing this result to the quantum case in [29], the following corollary is now

immediate:

Corollary 5.4.4. Let k be algebraically closed and q ∈ k× not a root of unity. Let

A denote Oq(GL3) or Oq(SL3), and let B denote the semi-classical limit of A. Then

there is a bijection of sets between prim(A) and Pprim(B), which is induced by the

“preservation of notation map”

A→ B : Xij 7→ xij, [̃i|̃j]q 7→ [̃i|̃j].

Proof. [29, Theorem 5.5], Theorem 5.4.3.

Corollary 5.4.4 strongly suggests that Conjecture 2.3.15 should be true for Oq(GL3)

and Oq(SL3). The remaining step would be to prove that the bijection in Corol-

lary 5.4.4 in fact defines a homeomorphism (with respect to the Zariski topology)

between prim(A) and Pprim(B).

This could be accomplished in two ways: one is to simply prove directly that the

bijection on primitives is a homeomorphism. It is not at all clear how to go about

doing this, however, so an alternative approach would be to first extend the bijection

in Corollary 5.4.4 to a bijection spec(A) → Pspec(B); by [25, Lemma 9.4] it would

then suffice to check that this bijection and its inverse preserved inclusions of primes.
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Unfortunately the intermediate step of extending the bijection from primitives to

primes would be a necessary part of this approach, since the statement of [25, Lemma 9.4]

is no longer true if we replace “primes” by “primitives”. An elementary illustration

of this has been observed by Goodearl: if we take R to be a commutative noetherian

k-algebra with trivial Poisson bracket, then we have prim(R) = Pprim(R) = max(R)

and any bijection prim(R)→ Pprim(R) will (trivially) preserve inclusions. It is clear

that not all such bijections will be homeomorphisms, however.

Instead, the first step towards proving Conjecture 2.3.15 for SL3 would be to obtain

generators for the prime ideals of Oq(SL3) (respectively Poisson-prime generators of

O(SL3)). Assuming (as seems quite likely) that the bijection of Corollary 5.4.4 extends

to a bijection on primes, we would then need to check that this map and its inverse

both preserve inclusions among primes – not a simple task to approach directly, with

no easy way to tell if a prime from one stratum is contained within a prime from

another stratum and 36 distinct strata to consider! We focus first on SL3 here since

the (Poisson-)primes within a given strata will always have height at most 2; hence

most of the (Poisson-)prime ideals are already described in Theorem 5.4.3 and those

that remain are known to be principally generated by Proposition 5.3.19 (resp. [10,

Theorem 5.2]).

In future work we hope to develop a Poisson version of the results of [10], which

would allow us to “patch together” the topologies of each stratum Pspecω(O(SL3))

(which are well-understood) into a picture of the Zariski topology on the whole space

Pspec(O(SL3)). We then hope to use these results to tackle the question of whether

this (as yet only conjectured) bijection spec(Oq(SL3)) → Pspec(O(SL3)) preserves

inclusions, although this approach will still involve significant amounts of computation.

This approach will not generalise easily even to other fairly low-dimensional examples

such as Oq(M3) (230 H-primes) or Oq(M4) (6902 H-primes), and new techniques will

clearly be required to tackle the general case.



Appendix A

Computations in Magma

As illustrated quite neatly by Chapter 3, computation with non-commutative fractions

is often difficult and messy. This appendix details the techniques used to make some of

these computations feasible on a computer: we describe both the theory that makes it

possible and the code written for the computer algebra system Magma by the author

to implement these techniques. We also provide an example to illustrate some of the

limitations of this approach.

As in Chapter 3, our main tool is the embedding of the q-division ring D into the

larger division ring of Laurent power series: recall that this is the ring of Laurent

power series of the form

kq(y)((x)) =

{∑
i≥n

ai(y)xi : n ∈ Z, ai(y) ∈ k(y)

}
,

subject to the relation xy = qyx. We will continue to assume that q is not a root of

unity.

In this larger ring, operations such as the multiplication of two elements or finding the

inverse of an element can be performed term by term on the coefficients. In particular,

we can compute that the product of two elements is∑
i≥n

aix
i
∑
j≥m

bjx
j =

∑
k≥0

ckx
m+n+k where ck =

k∑
r=0

an+rα
n+r(bm+k−r). (A.0.1)

Similarly, we find that for an element of the form 1 +
∑

i≥1 bix
i, the inverse is(

1 +
∑
i≥1

bix
i

)−1

= 1 +
∑
i≥0

cix
i, where ci = −

(
i∑

j=1

bjα
j(ci−j)

)
. (A.0.2)

146
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Using this, we can find the inverse of a general element
∑

i≥n aix
i by writing it in the

form anx
n
∑

i≥0 α
−n(ai+n/an)xi; the resulting sum is now in the correct form to apply

(A.0.2).

These computations can all be done by hand, of course, but since evaluating the coef-

ficients at each step involves only commutative terms it is now a much simpler matter

to delegate this process to a computer. We can view elements of kq(y)((x)) as infinite

sequences of commutative terms, with addition defined pointwise and multiplication

defined term-by-term by (A.0.1); phrased in this manner, it is now possible to write

the Magma functions which simulate the ring structure of kq(y)((x)) without explicit

reference to its non-commutativity.

In deference to the computer’s dislike of infinite things we are unfortunately required

to work with truncated sequences, but for many applications this turns out to be

sufficient: to eliminate a pair of potential q-commuting elements f and g, for example,

we need only compute the first few terms of the expression fg − qgf and see whether

the result is non-zero. However, while it is easy to convert fractions to power series

using (A.0.2), we would like to be able to pull our computations back to fractions at

the end as well (where possible). The results of the next section prove that this is

indeed possible under certain circumstances.

A.1 The theory behind q-commuting computations

One of the more useful things we can do with the Magma environment described above

is to input an element of the form

g = λy +
∑
i≥1

gix
i, λ ∈ k×, ai ∈ k(y)

and construct an element f ∈ kq(y)((x)) such that fg = qgf . The catch is that even if

g ∈ kq(x, y) there is no guarantee that the constructed element f will also represent a

fraction.

The following two theorems aim to tackle this problem by describing under what

conditions a power series f will be the image of a fraction from kq(x, y). They have
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the added benefit of being constructive, i.e. if f ∈ kq(x, y) they return elements

u, v ∈ kq[x, y] such that f = v−1u. These results are classical in the commutative case

and generalize easily to the case of an Ore extension by an automorphism, but since

they don’t seem to appear in the literature in this non-commutative form we provide

the full proof here.

Let K be a field, K[x;α] the Ore extension by an automorphism α, and K(x;α),

K[[x;α]] the ring of fractions and ring of power series respectively. For the specific

case of the q-division ring, we can take K = k(y) and α : y 7→ qy.

Theorem A.1.1. The power series
∑

i≥0 aix
i ∈ K[[x;α]] represents a rational func-

tion Q−1P in K(x;α) if and only if there exists some integer n, and some constants

c1, . . . , cn ∈ K (of which some could be zero) such that for all i ≥ 0 the coefficients of

the power series satisfy the linear recurrence relation

ai+n = c1α(ai+(n−1)) + c2α
2(ai+(n−2)) + · · ·+ cnα

n(ai). (A.1.1)

If this is the case, then P is a polynomial of degree ≤ n − 1 which is constructed

explicitly in the proof, and Q = 1−
∑n

i=1 cix
i.

The exposition of this proof follows closely the one from [33]. We first require a

technical lemma:

Lemma A.1.2. Let c1, . . . , cn be a set of elements of K; define a polynomial c1x +

c2x
2 + · · ·+ cnx

n, and let
∑

i≥0 aix
i be a power series in K[[x]]. Then

(c1x+ · · ·+ cnx
n)
∑
i≥0

aix
i = R +

∑
i≥0

(c1α(ai+n−1) + · · ·+ cnα
n(ai))x

i+n, (A.1.2)

where R is a polynomial of degree at most n− 1.
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Proof. We start by multiplying out the left hand side of (A.1.2) as follows:

(c1x+ · · ·+ cnx
n)
∑
i≥0

aix
i = c1x

(
n−2∑
i=0

aix
i +

∑
i≥n−1

aix
i

)

+ c2x
2

(
n−3∑
i=0

aix
i +

∑
i≥n−2

aix
i

)

. . .

+ cn−1x
n−1

(
0∑
i=0

aix
i +
∑
i≥1

aix
i

)

+ cnx
n

(
0 +

∑
i≥0

aix
i

)

After moving all powers of x to the right and re-indexing the second sum on each line

so that it starts from i = 0, we obtain

(c1x+ · · ·+ cnx
n)
∑
i≥0

aix
i = c1

n−2∑
i=0

α(ai)x
i+1 +

∑
i≥0

c1α(ai+n−1)x
i+n

+ c2

n−3∑
i=0

α2(ai)x
i+2 +

∑
i≥0

c2α
2(ai+n−2)x

i+n

. . .

+ cn−1α
n−1(a0)x

n−1 +
∑
i≥0

cn−1α
n−1(ai+1)x

i+n

+
∑
i≥0

cnα
n(ai)x

i+n

By defining

R := c1

n−2∑
i=0

α(ai)x
i+1 + c2

n−3∑
i=0

α2(ai)x
i+2 + · · ·+ cn−1α

n−1(a0)x
n−1

it is now clear that

(c1x+ · · ·+ cnx
n)
∑
i≥0

aix
i = R +

∑
i≥0

(c1α(ai+n−1) + · · ·+ cnα
n(ai))x

i+n.

as required.

Proof of Theorem A.1.1. Let
∑

i≥0 aix
i ∈ K[[x;α]] and suppose that this power series

satisfies a linear recurrence relation of the form

ai+n = c1α(ai+(n−1)) + c2α
2(ai+(n−2)) + · · ·+ cnα

n(ai)
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for all i ≥ 0. We will construct a left fraction Q−1P ∈ K(x;α) such that the image of

Q−1P in K[[x;α]] is
∑

i≥0 aix
i.

Define Q := 1−
∑n

i=1 cix
i, and observe that

(1−Q)
∑
i≥0

aix
i = (c1x+ c2x

2 + · · ·+ cnx
n)
∑
i≥0

aix
i.

This is in the correct form to apply Lemma A.1.2, and so we have

(1−Q)
∑
i≥0

aix
i = R +

∑
i≥0

(c1α(ai+n−1) + · · ·+ cnα
n(ai))x

i+n

= R +
∑
i≥0

an+ix
n+i (by assumption)

= R +
∑
i≥n

aix
i

= R−
n−1∑
i=0

aix
i +
∑
i≥0

aix
i

where R is a polynomial in K[x;α] of degree ≤ n− 1. After simplifying this becomes

Q
∑
i≥0

aix
i = −R +

n−1∑
i=0

aix
i

and hence ∑
i≥0

aix
i = Q−1P

where P := −R +
∑n−1

i=0 aix
i.

Conversely, let F = Q−1P ∈ K(x;α); we need to show that for F =
∑

i≥m fix
i ∈

K((x;α)), the sequence (fi)i≥m satisfies a recurrence relation of the form (A.1.1). We

will do this by performing a series of reductions on the fraction F , none of them

affecting whether it admits a recurrence relation or not, until F is in a form that is

easier to work with.

We first claim that it suffices to consider only the case where P,Q ∈ K[x;α] are not

divisible by x, i.e. they have non-zero constant terms. This is immediately clear for P

since the powers of x are written on the right, so suppose that x - P and Q = Q′x−m

with x - Q′. We can now observe that F = xmQ′−1P and hence

Q′−1P = x−mF =
∑
i≥m

α−m(fi)x
i−m =

∑
i≥0

α−m(fi+m)xi.
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Since α is an automorphism it is clear that the sequence (α−m(fi+m))i≥0 will satisfy a

recurrence relation if and only if the original sequence (fi)i≥m did. We can therefore

assume that

F = Q−1P =
∑
i≥0

fix
i

where Q = r0 + r1x+ · · ·+ rnx
n ∈ K[x;α] satisfies r0 6= 0.

