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5 Convergence of Fourier series

Starting from the method of separation of variables for the homogeneous Dirichlet and Neumann bound-
ary value problems, we studied the eigenvalue problem −X ′′ = λX with the associated boundary condi-
tions. This lead to the sine and cosine Fourier series respectively, and then the full Fourier series, which
corresponds to the periodic boundary conditions. Using the pairwise orthogonality of the eigenfunc-
tions in each of these cases, we were able to derive formulas for the Fourier coefficients. Finally, in the
last lecture we demonstrated that these ideas survive for general boundary conditions for the interval
(a, b), provided the boundary conditions are symmetric (hermitian). We showed that in this case the
eigenvalues are all real, and the eigenfunctions can be chosen to be real valued and pairwise orthogonal.

One can also show that the eigenvalues form a sequence λn →∞, as n→∞ for the general symmetric
boundary conditions. Notice that for the eigenvalues of the classical Fourier series, which we computed
explicitly to be λn = (nπ/l)2, this property holds. Then for the eigenvalues listed as

λ1 ≤ λ2 ≤ · · · → ∞,

we will have the corresponding eigenfunctions X1, X2, . . . , which are real valued and pairwise orthogo-
nal. We are interested in expanding any function f(x) defined on the interval (a, b) in terms of these
eigenfunctions. Formally writing

f(x) =
∞∑
n=1

AnXn, (1)

we found the coefficients An using the pairwise orthogonality of the eigenfunctions to be

An =
(f,Xn)

(Xn, Xn)
=

´ b
a
f(x)Xn(x) dx´ b

a
X2

n(x) dx
.

If we now use these formulas to compute the coefficients, and form the series
∑

nAnXn, then one should
make sure that this series converges for the equality (1) to make any sense. Since this is a series of
functions, there are different ways in which the convergence may be understood. We next define three
different notions of convergence, followed by criteria for convergence of the Fourier series for each of the
three notions.

5.1 Notions of convergence

The convergence of the series of functions
∑∞

n=1 fn(x) is equivalent to the convergence of the partial
sums of the series, S1, S2, . . . , where

SN =
N∑

n=1

fn(x).

Conversely, the convergence of a sequence of functions F1(x), F2(x), . . . is equivalent to the convergence
of the telescoping series

∑∞
n=1 fn(x), where f1(x) = F1(x), and fn(x) = Fn(x)−Fn−1(x), for n = 2, 3, . . . ,

since the functions FN(x) are the partial sums of this telescoping series.

Definition 5.1 (Convergence). We say that

(i)
∑∞

n=1 fn(x) converges to f(x) pointwise in (a, b), if for each fixed x ∈ (a, b),∣∣∣∣∣f(x)−
N∑

n=1

fn(x)

∣∣∣∣∣→ 0 as N →∞ (equivalently |f(x)− SN(x)| → 0).

That is, for each fixed a < x < b the numeric sequence
∑∞

n=1 fn(x) converges to the number f(x).
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(ii)
∑∞

n=1 fn(x) converges to f(x) uniformly in [a, b], if

max
a≤x≤b

∣∣∣∣∣f(x)−
N∑

n=1

fn(x)

∣∣∣∣∣→ 0 as N →∞ (equivalently max
a≤x≤b

|f(x)− SN(x)| → 0).

That is, the overall “distance” between the function f(x) and the partial sums SN(x) converges
to zero. Notice that the endpoints of the interval are included in the definition.

(iii)
∑∞

n=1 fn(x) converges to f(x) in the mean-square (or L2 sense) in (a, b), if

ˆ b

a

∣∣∣∣∣f(x)−
N∑

n=1

fn(x)

∣∣∣∣∣
2

dx→ 0 as N →∞ (equivalently

ˆ b

a

|f(x)− SN(x)|2 dx→ 0).

That is, the the “distance” between f(x) and the partial sums SN(x) in the mean-square sense
converges to zero.

It is obvious from the definition that uniform convergence is the strongest notion of the three, since
uniformly convergent series will clearly converge pointwise, as well as in L2 sense (for finite intervals).
The converse is not true, since not every pointwise or L2 convergent series is uniformly convergent. An
example is the telescoping series

∑∞
n=1(x

n−1−xn) in the interval (0, 1) (check that it converges pointwise
and in L2 sense, but not uniformly).

Between the pointwise and L2 convergence, neither is stronger than the other, since there are series
that converge pointwise, but not in L2, and vice versa.

