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Appendix A 
Crash-Course on 

Equilibrium 
Thermodynamics 

To provide the background for beyond-equilibrium thermodynamics, we here out- 
line the fundamentals of equilibrium thermodynamics. Equilibrium thermodynamics 
must not only be obtained as a special case of any acceptable nonequilibrium gen- 
eralization but, through its shining example, it also elucidates the wide scope, the 
emphasis on universal relationships, and the advantages of a systematic postulational 
approach to beyond-equilibrium thermodynamics. This appendix is based on an ar- 
ticle' that was written with exactly the same motivation, providing the background 
of equilibrium thermodynamics for a special issue of the Journal of Non-Newfonian 
FluidMechanics on nonequilibrium thermodynamics.* The article, in turn, was based 
on the famous textbook on equilibrium thermodynamics by  caller^.^ Callen's book, 
finally, is based on authority. The present crash-course on thermodynamics hence 

Jongschaap & Ottinger, J.  Non-Newtonian Fluid Mech. 96 (2001) 5. 
See issue no. 1-2 in J.  Non-Newtonian Fluid Mech. 96 (2001). 

3CaUen. Thermodynamics (Wiiey, 1985). 
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follows Callen’s clearly structured and widely accepted postulational approach as 
closely as possible. 

A.l APPROACH AND SCOPE 

In this appendix, we summarize the key elements of equilibrium thermodynamics. 
Although this subject is covered by many textbooks and is a standard part of the 
education in most branches of science and engineering and despite the fact that the 
treatment of common applications such as the calculation of the efficiency of engines, 
phase behavior, chemical equilibria, and so forth are well understood and frequently 
used, we nevertheless undertake this effort because there still seems to be no con- 
sensus on the treatment of the fundamentals of thermodynamics. It is not only for 
pedagogical reasons that in the various textbooks many starting points and many 
routes of the further developments can be found. For example, one could take the 
traditional considerations of Carnot, Kelvin, and Clausius, which led to the famous 
formulations of the second law as a starting point, or Boltzmann’s famous statisti- 
cal expression of the entropy, S = kg In R, or the asymmetrical time evolution of 
irreversible processes, or the topology of the space of equilibrium states, or the infor- 
mation theoretical method, or the treatment based on the Clausius-Duhem inequality 
of rational thermodynamics. 

We do not attempt to discuss any of the above-mentioned approaches here. We 
just present a concise and consistent outline of the fundamentals of equilibrium ther- 
modynamics. For that purpose, we follow the well-known textbook of Callen, which 
is widely accepted as a brilliant source on the foundations of equilibrium thermo- 
dynamics. The present appendix is a selection of annotated quotations from this 
book. 

We follow the treatment of Callen as closely as possible, with a special emphasis on 
fundamental concepts and principles. We focus on elucidating the structural elements 
of thermodynamics and the principles of statistical mechanics. How can we make sure 
that our selection of the key elements of thermodynamics and statistical mechanics 
indeed is in the spirit of Callen? For thermodynamics, we have Chapter 12 of his book 
as a valuable guide, in which the basic principles are summarized and generalized 
to systems including magnetic, electric, elastic, and other effects. The increasing 
importance that he ascribed to statistical mechanics is evident from the inclusion of 
six chapters on this topic in going from the first edition (1960) to the second edition 
(1985) of his book. For further details on specific subjects, the reader is of course 
referred to Callen’s book or to alternative sources, such as Reichl’s comprehensive 
te~tbook.~  

Although we assume that most of that readers of this book are familiar with equi- 
librium thermodynamics to an extent that he or she would feel that a crash-course on 
thermodynamics is hardly necessary, we would still like to offer some basic remarks 

4Reichl, Modem Course in Statistical Physics (University of Texas, 1980). 
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in the spirit of Callen’s book by citing from his introduction. He describes the scope 
of thermodynamics as follows: 

Thermodynamics (. . . ) neither claims a unique domain of systems over 
which it asserts primacy, nor does it introduce a new fundamental law analogue 
to Newton’s or Maxwell’s equations. In contrast to the specialty of mechanics 
and electromagnetism, the hallmark of thermodynamics is generality. Gener- 
ality first in the sense that thermodynamics applies to all types of systems in 
macroscopic aggregation, and second in the sense that thermodynamics does 
not predict specific numerical values for observable quantities. Instead ther- 
modynamics sets limits (inequalities) on permissible physical processes, and it 
establishes relationships among apparently unrelated properties. 