Next we replace Q−1P by a fraction Q−1V satisfying degx(V ) < degx(Q), in such a

way that at most finitely many terms of the sequence (fi) are changed. (Note that

while this will change the recurrence relation itself, it will not affect the existence of

the recurrence relation: if we change the first n terms in a sequence that admits a

recurrence relation, we can always obtain a recurrence relation for the new sequence

simply by appending n zeroes to the old set of recurrence constants.)

If deg(P ) ≥ deg(Q) then we can use the division algorithm to write P = QS + V ,

where deg(V ) < deg(Q) and S is a polynomial: now

Q−1V = Q−1P − S (A.1.3)

and since S is a polynomial we can see that the power series representations of Q−1V

and Q−1P differ by at most the first degx(S) terms.

Since the constant term r0 of Q is non-zero, we can scale (A.1.3) by r0 to obtain

r0(Q
−1P − S) = r0Q

−1V = T−1V =
∑
i≥0

aix
i

where T := Q(x)r−1
0 = 1− c1x−· · ·− cnxn for some ci ∈ K. Since the power series for

Q−1P and Q−1V differ by finitely many terms, and scaling the fraction by an element

of K does not affect the existence of a recurrence relation, we see that the sequence

(ai) satisfies a recurrence relation if and only if the original sequence (fi) does.

We are now in a position to show that T−1V =
∑

i≥0 aix
i satisfies a linear recurrence

relation of the form (A.1.1). Indeed, we can rearrange the equality T−1V =
∑

i≥0 aix
i

to obtain

(1− T )
∑
i≥0

aix
i = −V +

∑
i≥0

aix
i

and then apply Lemma A.1.2 to rewrite this as

R +
∑
i≥0

(c1α(ai+n−1) + · · ·+ cnα
n(ai))x

i+n = −V +
∑
i≥0

aix
i,
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where R is a polynomial of degree < degx(T ). Rearranging this, we obtain

R + V =
∑
i≥0

aix
i −
∑
i≥0

(c1α(ai+n−1) + · · ·+ cnα
n(ai))x

i+n. (A.1.4)

Since degx(V ) < degx(Q) = degx(T ) = n, the left hand side of (A.1.4) is zero in degree

n and above. Hence by comparing coefficients of xi+n for i ≥ 0, we obtain the required

recurrence relation (A.1.1).

Remark A.1.3. A very similar version of this proof yields a recurrence relation for

right fractions PQ−1; in this case, it helps to work with right coefficients, i.e. power

series of the form
∑

i≥n x
iai.

While Theorem A.1.1 is extremely useful for turning a power series with a recurrence

relation into a left fraction, it gives no indication as to how the recurrence relation

should be found in the first place. The following theorem, due to Kronecker in the

commutative case, attempts to address this problem.

Theorem A.1.4. A power series
∑

i≥0 aix
i satisfies a linear recurrence relation

ai+n = c1α(ai+(n−1)) + c2α
2(ai+(n−2)) + · · ·+ ckα

k(ai)

if and only if there exists some m ≥ 1 such that the determinants of the matrices

∆k =


αk(a0) αk−1(a1) . . . α(ak−1) ak

αk(a1) αk−1(a2) . . . α(ak) ak+1

...
. . .

...

αk(ak) αk+1(ak+1) . . . α(a2k−1) a2k


are zero for all k ≥ m.

Proof. Again, this follows the commutative proof closely; we base our exposition on

[48, Lemma III]. Observe that ∆k is a (k + 1)× (k + 1) matrix.

It is easy to see that if the power series satisfies a recurrence relation of length n then

for all k ≥ n, the final column of ∆k is linearly dependent on the previous n columns

and the determinant is zero.
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Conversely, suppose |∆k| = 0 for all k ≥ m for some integer m, and assume that m

is minimal with this property. Since the columns of the matrix ∆m must be linearly

dependant, there exist fixed elements c1, . . . , cm ∈ K such that

Cm+1 − c1Cm − · · · − cmC1 = 0, (A.1.5)

where Ci denotes the ith column of ∆m. We will prove that
∑

i≥0 aix
i satisfies a

recurrence relation with constants c1, . . . , cm.

Define

Pj+m = aj+m − c1α(aj+m−1)− c2α2(aj+m−2)− · · · − cmαm(aj) (A.1.6)

for j ≥ 0; we will prove by induction that Pj+m = 0 for all j ≥ 0.

The base case Pm = 0 follows immediately from (A.1.5), so suppose it is true for all

j < r for some r. If r ≤ m then Pr+m = 0 also follows immediately from (A.1.5), so

we can assume that r > m.

By performing column operations on ∆r and recalling that its determinant is zero (our

initial premise was that |∆k| = 0 for all k ≥ m), we will be able to show that Pr+m = 0

as well. Observe that we can write ∆r as follows:

∆r =



A αr−m(am) · · · α(ar−1) ar
...

. . .
...

αr(am) αr−m(a2m) · · · α(ar+m−1) ar+m
...

. . .
...

. . .
...

αr(ar) αr−m(ar+m) · · · α(a2r−1) a2r


where the block denoted by A is αr−m+1(∆m−1). As before, let Ci denote the ith

column of ∆r, and recall that ∆r is an (r+ 1)× (r+ 1) matrix. Working from right to

left, we will perform column operations on the columns in the right-hand blocks, that

is columns Cr+1 down to Cm+1. The column operations are:

Cr+1 7→ Cr+1 − c1Cr − c2Cr−1 − · · · − cmCr−m

Cr 7→ Cr − α(c1)Cr−1 − α(c2)Cr−2 − · · · − α(cm)Cr−m−1

...

Cm+1 7→ Cm+1 − αr−m(c1)Cm − αr−m(c2)Cm−1 − · · · − αr−m(cm)C0
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Having done this, we obtain the matrix

∆ =



A αr−m(Pm) · · · α(Pr−1) Pr
...

. . .
...

αr(am) αr−m(P2m) · · · α(Pr+m−1) Pr+m
...

. . .
...

. . .
...

αr(ar) αr−m(Pr+m) · · · α(P2r−1) P2r


which still satisfies |∆| = 0. Further, by the inductive assumption Pj+m = 0 for j < r

and so the top-right block of ∆ is identically zero, as are all entries above the reverse-

diagonal in the bottom-right block. The determinant |∆| can now easily be seen to

be

|∆| = αr−m+1(∆m−1)
r−m∏
i=0

αi(Pr+m) = 0.

Since m was assumed to be the minimal integer such that |∆k| = 0 for all k ≥ m, while

K is a field and α is an automorphism, we conclude that Pr+m = 0 as required.

It is worth taking a moment to note the limitations of these results, before we attempt

to use them. First, since we cannot evaluate infinitely many terms of a power series or

check the determinants of infinitely many matrices, any results obtained in this fashion

will always be an approximation. These techniques should be viewed as a means of

checking computations and finding inspiration for the correct elements to write down;

any properties that they should satisfy, e.g q-commuting, will then need to be proved

using other methods.

Second, applying this theory to a given power series will always yield one single left

(or right) fraction. This will be a problem if, for example, the element in question is a

product of several smaller fractions: combining the result into one fraction will often

make it hopelessly large and complicated, and factorizing the result into understand-

able factors is almost always impossible. We give an example of this problem in §A.3

below.

Third, results are limited by the computational power available. The coefficients of

a power series can get large very quickly and hence evaluating the determinants in

Theorem A.1.4 quickly becomes impossible.
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A.2 Magma code for computations in kq(y)((x))

In this section we provide the Magma code used to simulate computations in kq(y)((x)).

The code should be pasted directly into the Magma terminal, after which the functions

described below can be used as required.

Elements of kq(y)((x)) are represented by two-element lists [*n,F*]. The integer n de-

notes the lowest power of x appearing in the series, while F is a sequence of coefficients

in k(y). Hence for example the element
∑

i≥n aix
i would be stored as

[*n,[a_n,a_{n+1},a_{n+2}, ... , a_r]*]

where r can be arbitrarily large. Note that while an can be zero, this will cause some

functions to break.

The following functions and procedures are provided below:

• inverseL: Takes a truncated power series and returns its inverse.

• productL: Takes two truncated power series F , G and returns their product FG.

• findz: Computes the element z from [5, Proposition 3.3] for a given element G.

• checkrationalL: Takes a truncated power series F and uses Theorem A.1.4 to

check whether F represents a fraction, up to a given bound.

• findrationalL: If checkrationalL returns true, this constructs polynomials

P,Q ∈ kq(y)[x;α] such that F = Q−1P .

• checkpowerrationalL: Given F , P and Q from findrationalL, double-checks

that F = Q−1P up to a given bound.

• qelement: Given an element G of the form (2.1.3), constructs an element F such

that FG = qGF as described in §2.1.1. (Note that F need not be a fraction

even if G is.)

// Note that Magma indexes sequences, lists, etc from 1 not 0;

// this leads to weird indexing in some of the loops.
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// Change these for a different field, different generator names

// if needed.

// t represents \hat{q}, the square root of q.

field<w>:=CyclotomicField(3);

K<t,y>:=FunctionField(field,2);

q:=t^2;

gen:=Name(K,2);

alpha:= hom< K -> K | t, q*gen>;

beta:= hom< K -> K | t, q^(-1)*gen>;

// Magma interprets 1 and 0 as integers rather than the identity

// elements in K; use these when the distinction matters.

zero:=K!0;

one:=K!1;

// Inverts a sequence Z of x-degree 0 (first term non-zero).

// Output is named Y.

// m indicates how many terms of the inverse to compute.

// In general, use inverseL below instead.

procedure inverse(Z,~Y,m)

m1:=#(Z);

if m gt m1 then for i:=1 to (m-m1) do Z[m1+i]:=0; end for; m1:=m;

end if;

if m lt m1 then m1:=m; end if;

Y:= [];

Y[1]:= 1/(Z[1]);

for i:= 1 to m1-1 do

var1:=zero;

for j:= 1 to i do

var1:= var1 - Y[1]*Z[i-j+2]*(alpha^(i-j+1))(Y[j]);

end for;
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Y[i+1]:=var1;

i;

end for;

end procedure;

// Takes a sequence Z of lowest x-power r and returns its inverse L.

// Computes the first m terms.

procedure inverseL(Z,r,~L,m)

n:=#(Z);

Z1:=[];

if r lt 0 then a:=alpha^(-r); else a:=beta^(r); end if;

for j:=1 to n do

Z1[j]:=a(Z[j]);

end for;

inverse(Z1,~Y,m);

L:=[*-r,Y*];

end procedure;

// Takes 2 elements as input: [*r,Y*] and [*s,Z*].

// Returns their product L, computes the first m terms.

// If Y and Z are precise (i.e. polynomial rather than truncated

// power series) use m=0 to get a precise, untruncated answer.

procedure productL(Y,r,Z,s,~L,m)

n1:=#(Y); n2:=#(Z);

if m eq 0 then

n:=n1+n2;

else n:=m;

end if;

for i:=1 to (n-n1) do Y[n1+i]:=0; end for;

for i:=1 to (n-n2) do Z[n2+i]:=0; end for;

P:=[];

for i:=1 to n do
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var1:=zero;

for j:=1 to i do

if j+r-1 lt 0 then

a:=beta^(1-j-r); else a:=alpha^(j+r-1);

end if;

var1:=var1 + Y[j]*a(Z[i-j+1]);

end for;

P[i]:=var1;

i;

end for;

L:=[*r+s,P*];

end procedure;

// This computes the element z from Artamonov and Cohn’s paper.

// Input: sequence b, which must be in the form given in the paper;

// s should be 1 or -1 corresponding to power of y in first term

// of b.

