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Appendix A

Crash-Course on
Equilibrium
Thermodynamics

To provide the background for beyond-equilibrium thermodynamics, we here out-
line the fundamentals of equilibrium thermodynamics. Equilibrium thermodynamics
must not only be obtained as a special case of any acceptable nonequilibrium gen-
eralization but, through its shining example, it also elucidates the wide scope, the
emphasis on universal relationships, and the advantages of a systematic postulational
approach to beyond-equilibrium thermodynamics. This appendix is based on an ar-
ticle! that was written with exactly the same motivation, providing the background
of equilibrium thermodynamics for a special issue of the Journal of Non-Newtonian
Fluid Mechanics on nonequilibrium thermodynamics.2 The article, in turn, was based
on the famous textbook on equilibrium thermodynamics by Callen.? Callen’s book,
finally, is based on authority. The present crash-course on thermodynamics hence

1Iongschaap & Ottinger, J. Non-Newtonian Fluid Mech. 96 (2001) 5.
2 See issue no. 1-2 in J. Non-Newtonian Fluid Mech. 96 (2001).
3Callen, Thermodynamics (Wiley, 1985).
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398 CRASH-COURSE ON EQUILIBRIUM THERMODYNAMICS

follows Callen’s clearly structured and widely accepted postulational approach as
closely as possible.

A.1 APPROACH AND SCOPE

In this appendix, we summarize the key elements of equilibrium thermodynamics.
Although this subject is covered by many textbooks and is a standard part of the
education in most branches of science and engineering and despite the fact that the
treatment of common applications such as the calculation of the efficiency of engines,
phase behavior, chemical equilibria, and so forth are well understood and frequently
used, we nevertheless undertake this effort because there still seems to be no con-
sensus on the treatment of the fundamentals of thermodynamics. It is not only for
pedagogical reasons that in the various textbooks many starting points and many
routes of the further developments can be found. For example, one could take the
traditional considerations of Carnot, Kelvin, and Clausius, which led to the famous
formulations of the second law as a starting point, or Boltzmann’s famous statisti-
cal expression of the entropy, S = kg In {2, or the asymmetrical time evolution of
irreversible processes, or the topology of the space of equilibrium states, or the infor-
mation theoretical method, or the treatment based on the Clausius-Duhem inequality
of rational thermodynamics.

We do not attempt to discuss any of the above-mentioned approaches here. We
just present a concise and consistent outline of the fundamentals of equilibrium ther-
modynamics. For that purpose, we follow the well-known textbook of Callen, which
is widely accepted as a brilliant source on the foundations of equilibrium thermo-
dynamics. The present appendix is a selection of annotated quotations from this
book.

We follow the treatment of Callen as closely as possible, with a special emphasis on
fundamental concepts and principles. We focus on elucidating the structural elements
of thermodynamics and the principles of statistical mechanics. How can we make sure
that our selection of the key elements of thermodynamics and statistical mechanics
indeed is in the spirit of Callen? For thermodynamics, we have Chapter 12 of his book
as a valuable guide, in which the basic principles are summarized and generalized
to systems including magnetic, electric, elastic, and other effects. The increasing
importance that he ascribed to statistical mechanics is evident from the inclusion of
six chapters on this topic in going from the first edition (1960) to the second edition
(1985) of his book. For further details on specific subjects, the reader is of course
referred to Callen’s book or to alternative sources, such as Reichl’s comprehensive
textbook.*

Although we assume that most of that readers of this book are familiar with equi-
librium thermodynamics to an extent that he or she would feel that a crash-course on
thermodynamics is hardly necessary, we would still like to offer some basic remarks

4Reichi, Modern Course in Statistical Physics (University of Texas, 1980).
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in the spirit of Callen’s book by citing from his introduction. He describes the scope
of thermodynamics as follows:

Thermodynamics (...) neither claims a unique domain of systems over
which it asserts primacy, nor does it introduce a new fundamental law analogue
to Newton’s or Maxwell’s equations. In contrast to the speciaity of mechanics
and electromagnetism, the hallmark of thermodynamics is generality. Gener-
ality first in the sense that thermodynamics applies to all types of systems in
macroscopic aggregation, and second in the sense that thermodynamics does
not predict specific numerical values for observable quantities. Instead ther-
modynamics sets limits (inequalities) on permissible physical processes, and it
establishes relationships among apparently unrelated properties.