Callen characterizes thermodynamics as a universal framework for the macroscopic 
description of matter: 

whereas thermodynamics is not based on a new and particular law of nature, 
it instead reflects a commonality of universal feature of all laws. In brief, ther- 
modynamics is the study of restriction on the possible properties of matter that 
follows from the symmetry properties of thefundamental laws of physics. 

Extrapolating Callen’s point of view, beyond-equilibrium thermodynamics should 
be a general theory of the properties of matter, including the dynamical ones. By virtue 
of its nature of commonality, beyond-equilibrium thermodynamics should provide re- 
lationships between various static and dynamic material properties on the macroscopic 
or any other coarse-grained level of description. When statistical mechanics comes 
into the game, beyond-equilibrium thermodynamics may be regarded as the theory 
of coarse-graining: it should provide the structure of the equations for describing 
coarse-grained systems, and statistical mechanics should provide microscopic inter- 
pretations and expressions for the inputs of the phenomenological thermodynamic 
approach, so that the “macroscopic postulates are precisely and clearly the theorems 
of statistical mechanics.” The reader should verify that the GENERIC approach used 
in this book for presenting a unified view of beyond-equilibrium thermodynamics 
fulfills all these requirements. 

A.2 EQUILIBRIUM STATES 

A very fundamental notion in thermodynamics is the stare concept. The state of an 
isolated thermodynamic system is described by a finite set of stare variables ( X i ) .  
Citing Callen, 

Systems tend to subside to very simple states, independent of their specific 
history. . . . in all systems there is a tendency to evolve toward states in which the 
properties are determined by intrinsic factors and not by previously applied exter- 
nal influences. Such simple terminal states are, by definition, time independent. 
They are called equilibrium states. [p. 131 

Next, the internal energy U needs to be established as a state variable. Callen 
introduces it as a macroscopic manifestation of definite conservation principles of 
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energy and summarizes the fundamental properties of equilibrium states in his first 
postulate: 

Postulate 1. There exist particular states (called equilibrium states) that, macro- 
scopically, are characterized completely by the specijcation of the internal en- 
ergy U anda set ofparameters X I ,  Xz ,  . . . Xt  later to be specijcally enumerated. 
[P. 2831 

In many applications of thermodynamics, the parameters or state variables X i  
are the volume V and the mole numbers N l ,  N2,  . . . N,. of the chemically pure 
components of which a system is a mixture. These parameters, with the property that 
their value in a composite system is the sum of their values in each of the subsystems, 
are called extensive. In general, “the choice of variables in terms of which a given 
problem is formulated, while a seemingly innocuous step, is often the most crucial 
step in the solution” [p. 4651. If the choice of variables is so crucial, how can we 
understand which variables are relevant to describing the time independent states of 
a system? Callen demonstrates in the final part of his book on fundamentals that, for 
equilibrium systems, the answer to this question is intimately related to the symmetries 
of the laws of nature. 

The conserved quantities are clearly the most natural variables to describe time 
independent states. According to Noether’s theorem, such conserved quantities result 
from the continuous symmetries of the dynamical behavior of a system. For exam- 
ple, symmetry under time translation implies the conservation of energy, and the 
conservation of electric charge is a consequence of the gauge symmetry of Maxwell’s 
equations. Another possible reason for variables to become relevant to the description 
of time independent states lies in the observation that certain dynamic modes in the 
limit of long wavelengths acquire a vanishing frequency. 

An important general consequence of broken symmetry is formulated in the 
Goldstone theorem. It asserts that any system with broken symmetry (and with 
certain weak restrictions on the atomic interactions) has a spectrum of excitations 
for which the frequency approaches zero as the wavelength becomes infinitely 
large. [p. 4641 

For a crystalline solid, for example, there exist infinitely many equally possible 
positions, slightly displaced by an arbitrary fraction of a lattice constant, which are 
related through the broken symmetry of translations. The fact that these positions are 
equally possible leads to a zero-frequency mode and to the occurrence of the volume 
as a state variable. 