// Computes the first n terms.

procedure findz(b,s,~Z,n)

n1:=#(b);

if n gt n1 then

for i:=1 to (n-n1+1) do

b[n1+i]:=zero;

end for;

end if;

z:=[];

z[1]:=gen^(-s)*(1-q^s)^(-1)*b[2];

for i:=2 to n do

var1:=zero;

for j:=1 to i-1 do

var1:= var1 + z[j]*(alpha^j)(b[i-j+1]);

end for;
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z[i]:=gen^(-s)*(1-q^(i*s))^(-1)*(b[i+1] + var1);

i;

end for;

Insert(~z,1,one);

Z:=[*0,z*];

end procedure;

// Takes a truncated series and checks whether it satisfies the

// conditions to represent a fraction.

// Input: the sequence P to be checked; checks matrix size a to n

// (a must be at least 2), and from b to m iterations of each size

// (minimum 1, just set b=m=1 if you’re not sure about this).

// Prints "Yes" every time a determinant is zero.

// This procedure checks for rationality as a left fraction.

procedure checkrationalL(P,a,n,b,m)

for i:=a to n do

for r:=b to m do

M:=ZeroMatrix(K,i,i);

for j:=1 to i do

for k:=1 to i do

M[j,k]:=(alpha^(i-k))(P[j+k+r-2]);

end for;

end for;

d:=Determinant(M);

if d eq 0 then i, r, "Yes"; else i, r, "No"; end if;

end for;

end for;

end procedure

// Having run checkrationalL and found some zero determinants,

// this tries to pull the power series back to a fraction.

// Input sequence S to be pulled back; the two numbers from
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// checkrationalL next to the first "Yes" it printed become

// a,b here (same order).

// Output: denominator Q, numerator P (it’s a left fraction Q^{-1}P)

// and c the set of recurrence relation coefficients.

// Note that this procedure assumes S has x-degree 0, if not

// simply multiply numerator on the right by the appropriate power

// of x afterwards.

procedure findrationalL(S,a,b,~Q,~P,~c)

M:=ZeroMatrix(K,a,a);

for j:=1 to a do

for k:=1 to a do

M[j,k]:=(alpha^(a-k))(S[j+k+b-2]);

end for;

end for;

M1:=ZeroMatrix(K,a-1,1);

for i:=1 to (a-1) do

M1[i,1]:=M[i,a];

end for;

M2:=Submatrix(M,1,1,(a-1),(a-1));

d:=Determinant(M2); // checking that this is invertible

if d eq 0 then

"Matrix is not invertible, check your values of a and b.";

else M3:=M2^(-1);

M4:=M3*M1;

// M4 is the c_i in reverse order.

c:=[];

for i:=1 to (a-1) do

c[i]:= M4[a-i,1];

end for;

Insert(~c,1,-1); // insert c_0 = 1 for later, so c_i = c[i+1]

"c found, computing P and Q...";

if b gt 1 then for i:=#c+1 to #c+b do c[i]:=zero; end for; end if;
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n:=a-1+b-1; // for ease of notation

q1:=[];

q1[1]:=one;

for i:=2 to n+1 do

q1[i]:=-c[i];

end for;

Q:=[*0,q1*];

p1:=[];

for i:=1 to n do

p1[i]:=zero;

end for;

for j:=1 to n do //recall that S is the original sequence.

for i:=0 to (n-j) do

p1[i+j]:= p1[i+j] - c[j]*(alpha^(j-1))(S[i+1]);

end for;

end for;

P:=[*0,p1*];

Remove(~c,1);

end if;

"done.";

end procedure;

// Check that the fraction from findrationalL is correct.

// Input sequence S, elements Q and P from findrationalL.

// If procedure returns true, then the two expressions agree

// (up to the point they were truncated).

function checkpowerrationalL(S,Q,P)

if #S le 25 then n:=#S-5; else n:=25; end if;

inverseL(Q[2],Q[1],~Q1,n+5);

productL(Q1[2],Q1[1],P[2],P[1],~T,n+5);

t:=T[2];

u:=[];
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for i:=1 to n do

u[i]:=t[i]-S[i];

end for;

v1:=[];

for i:=1 to n do

v1[i]:=zero;

end for;

c:= u eq v1;

return c;

end function;

// Given a sequence g of x-degree 0 and first coefficient ay

// (where a is a scalar), constructs a power series F which

// q-commutes with g.

// Input: sequence g, f1 a choice for the first coefficient of F

// (can be anything in k(y)), returns an element F.

// Computes the first n terms.

// Note that there is no guarantee that F will represent a fraction;

// however, changing the choice of f1 will not affect whether F

// represents a fraction or not.

procedure qelement (g, f1, ~F, n)

if #g lt n then n:=#g; end if;

f:=[];

f[1]:=f1;

for i:=2 to n do

a:=zero;

for j:=1 to i-1 do

a:=a + q*g[j+1]*(alpha^j)(f[i-j]) - f[j]*(alpha^j)(g[i-j+1]);

end for;

f[i]:=a/(g[1]*(q^i-q));

i;

end for;
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F:=[*1,f*];

end procedure;

A.3 An example of a computation in kq(x, y)

It is noted in Remark 3.2.7 that the generators of the fixed ring kq(x, y)σ can be

expressed as a pair of single left fractions. The purpose of this example is to illustrate

how a comparatively simple element can balloon into something hopelessly complicated

when expressed as a single fraction.

Recall the setup of §3.2. We define

a = x+ ωy + ω2q̂y−1x−1, b = x−1 + ωy−1 + ω2q̂yx,

θ1 = x+ y + q̂y−1x−1, θ2 = x−1 + y−1 + q̂yx,

g = a−1b, f = θ2 − ω2θ1g + (ω2 − ω)q̂−1(ω2g2 + q̂2g−1).

By Proposition 3.2.5, we know that fg = qgf . However, the element f was originally

constructed using the qelement function from §A.2 and only appeared in its current

form after much fruitless searching. The original form of this element (which we denote

by f ′) is defined next.

Denominator:

v :=
(
q86y19 + q77y16 + (ω + 1)q76y16 + 2ωq75y16 + (2ω + 1)q74y16 + (ω − 1)q73y16 −

4q72y16 + (−ω−2)q71y16 + (−2ω−1)q70y16 + (−2ω−2)q69y16−ωq68y16 + q67y16 + (ω−

1)q66y13 − q65y13 + (−ω − 1)q64y13 + (−3ω − 5)q63y13 + (−4ω − 3)q62y13 − 6ωq61y13 −

5ωq60y13+(−3ω+3)q59y13+10q58y13+(3ω+6)q57y13+(5ω+5)q56y13+(6ω+6)q55y13+

(4ω+1)q54y13−q54y10 +(3ω−2)q53y13 +(−ω−2)q53y10 +ωq52y13−3ωq52y10−q51y13 +

(−3ω+1)q51y10 +(−ω−2)q50y13 +4q50y10 +(4ω+11)q49y10 +(10ω+11)q48y10 +(15ω+

5)q47y10 + (15ω + 2)q46y10 + (9ω − 8)q45y10 − 20q44y10 + (−9ω − 17)q43y10 + (−15ω −

13)q42y10 + (−15ω − 10)q41y10 + (−10ω + 1)q40y10 + (−4ω + 7)q39y10 + 4q38y10 + (ω −

1)q38y7+(3ω+4)q37y10−q37y7+(3ω+3)q36y10+(−ω−1)q36y7+(ω−1)q35y10+(−3ω−

5)q35y7 − q34y10 + (−4ω − 3)q34y7 − 6ωq33y7 − 5ωq32y7 + (−3ω + 3)q31y7 + 10q30y7 +

(3ω+6)q29y7 +(5ω+5)q28y7 +(6ω+6)q27y7 +(4ω+1)q26y7 +(3ω−2)q25y7 +ωq24y7−
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q23y7 + (−ω− 2)q22y7 + q21y4 + (ω+ 1)q20y4 + 2ωq19y4 + (2ω+ 1)q18y4 + (ω− 1)q17y4−

4q16y4 + (−ω − 2)q15y4 + (−2ω − 1)q14y4 + (−2ω − 2)q13y4 − ωq12y4 + q11y4 + q2y
)

+
(
−ωq84y18−ωq83y18+q82y18+(ω+2)q81y18+(ω+1)q80y18+ωq79y18+(ω−1)q78y18−

q77y18 + (−ω − 1)q76y18 + (−ω − 1)q75y18 + q75y15 + q74y15 + (2ω + 2)q73y15 + (4ω +

3)q72y15 + (4ω+ 1)q71y15 + (5ω− 2)q70y15 + (3ω− 5)q69y15 + (−2ω− 8)q68y15 + (−7ω−

10)q67y15 + (−9ω− 7)q66y15 + (−9ω− 2)q65y15 + (−7ω+ 3)q64y15 + (−2ω+ 6)q63y15 +

(ω+1)q63y12+(3ω+8)q62y15+ωq62y12+(5ω+7)q61y15+(ω−3)q61y12+(4ω+3)q60y15−

5q60y12 + (4ω + 1)q59y15 + (−6ω − 8)q59y12 + 2ωq58y15 + (−13ω − 11)q58y12 − q57y15 +

(−16ω − 6)q57y12 − q56y15 + (−16ω + 5)q56y12 + (−9ω + 16)q55y12 + (6ω + 26)q54y12 +

(21ω+30)q53y12+(30ω+23)q52y12+(30ω+7)q51y12+(21ω−9)q50y12+(6ω−20)q49y12+

(−ω − 1)q49y9 + (−9ω − 25)q48y12 − ωq48y9 + (−16ω − 21)q47y12 + (−ω + 3)q47y9 +

(−16ω−10)q46y12+5q46y9+(−13ω−2)q45y12+(6ω+8)q45y9+(−6ω+2)q44y12+(13ω+

11)q44y9+5q43y12+(16ω+6)q43y9+(ω+4)q42y12+(16ω−5)q42y9+(ω+1)q41y12+(9ω−

16)q41y9 +ωq40y12 +(−6ω−26)q40y9 +(−21ω−30)q39y9 +(−30ω−23)q38y9 +(−30ω−

7)q37y9 +(−21ω+9)q36y9 +(−6ω+20)q35y9 +(9ω+25)q34y9 +(16ω+21)q33y9−q33y6 +

(16ω + 10)q32y9 − q32y6 + (13ω + 2)q31y9 + (−2ω − 2)q31y6 + (6ω − 2)q30y9 + (−4ω −

3)q30y6− 5q29y9 + (−4ω− 1)q29y6 + (−ω− 4)q28y9 + (−5ω+ 2)q28y6 + (−ω− 1)q27y9 +

(−3ω + 5)q27y6 − ωq26y9 + (2ω + 8)q26y6 + (7ω + 10)q25y6 + (9ω + 7)q24y6 + (9ω +

2)q23y6 + (7ω − 3)q22y6 + (2ω − 6)q21y6 + (−3ω − 8)q20y6 + (−5ω − 7)q19y6 + (−4ω −

3)q18y6 + (−4ω− 1)q17y6− 2ωq16y6 + q15y6 + q14y6 + ωq14y3 + ωq13y3− q12y3 + (−ω−

2)q11y3 + (−ω− 1)q10y3 − ωq9y3 + (−ω + 1)q8y3 + q7y3 + (ω + 1)q6y3 + (ω + 1)q5y3
)
x

