
5. Elliptic regularity theory

In this chapter we show that the solution to elliptic PDEs are smooth, provided so are the forcing
term and the coefficients of the linear operator. It is convenient to start with the interior regularity
of solutions.

5.1 Interior regularity

As a motivation to the regularity estimates, let us first consider the case of the Laplacian. Suppose
u P C8

c pRnq. Integrating by parts twice, we get
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Thus, if ∆u � f , then we just computed that

}D2u}L2 � }f}L2 .

That is, we can control the L2-norm of all second order derivatives of u by the L2 norm of the
Laplacian of u. This identity suggests that if f P L2, and u P H1 is a weak solution of the
Poisson’s equation ∆u � f , then u P H2. However, the above computation may not work for weak
solutions that belong to H1, since the use of second and higher weak derivatives is not justified in
the integration by parts.

Let us now consider the uniformly elliptic operator L given by

Lu � �
ņ

i,j�1

BjpaijBiuq, (5.1)

and the respective PDE
Lu � f in Ω, (5.2)

where Ω P Rn is open and f P L2pΩq. It is straightforward, and will be apparent from the proof how
to extend the regularity theory to operators that contain lower-order terms.

We define a weak solution as the function u P H1pΩq that satisfies the identity

apu, vq � pf, vq for all v P H1
0 pΩq, (5.3)

where the bilinear form a associated with the elliptic operator (5.1) is given by

apu, vq �
ņ

i,j�1

»
Ω

aijBiuBjv dx. (5.4)

Notice that we do not impose any boundary condition, so the interior regularity theorem will apply
to any weak solution of (5.2), no matter what the boundary conditions are.

Before stating and proving the elliptic regularity theorem, let us first try to emulate the above
integration by parts method used in the case of the Laplacian for the elliptic operator (5.1). For the
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purpose of obtaining a local estimate for D2u on a subdomain Ω1 � Ω, we take a cut-off function
η P C8

c pΩq, such that 0 ¤ η ¤ 1, and η � 1 on Ω1. As a test function we take

v � �Bkpη
2Bkuq. (5.5)

Multiplying (5.2) by v, and integrating over Ω gives pLu, vq � pf, vqL2 . Then integration by parts
gives

pLu, vq �
ņ
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�
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�
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η2aijpBiBkuqpBjBkuq dx� F,

where F contains all the remaining terms from the product rule, i.e.

F �
ņ

i,j�1

»
Ω

 
η2pBkaijqpBiuqpBjBkuq � 2ηBjη raijpBiBkuqpBkuq � pBkaijqpBiuqpBkuqs

(
dx

Notice that F is linear in the second order derivatives in u, which, as we will see, is crucial to
obtaining the a priori estimate for D2u. Using the definition of η, and the uniform ellipticity with
the vector ξ � ηDBku, we see that

θ

»
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2 dx � θ
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ņ
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Using the definition of v, we can bound the pf, vqL2 term on the right as follows.

pf, vqL2 �

»
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2Bkuqs dx �

»
Ω
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2
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�
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,

where we used Cauchy’s inequality with ε for the term with second order derivatives of u. Since
second order derivatives of u enter only linearly into the F term, we can bound it similarly to the
above.

F ¤ C

�
}u}2H1pΩq �

1

ε
}Du}2L2pΩq � ε}DBku}

2
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.

Combining these estimates, and absorbing all the second order derivative terms of u on the left hand
side (they enter the right hand side with a factor of ε, which can be made small), we obtain the
estimate

}DBku}
2
L2pΩ1q ¤ C

�
}f}2L2pΩq � }u}2H1pΩq

	
. (5.6)

Remark 5.1. The H1 norm on the right hand side of 5.6 can be bounded by the L2 norm of f and
the L2 norm of u essentially in the same way as above, by taking as a test function v � u. This will
lead to an estimate of the second order derivatives of u in terms of the L2 norms of Lu and u.

Remark 5.2. Notice that in the derivation of (5.6) we assumed that u is twice differentiable (weakly)
from the beginning. However, if this is not know a priori, as is the case for a weak solution u P H1,
one can not use second order derivatives, and instead must work with difference quotients. Obtaining
an estimate on the difference quotients of Bku uniformly in the size of the difference quotient, h, will
imply that u is twice weakly differentiable and is in H2

loc. This is the gist of the next result.
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Theorem 5.3. Let Ω � Rn be open, and assume that L is given by (5.1) with the coefficients
aij P C

1pΩq, and f P L2pΩq. If u P H1pΩq is a weak solution of (5.2), then u P H2pΩ1q for every
Ω1 � Ω. Moreover,

}u}H2pΩ1q ¤ C
�
}f}2L2pΩq � }u}2L2pΩq

	
, (5.7)

where the constant C � Cpn, aij ,Ω
1,Ωq is independent of u and f .

Proof. We use a similar argument to the one that lead to estimate (5.6) in the smooth case. Let
η P C8

c pΩq be a smooth cut-off function, such that 0 ¤ η ¤ 1, and η � 1 on Ω1. We use the following
test function in (5.3),

v � �D�h
k

�
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ku
�
P H1

0 pΩq.

Integrating by parts, we obtain
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where ahijpxq � aijpx� hekq, and F contains all the remaining terms coming from the product rule,
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dx.

