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6 Wave equation: solution

In this lecture we will solve the wave equation on the entire real line x € R. This corresponds to a string
of infinite length. Although physically unrealistic, as we will see later, when considering the dynamics
of a portion of the string away from the endpoints, the boundary conditions have no effect for some
(nonzero) finite time. Due to this, one can neglect the endpoints, and make the assumption that the
string is infinite.

The wave equation, which describes the dynamics of the amplitude u(x,t) of the point at position x
on the string at time ¢, has the following form

2
Ut = C Ugy,

or
U — gy = 0. (1)

As we saw in the last lecture, the wave equation has the second canonical form for hyperbolic equations.
One can then rewrite this equation in the first canonical form, which is

Ugny = 0. (2)

This is achived by passing to the characteristic variables

E=atet,
{ezrra ®

To see that (2) is equivalent to (1), let us compute the partial derivatives of u with respect to z and ¢
in the new variables using the chain rule.

Uy = ClUg — Cly,

Uy = Ug + Uy.

We can differentiate the above first order partial derivatives with respect to t, respectively = using the
chain rule again, to get

Uy = CQU& — 2c2u£,7 + CQUW,
Ugy = Ugg + gy + Uny.

Substituting these expressions into the left hand side of equation (1), we see that
Ut — CUyy = c2u5§ — 202“571 + CQUW — cZ(u& + 2ugy + upy) = —402u§77 =0,

which is equivalent to (2).
Equation (2) can be treated as a pair of successive ODEs. Integrating first with respect to the variable
n, and then with respect to &, we arrive at the solution

u(€,n) = f(&§) +g9n).

Recalling the definition of the characteristic variables (3), we can switch back to the original variables
(x,t), and obtain the general solution

uw(z,t) = f(x +ct) + g(x — ct). (4)

Another way to solve equation (1) is to realize that the second order linear operator of the wave
equation factors into two first order operators

L =02 — 0% = (0, — ¢0,)(0; + cOy).
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Hence, the wave equation can be thought of as a pair of transport (advection) equations

(0p — cOp)v =0, (5)
(O + cOz)u = v. (6)
It is no coincidence, of course, that
x + ¢t = constant, (7)
and
x — ¢t = constant, (8)

are the characteristic lines for the transport equations (5), and (6) respectively, hence our choice of the
characteristic coordinates (3). We also see that for each point in the zt plane there are two distinct
characteristic lines, each belonging to one of the two families (7) and (8), that pass through the point.
This is illustrated in Figure 1 below.

Figure 1: Characteristic lines for the wave equation with ¢ = 0.6.

6.1 Initial value problem

Along with the wave equation (1), we next consider some initial conditions, to single out a particular
physical solution from the general solution (4). The equation is of second order in time ¢, so values
must be specified both for the initial dispalcement u(x,0), and the initial velocity wu;(z,0). We study
the following initial value problem, or IVP

{ Upt — CUgy = 0 for — 0o < x < 400, ()

u(w,O) = ¢(ZL‘), ut(x,()) = ¢($),

where ¢ and 1 are arbitrary functions of single variable, and together are called the initial data of the
IVP. The solution to this problem is easily found from the general solution (4). All we need to do is find
f and g from the initial conditions of the IVP (9). To check the first initial condition, set ¢ = 0 in (4),

u(z,0) = ¢(x) = f(z) + g(x). (10)
To check the second initial condition, we differentiate (4) with respect to ¢, and set t = 0
w(2,0) = ¥(x) = cf (z) — o (x). (11)

Equations (10) and (11) can be treated as a system of two equations for f and g. To solve this system,
we first integrate both sides of (11) from 0 to x to get rid of the derivatives on f and g (alternatively
we could differentiate (10) instead), and rewrite the equations as

£(@) + g(x) = (o),
Fla)=ata) = 7 [ 0s)ds + 7(0) = 0



We can solve this system by adding the equations to eliminate g, snd subtracting them to eliminate f.
This leads to the solution

o) = 50la) + 5o [ 0(s)ds + 57(0) = g(0)]
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ole) = 5ole) = 5o | 0(s)ds = 5170) = g(O)

Finally, substituting these expressions for f and g back into the solution (4), we obtain the solution of
the IVP (9)

x+ct

u(z,t) = %qb(x +ect)+ — P(s)ds + %gb@ —ct) — 2%/0 ) P(s)ds.