Callen characterizes thermodynamics as a universal framework for the macroscopic
description of matter:

whereas thermodynamics is not based on a new and particular law of nature,
it instead reflects a commonality of universal feature of all laws. In brief, ther-
modynamics is the study of restriction on the possible properties of matter that
Sfollows from the symmetry properties of the fundamental laws of physics.

Extrapolating Callen’s point of view, beyond-equilibrium thermodynamics should
be a general theory of the properties of matter, including the dynamical ones. By virtue
of its nature of commonality, beyond-equilibrium thermodynamics should provide re-
lationships between various static and dynamic material properties on the macroscopic
or any other coarse-grained level of description. When statistical mechanics comes
into the game, beyond-equilibrium thermodynamics may be regarded as the theory
of coarse-graining: it should provide the structure of the equations for describing
coarse-grained systems, and statistical mechanics should provide microscopic inter-
pretations and expressions for the inputs of the phenomenological thermodynamic
approach, so that the “macroscopic postulates are precisely and clearly the theorems
of statistical mechanics.” The reader should verify that the GENERIC approach used
in this book for presenting a unified view of beyond-equilibrium thermodynamics
fulfills all these requirements.

A.2 EQUILIBRIUM STATES

A very fundamental notion in thermodynamics is the state concept. The state of an
isolated thermodynamic system is described by a finite set of state variables (X;).
Citing Callen,

Systems tend to subside to very simple states, independent of their specific
history. ... in all systems there is a tendency to evolve toward states in which the
properties are determined by intrinsic factors and not by previously applied exter-
nal influences. Such simple terminal states are, by definition, time independent.
They are called equilibrium states. {p. 13]

Next, the internal energy U needs to be established as a state variable. Callen
introduces it as a macroscopic manifestation of definite conservation principles of
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energy and summarizes the fundamental properties of equilibrium states in his first
postulate:

Postulate I. There exist particular states (called equilibrium states) that, macro-
scopically, are characterized completely by the specification of the internal en-
ergyU and a set of parameters X1, X, ... X, later to be specifically enumerated.
[p. 283]

In many applications of thermodynamics, the parameters or state variables X;
are the volume V' and the mole numbers Ny, Ny, ... N, of the chemically pure
components of which a system is a mixture. These parameters, with the property that
their value in a composite system is the sum of their values in each of the subsystems,
are called extensive. In general, “the choice of variables in terms of which a given
problem is formulated, while a seemingly innocuous step, is often the most crucial
step in the solution” [p. 465]. If the choice of variables is so crucial, how can we
understand which variables are relevant to describing the time independent states of
a system? Callen demonstrates in the final part of his book on fundamentals that, for
equilibrium systems, the answer to this question is intimately related to the symmetries
of the laws of nature.

The conserved quantities are clearly the most natural variables to describe time
independent states. According to Noether’s theorem, such conserved quantities result
from the continuous symmetries of the dynamical behavior of a system. For exam-
ple, symmetry under time translation implies the conservation of energy, and the
conservation of electric charge is a consequence of the gauge symmetry of Maxwell’s
equations. Another possible reason for variables to become relevant to the description
of time independent states lies in the observation that certain dynamic modes in the
limit of long wavelengths acquire a vanishing frequency.

An important general consequence of broken symmetry is formulated in the
Goldstone theorem. It asserts that any system with broken symmetry (and with
certain weak restrictions on the atomic interactions) has a spectrum of excitations
for which the frequency approaches zero as the wavelength becomes infinitely
large. [p. 464]

For a crystalline solid, for example, there exist infinitely many equally possible
positions, slightly displaced by an arbitrary fraction of a lattice constant, which are
related through the broken symmetry of translations. The fact that these positions are
equally possible leads to a zero-frequency mode and to the occurrence of the volume
as a state variable.

