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Chapter 1

Introduction

1.1 What are Complex Fluids?

Complex fluids include polymeric liquids, colloidal suspensions (gels, sols, and emul-
sions), liquid crystalline materials, foams, powders, and granular materials. These
non-Newtonian fluids are ubiquitous: milk, ketchup, mustard, molten chocolate,
ice cream, shampoo, toothpaste, blood, saliva, etc. For an illustrative introduction
see the book by Larson [5] From the technological point of view, complex fluids
have significant relevance as they are precursors of advanced materials. Many of
these materials are processed in liquid form and as such they are complex fluids, for
example all plastics and resins and liquid crystalline polymers (LCPs).

Complex fluids have peculiar rheology due to the presence of a microstructure
formed by long-chain molecules (macro-molecules) or other types of microscopic or
nanoscopic particles which interact with a flow. These microstructures have long
relaxation time scales to equilibrium and consequently a flow can induce in them
large changes which in turn affect the overall macroscopic properties of the system.
For example, a notorious property of polymeric liquids is their viscoelasticity which
gives them a "rubber-like” behavior. We will look later at some of the many other
behaviors of complex fluids that are not exhibited by Newtonian fluids like water.

We will focus on a molecular description of polymeric liquids, known as Kinetic
Theory. Polymers are formed by chemically coupling a large quantity of small reac-
tive molecules called monomers. The chains are typically very long with thousands
or millions of monomer units. These macromolecules come in different architec-
tures; they could be flexible or rigid, branched, closed-ring, or star-shaped. The
large size of these molecules justifies a modeling simplification in which the details
of the individual monomer molecules are neglected. With that spirit, the Kinetic
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Theory of polymers focuses on the construction of coarse mechanical models which
attempt to capture the macroscopic behavior of the macromolecules (polymers). In
addition, because the macromolecules tend to pack in large numbers, they typically
interact with many other molecules. Each of these interactions has a small effect to
the extent that we can concentrate our efforts on the study of individual molecules.
Much of the material of these notes is contained in the treatise on the subject by
Bird, Curtiss, Armstrong, and Hassager [2], in the book of Doi and Edwards [3].

1.2 A Two-Scale Problem

Complex fluids are characterized by two disparate length scales and two distinctive
time scales. A typical length scale ¢ of the microstructure is on the order of 1 ym
whereas a macro length scale L could be anything from a few millimeters to several
centimeters. We will assume from the outset that there is a separation of length
scales and € = ¢/ L can be considered a small parameter.

There are two different time scales as well: a macromolecular relaxation time
scale tmicro describing the slowest molecular motions and a characteristic (macro)
time for the flow tyacro. The Deborah number De is defined as the ratio of these two
time scales

tmicro
(1.1) De =

tmacro
If De <« 1 thermal fluctuations will relax the flow-distorted macromolecules and the
fluid will behave largely like a Newtonian one. If, on the other hand De > 1 the

flow-affected macromolecules will not have time to fully relax and as a result the
fluid will show some solid-behavior characteristics.

1.3 The Equations of Motion of the Flow

Consider an arbitrary fixed element of fluid y as in Fig. [1.1(a)|, with surface 9.
Then the rate of change of the total mass contained in that fluid element is equal to
the flux of mass across the surface 0€), in the absence of sinks or sources inside {:

d

(1.2) — pdV:—/ pv -ndsS.
dt Jo, 990

Here p is the mass density, v is the flow’s velocity field, and n is the unit normal
pointing outward of 9€)y. This is the principle of conservation of mass. Using the
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(a) Fluid element (b) Stress forces

Figure 1.1: Stress forces on a element. T = [F; Fy Fj.

Gauss’ s Divergence Theorem, (|1.2)) becomes

(1.3) /Qo%d‘/=—/QOV~(pV)dV

and because () is arbitrary we obtain the Continuity Fquation

(1.4) % +V-(pv)=0.

For constant density flows we get the incompressibility condition

(1.5) V-v=0.