An example of a pointwise convergent series that fails to be L2 convergent is the telescoping series∑∞
n=1 f(x) =

∑∞
n=1(gn(x)− gn−1(x)) in (0, 1), where

gn(x) =

{
n 0 < x < 1

n
0 1

n
≤ x < 1,

forn = 1, 2, . . . , and g0(x) ≡ 0.

Check that
∑N

n=1 fn(x) → 0 pointwise, but
´ 1
0
|0 − SN(x)|2 dx =

´ 1
0
g2n(x) dx → ∞ as N → ∞. In

this example the functions in the series are discontinuous, but one can cook up a similar example with
continuous, and even differentiable (smooth) functions.

Finally, an example of a series which converges in L2, but not pointwise, is the telescoping series∑∞
n=1 fn(x) =

∑∞
n=1(gn(x)− gn−1(x)) in (0, 1), where

gn(x) =

{
(−1)n x = 1

2
0 otherwise,

forn = 0, 1, 2, . . . , and g0(x) ≡ 0.

Clearly,
∑N

n=1 fn(x) → 0 in the L2 sense, since
´ 1
0
|0 − SN(x)|2 dx =

´ 1
0
g2n(x) dx = 0. But the numeric

series
∑

n fn(1/2) diverges, so the series
∑∞

n=1 fn(x) does not converge pointwise. Notice that again the
functions in the series are discontinuous. In this case this is necessary, since for series of continuous
functions L2 convergence implies pointwise convergence, the proof of which is left as a simple exercise.

5.2 Convergence theorems

We will next list criteria for convergence of the Fourier series of a function f(x)

f(x) ∼ A0

2
+
∞∑
n=1

An cosnx+Bn sinnx. (2)

For convenience, we will write the series as
∑∞

n=1AnXn(x), which will include the full, as well as sine
and cosine Fourier series.

Definition 5.2. A function f(x) is called piecewise continuous on an interval [a, b], if

2



(i) f(x) is continuous on [a, b], except for at most finitely many points x1, x2, . . . , xk.

(ii) at each of the points x1, x2, . . . , xk, both the left-hand and right-hand limits of f(x) exist,

f(xi−) = lim
x→xi−

f(x), f(xi+) = lim
x→xi+

f(x).

We say that the function has a jump discontinuity at such a point with the jump equal to
f(xi+)− f(xi−). At the points x = a, b the continuity and limits are understood to be one-sided.

Next we state the convergence theorems for the Fourier series (2). We begin with a criteria for
mean-square convergence

Theorem 5.3 (L2 convergence). The Fourier series
∑

nAnXn converges to f(x) in the mean-square
sense in (a, b), if f(x) is square integrable over (a, b), that is

ˆ b

a

|f(x)|2 dx <∞.

We remark that this very weak condition on the function f(x) can be made even weaker, by replacing
the Riemann integral above with the Lebesgue integral. The condition then simply states that f ∈ L2,
where L2 is the space of square-integrable functions in the Lebesgue sense. The above theorem also
holds for generalized Fourier series originating from the eigenvalue problem −X ′′ = λX with symmetric
boundary conditions.

The next criteria is for uniform convergence.

Theorem 5.4 (Uniform convergence). The Fourier series converges to f(x) uniformly in [a, b], if

(i) f(x) is continuous, and f ′(x) is piecewise continuous on [a, b].

(ii) f(x) satisfies the associated boundary conditions.

The boundary conditions for the classical Fourier series will be the Dirichlet conditions for the sine
series, Neumann for the cosine, and periodic for the full Fourier series. As the L2 convergence theorem
above, the uniform convergence theorem can be extended to hold for the generalized Fourier series, in
which case one needs to add the condition that f ′′(x) be piecewise continuous on [a, b] as well.

Finally, we give the criteria for pointwise convergence.

Theorem 5.5 (Pointwise convergence). (i) The Fourier series converges to f(x) pointwise in (a, b),
if f(x) is continuous, and f ′(x) is piecewise continuous on [a, b].

(ii) More generally, if f(x) is only piecewise continuous on (a, b), as is f ′(x), then the Fourier series
converges at every point x in the interval (a, b), and we have

∞∑
n=1

AnXn(x) =
1

2
[f(x+) + f(x−)], for all a < x < b.

Thus, if a function has a jump discontinuity, then its Fourier series converges to the average of the
one-sided limits.

In the above theorems we used the interval (a, b), which in the case of the classical Fourier series
is either (0, l), or (−l, l). It is clear that the above convergence theorems will hold for the periodic
extension of the function to the entire real line as well.