To return to the general formalism, we thus recognize that all symmetries
{leading to conservation laws and Goldstone excitations] must be taken into
account in specifying the relevant state space of a system. [p. 471]

These symmetry considerations are limited to equilibrium thermodynamics. In
complex fluids, the choice of the relevant state variables will be more complicated.
In fact, a fundamental challenge in applying beyond-equilibrium thermodynamics is
to identify in some way the structural state variables X; for a particular (class of)
system(s). The relevant variables correspond to the slowest modes of a system. In
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beyond-equilibrium thermodynamics, one thus needs to separate the slow and the
fast variables and, after keeping only the slow as the relevant variables, one expects
corrections to be governed by the ratio of the associated time scales, whereas the theory
of equilibrium states deals with the truly time independent variables associated with
symmetries. In that sense, beyond-equilibrium thermodynamics has an intrinsically
approximate character absent in its equilibrium counterpart.

Considerations of the state concept introduced in Postulate I in connection with
various forms of energy exchange lead to the definition of heat and work, as well as
a balance equation for the internal energy U':

dU =dQ +dw. (A.1)

The symbol d is used instead of d since dQ) and dW are not differentials of state
variables (that is, not differentials of functions of U, X;, X5, ... X}) but are small
amounts of heat and work. In Callen’s words [p. 20], “Heat, like work, is only a
form of energy transfer ... the energy U of a state cannot be considered as the sum
of ‘work’ and ‘heat’ components." In general, d@Q and dW are process-dependent
quantities, and there are no corresponding state variables in the sense defined above.
Equation (A.1) can be considered as a formal representation of the balance equation
of internal energy derived from phenomenological considerations.

The use of the notions of thermodynamic systems and equilibrium states in this
section deserves a few words of explanation. A thermodynamic system should ac-
tually be defined through a set of state variables and the accessible domain in the
corresponding state space. Although one can formally define equilibrium states as
time independent states of isolated systems, this definition is not very helpful for
practical purposes because very long time scales might occur. For practical purposes,
Callen hence proposes a rather indirect, somewhat provocative operational expla-
nation [p. 15]: “In practice the criterion for equilibrium is circular. Operationally,
a system is in an equilibrium state if its properties are consistently described by
thermodynamic theory!"

A3 BASIC PROBLEM OF THERMODYNAMICS

To keep a system in an equilibrium state, constraints are needed. If some of these
constraints are released, the system will evolve to other states. What occurs then is,
in fact, what Callen calls the basic problem of thermodynamics:

The single, all-encompassing problem of thermodynamics is the determina-
tion of the equilibrium state that eventually results after the removal of internal
constraints in a closed, composite system. [p. 26]

It should be noted that Callen uses the term closed for systems that we nowadays
usually refer to as isolated. The solution of the basic problem of thermodynamics is
achieved through the entropy postulates, which “are, in fact, the most natural guess
that we might make, providing the simplest conceivable formal solution 1o the basic
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problem ... the most economical form for the equilibrium criterion would be in terms
of an extremum principle":

Postulate Il. There exists a function (called the entropy) of the extensive param-
elers, defined for all equilibrium states, and having the following property. The
values assumed by the extensive parameters in the absence of a constraint are
those that maximize the entropy over the manifold of constrained equilibrium
states. [p. 284])

Postulate ill. The entropy of a composite system is additive over the constituent
subsystems (whence the entropy of each constituent system is a homogeneous
first-order function of the extensive parameters). The entropy is continuous and
differentiable and is a monotonically increasing function of the energy. [p. 284]

Postulate IV. The entropy of any system vanishes in the state for which T =
(8U/8S)x,,x,,... = 0. [p. 284]

The function introduced in Postulate II is called a fundamental equation of the
system:
S:S(U,Xl,XQ,...Xt). (A2)

This is the entropy representation. By solving with respect to U—this is possible in
view of the last part of Postulate Ill—one obtains the energy representation

U=U(S, X1, Xs,...X¢). (A3)

Fundamental equations in thermodynamics deserve their name because they contain
the information about all thermodynamic properties (equations of state, heat capac-
ities, compressibilities, expansion coefficients, phase behavior, etc.) of the system.
This, however, is primarily of theoretical interest, because for most systems no an-
alytical expressions of the fundamental equations are available. The mere existence
of fundamental equations, however, is already very important to establish relation-
ships between various thermodynamic properties; this emphasis on relationships is
the essence of thermodynamics.
The total differential of equation (A.3) is

dU = TdS + P,dX, + PydX, + ... P,dXy, (A4)

with the temperature

T = (Q.Q) =T(S,X1,X2,...Xt), (A'S)
oS X1,X2,..,X,

and the thermodynamic forces

Pi:(aU

—) ZB(S,Xl,XQ,...Xt). (A6)
0X; 8, X1,X2, ., Xim1,Xip14e- Xt

The functional dependencies implied by (A.5) and (A.6) are constitutive equations,
known as thermodynamic equations of state. Contrary to fundamental equations like
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(A.3), an equation of state does not contain the full information about the thermody-
namic properties of the system but only part of it.