We can apply Newton’s second law to €2y to obtain a statement of conservation
of momentum. The momentum of €}y will change due to three sources: flux of
momentum across d€), external (body) forces pfo,; (e.g. gravity), internal forces S
of molecular nature acting on 9€):

d
(1.6) — [ pvdV = —/ (pv®@v)ndS +/ e AV —|—/ Sds.
dt Jo, 9% Q 990

Here, v ® v is the tensor product of v with itself and (v ® v);; = v;v;. Cauchy’s
Theorem states that these stress forces are linear in n and

(1.7) S = Tn.
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where T is a second order tensor called the stress tensor and we will represent it as a
matrix. Thus, Tj; is the i-th component of the force per unit area in a plane normal

to the j-th direction (see Fig. [L.1(b)]). Substituting into ((1.6) and applying the
Gauss’s Theorem we have

0
(1.8) / (pv >dV—— V‘(pv®v)dS+/ Pl AV + V-TdV.
Q Ot Qo Qo Qo
The divergence of the tensors pv ® v and T are the vectors with components

3

d(pvsv;) oT;;
(1.9) V- (pvev);,= 2 /
D Z o

7j=1
respectively. Thus, in differential form the conservation of momentum reads

9(pv)

(1.10) 5

+ V- (pvev) =V T+ pfey.

Upon using the Continuity Equation (|1.4)), we obtain the following equation in non-
conservative form:

0
(1.11) {a—;’ +(v-V)v } =V T+ plex,
where
L ou
(1.12) (v-V)v; = Zuja—%.

j=1
The bracketed term in ((1.11)) is the material or substantial derivative of v :

Dv  0Ov
(1.13) Dt = 6t (V V)

and thus the conservation of momentum can be written more succinctly as

(1.14) = V- T+ phoy.

th

Equations and , supplemented with appropriate boundary and initial
conditions, are the relevant equations to describe the motion of an incompressible
fluid. However, the system is not closed until we provide a mechanism to compute
the stress tensor T. It is convenient to write T as

(1.15) T=—pl+o,
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where —pl represents the isotropic part due to hydrostatic pressure p and o is the
deviatoric or excess stress. Often in continuum models of fluids, o is taken to be a
function of the velocity gradient, o = o(Vv). Here, Vv is the matrix given by

ov;
1.16 Vv), = —.
(1.16) (V)= g
For a large class of fluids, so called Newtonian, o obeys a simple constitutive equa-
tion:

(1.17) o=p(Vv+Vv') + (Ii - ;M) tr(Vv) I,

where p is the fluid viscosity, Vv’ denotes the transpose of the velocity gradient
(1.16)),  is the dilatational viscosity, and tr(Vv) = V - v is the trace of Vv. Thus,
for a Newtonian, incompressible fluid

(1.18) T=—pl+pu(Vv+Vvh).

Often, in rheology literature Vv denotes the transpose of (|1.16]). Here, we will
retain the mathematical meaning given in (({1.16|) as the derivative matrix of v. Note
that with the constitutive equation for the stress, Eq. (1.18]), we have a close system

given by (1.5), (1.14]), (1.18). The system constitutes the Navier-Stokes equations

for the dynamics of an incompressible Newtonian fluid.
It is convenient to decompose Vv into its symmetric and anti-symmetric parts,
Vv =D + Q where
1
(1.19) D=z [Vv+Vv'],
1
(1.20) Q=3 [Vv-vv].
D is called the deformation or rate of strain tensor and €2 the vorticity tensor. Note
that tr(D) = V - v and thus for an incompressible fluid D is traceless.

We are particularly interested in polymer solutions with an incompressible,
Newtonian solvent. In such cases it is convenient to write the stress tensor as

(1.21) T = —pl+2uD + o),
where o, is the stress caused by the macromolecules.

The main task of the theory and of the computations of complex
fluids is to obtain o,,.

Like the Newtonian o, the microstructural stress o, is symmetric for most
models. This follows from the assumption of isotropy (when the fluid is at rest) and
the conservation of angular momentum.
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1.4 Creeping Flow: Stokes Approximation

In the absence of external forces, the Navier-Stokes equations ((1.5), ([1.14)), and
(1.18) for an incompressible, Newtonian fluid can be written as

0
(1.22) p (a—: +v- VV) = —Vp+ uV3v,
(1.23) V.-v=0.

These equations may be non-dimensionalized by introducing a characteristic length

scale L., a characteristic velocity U, and a characteristic time scale T,. Let us select
T. = L./U,. Introducing the following dimensionless variables

b
1.24 r_ =
(1.24) X=X
v

1.25 r—
(1.25) V=

t

/ p—
(1.26) t' = (g)’
(1.27) p =2
@

Lc

we get the non-dimensionalized Navier-Stokes equations:
8 /

(1.28) Re (6_‘1:’ +v - V’V’) = -V + V*,
(1.29) Vv =0,
where

U.L.
(1.30) Re = e

]

is a dimensionless parameter known as the Reynolds number. Equations and
as well as corresponding, non-dimensionalized boundary and initial conditions
define a one-parameter family of solutions (depending only on Re). All flows which
satisfy the same non-dimensionalized boundary and initial conditions and whose
combination of u, p, L., and U, yield the same Re will be described by the same
solution of and . This is the principle of Dynamic Similarity.