+
(
−q88y20+(ω−1)q87y20+(ω−1)q86y20−q85y20+(−ω−1)q84y20+(−ω−1)q83y20+(−ω−

1)q81y17+(−ω−1)q80y17+(−2ω−2)q79y17+(−3ω−1)q78y17+(−4ω−1)q77y17+(−5ω−

1)q76y17− 4ωq75y17 + (−4ω+ 3)q74y17 + (−4ω+ 5)q73y17 + (−2ω+ 6)q72y17−ωq72y14 +

(3ω+9)q71y17 +(−ω+1)q71y14 +(6ω+10)q70y17 +(ω+3)q70y14 +(7ω+8)q69y17 +(3ω+

6)q69y14 +(6ω+3)q68y17 +(5ω+7)q68y14 +(5ω+1)q67y17 +(8ω+6)q67y14 +3ωq66y17 +

(10ω+ 3)q66y14− q65y17 + (10ω+ 1)q65y14− q64y17 + (8ω− 1)q64y14 + (6ω− 3)q63y14 +

(7ω− 2)q62y14 + (8ω− 2)q61y14 + (10ω− 5)q60y14 + (11ω− 10)q59y14−ωq59y11 + (6ω−

16)q58y14+(ω+1)q58y11+(−3ω−23)q57y14+(3ω+2)q57y11+(−12ω−26)q56y14+(4ω+

1)q56y11 +(−19ω−23)q55y14 +(3ω−5)q55y11 +(−22ω−16)q54y14−11q54y11 +(−19ω−

8)q53y14+(−9ω−18)q53y11−12ωq52y14+(−20ω−21)q52y11+(−5ω+6)q51y14+(−29ω−
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21)q51y11 +(−2ω+6)q50y14 +(−33ω−12)q50y11 +3q49y14−31ωq49y11 +(2ω+2)q48y14 +

(−26ω + 12)q48y11 + (ω + 1)q47y14 + (−15ω + 22)q47y11 + (−5ω + 31)q46y11 + (5ω +

36)q45y11 +(15ω+37)q44y11−ωq44y8 +(26ω+38)q43y11−2ωq43y8 +(31ω+31)q42y11 +

3q42y8 + (33ω+ 21)q41y11 + (2ω+ 8)q41y8 + (29ω+ 8)q40y11 + (5ω+ 11)q40y8 + (20ω−

1)q39y11+(12ω+12)q39y8+(9ω−9)q38y11+(19ω+11)q38y8−11q37y11+(22ω+6)q37y8+

(−3ω−8)q36y11+(19ω−4)q36y8+(−4ω−3)q35y11+(12ω−14)q35y8+(−3ω−1)q34y11+

(3ω−20)q34y8−ωq33y11+(−6ω−22)q33y8+(ω+1)q32y11+(−11ω−21)q32y8+(−10ω−

15)q31y8+(−8ω−10)q30y8+(−7ω−9)q29y8+(−6ω−9)q28y8+(−8ω−9)q27y8−q27y5+

(−10ω−9)q26y8−q26y5 +(−10ω−7)q25y8 +(−3ω−3)q25y5 +(−8ω−2)q24y8 +(−5ω−

4)q24y5 + (−5ω+ 2)q23y8 + (−6ω− 3)q23y5 + (−3ω+ 3)q22y8 + (−7ω+ 1)q22y5 + (−ω+

2)q21y8 +(−6ω+4)q21y5 +(ω+2)q20y8 +(−3ω+6)q20y5 +(ω+1)q19y8 +(2ω+8)q19y5 +

(4ω+9)q18y5+(4ω+7)q17y5+(4ω+4)q16y5+(5ω+4)q15y5+(4ω+3)q14y5+(3ω+2)q13y5+

2ωq12y5+ωq11y5+ωq10y5+ωq8y2+ωq7y2−q6y2+(−ω−2)q5y2+(−ω−2)q4y2−q3y2
)
x2

+
(
q92y22 + q91y22 + ωq87y19 + (2ω + 1)q86y19 + (2ω + 1)q85y19 + (ω − 2)q84y19 + (ω −

3)q83y19 +(ω−2)q82y19−2q81y19 +(−2ω−2)q80y19 +(−2ω−1)q79y19−q78y19−q78y16−

3q77y16 +(−ω+1)q76y19 +(−2ω−4)q76y16 +(−2ω−1)q75y19 +(−6ω−7)q75y16 +(−ω−

1)q74y19 + (−11ω− 8)q74y16 + q73y19 + (−15ω− 4)q73y16 + q72y19 + (−15ω+ 2)q72y16 +

(−9ω+ 11)q71y16 + 21q70y16 + (10ω+ 24)q69y16 + (18ω+ 19)q68y16 + (−ω− 1)q68y13 +

(22ω+14)q67y16+(−2ω−1)q67y13+(20ω+5)q66y16+(−2ω+1)q66y13+(12ω−6)q65y16+

5q65y13+(4ω−11)q64y16+(3ω+10)q64y13+(−2ω−12)q63y16+(8ω+14)q63y13+(−6ω−

11)q62y16 + (17ω+ 15)q62y13 + (−8ω− 7)q61y16 + (26ω+ 14)q61y13 + (−6ω− 3)q60y16 +

(30ω+7)q60y13+(−3ω−1)q59y16+(27ω−9)q59y13+(−ω+1)q58y16+(17ω−26)q58y13+

(−ω+1)q57y16+(−ω−41)q57y13+(−ω−1)q56y16+(−23ω−51)q56y13−q55y16+(−42ω−

49)q55y13−q55y10+(−52ω−34)q54y13−2q54y10+(−50ω−13)q53y13−2q53y10+(−37ω+

10)q52y13 + (−2ω− 3)q52y10 + (−16ω+ 29)q51y13 + (−4ω− 5)q51y10 + (3ω+ 36)q50y13 +

(−6ω − 7)q50y10 + (16ω + 33)q49y13 + (−9ω − 8)q49y10 + (22ω + 25)q48y13 + (−15ω −

8)q48y10 + (21ω+ 16)q47y13 + (−21ω− 5)q47y10 + (15ω+ 7)q46y13 + (−22ω+ 3)q46y10 +

(9ω+1)q45y13+(−16ω+17)q45y10+(6ω−1)q44y13+(−3ω+33)q44y10+(4ω−1)q43y13+

(16ω + 45)q43y10 + (2ω − 1)q42y13 + (37ω + 47)q42y10 − 2q41y13 + (50ω + 37)q41y10 −

2q40y13+(52ω+18)q40y10−q39y13+(42ω−7)q39y10−q39y7+(23ω−28)q38y10+ωq38y7+

(ω−40)q37y10 + (ω+ 2)q37y7 + (−17ω−43)q36y10 + (ω+ 2)q36y7 + (−27ω−36)q35y10 +

(3ω+2)q35y7 +(−30ω−23)q34y10 +(6ω+3)q34y7 +(−26ω−12)q33y10 +(8ω+1)q33y7 +
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(−17ω−2)q32y10 +(6ω−5)q32y7 +(−8ω+6)q31y10 +(2ω−10)q31y7 +(−3ω+7)q30y10 +

(−4ω − 15)q30y7 + 5q29y10 + (−12ω − 18)q29y7 + (2ω + 3)q28y10 + (−20ω − 15)q28y7 +

(2ω + 1)q27y10 + (−22ω − 8)q27y7 + ωq26y10 + (−18ω + 1)q26y7 + (−10ω + 14)q25y7 +

21q24y7 + (9ω+ 20)q23y7 + (15ω+ 17)q22y7 + q22y4 + (15ω+ 11)q21y7 + q21y4 + (11ω+

3)q20y7 +ωq20y4 +(6ω−1)q19y7 +(2ω+1)q19y4 +(2ω−2)q18y7 +(ω+2)q18y4−3q17y7−

q16y7 − q16y4 + (2ω + 1)q15y4 + 2ωq14y4 − 2q13y4 + (−ω − 3)q12y4 + (−ω − 4)q11y4 +

(−ω − 3)q10y4 + (−2ω − 1)q9y4 + (−2ω − 1)q8y4 + (−ω − 1)q7y4 + q3y + q2y
)
x3

+
(

(−ω−1)q93y21−ωq92y21 + (−ω+ 1)q91y21 + (−ω+ 3)q90y21 + (−ω+ 2)q89y21 + (ω+

2)q88y21+(3ω+2)q87y21+(2ω+2)q86y21+(ω+1)q85y18+(−ω−1)q84y21+(ω+2)q84y18−

q83y21+(ω+3)q83y18+(4ω+4)q82y18+(8ω+5)q81y18+(10ω+5)q80y18+(11ω+2)q79y18+

(11ω − 4)q78y18 + (8ω − 10)q77y18 + (3ω − 14)q76y18 + ωq76y15 + (−5ω − 17)q75y18 +

2ωq75y15 + (−12ω− 18)q74y18 + (ω− 2)q74y15 + (−15ω− 15)q73y18 + (−2ω− 6)q73y15 +

(−13ω−7)q72y18 +(−3ω−10)q72y15−9ωq71y18 +(−9ω−13)q71y15 +(−6ω+3)q70y18 +

(−13ω− 12)q70y15 + (−2ω+ 3)q69y18 + (−19ω− 12)q69y15 + (2ω+ 3)q68y18 + (−23ω−

9)q68y15 + (2ω + 2)q67y18 + (−26ω − 6)q67y15 + (−22ω + 3)q66y15 − q65y18 + (−21ω +

9)q65y15− q64y18 + (−16ω+ 21)q64y15 + (−8ω+ 28)q63y15 +ωq63y12 + (4ω+ 37)q62y15−

q62y12+(17ω+39)q61y15+(−3ω−2)q61y12+(26ω+38)q60y15+(−4ω−1)q60y12+(33ω+

28)q59y15 + (−5ω+ 3)q59y12 + (31ω+ 17)q58y15 + (−4ω+ 11)q58y12 + (24ω+ 6)q57y15 +

(5ω+22)q57y12+(13ω−2)q56y15+(19ω+31)q56y12+(6ω−7)q55y15+(34ω+36)q55y12−

7q54y15+(50ω+34)q54y12+(2ω−2)q53y15+(58ω+20)q53y12+ωq52y15+(56ω−1)q52y12+

(45ω− 24)q51y12− q50y15 + (25ω− 47)q50y12− q50y9 + (ω− 1)q49y15− 65q49y12 + (−ω−

2)q49y9−q48y15 +(−25ω−72)q48y12−q48y9 +(−45ω−69)q47y12 +(−56ω−57)q46y12 +

(−ω−1)q46y9+(−58ω−38)q45y12+(−2ω−4)q45y9+(−50ω−16)q44y12−7q44y9+(−34ω+

2)q43y12 +(−6ω−13)q43y9 +(−19ω+12)q42y12 +(−13ω−15)q42y9 +(−5ω+17)q41y12 +

(−24ω−18)q41y9+(4ω+15)q40y12+(−31ω−14)q40y9+(5ω+8)q39y12+(−33ω−5)q39y9+

(4ω+3)q38y12 +(−26ω+12)q38y9 +(3ω+1)q37y12 +(−17ω+22)q37y9−q36y12 +(−4ω+

33)q36y9 +(−ω−1)q35y12 +(8ω+36)q35y9 +(16ω+37)q34y9−q34y6 +(21ω+30)q33y9−

q33y6 +(22ω+25)q32y9 +(26ω+20)q31y9−2ωq31y6 +(23ω+14)q30y9 +(−2ω+1)q30y6 +

(19ω+ 7)q29y9 + (2ω+ 5)q29y6 + (13ω+ 1)q28y9 + (6ω+ 9)q28y6 + (9ω−4)q27y9 + (9ω+

9)q27y6+(3ω−7)q26y9+(13ω+6)q26y6+(2ω−4)q25y9+15ωq25y6+(−ω−3)q24y9+(12ω−

6)q24y6 + (−2ω−2)q23y9 + (5ω−12)q23y6 + (−ω−1)q22y9 + (−3ω−17)q22y6 + (−8ω−

18)q21y6 + (−11ω− 15)q20y6 + (−11ω− 9)q19y6 + (−10ω− 5)q18y6 + (−8ω− 3)q17y6−
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4ωq16y6 + (−ω+ 2)q15y6− q15y3 + (−ω+ 1)q14y6 +ωq14y3−ωq13y6−2ωq12y3 + (−3ω−