2¢ Jy

Combining the integrals using additivity, and the fact that flipping the integration limits changes the
sign of the integral, we arrive at the following form for the solution

x+ct

w(w, ) = %[gzﬁ(a: et) 4ol -t 4o [ (s ds (12)

r—cC

This is d’Alambert’s solution for the IVP (9). It implies that as long as ¢ is twice continuously differ-
entiable (¢ € C?), and v is continuously differentiable (¢ € C1), (12) gives a solution to the IVP. We
will also consider examples with discontinuous initial data, which after plugging into (12) produce weak
solutions. This notion will be made precise in later lectures.

Example 6.1. Solve the initial value problem (9) with the initial data

o(x) =0, YP(z) = sinx.

Substituting ¢ and v into d’Alambert’s formula, we obtain the solution

1 x+ct 1
u(z,t) = 2_0/ sinsds = 2—0(— cos(x + ct) + cos(z — ct)).

—ct

Using the trigonometric identities for the cosine of a sum and difference of two angles, we can simplify
the above to get

1
u(z,t) = —sin x sin(ct).
c
You should verify that this indeed solves the wave equation and satisfies the given initial conditions. []

6.2 The Box wave

When solving the transport equation, we saw that the initial values simply travel to the right, when
the speed is positive (they propagate along the characteristics (8)); or to the left (they propagate along
the characteristics (7)), when the speed is negative. Since the wave equation is made up of two of these
type of equations, we expect similar behavior for the solutions of the IVP (9) as well. To see this, let
us consider the following example with simplified initial data.

Example 6.2. Find the solution of IVP (9), with the initial data

h, x| <a,
o) = { 0, |‘ac|| > a, (13)
(x) =



This data corresponds to an initial disturbance of the string centered at x = 0 of height h, and zero
initial velocity. Notice that ¢(x) is not continuous, let alone twice differentiable, though one can still
substitute it into d’Alambert’s solution (12) and get a function u, which will be a weak solution of the
wave equation.

Since () = 0, only the first term in (12) is nonzero. We compute this term using the particular
¢(z) in (13). First notice that

_Jhy |z +et| <a,
¢z +ct) = { 0, |z+ct|>a, (14)
and | |
h, |r—ct| <a,
oz —ct) = { 0, |z—ct|>a. (15)

Hence, the solution
1
u(,t) = 5[z + ct) + ¢z — ct)]

is piecewise defined in 4 different regions in the xt half-plane (we consider only positive time t > 0),
which correspond to pairings of the intervals in the expressions (14) and (15). These regions are

I: {lx+ct] <a,|z—ct| <a}, u(z,t) =h

II: {lz+ct| <a,|z—ct| > a}, u(z,t) =

II: {|lz +ct| > a, |z — ct| < a}, u(x,t) =

IV: {lz +ct| > a,|z — ct] > a}, u(z,t) =

The regions are depicted in Figure 2. Notice that |z + ct| < a is equivalent to

1
—a<z+ct<a, or ——(x4a)<t<—
c

SN

(x —a).

Similarly for the other inequalities.

Figure 2: Regions where u has different values.

Using the values for the solution in (16), we can draw the graph of u at different times, some of which
are depicted in Figures 3-6.

We see that the initial box-like disturbance centered at x = 0 splits into two disturbances of half the
size, which travel in opposite directions with speed c.

The graphs hint that the initial disturbance will not be felt at a point x on the string (for |z| > a)
before the time ¢ = 1||z| — a|. We will shortly see that this is a general property for the wave equation.
In this particular case a box-like disturbance appears at the time ¢ = 1[|z| — a, and lasts exactly t = 2
units of time, after which it completely moves along. In general, the initial velocity may slow down the
speed, and subsequently make the disturbance “last” longer, however, the speed cannot exceed c¢. [



t=0

t<ac

Figure 3: The solution at ¢ = 0. Figure 4: The solution for 0 <t < a/c.
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Figure 5: The solution at ¢t = a/c. Figure 6: The solution for t > a/c.