To return to the general formalism, we thus recognize that all symmetries 
[leading to conservation laws and Goldstone excitations] must be taken into 
account in specifying the relevant state space of a system. [p. 4711 

These symmetry considerations are limited to equilibrium thermodynamics. In 
complex fluids, the choice of the relevant state variables will be more complicated. 
In fact, a fundamental challenge in applying beyond-equilibrium thermodynamics is 
to identify in some way the structural state variables X i  for a particular (class of) 
system(s). The relevant variables correspond to the slowest modes of a system. In 
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beyond-equilibrium thermodynamics, one thus needs to separate the slow and the 
fast variables and, after keeping only the slow as the relevant variables, one expects 
corrections to be governed by the ratio of the associated time scales, whereas the theory 
of equilibrium states deals with the truly time independent variables associated with 
symmetries. In that sense, beyond-equilibrium thermodynamics has an intrinsically 
approximate character absent in its equilibrium counterpart. 

Considerations of the state concept introduced in Postulate I in connection with 
various forms of energy exchange lead to the definition of heat and work, as well as 
a balance equation for the internal energy U :  

The symbol d is used instead of d since dQ and dW are not differentials of state 
variables (that is, not differentials of functions of U ,  XI, X 2 ,  . . . Xi) but are small 
amounts of heat and work. In Callen’s words [p. 201, “Heat, like work, is only a 
form of energy transfer . . . the energy U of a state cannot be considered as the sum 
of ‘work’ and ‘heat’ components.” In general, dQ and dW are process-dependent 
quantities, and there are no corresponding state variables in the sense defined above. 
Equation (A. 1) can be considered as a formal representation of the balance equation 
of internal energy derived from phenomenological considerations. 

The use of the notions of thermodynamic systems and equilibrium states in this 
section deserves a few words of explanation. A thermodynamic system should ac- 
tually be dejined through a set of state variables and the accessible domain in the 
corresponding state space. Although one can formally define equilibrium states as 
time independent states of isolated systems, this definition is not very helpful for 
practical purposes because very long time scales might occur. For practical purposes, 
Callen hence proposes a rather indirect, somewhat provocative operational expla- 
nation [p. 151: “In practice the criterion for equilibrium is circular. Operationally, 
a system is in an equilibrium state if its properties are consistently described by 
thermodynamic theory!” 

A.3 BASIC PROBLEM OF THERMODYNAMICS 

To keep a system in an equilibrium state, constraints are needed. If some of these 
constraints are released, the system will evolve to other states. What occurs then is, 
in fact, what Callen calls the basic problem of thermodynamics: 

The single, all-encompassing problem of thermodynamics is the determina- 
tion of the equilibrium state that eventually results afier the removal of intern1 
constraints in a closed, composite system. [p. 261 

It should be noted that Callen uses the term closed for systems that we nowadays 
usually refer to as isolated. The solution of the basic problem of thermodynamics is 
achieved through the entropy postulates, which “are, in fact, the most natural guess 
that we might make, providing the simplest conceivable formal solution to the basic 
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problem . . . the most economical form for the equilibrium criterion would be in terms 
of an extremum principle": 

Postulate II. There exists afunction (called the entropy) of the extensive param- 
eters, defined for all equilibrium states, and having the following property. The 
values assumed by the extensive parameters in the absence of a constraint are 
those that maximize the entropy over the manifold of constrained equilibrium 
states. [p.  2841 

Postulate 111. The entropy of a composite system is additive over the constituent 
subsystems (whence the entropy of each constituent system is a homogeneous 
frst-orderfunction of the extensive parameters). The entropy is continuous and 
diyerentiable and is  a monotonically increasingfunction of the energy. [p .  2841 

Postulate IV. The entropy of any system vanishes in the state for which T 
(aU/aS)x,,x, ,._. = 0. [p. 2841 

The function introduced in Postulate II is called a fundamental equation of the 
system: 

This is the entropy representation. By solving with respect to U-this is possible in 
view of the last part of Postulate III-one obtains the energy representation 

s = S(U, X l , X 2 , .  . . Xt ) .  (A.2) 

U = U(SrX1 ,X2 , .  . .X t ) .  (A.3) 

Fundamental equations in thermodynamics deserve their name because they contain 
the information about all thermodynamic properties (equations of state, heat capac- 
ities, compressibilities, expansion coefficients, phase behavior, etc.) of the system. 
This, however, is primarily of theoretical interest, because for most systems no an- 
alytical expressions of the fundamental equations are available. The mere existence 
of fundamental equations, however, is already very important to establish relation- 
ships between various thermodynamic properties; this emphasis on relationships is 
the essence of thermodynamics. 