Using the uniform ellipticity of L with the vector ξ � ηDh
kDu, we get

θ

»
Ω

η2}Dh
kDu}

2 dx ¤
ņ

i,j�1
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Ω

η2aij
�
Dh

kBiu
� �
Dh
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�
dx.

From the weak formulation (5.3) and the above, we have

θ
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Ω

η2}Dh
kDu}

2 dx ¤ �

»
Ω
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k

�
η2Dh

ku
�
dx� F. (5.8)

We estimate the right hand side of this inequality using Cauchy-Schwartz and Cauchy’s inequality
as was done in obtaining estimate (5.6).����
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¤ }f}L2pΩq

�
}ηDh

kBku}L2pΩq � C}Du}L2pΩq

	
,

where we used the fact that η is compactly supported in Ω, and hence the L2 norm of the difference
quotient is bounded by the norm of the weak derivative for sufficiently small h.

We can similarly bound the F term in (5.8),

|F | ¤ C
�
}Du}L2pΩq}ηD

h
kDu}L2pΩq � }Du}2L2pΩq

	
.

Now, using these bounds in (5.8) gives,

θ}ηDh
kDu}

2
L2pΩq � θ

»
Ω
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kDu}
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�
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h
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h
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.
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Applying Cauchy’s inequality with ε to the terms containing ηDh
kDu, and with constant 1 to the

rest of the terms, we obtain the bound

θ}ηDh
kDu}

2
L2pΩq ¤C

�1

ε
}f}2L2pΩq � ε}ηDh

kDu}
2
L2pΩq � }f}2L2pΩq � }Du}2L2pΩq

�
1

ε
}Du}2L2pΩq � ε}ηDh

kDu}
2
L2pΩq � }Du}2L2pΩq

	
.

Finally, absorbing the }ηDh
kDu}

2
L2pΩq terms on the right into the left hand side by choosing ε

small enough, and using the fact that η � 1 on Ω1, we arrive at the estimate

}Dh
kDu}

2
L2pΩ1q ¤ C

�
}f}2L2pΩq � }Du}2L2pΩq

	
, (5.9)

where the constant C � CpΩ,Ω1, aijq is independent of h, u, f . Notice that this estimate holds with
Ω replaced by Ω2 in the norms on the right hand side, where Ω1 � Ω2 � Ω.

We can estimate }Du}2L2pΩ2q in terms of
�
}f}2L2pΩq � }u}2L2pΩq

	
by taking v � ζu P H1

0 pΩq in

(5.3), where ζ P C8
c pΩq is a smooth cut-off function, such that 0 ¤ ζ ¤ 1 and ζ � 1 on Ω2. Then

uniform ellipticity of L implies

θ

»
Ω2

|Du|2 dx ¤

»
Ω

|ζDu|2 ¤
ņ

i,j�1

»
Ω

ζ2aijBiuBju

¤

»
Ω

fu dx ¤ }f}L2pΩq}u}L2pΩq ¤ C
�
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.

Combining this with (5.9) (where Ω is replaced by Ω2 on the right) gives the estimate

}Dh
kDu}

2
L2pΩ1q ¤ C

�
}f}2L2pΩq � }u}2L2pΩq

	
,

which is uniform in h, hence, u has second weak derivatives which belong to L2pΩ1q. Moreover,
estimate (5.7) holds.

Remark 5.4. If the operator L contains lower order terms, then estimate (5.7) can be proved in
much the same way, with several more terms being estimated using Cauchy-Schwartz and Cauchy’s
inequality.

Remark 5.5. If u P H2
locpΩq and f P L2pΩq, then equation Lu � f , where the derivatives are

understood in the weak sense, holds pointwise almost everywhere in Ω. Such solutions are called
strong solutions to distinguish them from weak solutions that may not posses weak second order
derivatives, and from classical solutions, which have continuous second order derivatives. The last
theorem then implies that if L is uniformly elliptic, then any weak solution is necessarily a strong
solution.

The repeated application of the interior elliptic regularity estimate (5.7) leads to higher interior
regularity.

Theorem 5.6. Let Ω � Rn be open, and assume that L is given by (5.1) with the coefficients
aij P C

k�1pΩq, and f P HkpΩq. If u P H1pΩq is a weak solution of (5.2), then u P H2pΩ1q for every
Ω1 � Ω. Moreover,

}u}Hk�2pΩ1q ¤ C
�
}f}2HkpΩq � }u}2L2pΩq

	
,

where the constant C � Cpn, k, aij ,Ω
1,Ωq is independent of u and f .

The proof of this theorem uses induction on k and arguments similar to those in the proof of
Theorem 5.3. The details are left as an exercise. Note that if the hypothesis of the theorem hold for
k ¡ n

2 , then f P CpΩq, and u P C2pΩq, so u is a classical solution of Lu � f . Furthermore, if f and
aij are smooth, then so is the solution.
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Corollary 5.7. If aij , f P C
8pΩq, and u P H1pΩq is a weak solution of (5.2) with L given by (5.1),

then u P C8pΩq.

The proof of the corollary is left as an exercise, with the observation that smoothness is a local
property, so it is enough to show that u P C8pΩ1q for every open subset Ω1 � Ω.

We observe that Remark 5.4 applies to Theorem 5.6 also, as well as to the last Corollary.

5.2 Boundary regularity
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