1)q11y3+(−ω+1)q10y3+(ω+3)q9y3+(ω+4)q8y3+(ω+2)q7y3+(ω+1)q6y3+ωq5y3
)
x4

+
(
ωq99y23+ωq98y23−q97y23+(−ω−2)q96y23+(−ω−2)q95y23−q94y23−q93y20−q92y20+

(−2ω − 2)q91y20 + (−4ω − 3)q90y20 + (−4ω − 2)q89y20 − 5ωq88y20 + (−5ω + 2)q87y20 +

(−5ω+2)q86y20+(−3ω+4)q85y20+7q84y20+(−ω−1)q84y17+(2ω+9)q83y20−ωq83y17+

(4ω+8)q82y20+(−ω+3)q82y17+(6ω+6)q81y20+(−ω+6)q81y17+(7ω+4)q80y20+(3ω+

9)q80y17 + (6ω+ 2)q79y20 + (10ω+ 13)q79y17 + 3ωq78y20 + (18ω+ 14)q78y17− 2q77y20 +

(23ω + 9)q77y17 − 2q76y20 + 22ωq76y17 − q75y20 + (15ω − 12)q75y17 + (6ω − 21)q74y17 +

(−5ω−26)q73y17+(ω+1)q73y14+(−13ω−24)q72y17+(ω+1)q72y14+(−16ω−20)q71y17+

ωq71y14 + (−16ω − 15)q70y17 + (2ω − 1)q70y14 + (−14ω − 9)q69y17 + (2ω − 3)q69y14 +

(−14ω−5)q68y17−8q68y14 +(−12ω−3)q67y17 +(−5ω−14)q67y14−8ωq66y17 +(−15ω−

20)q66y14 +(−4ω+5)q65y17 +(−27ω−24)q65y14 +(−ω+7)q64y17 +(−36ω−18)q64y14 +

(ω+6)q63y17 +(−39ω−2)q63y14 +(2ω+4)q62y17 +(−31ω+20)q62y14 +(3ω+3)q61y17 +

(−12ω+ 41)q61y14 + (3ω+ 2)q60y17 + (14ω+ 56)q60y14 + q60y11 + (ω+ 1)q59y17 + (39ω+

58)q59y14 + (−ω + 2)q59y11 + (53ω + 45)q58y14 + 4q58y11 + (53ω + 23)q57y14 + (3ω +

6)q57y11 +(42ω+1)q56y14 +(7ω+7)q56y11 +(25ω−16)q55y14 +(11ω+7)q55y11 +(8ω−

26)q54y14 +(14ω+6)q54y11 +(−4ω−27)q53y14 +(14ω+1)q53y11 +(−11ω−24)q52y14 +

(13ω − 6)q52y11 + (−13ω − 19)q51y14 + (11ω − 13)q51y11 + (−14ω − 13)q50y14 + (4ω −

23)q50y11+(−14ω−8)q49y14+(−8ω−34)q49y11+(−11ω−4)q48y14+(−25ω−41)q48y11−

7ωq47y14+(−42ω−41)q47y11+(−3ω+3)q46y14+(−53ω−30)q46y11+4q45y14+(−53ω−

8)q45y11 + (ω + 3)q44y14 + (−39ω + 19)q44y11 − ωq44y8 + q43y14 + (−14ω + 42)q43y11 +

(−3ω−1)q43y8+(12ω+53)q42y11−3ωq42y8+(31ω+51)q41y11+(−2ω+2)q41y8+(39ω+

37)q40y11 + (−ω+ 5)q40y8 + (36ω+ 18)q39y11 + (ω+ 8)q39y8 + (27ω+ 3)q38y11 + (4ω+

9)q38y8 + (15ω− 5)q37y11 + (8ω+ 8)q37y8 + (5ω− 9)q36y11 + (12ω+ 9)q36y8− 8q35y11 +

(14ω+9)q35y8 +(−2ω−5)q34y11 +(14ω+5)q34y8 +(−2ω−3)q33y11 +(16ω+1)q33y8 +

(−ω−1)q32y11 +(16ω−4)q32y8−ωq31y11 +(13ω−11)q31y8−ωq30y11 +(5ω−21)q30y8 +

(−6ω − 27)q29y8 + (−15ω − 27)q28y8 − q28y5 + (−22ω − 22)q27y8 − 2q27y5 + (−23ω −

14)q26y8 − 2q26y5 + (−18ω − 4)q25y8 + (−3ω − 3)q25y5 + (−10ω + 3)q24y8 + (−6ω −

4)q24y5 + (−3ω + 6)q23y8 + (−7ω − 3)q23y5 + (ω + 7)q22y8 − 6ωq22y5 + (ω + 4)q21y8 +

(−4ω + 4)q21y5 + (ω + 1)q20y8 + (−2ω + 7)q20y5 + ωq19y8 + 7q19y5 + (3ω + 7)q18y5 +

(5ω+7)q17y5 +(5ω+7)q16y5 +(5ω+5)q15y5 +(4ω+2)q14y5 +(4ω+1)q13y5 +2ωq12y5−

q11y5−q10y5−q9y2 +(ω−1)q8y2 +(ω−1)q7y2−q6y2 +(−ω−1)q5y2 +(−ω−1)q4y2
)
x5
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+
(
q106y25+q100y22+(ω+1)q99y22+2ωq98y22+(2ω+1)q97y22+(ω−1)q96y22−4q95y22+

(−ω−2)q94y22 +(−2ω−1)q93y22 +(−2ω−2)q92y22 +(ω−1)q92y19−ωq91y22−q91y19 +

q90y22+(−ω−1)q90y19+(−3ω−5)q89y19+q88y22+(−4ω−3)q88y19+q87y22−6ωq87y19−

5ωq86y19 +(−3ω+3)q85y19 +10q84y19 +(3ω+6)q83y19−q83y16 +(5ω+6)q82y19 +(−ω−

2)q82y16 +(7ω+8)q81y19−3ωq81y16 +(7ω+2)q80y19 +(−3ω+1)q80y16 +(7ω−1)q79y19 +

4q79y16+4ωq78y19+(4ω+11)q78y16+(ω−6)q77y19+(10ω+11)q77y16+(−2ω−8)q76y19+

(15ω+5)q76y16+(−3ω−3)q75y19+(15ω+2)q75y16+(−4ω−3)q74y19+(10ω−9)q74y16+

(−3ω−2)q73y19+(ω−22)q73y16+(−ω+1)q72y19+(−10ω−19)q72y16+q71y19+(−19ω−

19)q71y16 + (−22ω − 18)q70y16 + (ω − 1)q70y13 + q69y19 + (−20ω − 2)q69y16 − q69y13 +

(−15ω + 7)q68y16 + (−ω − 1)q68y13 + (−8ω + 7)q67y16 + (−3ω − 5)q67y13 + 17q66y16 +

(−4ω−3)q66y13+(6ω+19)q65y16+(−6ω−1)q65y13+(9ω+10)q64y16+(−6ω−3)q64y13+

(11ω+11)q63y16+(−7ω+1)q63y13+(11ω+8)q62y16+(−6ω+11)q62y13+(9ω−1)q61y16+

11q61y13 + (6ω−1)q60y16 + (9ω+ 20)q60y13 + (2ω−2)q59y16 + (20ω+ 28)q59y13 + (−ω−

7)q58y16+(29ω+17)q58y13+(−2ω−4)q57y16+(33ω+5)q57y13+(−2ω−1)q56y16+(25ω−

6)q56y13+q56y10+(−2ω−2)q55y16+(10ω−30)q55y13+(ω+1)q55y10−ωq54y16+(−10ω−

40)q54y13 +2ωq54y10 +q53y16 +(−25ω−31)q53y13 +(2ω+1)q53y10 +(−33ω−28)q52y13 +

(2ω−2)q52y10+(−29ω−12)q51y13+(ω−6)q51y10+(−20ω+8)q50y13+(−2ω−4)q50y10+

(−9ω+ 11)q49y13 + (−6ω− 7)q49y10 + 11q48y13 + (−9ω− 10)q48y10 + (6ω+ 17)q47y13 +

(−11ω−3)q47y10 +(7ω+8)q46y13−11ωq46y10 +(6ω+3)q45y13 +(−9ω+1)q45y10 +(6ω+

5)q44y13+(−6ω+13)q44y10+(4ω+1)q43y13+17q43y10+(3ω−2)q42y13+(8ω+15)q42y10+

ωq41y13 +(15ω+22)q41y10−q40y13 +(20ω+18)q40y10 +q40y7 +(−ω−2)q39y13 +(22ω+

4)q39y10 + 19ωq38y10 + q38y7 + (10ω−9)q37y10 + (ω+ 2)q37y7 + (−ω−23)q36y10 + (3ω+

1)q36y7 + (−10ω− 19)q35y10 + (4ω+ 1)q35y7 + (−15ω− 13)q34y10 + 3ωq34y7 + (−15ω−

10)q33y10+(2ω−6)q33y7+(−10ω+1)q32y10+(−ω−7)q32y7+(−4ω+7)q31y10+(−4ω−

4)q31y7 +4q30y10 +(−7ω−8)q30y7 +(3ω+4)q29y10 +(−7ω−5)q29y7 +(3ω+3)q28y10 +

(−7ω+1)q28y7+(ω−1)q27y10+(−5ω+1)q27y7−q26y10+(−3ω+3)q26y7+10q25y7+(3ω+

6)q24y7 +(5ω+5)q23y7 +(6ω+6)q22y7 + q22y4 +(4ω+1)q21y7 + q21y4 +(3ω−2)q20y7 +

ωq19y7 + q19y4− q18y7 + (ω+ 1)q18y4 + (−ω− 2)q17y7 + 2ωq17y4 + (2ω+ 1)q16y4 + (ω−

1)q15y4−4q14y4+(−ω−2)q13y4+(−2ω−1)q12y4+(−2ω−2)q11y4−ωq10y4+q9y4+q3y
)
x6

Numerator:

u :=
(
q86y19 + q77y16 + (ω + 1)q76y16 + 2ωq75y16 + (2ω + 1)q74y16 + (ω − 1)q73y16 −
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4q72y16 + (−ω−2)q71y16 + (−2ω−1)q70y16 + (−2ω−2)q69y16−ωq68y16 + q67y16 + (ω−

1)q66y13 − q65y13 + (−ω − 1)q64y13 + (−3ω − 5)q63y13 + (−4ω − 3)q62y13 − 6ωq61y13 −

5ωq60y13+(−3ω+3)q59y13+10q58y13+(3ω+6)q57y13+(5ω+5)q56y13+(6ω+6)q55y13+

(4ω+1)q54y13−q54y10 +(3ω−2)q53y13 +(−ω−2)q53y10 +ωq52y13−3ωq52y10−q51y13 +

(−3ω+1)q51y10 +(−ω−2)q50y13 +4q50y10 +(4ω+11)q49y10 +(10ω+11)q48y10 +(15ω+

5)q47y10 + (15ω + 2)q46y10 + (9ω − 8)q45y10 − 20q44y10 + (−9ω − 17)q43y10 + (−15ω −

13)q42y10 + (−15ω − 10)q41y10 + (−10ω + 1)q40y10 + (−4ω + 7)q39y10 + 4q38y10 + (ω −

1)q38y7+(3ω+4)q37y10−q37y7+(3ω+3)q36y10+(−ω−1)q36y7+(ω−1)q35y10+(−3ω−

5)q35y7 − q34y10 + (−4ω − 3)q34y7 − 6ωq33y7 − 5ωq32y7 + (−3ω + 3)q31y7 + 10q30y7 +