The total differential of equation (A.3) is 

dU = T d S  + PidX1 + P2dX2 + . . . PtdXt, (A.4) 

with the temperature 

and the thermodynamic forces 

p. - - = PZ(S,Xl ,X2, .  . . X t ) .  (A.6) 
- (::i)s,xl,x2 )...) x i - 1 ,  x i +  I , . . .  X t  

The functional dependencies implied by (AS) and (A.6) are constitutive equations, 
known as thermodynamic equations of state. Contrary to fundamental equations like 



BASIC PROBLEM OF THERMODYNAMICS 403 

(A.3), an equation of state does not contain the full information about the thermody- 
namic properties of the system but only part of it. 

It should be emphasized that, despite the formal similarity of (A. 1) and (A.4), these 
expressions are fundamentally different. Equation (A. 1) is a balance equation for 
U ,  expressed in process-dependenr quantities, describing an energy transfer, whereas 
(A.4) is the total differential of the dependent state variable U ,  expressed as a function 
of a complete set of state variables. 

It should also be noted that, in the treatment of Callen, at this point it is not evident 
that T is in fact the usual temperature and how the Pi are related to the usual mechanical 
variables, such as pressure. This, in fact, turns out to be a consequence of the entropy 
maximum principle, expressed in Callen's second postulate. By considering the 
equilibrium of a system with external reservoirs, it follows that in sufficiently slow, 
quasi-sraric processes 

CtQ = TdS,  (A.7) 
and 

Pi = P t ,  

where -Pi is a thermodynamic force (such as the thermodynamic pressure) and 
-Pie the corresponding external, mechanical force (such as the mechanical pressure). 
Quasi-sraric processes play an important role in the determination of thermodynamic 
quantities. These processes may be considered as trajectories in the manifold of 
equilibrium states. It should be noted, however, that quasi-static processes are an ide- 
alization because real processes always involve nonequilibrium intermediate states. 

As mentioned above, the variables U ,  S and X 1  . . . X t  are extensive, that is, 
proportional to the size of the system. As a consequence, (A.3) is homogeneous of 
the first order: 

(-4.9) 

By differentiating (A.9) with respect to X and setting X equal to unity, one can derive 
the Euler equation, 

U = T S  + C P i x i ,  

U(XS, XX1, AX,, . . . XXt) = X U ( S , X l , X 2 , .  1 . X t ) .  

t 

(A. 10) 
i= 1 

and the so-called Gibbs-Duhem equation, 

(A. 1 1) 
i= 1 

Note, however, that in the modeling ofcomplex fluids in general not all of the structural 
variables will be extensive. Structural parameters, like configuration tensors etc., 
which describe the internal state of a system, are an example of this. In such cases, 
one cannot directly generalize the expressions (A. 10) and (A.11). 

A classical example in thermodynamics is a system of N moles of a gas or liquid 
in a volume V. In this case, the total differential (A.4) of U = U ( S ,  V, N )  becomes 

dU = T d S  - PdV + PdN, (A.12) 
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where P is the thermodynamic pressure and p is the chemical potential. The Gibbs- 
Duhem relation (A. 1 1) becomes 

SdT - VdP + N d p  ’= 0, (A. 13) 

probably better known in the molar form 

dp = -SdT + i,dP, (A. 14) 

with S = SIN and i, = V / N .  

A.4 THERMODYNAMIC POTENTIALS 

Equations (A.2) and (A.3) are probably the most fundamental but certainly not the 
most practical equations of thermodynamics. The reason is that, in many situations, 
the variables used in these expressions are not the ones controlled or measured in 
practice. Processes with temperature and pressure control are for instance more com- 
mon than processes with controlled entropy and volume. Fortunately, there exist 
transformations by which fundamental equations can be transformed with conserva- 
tion of their fundamental nature, that is, the property that they contain all information 
about the thermodynamic properties of the system. These transformations are the so- 
called LRgendre transfonnations, and the new functions, which are the result of the 
transformation, are called thermodynamic potentials. By means of Legendre transfor- 
mations, all extensive and intensive state variables (U, S, X I ,  . . . , X t ,  T ,  PI . . . , Pt) 
are elevated to an equal footing. 