This Reynolds number can be interpreted as the ratio of inertial forces to
viscous forces. Indeed
pUZ
Le

ule
L2

(1.31) Re =
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When inertial effects are small compared to viscous forces, i.e. Re < 1, a useful
approximation is to take formally the limit Re — 0 in the momentum equation
(1.28)). For these creeping flowsm we get the (steady) Stokes approzimation:

(1.32) ~Vp+ Vv =0,
(1.33) V-v=0,

where the primes have been dropped in all dimensionless variables to simplify the
notation.

For many complex fluid solutions Re < 1 and thus it is appropriate to describe
their dynamics with the Stokes approximation. Going back to (1.14]) and ([1.21)) and
reintroducing the dimensioned variables we have the Stokes approximation for an
incompressible, non-Newtonian solution:

(1.34) ~Vp+upVv+V-0,=0,
(1.35) V.v=0.

Given the two-scale nature of complex fluids we call also speak of a microscopic
Reynolds number, Reyio. However, to maintain a separation of macro and micro
scales, we must assume that also Rep.o < 1 for otherwise the complex flow system
could develop macroscopic boundary layers of characteristic length smaller than /.

1.5 Two Important Simple Flows

A simple shear flow is given by the velocity gradient

(1.36) Vv =

o O O
o O 2
o O O

where the scalar 7 is the shear rate. It could be produced by the sliding motion of
two parallel plates with a relative velocity V', separated by a fluid-filled gap L as
in Fig. (Circular and cone-and-plate geometries can also be employed to produce
shear flows). In this case 4 = V/L. Note that the streamlines X(t), defined by

(1.37) di{l—f) = v (X(1)),
(1.38) X(to) = %o,

trace a family of sliding planes.
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Figure 1.2: Planar shear flow geometry.

|
N
IN\V7g

Figure 1.3: Uniaxial extensional flow.

A second important, simple flow which is useful in the characterization of
complex fluids is an extensional or elongational flow, given by

¢ 0 0
(1.39) Vv=[0 —¢2 0 |,
0 0 —¢/2

where the scalar ¢é is the magnitude of the strain (Fig.[1.3]). In Cartesian coordinates,
the streamlines are

(1.40) X(t) = moeft=to),
(1.41) Y (t) = yoe 260 10),
(1.42) Z(t) = zge 200,

Hence, if € > 0 there is a uniazial exponential stretching of fluid elements in the
x-direction and if é < 0 the stretching is bi-axial.

When 4 and € are constant the corresponding flows are steady and are called
viscometric flows.
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1.6 Material Functions

1.6.1 Shear Flows

In a shear flow of a Newtonian fluid only the shear stress o195 = 091 = 7y is non-zero.
In general, for an isotropic, incompressible non-Newtonian fluid, the stress tensor
has the form

—p+on 012 0
(143) T = 012 —p—f-dgg 0
0 0 —p -+ 033

The off-diagonal entries o135 = 031, and 093 = 035 are zero due to symmetry; a
rotation of m around the x3-axis leaves the velocity field invariant and assuming the
fluid is isotropic the stress inherits this symmetry.

Because the pressure is defined up to an additive constant, only differences of
the diagonal terms of T can be measured. Two such normal stress differences are
defined as:

(1.44) N1 =011 — 022,
(1.45) Ny = 033 — 092.

Usually, N; > 0 while Ny < 0 and |Ny| < N;. For steady shear flow, ie. 7
time-independent, the shear viscosity n is defined, like in the Newtonian case, by

o o12(Y)
(1.46) n(y) = ——
Y
Note that, in contrast to Newtonian fluids, the shear viscosity depends on the shear

rate.

The normal stress differences N; and Ny are also dependent on the shear
rate, typically at a higher than linear rate. To characterize that dependence two
viscometric functions are defined as:

(1.47 () = 0,
(1.48) () = 220

W, and Uy are called the first and second normal stress coefficients. Note that for a
Newtonian fluid both normal coefficients are zero.
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In addition to steady flows, small amplitude shear flows are used experimen-
tally to study the response of the microstructure to unsteady flows. In these non-
steady flows the shear rate is sinusoidal:

(1.49) F(t) = Ao coswt,

where 79 < 1. Then, the stress varies also sinusoidal but not necessarily in phase
with the shear rate. This motion is expressed as

(1.50) 012 = Fo0 [ (w) coswt + 0" (w) sinwt] .