(3ω+6)q29y7 +(5ω+5)q28y7 +(6ω+6)q27y7 +(4ω+1)q26y7 +(3ω−2)q25y7 +ωq24y7−

q23y7 + (−ω− 2)q22y7 + q21y4 + (ω+ 1)q20y4 + 2ωq19y4 + (2ω+ 1)q18y4 + (ω− 1)q17y4−

4q16y4 + (−ω − 2)q15y4 + (−2ω − 1)q14y4 + (−2ω − 2)q13y4 − ωq12y4 + q11y4 + q2y
)
x

+
(

(−ω − 1)q90y21 + (−ω − 1)q89y21 − ωq83y18 + q82y18 + q81y18 − ωq80y18 + 2q79y18 +

2q78y18 + 2q77y18 + (4ω + 5)q76y18 + (5ω + 4)q75y18 + (ω + 1)q75y15 + 3ωq74y18 + (3ω−

1)q73y18 +(2ω−1)q72y18 +(3ω+1)q72y15 +(−ω−2)q71y18 +2ωq71y15 +(−ω−1)q70y18 +

2ωq70y15 +(4ω−1)q69y15 +(ω−5)q68y15 +(−ω−6)q67y15−5q66y15 +(−5ω−9)q65y15 +

(−7ω−8)q64y15 +(−2ω−1)q64y12 +(−5ω−5)q63y15 +q63y12 +(−10ω−8)q62y15 +(ω+

1)q62y12 + (−11ω− 6)q61y15 − ωq61y12 − 7ωq60y15 + (ω− 1)q60y12 + (−7ω + 1)q59y15 −

2q59y12 + (−5ω+ 3)q58y15 + (−7ω− 5)q58y12 + (ω+ 7)q57y15 + (−7ω− 1)q57y12 + (2ω+

5)q56y15 + (−4ω + 3)q56y12 + (ω + 2)q55y15 + (−7ω + 6)q55y12 + (3ω + 2)q54y15 + (ω +

13)q54y12+(2ω+1)q53y15+(6ω+13)q53y12+(5ω+11)q52y12−ωq52y9+(9ω+13)q51y12+

(−ω+1)q51y9+(13ω+13)q50y12+(3ω+3)q50y9+(11ω+10)q49y12+(3ω+2)q49y9+(18ω+

13)q48y12 +3ωq48y9 +(21ω+7)q47y12 +(6ω−1)q47y9 +(14ω−4)q46y12 +(ω−5)q46y9 +

(10ω−9)q45y12 +(−4ω−7)q45y9 +(3ω−14)q44y12−4q44y9 +(−8ω−17)q43y12 +(−ω−

3)q43y9+(−10ω−11)q42y12+(−3ω−3)q42y9+(−7ω−4)q41y12+(3ω−4)q41y9+(−6ω−

1)q40y12 + (−2ω − 10)q40y9 + (−2ω + 2)q39y12 + (−10ω − 13)q39y9 + (2ω + 3)q38y12 +

(−11ω−12)q38y9+(ω+1)q37y12+(−16ω−10)q37y9+(−17ω−2)q36y9+(−2ω−1)q36y6+

(−8ω+ 6)q35y9−ωq35y6 + (−4ω+ 6)q34y9 + q34y6 + (−2ω+ 7)q33y9 + (−2ω+ 2)q33y6 +

(4ω + 7)q32y9 + (ω + 3)q32y6 + (2ω + 2)q31y9 + (4ω + 4)q31y6 + (−ω + 1)q30y9 + (ω +

2)q30y6+(ω+3)q29y9+(2ω+2)q29y6+(ω+2)q28y9+(5ω+2)q28y6+q27y9+2q27y6+(2ω+

2)q26y9 +(2ω+3)q26y6 +(2ω+1)q25y9 +(6ω+3)q25y6 +(4ω+2)q24y6 +(3ω+1)q23y6 +

(5ω− 1)q22y6 + (ω− 3)q21y6 + (ω− 1)q20y6 + (ω− 2)q19y6 + ωq19y3 + (−ω− 3)q18y6−
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q18y3+(−ω−2)q17y6+(−2ω−2)q17y3−q16y6+(−ω−2)q16y3+(−ω−1)q15y6+(−2ω−

1)q15y3−ωq14y6−3ωq14y3 +q13y3 +(ω+1)q12y3−ωq11y3 +(−ω+1)q8y3 +q7y3 +ω
)
x2

+
(
ωq95y23 − q89y20 − q88y20 + (−2ω − 1)q87y20 + (−ω − 1)q86y20 + (−ω − 1)q85y20 −

2ωq84y20−2ωq81y20−ωq81y17+q80y20−ωq80y17+(ω+2)q79y20+2q78y20+(−ω+3)q78y17+

(ω+1)q77y20+(−ω+3)q77y17+ωq76y20+(4ω+4)q76y17+(4ω+6)q75y17+(4ω+5)q74y17+

(8ω+ 1)q73y17 + (5ω+ 1)q72y17 + (3ω− 1)q71y17 + q71y14 + (4ω− 4)q70y17 + 2ωq70y14−

5q69y17+2ωq69y14+(−3ω−5)q68y17−q68y14−5q67y17+(ω−4)q67y14+(−4ω−4)q66y17+

(2ω−3)q66y14 +(−4ω−2)q65y17 +(−3ω−3)q65y14 +(−ω−2)q64y17 +(−ω−7)q64y14 +

(−2ω − 1)q63y17 + (−ω − 8)q63y14 + (−3ω − 1)q62y17 + (−10ω − 8)q62y14 + (−13ω −

13)q61y14−ωq60y17 + (−13ω− 8)q60y14− q60y11 + (−ω+ 1)q59y17 + (−19ω+ 1)q59y14 +

(−2ω−1)q59y11+(−12ω+7)q58y14+(−3ω−1)q58y11+(−ω+14)q57y14+(−3ω−1)q57y11+

(3ω+21)q56y14+(−3ω+3)q56y11+(11ω+16)q55y14+(−3ω+4)q55y11+(15ω+10)q54y14+

(3ω+7)q54y11+(9ω+7)q53y14+(4ω+11)q53y11+(9ω+3)q52y14+(6ω+11)q52y11+(7ω−

1)q51y14 + (15ω+ 9)q51y11 + 2ωq50y14 + (16ω+ 12)q50y11 + 4ωq49y14 + (13ω+ 4)q49y11 +

(4ω−2)q48y14+(16ω−5)q48y11−2q47y14+(11ω−7)q47y11−2q46y14+(−ω−14)q46y11+

q46y8−2q45y14+(−2ω−21)q45y11+(ω+1)q45y8+(−2ω−1)q44y14+(−10ω−16)q44y11+

(3ω+1)q44y8−ωq43y14+(−15ω−12)q43y11+3ωq43y8+(−12ω−13)q42y11+(3ω−4)q42y8+

(−12ω−6)q41y11+(ω−7)q41y8+(−13ω−1)q40y11+(−6ω−10)q40y8+(−6ω−1)q39y11+

(−11ω− 13)q39y8 + (−6ω+ 1)q38y11 + (−12ω− 8)q38y8 + (−4ω+ 6)q37y11− 15ωq37y8 +

(ω+4)q36y11 +(−10ω+3)q36y8 +(ω+3)q35y11 +(−2ω+10)q35y8 +(ω+3)q34y11 +(ω+

15)q34y8 + (3ω + 2)q33y11 + (4ω + 9)q33y8 + ωq32y11 + (9ω + 8)q32y8 − ωq31y11 + (5ω +

10)q31y8+(7ω+7)q30y8−ωq30y5+(10ω+4)q29y8−ωq29y5+(8ω+6)q28y8+2q28y5+(8ω+

1)q27y8+(ω+3)q27y5+(7ω−4)q26y8+(3ω+3)q26y5+(ω−5)q25y8+(4ω+3)q25y5+(−ω−

4)q24y8+(4ω+1)q24y5+(−ω−4)q23y8+(4ω−2)q23y5+(−3ω−2)q22y8+(2ω−2)q22y5−

ωq21y8 + (−ω− 4)q21y5 + (−ω− 6)q20y5 + (−3ω− 4)q19y5 + (−6ω− 3)q18y5 + (−4ω−

3)q17y5−3ωq16y5+(−3ω+2)q15y5+(−ω+1)q14y5+q13y5+q12y5+(ω+1)q11y5+(−ω−

1)q11y2 + (−ω− 1)q10y2−ωq9y2 + q8y2 + (ω+ 1)q7y2 + (ω+ 1)q6y2 +ωq5y2 +ωq4y2
)
x3

+
(
ωq94y22+ωq93y22+(−ω−1)q91y22+q89y22+q88y22−q88y19−q87y19+(−ω−1)q86y19+

(−2ω−2)q85y19 + (−ω−1)q84y19 + (−2ω+ 1)q83y19 + (−2ω+ 1)q82y19 +ωq81y19 + (ω+

2)q80y19+(−ω+1)q79y19+(−ω−1)q79y16+(ω−1)q78y19+(−ω−1)q78y16+(2ω+1)q77y19+

(−ω+2)q77y16+q76y19+(−2ω+2)q76y16+(ω−2)q75y19+2q75y16+(ω−2)q74y19+(4ω+
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6)q74y16 + (−ω− 1)q73y19 + (3ω+ 6)q73y16 + (−2ω− 2)q72y19 + (5ω+ 1)q72y16 + (−ω−

1)q71y19 + (6ω+ 2)q71y16− ωq70y19 + (2ω+ 2)q70y16− ωq69y19 + (ω− 4)q69y16 + (3ω−

3)q68y16+(ω+1)q68y13−3ωq67y16+(ω+1)q67y13+(−3ω−3)q66y16−2q66y13−3q65y16+

(2ω− 1)q65y13 + (−3ω+ 3)q64y16 + (ω+ 1)q64y13 + (−4ω+ 1)q63y16 + (−ω− 3)q63y13 +

(2ω+2)q62y16 +(3ω−2)q62y13 +(2ω+6)q61y16 +(2ω+1)q61y13 +(ω+5)q60y16 +(−2ω−

6)q60y13 + (6ω + 3)q59y16 − 9q59y13 + (6ω + 4)q58y16 + (−3ω − 4)q58y13 + 2ωq57y16 +

(−9ω−7)q57y13 +(2ω−2)q56y16 +(−4ω−7)q56y13 +(2ω−1)q55y16 +(−2ω+2)q55y13 +

(ω+1)q55y10+(−ω−1)q54y16+(−5ω+1)q54y13+(−ω−1)q54y10+(−ω−1)q53y16+(ω−

5)q53y13+(−ω−2)q53y10+(2ω−2)q52y13−ωq52y10+(−7ω−4)q51y13−4ωq51y10+(−7ω−

9)q50y13 + (−3ω− 2)q50y10 + (−4ω− 3)q49y13 + 4q49y10− 9ωq48y13 + (−3ω+ 3)q48y10 +

(−6ω−2)q47y13+(−4ω−1)q47y10+(ω+2)q46y13+(ω+5)q46y10+(−2ω+3)q45y13+(−4ω+

8)q45y10 + (−3ω−1)q44y13 + (−2ω+ 6)q44y10 + (ω+ 1)q43y13 + (6ω+ 13)q43y10 + (−ω+

2)q42y13 +(9ω+18)q42y10−2ωq41y13 +(9ω+9)q41y10 +(ω+1)q40y13 +(18ω+9)q40y10 +

(ω+1)q40y7+(ω+1)q39y13+(13ω+6)q39y10+(ω+2)q39y7+(6ω−2)q38y10+ωq38y7+(8ω−

4)q37y10+4ωq37y7+(5ω+1)q36y10+4ωq36y7+(−ω−4)q35y10−5q35y7+(3ω−3)q34y10−

6q34y7+4ωq33y10+(−ω−4)q33y7+(−2ω−3)q32y10+(−6ω−7)q32y7−4q31y10+(−4ω−

6)q31y7−q30y10 +(−ω−1)q30y7 +(−2ω−1)q29y10 +(−5ω−4)q29y7 +(−ω−1)q28y10 +

(−4ω − 5)q28y7 + (ω + 1)q27y10 + (−ω − 1)q27y7 + (−6ω − 4)q26y7 + (−7ω − 6)q25y7 +