The relevance of these transformations in thermodynamics should not be under- 
estimated. To cite Callen: 

Multiple equivalent formulations also appear in Mechanics-Newtonian, La- 
grangian, and Hamiltonian formulations are tautologically equivalent. Again 
certain problems are more tractable in a Lagrangian formalism than in a Newto- 
nian formalism, or vice versa. But the difference in convenience of the different 
formalisms is enormously greater in thermodynamics. It is for this reason that 
the general theory of transfonnations among equivalent representations is here 
incorporated as afundamental aspect of thermostatistical theory. [p. 13 11 

A partial Legendre transformation can be made by replacing the variables 
Xo,X1, .  . . X ,  by PO, PI , .  . . P,, (where s < t ,  X O  = S, PO = T ,  and the first s 
variables, instead of any s variables, are selected without loss of generality). The 
Legendre transformed function is 

8 

V [ P O ,  PI,. . . , P S I  = u - C Pixi. 

Following Callen, we here employ the notation UIPo, PI ,  . . . Pa] to denote the func- 
tion obtained by making a Legendre transformation with respect to X O ,  X I  l .  . . X ,  

(A.15) 
i=O 
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on the function U ( X 1 ,  X 2 , .  . . X , ) .  Thus UIPo, 9 , .  . . , P,] is a function of the inde- 
pendent variables PO, P I , .  . . , P,, x , + ~ ,  Xs+2 . . . x,. The natural derivatives of this 
function are 

(A. 16) 

(k = s +  1 , s + 2 ,  ..., t )  (A. 17) 
axk 

and consequently 

dU[Po, PI , .  . . ,PSI = x ( - X i ) d p k  + x PidXi. (A.18) 
i=O i=a+l 

For the example of a gas or a fluid, the following well-known thermodynamic 
potentials are obtained by Legendre transformation: the Helmholtz potential or 
Helmholtz free energy, 

(A. 19) F = U [ T ]  = U - TS ,  

the enthalpy, 
H = U[P]  = u + PV, 

and the Gibbs potential or Gibbs free energy, 

(A.20) 

G = U[T,P] = U - T S  + PV. (A.21) 

The fundamental equations of these functions in differential form read: 

dF = -SdT - PdV + pdN,  
dH = T d S  + V d P  + pdN,  
dG = - S d T + V d P + p d N .  (A.22) 

The coefficients in these expressions are functions of the corresponding variables. 
In this way, a set of equations of state is associated with each of the potentials, for 
example 

V , N  ’ 
S ( T , V , N )  = - 

(A.23) 

and so on. 
For the Helmholtz potential function F(T,  V, N) an extremum principle similar to 

Callen’s Postulate I1 applies. This result, which can be derived from Postulate I1 by 
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considering a small system in thermal contact with a large reservoir of temperature 
T’, reads: 

Helmholtz Potential Minimum Principle. The equilibrium value of any uncon- 
strained internal parameter in a system in d ia theml  contact with a heat reser- 
voir minimizes the Helmholtz potential over the manifold of states for which 
T = T’. [p. 1551 

Similar results may be derived for the other thermodynamic potentials. 
There exists an alternative to thermodynamic potentials to condense all the in- 

formation about a thermodynamic system into a single function that is useful in the 
context of developing beyond-equilibrium thermodynamics: 

Whereas the most common functions definable in terms of Legendre trans- 
formations are those mentioned . . . [above], another set can be defined by per- 
forming the Legendre transformation on the entropy rather than on the energy. 
That is, the fundamental relation in the form S = S(U, V, N1 , N z ,  . . .) can be 
taken as the relation on which the transformation is performed. Such Legendre 
transforms of the entropy were invented by Massieu in 1869 and actually pre- 
dated the transforms of the energy introduced by Gibbs in 1875. We refer to the 
transforms of the entropy as Massieubncfions, as distinguished from the ther- 
modynamic potentials transformed from the energy. The Massieu funtions will 
turn out to be particularly useful in the theory of irreversible thermodynamics, 
and they also arise naturally in statistical mechanics and in the theory of thermal 
fluctuations. [p. 1511 

A S  MAXWELL RELATIONS AND STABILITY CRITERIA 

The material quantities that are of primary interest in applications to thermodynamics 
are the equations of state, like (A.23), and in particular derivatives such as (g) V , N .  

