5. Elliptic regularity theory

In this chapter we show that the solution to elliptic PDEs are smooth, provided so are the forcing
term and the coefficients of the linear operator. It is convenient to start with the interior regularity
of solutions.

5.1 Interior regularity

As a motivation to the regularity estimates, let us first consider the case of the Laplacian. Suppose
u e CP(R™). Integrating by parts twice, we get

(Au)? dz = i(afu) i(a]?u) dz = i (02u)(0%u) do = | [D2ul? da.
Jiawpac- [ (Saen) (Zem) - £ | f

i=1 ij=1
Thus, if Au = f, then we just computed that

|D*ull 2 = || £ L2

That is, we can control the L?-norm of all second order derivatives of u by the L? norm of the
Laplacian of w. This identity suggests that if f € L?, and v € H' is a weak solution of the
Poisson’s equation Au = f, then u € H?. However, the above computation may not work for weak
solutions that belong to H', since the use of second and higher weak derivatives is not justified in
the integration by parts.

Let us now consider the uniformly elliptic operator L given by

n

Lu=— Z @(aij@iu), (51)

ij=1

and the respective PDE
Lu=f inQ, (5.2)

where Q € R™ is open and f € L?(Q). It is straightforward, and will be apparent from the proof how
to extend the regularity theory to operators that contain lower-order terms.
We define a weak solution as the function u € H({2) that satisfies the identity

a(u,v) = (f,v) for all v e Hy(Q), (5.3)
where the bilinear form a associated with the elliptic operator (5.1) is given by
a(u,v) = Z J a;;0;ud;v dx. (5.4)
i,j=1"%

Notice that we do not impose any boundary condition, so the interior regularity theorem will apply
to any weak solution of (5.2), no matter what the boundary conditions are.

Before stating and proving the elliptic regularity theorem, let us first try to emulate the above
integration by parts method used in the case of the Laplacian for the elliptic operator (5.1). For the
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purpose of obtaining a local estimate for D?u on a subdomain ' € 2, we take a cut-off function
ne Cr(Q), such that 0 <7 < 1, and n =1 on '. As a test function we take

v = —0r(n?0pu). (5.5)
Multiplying (5.2) by v, and integrating over € gives (Lu,v) = (f,v)r2. Then integration by parts

gives

(Lu,v) = Z ,[Q j(ai;0;u)0 (n*Oxu) dx

ij=1

Z J‘ 6k(aij0¢u)0j(n26ku) dx
Q

t,j=1

Z J n?a;;(0;05u)(0;0ku) dx + F,
Q

ij=1

where F' contains all the remaining terms from the product rule, i.e.

F= L {n* (0kai;)(0;u)(0;0xu) + 210;n [ai; (0 0ku) (Oru) + (Okai;)(Oiu) (Oru)]} da

ij=1

Notice that F' is linear in the second order derivatives in u, which, as we will see, is crucial to
obtaining the a priori estimate for D?u. Using the definition of 1, and the uniform ellipticity with
the vector & = nD0diu, we see that

0| |Dopul?dr = OJ [nDoyul* do < Z J’ n?a;;(0;0ku)(0;0ru) dx = (f,v)p2 — F.
o Q

& ij=1

Using the definition of v, we can bound the (f,v)r2 term on the right as follows.

(Fo)ae = | FloPa) dz = | Flodkn(@) + 7 GFu) da
Q Q
<z lowul 2oy + 12 05wl 2o

1
<O (B + el + 11 + DOy ).

where we used Cauchy’s inequality with e for the term with second order derivatives of u. Since
second order derivatives of u enter only linearly into the F' term, we can bound it similarly to the
above.

1
F <0 (Wil + IDul3a00) + DBl ).

Combining these estimates, and absorbing all the second order derivative terms of u on the left hand
side (they enter the right hand side with a factor of €, which can be made small), we obtain the
estimate

IDavul 2y < € (11320 + Il ey ) - (5.6)

Remark 5.1. The H! norm on the right hand side of 5.6 can be bounded by the L? norm of f and
the L? norm of u essentially in the same way as above, by taking as a test function v = w. This will
lead to an estimate of the second order derivatives of u in terms of the L? norms of Lu and u.

Remark 5.2. Notice that in the derivation of (5.6) we assumed that u is twice differentiable (weakly)
from the beginning. However, if this is not know a priori, as is the case for a weak solution u € H?!,
one can not use second order derivatives, and instead must work with difference quotients. Obtaining
an estimate on the difference quotients of dxu uniformly in the size of the difference quotient, h, will
imply that u is twice weakly differentiable and is in H120C. This is the gist of the next result.
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Theorem 5.3. Let Q < R™ be open, and assume that L is given by (5.1) with the coefficients
a;; € CHQ), and f € L*(Q). If u e HY(Q) is a weak solution of (5.2), then u € H*(Y) for every
Q' € Q. Moreover,

a2y < € (I ey + by ) - (5.7)
where the constant C = C(n, a;j, Y, Q) is independent of u and f.

Proof. We use a similar argument to the one that lead to estimate (5.6) in the smooth case. Let
n € CF(Q) be a smooth cut-off function, such that 0 < n <1, and n = 1 on €. We use the following
test function in (5.3),

v=-D;" (UQDZU) e H}(Q).