(−4ω−1)q24y7−6ωq23y7−ωq23y4−5ωq22y7−ωq22y4+4q21y7+2q21y4+4q20y7+2q20y4+

q19y7+q19y4+(2ω+1)q18y7+(3ω+3)q18y4+(ω+1)q17y7+(2ω+2)q17y4+(2ω+2)q15y4+

(3ω+3)q14y4+ωq13y4+2ωq12y4+2ωq11y4−q10y4−q9y4+(−ω−1)q4y+(−ω−1)q3y
)
x4

+
(
q100y24 + q94y21 + (ω + 1)q93y21 + 2ωq92y21 + (2ω + 1)q91y21 + ωq90y21 − 2q89y21 −

2q86y21+(ω−1)q86y18+(−ω−1)q85y21−q85y18+(−ω−1)q84y21+(−ω−2)q83y21+(−ω−

3)q83y18−ωq82y21+(−ω−2)q82y18−ωq81y21+(−2ω−1)q81y18+(−2ω−4)q80y18+(−4ω−

4)q79y18 − 5ωq78y18 + (−5ω − 3)q77y18 − q77y15 − 5ωq76y18 + (−ω − 2)q76y15 + (−4ω +

4)q75y18−2ωq75y15+(−ω+3)q74y18−2ωq74y15+(ω+5)q73y18−2ωq73y15+(ω+8)q72y18+

(−2ω+ 4)q72y15 + (5ω+ 4)q71y18 + 4q71y15 + (6ω+ 4)q70y18 + 2q70y15 + (4ω+ 4)q69y18 +

(−ω+7)q69y15+(3ω−1)q68y18+(3ω+9)q68y15+(3ω−1)q67y18+(7ω+9)q67y15+(10ω+

15)q66y15−q65y18+(16ω+11)q65y15−q64y18+(21ω+3)q64y15−q64y12+(14ω−1)q63y15+

q63y12 + (7ω − 12)q62y15 + (2ω + 3)q62y12 + (ω − 19)q61y15 + (3ω + 1)q61y12 + (−8ω −

13)q60y15+(3ω+1)q60y12+(−13ω−13)q59y15+(4ω+1)q59y12+(−8ω−10)q58y15+(6ω−

4)q58y12 +(−8ω−1)q57y15 +(ω−6)q57y12 +(−7ω−1)q56y15 +(−ω−6)q56y12 +(−3ω−
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3)q55y15 + (−ω− 13)q55y12 + (−3ω+ 2)q54y15 + (−6ω− 12)q54y12 + (−4ω+ 1)q53y15 +

(−13ω−12)q53y12−ωq52y15+(−12ω−15)q52y12+2q51y15+(−16ω−10)q51y12+2q50y15+

(−21ω − 2)q50y12 + ωq49y15 + (−14ω − 1)q49y12 − q49y9 + (−7ω + 11)q48y12 + (−2ω −

3)q48y9 +(−5ω+16)q47y12 +(−4ω−1)q47y9 +(4ω+13)q46y12 +(−4ω−1)q46y9 +(12ω+

16)q45y12 + (−5ω+ 1)q45y9 + (9ω+ 15)q44y12 + (−4ω+ 7)q44y9 + (11ω+ 6)q43y12 + (ω+

8)q43y9+(11ω+4)q42y12+(6ω+8)q42y9+(7ω+3)q41y12+(4ω+10)q41y9+(4ω−3)q40y12+

(7ω+7)q40y9 +(3ω−3)q39y12 +(10ω+5)q39y9 +(−ω−3)q38y12 +(8ω+9)q38y9 +(−ω−

3)q37y12+(9ω+4)q37y9+(−ω−2)q36y12+(15ω+1)q36y9−ωq35y12+(10ω−2)q35y9+(3ω−

10)q34y9+(ω+1)q34y6−15q33y9+ωq33y6+(−8ω−12)q32y9+ωq32y6+(−13ω−11)q31y9+

(ω−1)q31y6+(−10ω−6)q30y9+(2ω−3)q30y6+(−7ω+1)q29y9−3q29y6+(−4ω+3)q28y9+

(−3ω−4)q28y6+3q27y9+(−3ω−6)q27y6+(ω+3)q26y9+(−4ω−3)q26y6+(ω+1)q25y9+

(−6ω − 1)q25y6 + ωq24y9 + (−4ω − 1)q24y6 + (−2ω + 2)q23y6 + (−2ω + 4)q22y6 + (ω +

4)q21y6 +(3ω+4)q20y6 +(3ω+3)q19y6 +(3ω+1)q18y6 +2ωq17y6−q16y6 +q16y3−q15y6 +

q15y3 +(ω+1)q14y3 +(ω+1)q13y3 +ωq12y3− q11y3 +(−ω−1)q10y3 +(−ω−1)q9y30
)
x5

+
(

(−ω−1)q95y23+(−ω−1)q94y23+(−ω−1)q89y20+(−2ω−1)q88y20+(−ω+2)q87y20+

(−ω+ 3)q86y20 + 3q85y20 + (4ω+ 5)q84y20 + (5ω+ 4)q83y20 + 2ωq82y20 + 2ωq81y20 + (ω+

2)q81y17 +2ωq80y20 +(2ω+3)q80y17−q79y20 +(2ω+1)q79y17 +ωq78y20 +(5ω+2)q78y17 +

ωq77y20 + (7ω + 1)q77y17 − q76y20 + (3ω − 5)q76y17 + (ω − 7)q75y17 − 7q74y17 + (−6ω −

11)q73y17 +(−8ω−10)q72y17 +(ω+1)q72y14 +(−5ω−5)q71y17 +(3ω+2)q71y14 +(−8ω−

7)q70y17 + (2ω − 2)q70y14 + (−9ω − 5)q69y17 + (−ω − 6)q69y14 − 5ωq68y17 + (−4ω −

7)q68y14 +(−6ω−1)q67y17 +(−11ω−10)q67y14 +(−5ω+1)q66y17 +(−17ω−8)q66y14 +

(−ω + 4)q65y17 + (−14ω + 3)q65y14 + 2q64y17 + (−9ω + 10)q64y14 + 2q63y17 + (−4ω +

14)q63y14 + (ω + 3)q62y17 + (7ω + 21)q62y14 + (13ω + 18)q61y14 + (10ω + 11)q60y14 +

(ω + 1)q59y17 + (13ω + 13)q59y14 + (ω + 2)q59y11 + (13ω + 9)q58y14 + (2ω + 2)q58y11 +

(11ω+ 5)q57y14 +ωq57y11 + (13ω+ 6)q56y14 + (2ω+ 1)q56y11 + (13ω+ 1)q55y14 + (3ω+

1)q55y11 + (6ω − 7)q54y14 + (ω − 1)q54y11 + (3ω − 4)q53y14 + (2ω + 2)q53y11 + (−ω −

7)q52y14+(7ω+4)q52y11+(−5ω−7)q51y14+(7ω−2)q51y11−2ωq50y14+(6ω−4)q50y11+

(−ω+ 1)q49y14 + (6ω− 8)q49y11− q48y14 + (−2ω− 17)q48y11 + (ω+ 1)q47y14 + (−10ω−

16)q47y11 +ωq46y14 +(−12ω−11)q46y11 +(−ω−2)q45y14 +(−13ω−10)q45y11−q45y8 +

(−10ω − 2)q44y11 + (−ω − 1)q44y8 + (−4ω + 3)q43y11 − ωq43y8 + (−3ω − 3)q42y11 +

(−2ω − 1)q42y8 + (−3ω − 1)q41y11 + (−3ω − 1)q41y8 − 4ωq40y11 + (−2ω + 1)q40y8 +

(−7ω−4)q39y11 +(−ω+1)q39y8 +(−5ω+1)q38y11 +(−3ω+1)q38y8 +(−ω+6)q37y11 +
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(−ω+5)q37y8 +3q36y11 +(ω+3)q36y8 +(2ω+3)q35y11 +(2ω+4)q35y8 +(3ω+3)q34y11 +

(3ω+ 6)q34y8 + (ω−1)q33y11 + (3ω+ 2)q33y8− q32y11 + 2ωq32y8 + (2ω+ 5)q31y8 + (2ω+

2)q30y8 + (2ω+ 1)q29y8 + (4ω+ 4)q28y8 + (3ω+ 1)q27y8 +ωq27y5 + (2ω− 2)q26y8 + (ω−

1)q26y5 + ωq25y8 − q24y8 + (−ω − 2)q23y8 − q23y5 + (ω + 1)q22y5 + ωq21y5 − 3q20y5 +

(−ω − 2)q19y5 + (−2ω − 1)q18y5 + (−2ω − 2)q17y5 − ωq16y5 + q15y5 + q9y2
)
x6

+
(
ωq88y22 +ωq82y19− q81y19 + (−2ω− 2)q80y19 + (−ω− 2)q79y19 + (−2ω− 1)q78y19−

4ωq77y19 + (−ω+ 1)q76y19 + (ω+ 2)q75y19 + 2q74y19 + (−2ω−1)q74y16 + (ω+ 1)q73y19−

ωq73y16 + ωq72y19 + q72y16 + (−2ω + 3)q71y16 + (ω + 4)q70y16 + (6ω + 6)q69y16 + (5ω +

5)q68y16 + (6ω + 3)q67y16 + 10ωq66y16 + (3ω − 3)q65y16 − ωq65y13 − 5q64y16 + (−ω +

1)q64y13−6q63y16+(3ω+3)q63y13+(−3ω−4)q62y16+(4ω+3)q62y13+(−5ω−3)q61y16+

4ωq61y13 +(−ω−1)q60y16 +(7ω−4)q60y13−ωq59y16 +(ω−10)q59y13 +(−ω+1)q58y16 +

(−10ω−15)q58y13+(−13ω−15)q57y13+(−17ω−9)q56y13−20ωq55y13+(−8ω+9)q54y13+

(2ω+15)q53y13+(5ω+15)q52y13+(−2ω−1)q52y10+(11ω+10)q51y13−ωq51y10+(11ω+

4)q50y13 +q50y10 +4ωq49y13 +(−2ω+3)q49y10 +(ω−3)q48y13 +(ω+4)q48y10−3q47y13 +

(6ω+6)q47y10+(−2ω−1)q46y13+(5ω+5)q46y10−ωq45y13+(6ω+3)q45y10+10ωq44y10+

(3ω−3)q43y10−5q42y10−6q41y10+(−3ω−4)q40y10+(−5ω−3)q39y10+(−ω−1)q38y10+

ωq38y7−ωq37y10− q37y7 + (−ω+ 1)q36y10 + (−2ω− 2)q36y7 + (−ω− 2)q35y7 + (−2ω−

1)q34y7−4ωq33y7+(−ω+1)q32y7+(ω+2)q31y7+2q30y7+(ω+1)q29y7+ωq28y7+ωq22y4
)
x7

Defining f ′ = v−1u, it can be verified computationally using Magma that σ(f ′) = f ′,

f ′g = qgf ′ and k(x, y)σ = kq(f
′, g).

A.4 Computation of prime ideals in O(GL3)

In Theorem 5.4.2, we use computation in Magma to verify that certain ideals are

prime. The ideals in question are

Qλ = 〈e1 − λ1f1, . . . , en − λnfn〉 ⊂ O(GL3)/Iω

as defined in (5.4.1).