It should be noted that, because the equations of state are obtained by differentiation 
of fundamental equations, these quantities are second derivatives of a thermodynamic 
potential. By using the rule of interchanging the order of partial differentiation, one 
readily obtains the so-called Maxwell relations. For example, one has 

and hence 

(A.24) 

(A.25) 

These interrelations are heavily used in thermodynamic calculations. Maxwell, whose 
turn of mind was geometrical, obtained (A.25), and similar relations, from the prop- 
erties of a parallelogram; he concluded that such a relation “is a merely geometrical 
truth, and does not depend upon thermodynamic principles,” whereas he offered the 
formulation in the language of differential calculus only as a f ~ o t n o t e . ~  

‘See p. 169 of Maxwell, Theory of Hear (Dover, 2001). 
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Besides derivatives of the equations of state, one also encounters derivatives like 
( @ ) P , T ,  ( g)G,N, and so on. In simple cases, a reduction of quantities of this type 
to more familiar expressions is possible by the use of some identities of calculus. 
Callen describes a general procedure in five steps for the reduction of derivatives by 
using such identities and the Maxwell relations [p. 186-1891. In addition, a more 
general method based on Jacobian representations of partial derivatives is available. 

The second derivatives of the thermodynamic potentials are not only the basis 
for the Maxwell relations; they are also fundamental in considerations about ther- 
modynamic stability. The starting point is, again, the maximum entropy postulate. 
A consequence of this postulate is that the hypersurface S = S(U, XI . . . , X , )  in 
the thermodynamic configuration space should have the property that it lies every- 
where below its tangent planes. This implies conditions for the derivatives of the 
fundamental relation. For example, in the case S = S(U, V, N), we have 

and 

(A.26) 

(A.27) 

(A.28) 

The positiveness of physical quantities like specific heats, compressibilities, and ex- 
pansion coefficients is a direct consequence of these thermodynamic stability re- 
quirements. Chemical equilibria for systems consisting of several components can 
be treated accordingly. 

If criteria of stability are not satisfied, a system breaks up into two or more phases. 
The molar Gibbs potential of each component is then equal in each phase. The 
dimension f of the thermodynamic space in which a given number M of phases can 
exist for a system of T components is given by the Gibbs phase rule 

f = T - M + 2 .  (A.29) 

A.6 STATISTICAL MECHANICS 

All the thermodynamic properties of a system are determined by a single funda- 
mental equation, and equilibrium thermodynamics implies very general relationships 
between the various thermodynamic properties. To understand a particular system, 
however, we are still faced with the problem of determining an appropriate fundamen- 
tal equation. One option would be to collect experimental information about various 
equations of state, which could then be used to construct a fundamental equation. 
Another option would be to calculate a fundamental equation from an atomistic un- 
derstanding of the system by means of statistical mechanics. The key to this route to 
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fundamental equations is a microscopic understanding of the concept of  entropy. In 
Callen’s words, 

. . . the entropy is one of a set of extensive parameters, together with the 
energy, volume, mole numbers and magnetic moment. As these latter quantities 
each have clear and fundamental physical interpretations it would be strange if 
the entropy alone were to be exempt from physical interpretation. 

The subject of statistical mechanics provides the physical interpretation of 
the entropy, and it accordingly provides a heuristic justification for the extremum 
principle of thermodynamics. [p. 3291 

The  basis of statistical mechanics can actually be established in a few lines, pro- 
vided that one formulates one more postulate, the fundamental postulate of statistical 
mechanics: 

The assumption of equal probability of all permissible microstates is the 
fundamental postulate of statistical mechanics [a permissible microstate being 
one consistent with the external constraints] . . . . 

Suppose now that some external constraint is removed-such as the open- 
ing of a valve permitting the system to expand into a larger volume. From the 
microphysical point of view the removal of the constraint activates the possibil- 
ity of many microstates that previously had been precluded. Transitions occur 
into these newly available states. After some time the system will have lost all 
distinction between the original and the newly available states, and the system 
will thenceforth make random transitions that sample the augmented set of states 
with equal probability. The number of microstates among which the system un- 
dergoes transitions, and which thereby share uniform probability of occupation, 
increases to the maximum permitted by the imposed constraints. 

This statement is strikingly reminiscent of the entropy postulate of thermo- 
dynamics, according to which the entropy increases to the maximum permitted 
by the imposed constraints. It suggests that the entropy can be identified with 
the number of microstates consistent with the imposed macroscopic constraints. 

One difficulty arises: The entropy is additive (extensive), whereas the num- 
ber of microstates is multiplicative. The number of microstates available to two 
systems is the product of the numbers available to each (. . . ). To interpret the 
entropy, then, we require an additive quantity that measures the number of mi- 
crostates available to a system. The (unique!) answer is to identtfi the entropy 
with the logarithm of the number of available microstates (the logarithm of a 
product being the sum of the logarithms). Thus 

S = k s l n R  

where R is the number of microstates consistent with the macroscopic constraints. 
The constant prefactor merely determines the scale of S; it is chosen to obtain 
agreement with the Kelvin scale of temperature . . . 