It should be emphasized that, despite the formal similarity of (A.1) and (A.4), these
expressions are fundamentally different. Equation (A.1) is a balance equation for
U, expressed in process-dependent quantities, describing an energy transfer, whereas
(A.4) is the total differential of the dependent state variable U, expressed as a function
of a complete set of state variables.

It should also be noted that, in the treatment of Callen, at this point it is not evident
that T"is in fact the usual temperature and how the P; are related to the usual mechanical
variables, such as pressure. This, in fact, turns out to be a consequence of the entropy
maximum principle, expressed in Callen’s second postulate. By considering the
equilibrium of a system with external reservoirs, it follows that in sufficiently slow,
quasi-static processes

dQ =TdS, (A7)

and
P, =P, , (A.8)

where —P; is a thermodynamic force (such as the thermodynamic pressure) and
— Pf the corresponding external, mechanical force (such as the mechanical pressure).
Quasi-static processes play an important role in the determination of thermodynamic
quantities. These processes may be considered as trajectories in the manifold of
equilibrium states. It should be noted, however, that quasi-static processes are an ide-
alization because real processes always involve nonequilibrium intermediate states.

As mentioned above, the variables U, S and X, ... X, are extensive, that is,
proportional to the size of the system. As a consequence, (A.3) is homogeneous of
the first order:

U(/\S, AXl,/\Xz, e AX:) = AU(S, X]_,X2, . Xt) (Ag)

By differentiating (A.9) with respect to A and setting A equal to unity, one can derive
the Euler equation,

t
U=TS+)» PX, (A.10)
g=1

and the so-called Gibbs-Duhem equation,

t
SdT + Y XidP; = 0. (A.11)
i=1

Note, however, that in the modeling of complex fluids in general not all of the structural
variables will be extensive. Structural parameters, like configuration tensors etc.,
which describe the internal state of a system, are an example of this. In such cases,

one cannot directly generalize the expressions (A.10) and (A.11).
A classical example in thermodynamics is a system of N moles of a gas or liquid
in a volume V. In this case, the total differential (A.4) of U = U (S, V, N) becomes

dU = TdS — PdV + pdN, (A.12)



404 CRASH-COURSE ON EQUILIBRIUM THERMODYNAMIC

where P is the thermodynamic pressure and u is the chemical potential. The Gibbs-
Duhem relation (A.11) becomes

SdT — VdP + Ndu =0, (A.13)
probably better known in the molar form
dp = —3dT + vdP, (A.14)

with § = S/N and v = V/N.

A.4 THERMODYNAMIC POTENTIALS

Equations (A.2) and (A.3) are probably the most fundamental but certainly not the
most practical equations of thermodynamics. The reason is that, in many situations,
the variables used in these expressions are not the ones controlled or measured in
practice. Processes with temperature and pressure control are for instance more com-
mon than processes with controlled entropy and volume. Fortunately, there exist
transformations by which fundamental equations can be transformed with conserva-
tion of their fundamental nature, that is, the property that they contain all information
about the thermodynamic properties of the system. These transformations are the so-
called Legendre transformations, and the new functions, which are the result of the
transformation, are called thermodynamic potentials. By means of Legendre transfor-
mations, all extensive and intensive state variables (U, S, X1,..., X, T, Py,..., P;)
are elevated to an equal footing.