6.3 Causality
The value of the solution to the IVP (9) at a point (g, ty) can be found from d’Alambert’s formula (12)

(o, to) = %W(mo Feto) + gl — cto)] + 5 / T (s) ds. (17)

o—cto

We can see that this value depends on the values of ¢ at only two points on the x axis, x¢ + cto,
and xg — cty, and the values of ¥ only on the interval [xg — cto, 2o + cto]. For this reason the interval
[z — cto, xo + cto] is called interval of dependence for the point (zg,tp). The triangular region with
vertices at xg — cty and xy + cty on the x axis and the vertex (zo, to) is called the domain of dependence,
or the past history of the point (xg, %), as depicted in Figure 7. The sides of this triangle are segments
of characteristic lines passing through the point (xg,%y). Thus, we see that the initial data travels along
the characteristics to give the values at later times. In the previous example of the box wave, we saw
that the jump discontinuities travel along the characteristic lines as well.
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Figure 7: Domain of dependence for (g, ty). Figure 8: Domain of influence of z.

An inverse notion to the domain of dependence is the notion of domain of influence of the point z
on the z axis. This is the region in the xt plane consisting of all the points, whose domain of depen-
dence contains the point xy. The region has an upside-down triangular shape, with the sides being the
characteristic lines emanating from the point z(, as shown in Figure 8. This also means that the value



of the initial data at the point x effects the values of the solution u at all the points in the domain of
influence. Notice that at a fixed time ¢y, only the points satisfying zo — ctg < x < x¢+ ctg are influenced
by the point zy on the x axis.

Example 6.3 (The hammer blow). Analyze the solution to the IVP (9) with the following initial data

o(x) =0,
h, |z| <a, (18)
viz) = { 0, ]‘x\’ > a.

From d’Alambert’s formula (12), we obtain the following solution

r+ct
u(z,t) = 2%/ P(s)ds. (19)

r—ct

Similar to the previous example of the box wave, there are several regions in the xt plane, in which u
has different values. Indeed, since the initial velocity ¢ (x) is nonzero only in the interval [—a,al, the
integral in (19) must be computed differently according to how the intervals [—a,a] and [z — ct, x + ct]
intersect. This corresponds to the cases when 1 is zero on the entire integration interval in (19), on a
part of it, or is nonzero on the entire integration interval. These different cases are:

I: {z—ct<zx+ct<—a<a}, u(z,t) =0

1 z+ct t
II: {z—ct<—-a<z+ct<a}, u(t,x):—/ hds:hw

2c J_, 2c

1 a
II: {z—ct<—-a<a<z+ct}, u(t,x):2—/ hds = h2

cJ q c

1 x+ct (20>
IV: {—a<z—ct<z+ct<al, u(t,x)zz—/ hds = ht

CJa—ct

1 [ a— (z—ct)
Vi {(ma<z—-ct<a< t t,x) = — hds = h————=

{—a<zx—ct<a<uz+ct} u(t, x) 20/1;—@5 s 5

VI: {—a<a<z—ct<z+ct}, u(z,t) =0

The regions are depicted in Figure 9 below. Notice that to find the value of the solution at a point (zq, to),
one simply needs to trace the point back to the x axis along the characteristic lines, and determine how
the interval of dependence intersects the segment [—a, al.
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Figure 9: Regions where u has different values.



6.4 Conclusion

The wave equation, being a constant coefficient second order PDE of hyperbolic type, posseses two fam-
ilies of characteristic lines, which correspond to constant values of respective characteristic variables.
Using these variables the equation can be treated as a pair of successive ODEs, integrating which leads to
the general solution. This general solution was used to arrive at d’Alambert’s solution (12) for the IVP
on the whole line. Unfortunatelly this simple derivation relies on having two families of characteristics
and does not work for the heat and Laplace’s equations.

Exploring a few examples of initial data, we established causality between the initial data and the val-
ues of the solution at later times. In particular, we saw that the initial values travel with speeds bounded
by the wave speed ¢, and that the discountinuities of the initial data travel along the characteristic lines.