. . . this single postulate is dramatic in its brevity, simplicity, and complete- 
ness. The statistical mechanical formalism that derives directly from it is one in 
which we ‘simply’ calculate the logarithm of the number of states available to the 
system, thereby obtaining S as a function of the constraints U ,  V, and N. That 
is, it is statistical mechanics in the entropy formulation, or, in the parlence of the 
field, it is statistical mechanics in the microcanonical formalism. [p. 331-3321 
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The fundamental postulate of statistical mechanics can be supported by symmetry 
arguments. Following Callen, for any two states i and j, “the interchangeability of 
future and past, or the time reversibility of physical laws, associates the transitions 
i + j and j + i and leads directly to the equality . . . of the transition probabilities” 
[p. 4681. This principle of detailed balance leads to the principle of equal proba- 
bilities of states in the microcanonical ensemble, so that “the equal probabilities of 
permissible states for a closed system in equilibrium is a consequence of time rever- 
sal symmetry of the relevant quantum mechanical laws” [p. 4681. Again, symmetry 
plays an important role for a fundamental understanding of principles. Ergodic the- 
ory offers an alternative approach to justify the fundamental postulate of statistical 
mechanics. 

According to the well-established microcanonical formalism, the calculation of the 
fundamental equation for the entropy amounts to counting the number of microstates 
for given extensive variables (more precisely, one needs to consider intervals around 
a given energy to find any states with the prescribed energy, where the entropy is 
essentially independent of the size of the interval). Whereas the microcanonical 
formalism solves the fundamental problem of statistical mechanics, it may be very 
useful for practical purposes to work in other formalisms, in particular, in the so-called 
canonical formalism: 

As in thermodynamics, the entropy representation is not always the most 
convenient representation. For statistical mechanical calculations it is frequently 
so inconvenient that it is analytically intractable. [p. 3321 

The canonical formalism can be derived by considering the system of interest in 
contact with a thermal reservoir of a given temperature rather than an isolated system. 
The “system plus the reservoir constitute a closed system, to which the principle of 
equal probability of microstates again applies” [p. 3491. For the system alone, how- 
ever, microstates then do not have the same probability. Rather, the probabilities are 
proportional to the Boltzmann factors, and the normalization factor for the probabil- 
ities is given by the canonicalpartition function, 2, as a function of the temperature 
and the extensive mechanical state variables. The Helmholtz free energy is given by 
the famous relation 

“which should be committed to memory” [p. 3511. Equation (A.30) is the basis 
for most first-principles calculations of thermodynamic properties, in particular, by 
Monte Carlo methods. 

In the canonical approach, the probabilities of all the microstates are known, so that 
not only averages but also fluctuations are accessible. One thus obtains the theory of 
fluctuations which establishes a close relationship between thermodynamic material 
properties and the magnitude of fluctuations (both are given by the second-order 
derivatives of thermodynamic potentials). 

Callen’s approach to statistical mechanics is actually based on quantum systems, 
for which we have a discrete set of microstates. The quantum approach has a number 
of advantages. The natural concept of indistinguishable particles avoids the classical 
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overestimate of the number of states leading to a nonextensive entropy (this problem 
is associated with the famous key words “Gibbs’ paradox” and “correct Boltzmann 
counting”). The existence of (weakly degenerate) ground states implies that the 
entropy goes to zero when the absolute temperature approaches zero. Finally, only 
by means of Planck’s constant can one naturally form the dimensionless quantities 
required for taking logarithms. 

A.7 PERSPECTIVES 

Equilibrium thermodynamics is in perfect shape. The all-encompassing problem of 
equilibrium thermodynamics has been identified, a clearly structured elegant formal- 
ism has been developed within a postulational approach, the postulates can be sup- 
ported by statistical mechanics, the universal features have been elaborated, successful 
sets of state variables have been identified and corroborated for many problems, the 
rules for atomistic calculations of fundamental equations have been discovered, trans- 
formations for simplifying practical calculations have been found, and an enormous 
number of problems in various fields of science and engineering have been solved. 
Beyond-equilibrium thermodynamics should now be shaped to a similar level of per- 
fection. 