This expression defines two viscosity functions " and n” or alternatively a “complex”
viscosity function n* = n’—in”. Note that for a Newtonian fluid n” = 0. The function
1 is called the dynamic viscosity. A complex modulus G* is defined through the
relation G* = iwn* = G' +iG"”. G’ and G” are called the loss modulus and storage
modulus, respectively.

1.6.2 Extensional Flows

Due to symmetry with respect to all the axes, the stress for simple extensional flows
has a very simple form:

—p+ o011 0 0
(151) T = 0 —p+0'22 0
0 0 —p+033

Because the x5 and x3 directions are indistinguishable for this geometry, only the
first normal stress difference Ny is relevant (Ny = 0). A viscosity function 7(é) is
defined to characterize the dependence of N; on the magnitude of the strain ¢ for
steady flows:

Ni(€)

(1.52) ne) = =

1.7 Distinctive Phenomena in Complex Fluids

A characteristic feature of complex fluids under shear flows is that, in contrast to
Newtonian fluids, the viscosity depends on the shear rate. For the majority of
complex fluids, the viscosity decreases with increasing shear rate. Fluids with this
behavior are called shear thinning. Blood, paint, syrup, and molasses are familiar
examples of this type of non-Newtonian fluids. It is more unusual to have complex
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fluids whose viscosity increases with increasing shear rate. One example of this shear
thickening fluid is quicksand (i.e. sand in water).

There are some complex fluids that would only start to flow for shear rates
higher than a certain threshold, like ketchup and toothpaste. These are called yield
fluids.

The imbedded microstructure interacting with the flow gives rise to a variety
of fascinating non-linear phenomena. Generally, there is a strong resistance of non-
Newtonian fluid elements to stretching, i.e. a high extensional viscosity. As a result,
even a few parts per million of polymers in a solution can lead to a strong inhibition
of drop break-up and jet formation which are important in several industrial appli-
cations. This high resistance to stretching is also responsible for the cusp formation
observed at the trailing edge of an ascending bubble in a polymeric fluid to avoid
the large extensional flow flowing out of the rear stagnation point (see Fig. (1.4))

Figure 1.4: Ascending air bubble in (a) a Newtonian fluid and (b)-(c) a non-
Newtonian fluid (front and side view) .

Another distinctive non-linear behavior of many complex fluids is elastic ef-
fects. When subject to straining these fluids can store energy. Silly Putty® and
Slime@®) offer dramatic examples of this type. They can be stretched and cut like
rubber but can also flow and fill up a container (Fig. |1.5)).

There are several other interesting non-linear behaviors of complex fluids,
see [I] Chapter 2. One of the more distinctive is the presence of normal stresses
to shear flows. For Newtonian fluids the normal stress differences defined in (|1.44))
and are exactly zero. These normal stresses can be interpreted as tension
along the streamlines and can be used to explain the rod climbing effect observed
when a non-Newtonian fluid is stirred by a rotating rod. The free surface has an
upward deflection in contrast to the flat surface observed in a Newtonian fluid for
comparable rotations. The shear caused by the rotating rod produces in the circular
streamlines. This “circular” stress balances the hydrostatic pressure of a column of
fluid above it inducing the fluid to climb (Fig. [L.6).
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Figure 1.5: Slime

1.8 General Framework

As we will see, KT models for polymeric fluids vary in complexity depending on
the mechanical structures employed to represent the macromolecules. These coarse-
grained models could be linear rod-bead chains or bead-spring chains as illustrated

in Fig.

Despite their differences, there is a common mathematical framework that they
all share [4]. Let us focus on the case in which we have an incompressible Newtonian
solvent. At very low Reynolds numbers, as is the case in these polymeric systems,
the Stokes approximation for the conservation of momentum (in dimensionless form)
and the condition of incompressibility give

(1.53) ~-Vp+V*v+V-.0,=0,
(1.54) V.-v=0.

This system would be closed if o, were a function of x, ¢, and Vv alone. However,
o, depends strongly on the flow as wells as on the history of average configura-
tions of the macromolecules. Consequently, we need an additional mechanism to
determine o,. For concreteness, let us describe the configuration of these “macro-
molecules” in a very coarse fashion by looking at the end-to-end vector Q of the
chains. Thus, configuration is space (¢ for this case is three-dimensional. The
microscopic description can be accomplished with either an ewvolution equation for
a probability density function (PDF) (¢, z, Q) which describes the probability of
finding a macromolecule in a given configuration (specified by Q) at time ¢ and in
the position x or with a simulation of stochastic processes for the macromolecule
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Figure 1.6: Rod climbing effect.