Since Qλ ⊆ QλBω ∩ O(GL3)/Iω = Pλ ∩ O(GL3)/Iω and Pλ is known to be a non-

trivial ideal in Bω, we can conclude that D 6∈ Qλ. The ideal Qλ is therefore prime in
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O(GL3)/Iω if and only if Iω +Qλ is prime in O(GL3) if and only if (Iω +Qλ)∩O(M3)

is prime in O(M3).

We are only interested in the commutative algebra structure of O(M3) rather than the

Poisson algebra structure, so we may view O(M3) as a polynomial ring in 9 variables.

It is now easy to verify that the four ideals Iω + Qλ are prime in O(M3) for the

appropriate values of ω, which we do as follows.

> field<i>:=CyclotomicField(4);

> K<x11,x12,x13,x21,x22,x23,x31,x32,x33>:=PolynomialRing(field,9);

> Det:=x11*(x22*x33-x23*x32) - x12*(x21*x33-x23*x31) \

+ x13*(x21*x32-x22*x31);

> M13:=x21*x32 - x22*x31;

> M31:=x12*x23 - x22*x13;

> M21:=x12*x33 - x13*x32;

> M32:=x11*x23 - x13*x21;

>

> // (321,321)

> I1:=ideal<K|Det-1,M13-x13,M31-x31>;

>

> // (321,312)

> I2:=ideal<K|Det-1,x13,x12*x23-x31>;

>

> // (231,231)

> I3:=ideal<K|Det-1,x31,M31,M21-x21,M32-x32>;

>

> // (132,312)

> I4:=ideal<K|Det-1,x13,x21,x31,x11*x32-x23>;

>

> IsPrime(I1);

true

> IsPrime(I2);
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true

> IsPrime(I3);

true

> IsPrime(I4);

true



Appendix B

H-prime Figures

ω− 321 231 312 132 213 123
ω+

321
◦◦◦◦◦◦◦◦◦

◦◦◦◦◦
◦◦•◦◦◦◦◦◦

◦••◦◦◦◦◦◦
◦◦•◦◦•◦◦◦

◦••◦◦•◦◦◦

231
◦◦◦◦◦◦•◦◦

◦◦•◦◦
◦◦•◦◦◦•◦◦

◦••◦◦◦•◦◦
◦◦•◦◦••◦◦

◦••◦◦••◦◦

312
◦◦◦◦◦

◦
◦
◦◦•◦◦

◦••◦◦
◦◦••◦

◦•••◦

132
◦◦◦•◦◦•◦◦

◦••◦◦
◦◦••◦◦•◦◦

◦•••◦◦•◦◦
◦◦••◦••◦◦

◦•••◦••◦◦

213
◦◦◦◦◦◦••◦

◦◦••◦
◦◦•◦◦◦••◦

◦••◦◦◦••◦
◦◦•◦◦•••◦

◦••◦◦•••◦

123
◦◦◦•◦◦••◦

◦•••◦
◦◦••◦◦••◦

◦•••◦◦••◦
◦◦••◦•••◦

◦•••◦•••◦

Figure B.1: Generators for H-primes in Oq(GL3) and O(GL3).

This figure is reproduced from [29, Figure 1] and represents the 36 H-primes in

Oq(GL3) and O(GL3). Each ideal is represented pictorially by a 3× 3 grid of dots: a

black dot in position (i, j) denotes the element Xij, and a square represents a 2 × 2

(quantum) minor in the natural way. For example, the ideal in position (231, 231)

denotes the ideal generated by X31 and [3̃|1̃]q in Oq(GL3), or the ideal generated by

x31 and [3̃|1̃] in O(GL3), as appropriate.

These ideals are indexed by ω = (ω+, ω−) ∈ S3 × S3, following the notation of [29].
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◦◦◦◦◦◦◦◦◦
(321,321)
◦◦•◦◦◦◦◦◦ −→

τ

◦◦◦◦◦◦•◦◦ −→
S

◦◦◦◦◦ −→
τ

◦◦◦◦◦
(321,312) (231,321) (312,321) (321,231)
◦◦•◦◦ −→

τ

◦◦•◦◦
(231,231) (312,312)
◦◦•◦◦◦•◦◦ −→

S

◦
◦

(231,312) (312,231)
◦••◦◦◦◦◦◦ −→

τ

◦◦◦•◦◦•◦◦ −→
ρ

◦◦◦◦◦◦••◦ −→
τ

◦◦•◦◦•◦◦◦
(321,132) (132,321) (213,321) (321,213)
◦••◦◦•◦◦◦ −→

τ

◦◦◦•◦◦••◦
(321,123) (123,321)
◦◦••◦◦•◦◦ −→

τ

◦••◦◦◦•◦◦ −→
ρ

◦◦•◦◦••◦◦ −→
τ

◦◦•◦◦◦••◦
(132,312) (231,132) (231,213) (213,312)

S ◦ ρ ↓ S ◦ ρ ↓ S ◦ ρ ↓ S ◦ ρ ↓

◦◦••◦ −→
τ

◦◦••◦ −→
ρ

◦••◦◦ −→
τ

◦••◦◦
(213,231) (312,213) (312,132) (132,231)
◦•••◦◦•◦◦ −→

ρ

◦◦•◦◦•••◦
(132,132) (213,213)
◦◦••◦◦••◦ −→

τ

◦••◦◦••◦◦ −→
S

◦•••◦ −→
τ

◦•••◦
(123,312) (231,123) (312,123) (123,231)
◦••◦◦◦••◦ −→

τ

◦◦••◦••◦◦
(213,132) (132,213)
◦•••◦◦••◦ −→

τ

◦•••◦••◦◦ −→
ρ

◦••◦◦•••◦ −→
τ

◦◦••◦•••◦
(123,132) (132,123) (213,123) (123,213)
◦•••◦•••◦

(123,123)

Figure B.2: H-primes grouped by orbit
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(ω+, ω−)
Simplified generators for
original Ore set

Additional generators

◦◦◦◦◦◦◦◦◦ (321, 321) X31, X13, [1̃|3̃]q, [3̃|1̃]q X11, X12, X21, [3̃|3̃]q
◦◦•◦◦◦◦◦◦ (321, 312) X31, [1̃|3̃]q, X23, X12 X11, X21, [3̃|3̃]q
◦◦•◦◦ (231, 231) X21, X32, [2̃|1̃]q, [3̃|2̃]q X33, [1̃|1̃]q
◦◦•◦◦◦•◦◦ (231, 312) X21, X32, X23, X12 [1̃|1̃]q, X33

◦••◦◦◦◦◦◦ (321, 132) X31, [1̃|3̃]q, X23 X32, X33

◦••◦◦•◦◦◦ (321, 123) X31, [1̃|3̃]q X21

◦◦••◦◦•◦◦ (132, 312) X32, X23, X12 X33

◦•••◦◦•◦◦ (132, 132) X32, X23 X33

◦◦••◦◦••◦ (123, 312) X23, X12

◦••◦◦◦••◦ (213, 132) X21, X23

◦•••◦◦••◦ (123, 132) X23

◦•••◦•••◦ (123, 123)

Figure B.3: Definitive sets of generators for the Ore sets Eω.

Eω is defined to be the multiplicative set generated by all of the elements in the row

corresponding to Iω; those cases not listed explicitly here can be obtained by applying

the appropriate combination of τ , ρ and S from Figure B.2. Elements of Eω are

considered as coset representatives in O(GL3)/Iω.

Eω also denotes the corresponding multiplcative set in O(GL3)/Iω, where we replace

each Xij with xij and [̃i|̃j]q with [̃i|̃j].
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(ω+, ω−) Localization is quantum torus on these generators

◦◦◦◦◦◦◦◦◦ (321, 321) X11, X12, X13, X21, X31, [3̃|3̃]q, [3̃|1̃]q, [1̃|3̃]q, Detq
◦◦•◦◦◦◦◦◦ (321, 312) X11, X12, X21, X23, X31, [3̃|3̃]q, [1̃|3̃]q, Detq
◦◦•◦◦ (231, 231) X13, X21, X32, X33, [2̃|1̃]q, [1̃|1̃]q, Detq
◦◦•◦◦◦•◦◦ (231, 312) X12, X21, X23, X32, X33, [1̃|1̃]q, Detq
◦••◦◦◦◦◦◦ (321, 132) X11, X23, X31, X32, X33, [1̃|3̃]q, [1̃|1̃]q
◦••◦◦•◦◦◦ (321, 123) X11, X21, X22, X31, [1̃|3̃]q, X33

◦◦••◦◦•◦◦ (132, 312) X11, X12, X23, X32, X33, [1̃|1̃]q
◦•••◦◦•◦◦ (132, 132) X11, X23, X32, X33, [1̃|1̃]q
◦◦••◦◦••◦ (123, 312) X11, X12, X22, X23, X33

◦••◦◦◦••◦ (213, 132) X11, X21, X22, X23, X33

◦•••◦◦••◦ (123, 132) X11, X22, X23, X33

◦•••◦•••◦ (123, 123) X11, X22, X33

Figure B.4: Generators for the quantum tori Aω = Oq(GL3)/Iω
[
E−1
ω

]
.

The localizations Oq(GL3)/Iω at the Ore sets Eω listed in Figure B.3 are computed in

[29, §4], and we reproduce this information here for convenience.

Aω is always isomorphic to a quantum torus kq[R±1
1 , . . . , R±1

m ], and Figure B.4 lists

a choice for the generators Ri for each case (those not listed explicitly here can be

obtained by applying the appropriate combination of τ , ρ and S from Figure B.2).

The q-commuting relations RiRj = qaijRjRi are not needed for this thesis, but can

easily be computed from the relations in Oq(GL3).

By Proposition 5.3.9, Figure B.4 also describes sets of generators for the Poisson

algebras Bω, subject to replacing Xij with xij, [̃i|̃j]q with [̃i|̃j] and Detq with Det.



APPENDIX B. H-PRIME FIGURES 180

(ω+, ω−) Generators of the centre

◦◦◦◦◦◦◦◦◦ (321, 321) Detq, [1̃|3̃]X−1
13 , [3̃|1̃]X−1

31

◦◦•◦◦◦◦◦◦ (321, 312) Detq, X12X23X
−1
31

◦◦•◦◦ (231, 231) Detq, [2̃|1̃]X−1
21 , [3̃|2̃]X−1

32

◦◦•◦◦◦•◦◦ (231, 312) Detq
◦••◦◦◦◦◦◦ (321, 132) Detq
◦••◦◦•◦◦◦ (321, 123) Detq, X22[1̃|3̃]X−1

31

◦◦••◦◦•◦◦ (132, 312) Detq, X11X32X
−1
23

◦•••◦◦•◦◦ (132, 132) Detq, X11, X23X
−1
32

◦◦••◦◦••◦ (123, 312) Detq
◦••◦◦◦••◦ (213, 132) Detq
◦•••◦◦••◦ (123, 132) Detq, X11

◦•••◦•••◦ (123, 123) Detq, X11, X22

Figure B.5: Generators for the centres of the localizations Aω.

By the Stratification Theorem, the centre of Aω is always a Laurent polynomial ring.

This figure lists a set of generators for Z(Aω), reproduced from the results of [29, §5].

The other 24 cases may be obtained by applying the appropriate combinations of τ , ρ,

and S from Figure B.2; implicitly, we ignore any extra factors of the central element

Detq which might appear after applying S.

By Proposition 5.3.14, this figure also lists generating sets for the Poisson centres

PZ(Bω), subject only to replacing Xij by xij, [̃i|̃j]q by [̃i|̃j] and Detq by Det.
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Some new results are proved.

Christopher Tedd (Logician)

I was with you up to “Index of Notation”.

Dr. Andrew Taylor PhD
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utterly disappointed in the lack of Harry Potter citations. I expected better
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Matthew Taylor
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quantiques. Comm. Algebra, 20(6):1787–1802, 1992.

[2] J. Alev and F. Dumas. Sur le corps des fractions de certaines algèbres quantiques.
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