The relevance of these transformations in thermodynamics should not be under-
estimated. To cite Callen:

Multiple equivalent formulations also appear in Mechanics—Newtonian, La-
grangian, and Hamiltonian formulations are tautologically equivalent. Again
certain problems are more tractable in a Lagrangian formalism than in a Newto-
nian formalism, or vice versa. But the difference in convenience of the different
formalisms is enormously greater in thermodynamics. It is for this reason that
the general theory of transformations among equivalent representations is here
incorporated as a fundamental aspect of thermostatistical theory. [p. 131]

A partial Legendre transformation can be made by replacing the variables
Xo,X1,...Xs by Po,Py,... P, (where s < t, Xog = S, Pop = T, and the first s
variables, instead of any s variables, are selected without loss of generality). The
Legendre transformed function is

UlPo, Pr,...,P|=U =Y PX.. (A.15)
=0

Following Callen, we here employ the notation U[ Py, P, . . ., Ps] to denote the func-
tion obtained by making a Legendre transformation with respect to Xp, X3, ... X;
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on the function U (X1, X2, . .. X;). ThusU[Py, Py, ..., Ps] is a function of the inde-
pendent variables Py, P, ..., Py, X541, X542 . .. X;. The natural derivatives of this
function are

8U[Py, Py,..., Pi)

=-X k=0,1,..., A.16
5P, k ( s) (A.16)
aU[PO’P"“"P"']sz (k=s+1,5+2,...,1) (A.17)
00Xy
and consequently
8 t
dU[Py, Py,..., P} =Y (-X)dP. + ) PdXi. (A.18)
=0 i=s+1

For the example of a gas or a fluid, the following well-known thermodynamic
potentials are obtained by Legendre transformation: the Helmholtz potential or
Helmholtz free energy,

F=U[T|=U-TS§, (A.19)

the enthalpy,
H =U[P]=U + PV, (A.20)

and the Gibbs potential or Gibbs free energy,
G=U[T,Pl=U-TS+PV. (A.21)

The fundamental equations of these functions in differential form read:

dF = -—S8dT — PdV + udN,
dH = TdS+VdP + pdN,
dG = -—-SdT'+VdP + pdN. (A.22)

The coefficients in these expressions are functions of the corresponding variables.
In this way, a set of equations of state is associated with each of the potentials, for

example

P(T,V,N) = _(g{;)mv’

u(T,V,N) = (—S—JFV)TV, (A.23)
and so on.

For the Helmholtz potential function F(T, V, N) an extremum principle similar to
Callen’s Postulate II applies. This result, which can be derived from Postulate II by
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considering a small system in thermal contact with a large reservoir of temperature
TT, reads:

Heimhoitz Potential Minimum Principle. The equilibrium value of any uncon-
strained internal parameter in a system in diathermal contact with a heat reser-
voir minimizes the Helmholtz potential over the manifold of states for which
T=T" [p.155]
Similar results may be derived for the other thermodynamic potentials.
There exists an alternative to thermodynamic potentials to condense all the in-
formation about a thermodynamic system into a single function that is useful in the
context of developing beyond-equilibrium thermodynamics:

Whereas the most common functions definable in terms of Legendre trans-
formations are those mentioned ... [above], another set can be defined by per-
forming the Legendre transformation on the entropy rather than on the energy.
That is, the fundamental relation in the form S = S(U, V, N1, N2,...) can be
taken as the relation on which the transformation is performed. Such Legendre
transforms of the entropy were invented by Massieu in 1869 and actually pre-
dated the transforms of the energy introduced by Gibbs in 1875. We refer to the
transforms of the entropy as Massieu functions, as distinguished from the ther-
modynamic potentials transformed from the energy. The Massieu funtions will
turn out to be particularly useful in the theory of irreversible thermodynamics,
and they also arise naturally in statistical mechanics and in the theory of thermal
fluctuations. [p. 151]

A.5 MAXWELL RELATIONS AND STABILITY CRITERIA

The material quantities that are of primary interest in applications to thermodynamics
are the equations of state, like (A.23), and in particular derivatives such as (%) VN
It should be noted that, because the equations of state are obtained by differentiation
of fundamental equations, these quantities are second derivatives of a thermodynamic
potentiai. By using the rule of interchanging the order of partial differentiation, one

readily obtains the so-called Maxwell relations. For example, one has

8’F O*F
aTOV ~ VT (A.24)
and hence oP as
el = =—= ) (A.25)
(5) = (7).,

These interrelations are heavily used in thermodynamic calculations. Maxwell, whose
turn of mind was geometrical, obtained (A.25), and similar relations, from the prop-
erties of a parallelogram; he concluded that such a relation “is a merely geometrical
truth, and does not depend upon thermodynamic principles,” whereas he offered the
formulation in the language of differential calculus only as a footnote.’