Integrating by parts, we obtain

n

a(u,v) = — Z L aij(aiu)D,;haj (772D,}€Lu) de = Z \ D} (a;;0;u)0; (772D,2’u) dx

ij=1 ig=1
n
= Z f n*aly(Dyou) (Diou) do + F,
i,j=17%
where al';(x) = a;j(x + hey), and F contains all the remaining terms coming from the product rule,

F= Z LZ {r]2 (DZaij) (diu) (D,}gaju) + 2n0;n [a?j (DZ@iu) (DZu) + (D,Zaij) (Oiu) (DZu)] }dx.

ij=1
Using the uniform ellipticity of L with the vector & = nD} Du, we get
of 7’| DpDul? dz < ) f na;; (Dlou) (Dpoju) du.
Q P Q
i,j=1

From the weak formulation (5.3) and the above, we have
af n?| D Du|? dx < —J D" (*Ditu) da — F. (5.8)
Q Q

We estimate the right hand side of this inequality using Cauchy-Schwartz and Cauchy’s inequality
as was done in obtaining estimate (5.6).

U’sz D" (P Diu) dz| < ||f |2 1Dy " (7P Diu) |20

< If 2@ 10k (1P Diw) |22 (@)
< 2o (I Dol 2oy + 120(@kn) Dl )
< Iflzz@ (InDkdwulz@) + ClDulra(o ),

where we used the fact that 1 is compactly supported in €2, and hence the L? norm of the difference
quotient is bounded by the norm of the weak derivative for sufficiently small h.
We can similarly bound the F' term in (5.8),
IF| < € (IDul 120 [nD} Dul 2y + |1Dule ) -
Now, using these bounds in (5.8) gives,

0|nDi Dul72(q) = QL n*| D} Dul® d <C(HfHL2(Q)HUDZDU”B(Q) + ez ) | Dull L2 (0

+ [ Dul 20y 9Dk Dul 2oy + | Dl z(qy )
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Applying Cauchy’s inequality with € to the terms containing 7D} Du, and with constant 1 to the
rest of the terms, we obtain the bound

1
OnD}Dulta oy <C (1 f I3y + elnDiDulfaca) + 117200 + I1DulFey
1
+ <IDulfia ) + elnDiDulta o) + 1Dula(e )-

Finally, absorbing the ||nDQDu||%2(Q) terms on the right into the left hand side by choosing e
small enough, and using the fact that n = 1 on ', we arrive at the estimate

IDEDul sy < C (I 320y + IDul32()), (5.9)

where the constant C'= C(€, (Y, a;;) is independent of h,u, f. Notice that this estimate holds with
Q replaced by " in the norms on the right hand side, where Q' € Q" € Q.

We can estimate ||DuH%2(Q,,) in terms of <||f||2LQ(Q) + HuH%z(Q)) by taking v = (u € H}() in
(5.3), where ¢ € C*(Q) is a smooth cut-off function, such that 0 < ( <1 and ¢ =1 on ”. Then
uniform ellipticity of L implies

0 |Du|? dz SJ |¢Dul? < Z J C?a;;0;udju
o Q Q

3,j=1
2 2
< | fude <11z < (17 e + lelie) -

Combining this with (5.9) (where Q is replaced by Q" on the right) gives the estimate

IDEDul ey < C (112 + lulEa(@) )

which is uniform in h, hence, u has second weak derivatives which belong to L2(2'). Moreover,
estimate (5.7) holds. O

Remark 5.4. If the operator L contains lower order terms, then estimate (5.7) can be proved in
much the same way, with several more terms being estimated using Cauchy-Schwartz and Cauchy’s
inequality.

Remark 5.5. If u € HZ () and f € L?(f2), then equation Lu = f, where the derivatives are
understood in the weak sense, holds pointwise almost everywhere in (2. Such solutions are called
strong solutions to distinguish them from weak solutions that may not posses weak second order
derivatives, and from classical solutions, which have continuous second order derivatives. The last
theorem then implies that if L is uniformly elliptic, then any weak solution is necessarily a strong

solution.
The repeated application of the interior elliptic regularity estimate (5.7) leads to higher interior
regularity.

Theorem 5.6. Let Q < R™ be open, and assume that L is given by (5.1) with the coefficients
ai; € C**1(Q), and f e H*(Q). If ue HY(Q) is a weak solution of (5.2), then uwe H?(Q) for every
Q' € Q. Moreover,

Julleeacary < C (1 Brsgay + a3z
where the constant C = C(n, k, a;;, Y, Q) is independent of u and f.

The proof of this theorem uses induction on k and arguments similar to those in the proof of
Theorem 5.3. The details are left as an exercise. Note that if the hypothesis of the theorem hold for
k> %, then fe C(Q), and u € C?(2), so u is a classical solution of Lu = f. Furthermore, if f and
a;; are smooth, then so is the solution.
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Corollary 5.7. Ifa;;, f € C*(Q), and u € H*(Q) is a weak solution of (5.2) with L given by (5.1),
then u € C* ().

The proof of the corollary is left as an exercise, with the observation that smoothness is a local
property, so it is enough to show that u € C* (') for every open subset Q' € Q.
We observe that Remark 5.4 applies to Theorem 5.6 also, as well as to the last Corollary.

5.2 Boundary regularity
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