Example 5.1. We have seen many examples of Fourier series that converge pointwise, but fail to be
uniformly convergent. One such example is the sine Fourier series of the function f(x) ≡ 1 on the
interval (0, π),

1 =
∑
n−odd

4

nπ
sinnx.
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This function satisfies the criteria for pointwise convergence, however, the series vanishes at x = 0, π, but
the function is 1 in the neighborhoods of these points. So the series cannot converge uniformly. Notice
that the second condition of the uniform convergence is not satisfied in this case, since the function 1
does not satisfy the Dirichlet conditions X(0) = X(π) = 0.

5.3 Integration and differentiation of Fourier series

We are interested in using Fourier series to solve boundary value problems for PDEs, so we would like
to know under which conditions one can differentiate or integrate the Fourier series of a function. The
following theorems give these necessary conditions, which we state for 2l-periodic functions. It is obvious
how the statements will change for the sine and cosine series.

Theorem 5.6 (Integration of Fourier series). Suppose f is a piecewise continuous function with the
Fourier coefficients an, bn,

f(x) ∼ a0
2

+
∞∑
n=1

an cos
nπx

l
+ bn sin

nπx

l
.

Let F (x) =
´ x
0
f(y) dy. If a0 = 0, then for all x in (a, b) we have

F (x) =
A0

2
+
∞∑
n=1

an
nπ/l

sin
nπx

l
− bn
nπ/l

cos
nπx

l
, (3)

where A0 = 1
l

´ l
−l F (x) dx. If a0 6= 0, then the sum of the series on the right of (3) is F (x)− a0

2
x.

The series (3) is obtained by formally integrating the series of f(x) term by term, irrespective of
whether this series converges or not.

Notice that if a0 = 0, then

F (x+ 2l)− F (x) =

ˆ x+2l

x

f(y) dy =

ˆ l

−l
f(y) dy = la0 = 0,

so F (x) is 2l-periodic. It is also continuous, with piecewise continuous derivative F ′(x) = f(x). But
then its Fourier series will converge uniformly, and the coefficients in (3) can be obtained by integration
by parts as follows.

An =
1

l

ˆ l

−l
F (x) cos

nπx

l
dx =

1

l
· 1

nπ/l
F (x) sin

nπx

l

∣∣∣∣l
−l
− 1

l
· 1

nπ/l

ˆ l

−l
f(x) sin

nπx

l
dx = − bn

nπ/l
,

since F (x) sin(nπx/l) is 2l-periodic. We can compute Bn similarly to get Bn = an/(nπ/l).

If a0 6= 0, then the above argument can be applied to the function f(x)− a0
2

.

Theorem 5.7 (Differentiation of Fourier series). If f is 2l-periodic, continuous, with continuous deriva-
tive f ′(x), and piecewise continuous second order derivative f ′′(x), and has the Fourier series

f(x) =
A0

2
+
∞∑
n=1

An cos
nπx

l
+Bn sin

nπx

l
,

then we have

f ′(x) =
∞∑
n=1

−nπ
l
An sin

nπx

l
+
nπ

l
Bn cos

nπx

l
,

and this series converges uniformly.
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Notice that the series of f ′(x) is the term by term derivative of f(x). Indeed, if A′n, B
′
n are the Fourier

coefficients of f ′(x), then

A′n =
1

l

ˆ l

−l
f ′(x) cos

nπx

l
dx =

1

l
f(x) cos

nπx

l

∣∣∣∣l
−l

+
1

l
· nπ
l

ˆ l

−l
f(x) sin

nπx

l
dx =

nπ

l
Bn,

where we used the 2l-periodicity of f(x), which is crucial in this case. The coefficients B′n can be com-
puted similarly, and we have B′n = −(nπ/l)An. The uniform convergence then follows from Theorem
(5.4), since f ′(x) satisfies the criteria for uniform convergence.

5.4 Conclusion

After defining three notions of convergence – uniform, pointwise and in mean-square sense – we gave
the criteria for convergence of the Fourier series for each of these notions. We will see in the next
lecture that the space of square integrable functions (L2) is the natural space to consider for the Fourier
series. For such functions approximation by the Fourier series can be interpreted in terms of orthogonal
projections, and expected properties, such as an analog of the Pythagorean theorem, hold. Using these
tools we will give the proof of the uniform convergence theorem (5.4). The proof of the L2 convergence
requires some techniques from the measure theory, and is beyond the scope of this class. The proof of
the pointwise convergence can be found in the textbook.
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