5 See p. 169 of Maxwell, Theory of Heat (Dover, 2001).



STATISTICAL MECHANICS 407

Besides derivatives of the equations of state, one also encounters derivatives like
(3—5) i (-g%) G.n»and so on. Insimple cases, a reduction of quantities of this type
to more familiar expressions is possible by the use of some identities of calculus.
Callen describes a general procedure in five steps for the reduction of derivatives by
using such identities and the Maxwell relations [p. 186-189]. In addition, a more
general method based on Jacobian representations of partial derivatives is available.

The second derivatives of the thermodynamic potentials are not only the basis
for the Maxwell relations; they are also fundamental in considerations about ther-
modynamic stability. The starting point is, again, the maximum entropy postulate.
A consequence of this postulate is that the hypersurface S = S(U, X; ..., X;) in
the thermodynamic configuration space should have the property that it lies every-
where below its tangent planes. This implies conditions for the derivatives of the
fundamental relation. For example, in the case S = S(U, V, N), we have

0%S

(57%),., <0 420
825)

o) <o (A27)
(),

and

2 2 2 2
0%8 9*S (65)20. (A.28)

aUuz9vz ~ \guav

The positiveness of physical quantities like specific heats, compressibilities, and ex-
pansion coefficients is a direct consequence of these thermodynamic stability re-
quirements. Chemical equilibria for systems consisting of several components can
be treated accordingly.

If criteria of stability are not satisfied, a system breaks up into two or more phases.
The molar Gibbs potential of each component is then equal in each phase. The
dimension f of the thermodynamic space in which a given number M of phases can
exist for a system of r components is given by the Gibbs phase rule

f=r—M+2. (A.29)

A.6 STATISTICAL MECHANICS

All the thermodynamic properties of a system are determined by a single funda-
mental equation, and equilibrium thermodynamics implies very general relationships
between the various thermodynamic properties. To understand a particular system,
however, we are still faced with the problem of determining an appropriate fundamen-
tal equation. One option would be to collect experimental information about various
equations of state, which could then be used to construct a fundamental equation.
Another option would be to calculate a fundamental equation from an atomistic un-
derstanding of the system by means of statistical mechanics. The key to this route to
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fundamental equations is a microscopic understanding of the concept of entropy. In
Callen’s words,

... the entropy is one of a set of extensive parameters, together with the
energy, volume, mole numbers and magnetic moment. As these latter quantities
each have clear and fundamental physical interpretations it would be strange if
the entropy alone were to be exempt from physical interpretation.

The subject of statistical mechanics provides the physical interpretation of
the entropy, and it accordingly provides a heuristic justification for the extremum
principle of thermodynamics. [p. 329]

The basis of statistical mechanics can actually be established in a few lines, pro-
vided that one formulates one more postulate, the fundamental postulate of statistical
mechanics:

The assumption of equal probability of all permissible microstates is the
fundamental postulate of statistical mechanics [a permissible microstate being
one consistent with the external constraints] . ...

Suppose now that some external constraint is removed—such as the open-
ing of a valve permitting the system to expand into a larger volume. From the
microphysical point of view the removal of the constraint activates the possibil-
ity of many microstates that previously had been precluded. Transitions occur
into these newly available states. After some time the system will have lost all
distinction between the original and the newly available states, and the system
will thenceforth make random transitions that sample the augmented set of states
with equal probability. The number of microstates among which the system un-
dergoes transitions, and which thereby share uniform probability of occupation,
increases to the maximum permitted by the imposed constraints.

This statement is strikingly reminiscent of the entropy postulate of thermo-
dynamics, according to which the entropy increases to the maximum permitted
by the imposed constraints. It suggests that the entropy can be identified with
the number of microstates consistent with the imposed macroscopic constraints.

One difficulty arises: The entropy is additive (extensive), whereas the num-
ber of microstates is multiplicative. The number of microstates available to two
systems is the product of the numbers available to each (...). To interpret the
entropy, then, we require an additive quantity that measures the number of mi-
crostates available to a system. The (unique!) answer is to identify the entropy
with the logarithm of the number of available microstates (the logarithm of a
product being the sum of the logarithms). Thus

S=kplnQ

where Q is the number of microstates consistent with the macroscopic constraints.
The constant prefactor merely determines the scale of S; it is chosen to obtain
agreement with the Kelvin scale of temperature . ..