(a) Bead-rod chain (b) Bead-spring chain

Figure 1.7: Typical Kinetic Theory mechanical models for the macromolecules.

dynamics. We write these two options generically as

(1.55a) % =—Vq-{alt,x,Q;Vv)y} + %VQVQ AD(t,x,Q; VV)},
(1.55Db) dQ = a(t,x,Q; Vv) dt + b(t,x,Q; Vv) - dWq(2),

where D/Dt is the material derivative (1.13), A is a “drift” vector in configuration
space and D = bb” is a diffusion (symmetric) matrix, and Wgq(t) is a Weiner
process. In , VqVaq : {D¥} = 37,37, 0q,0q,(Dijh). Equation 1.55D)) is
often called a em Langevin-type equation whereas is known as the Fokker-
Planck or Smoluchowski equation. Both approaches are mathematically equivalent.
We will spend some time discussing the computational aspects of both option later.
The polymeric stress o, is an average in configuration space which we can express
generically as

(1.56) o, = / 2(Q)vdQ = (g(Q)),
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The generic model (1.53)-(1.56) is deceivably simple. The devil is in the details
and these will come from the particular KT mechanical models one employs to
describe the macromolecules. Even though these models are already coarse-grained,
the large number of degrees of freedom makes this flow-structure interaction problem
a formidable computational challenge.

1.8.1 The Closure Problem

Alternatively, one could try to compute o, as follows. Assume o, = F(,x; (QQ),,)-
Multiply the Fokker-Plank equation m by QQ and integrate with respect to Q
in configuration space

QQ !

dQ=—- [ QQVq-{a(t,x,Q;Vv)y}dQ
(1.57) e e

1

2 Jae

QQVqVaq : {D(t,x,Q; Vv)y}

The left hand side of is just the material derivative of the second moment
(QQ) ,- However, the right hand side, with counted exceptions, will depend on
higher moments as well. Suppose it also depends on the fourth moment, so that
(1.57) is an equation of the form

(1.58) 2.(QQ), = G(.x (QQ), . (QQQQ),).

If we now derive an equation for the fourth moment its right hand side will depend on
it and on the sizth moment as well. We have a closure problem. We are “mathemat-
ically tempted” to approximate the high order moments using the low order ones.
For example, we can postulate that (QQQQ), ~ f({QQ),), for some “physically
inspired” function f. Closure approximations are appealing because they reduce
the dimensionality of the problem by eliminating the configuration space. However,
the price paid can be substantial; a closure approximation can produce solutions
that depart significantly from the expected physical behavior. Also troubling is the
fact that closure approximations can change the type and structure of the coupled
system of partial differential equations describing the flow-structure interaction.

1.9 Computational Challenges

In classical Computational Fluid Dynamics (CFD) of Newtonian flows we only needs
to compute the velocity field v and the pressure p. In the computation of KT
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models of complex fluids we must also compute the evolution of a microstructure.
More precisely, at every in time and space (t,x) we need to evaluate the fluid stress
induced by the microstructure (macromolecules).

Computationally, it would be ideal if we had a time-evolution equation for
the stress o, a so called constitutive equation, and solve this coupled to the Stokes
system — in our (¢,x) computational domain. We could attempt to derive
such an equation by getting evolution equations for the moments from as
explain in the preceding section. Unfortunately, only in very few simple cases of
KT models (Oldroyd B model being a notable example) can we obtain a closed,
constitutive equation for o,. Hence, we are left to work with either or
(L.558)). If we are inclined to work within a deterministic framework and use
then we need to solve this equation in configuration space (i.e. in Q) for each point
(t,x) of our computational time-space grid. Even in the simplest model of a rigid-like
molecule where need only need two degrees of freedom to describe its configuration
(the angles of rotation, i.e configuration space is the unit sphere), the total number
of dimensions would be 1 4+ 3 + 2 = 6! Clearly, this approach quickly becomes
computationally intractable as the number of degrees of freedom to describe the
macromolecules increases. The stochastic approach represents an attractive
alternative to deal with such high dimensionality [6] but the overall flow-structure
problem is still a daunting challenge where significant advances in computational
methodologies are much needed.
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