... this single postulate is dramatic in its brevity, simplicity, and complete-
ness. The statistical mechanical formalism that derives directly from it is one in
which we ‘simply’ calculate the logarithm of the number of states available to the
system, thereby obtaining S as a function of the constraints U, V, and N. That
is, it is statistical mechanics in the entropy formulation, or, in the parlence of the
field, it is statistical mechanics in the microcanonical formalism. {p. 331-332]
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The fundamental postulate of statistical mechanics can be supported by symmetry
arguments. Following Callen, for any two states ¢ and j, “the interchangeability of
future and past, or the time reversibility of physical laws, associates the transitions
i — j and j — i and leads directly to the equality ... of the transition probabilities”
[p. 468]. This principle of detailed balance leads to the principle of equal proba-
bilities of states in the microcanonical ensemble, so that “the equal probabilities of
permissible states for a closed system in equilibrium is a consequence of time rever-
sal symmetry of the relevant quantum mechanical laws” {p. 468]. Again, symmetry
plays an important role for a fundamental understanding of principles. Ergodic the-
ory offers an alternative approach to justify the fundamental postulate of statistical
mechanics.

According to the well-established microcanonical formalism, the calculation of the
fundamental equation for the entropy amounts to counting the number of microstates
for given extensive variables (more precisely, one needs to consider intervals around
a given energy to find any states with the prescribed energy, where the entropy is
essentially independent of the size of the interval). Whereas the microcanonical
formalism solves the fundamental problem of statistical mechanics, it may be very
useful for practical purposes to work in other formalisms, in particular, in the so-called
canonical formalism:

As in thermodynamics, the entropy representation is not always the most
convenient representation. For statistical mechanical calculations it is frequently
so inconvenient that it is analytically intractable. [p. 332]

The canonical formalism can be derived by considering the system of interest in
contact with a thermal reservoir of a given temperature rather than an isolated system.
The “system plus the reservoir constitute a closed system, to which the principle of
equal probability of microstates again applies” {p. 349]. For the system alone, how-
ever, microstates then do not have the same probability. Rather, the probabilities are
proportional to the Boltzmann factors, and the normalization factor for the probabil-
ities is given by the canonical partition function, Z, as a function of the temperature
and the extensive mechanical state variables. The Helmholtz free energy is given by
the famous relation

F=—kpTInZ=—kpT InY e B:/ksT), (A.30)
i

“which should be committed to memory” [p. 351]. Equation (A.30) is the basis
for most first-principles calculations of thermodynamic properties, in particular, by
Monte Carlo methods.

In the canonical approach, the probabilities of all the microstates are known, so that
not only averages but also fluctuations are accessible. One thus obtains the theory of
Sfuctuations which establishes a close relationship between thermodynamic material
properties and the magnitude of fluctuations (both are given by the second-order
derivatives of thermodynamic potentials).

Callen’s approach to statistical mechanics is actually based on quantum systems,
for which we have a discrete set of microstates. The quantum approach has a number
of advantages. The natural concept of indistinguishable particles avoids the classical
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overestimate of the number of states leading to a nonextensive entropy (this problem
is associated with the famous key words “Gibbs’ paradox” and “correct Boltzmann
counting”). The existence of (weakly degenerate) ground states implies that the
entropy goes to zero when the absolute temperature approaches zero. Finally, only
by means of Planck’s constant can one naturally form the dimensionless quantities
required for taking logarithms.

A.7 PERSPECTIVES

Equilibrium thermodynamics is in perfect shape. The all-encompassing problem of
equilibrium thermodynamics has been identified, a clearly structured elegant formal-
ism has been developed within a postulational approach, the postulates can be sup-
ported by statistical mechanics, the universal features have been elaborated, successful
sets of state variables have been identified and corroborated for many problems, the
rules for atomistic calculations of fundamental equations have been discovered, trans-
formations for simplifying practical calculations have been found, and an enormous
number of problems in various fields of science and engineering have been solved.
Beyond-equilibrium thermodynamics should now be shaped to a similar level of per-
fection.



