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COVID-19 and Control Policies

The coronavirus disease 2019 (COVID-19) pandemic
has brought an enormous impact on our lives. Based
on data from World Health Organization, as of May
2022, there have been more than 520 million con-
firmed cases of infection and more than 6 million
deaths globally; In the United States, there have been
more than 83 million confirmed cases of infection and
more than one million cases of death. Needless to
say, the economic impact has also been catastrophic,
resulting in unprecedented unemployment and the
bankruptcy of many restaurants, recreation centers,
shopping malls, etc.

Control policies play a crucial role in the allevia-
tion of the COVID-19 pandemic. For example, lock-
down and work-from-home policies and mask require-
ments on public transport and public areas have been
proved to be effective in stopping the spreading of
COVID-19. On the other hand, governors also have
to be aware of the economic activity loss due to these
pandemic control policies. Therefore, a thorough un-
derstanding of the evolution of COVID-19 and the
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corresponding decision-making provoked by such a
virus will be beneficial for future events and in other
interconnected systems around the world.

Epidemiology

Epidemiology is the science of analyzing the distri-
bution and determinants of health-related states and
events in specified populations. It is also the applica-
tion of this study to the control of health problems.
Infectious diseases are one of this kind, including the
ongoing novel coronavirus (COVID-19).

Since March 2020, when the World Health Orga-
nization declared the COVID-19 outbreak a global
pandemic, epidemiologists have made tremendous ef-
forts to understand how COVID-19 infections emerge
and spread and how they may be prevented and con-
trolled. Many epidemiological methods involve math-
ematical tools, e.g., using causal inference to identify
causative agents and factors for its propagation, and
molecular methods to simulate disease transmission
dynamics.

The first epidemic model concerning epidemic
spreading dates back to 1760 by Daniel Bernoulli
[Ber60]. Since then, many papers have been dedi-
cated to this field and, later on, to epidemic control.
Among control strategies, the quarantine, firstly in-
troduced in 1377 in Dubrovnik on Croatias Dalma-
tian Coast [GB97], has shown as a powerful compo-
nent of the public health response to emerging and
reemerging infectious diseases. However, quarantine
and other measures for controlling epidemic diseases
have always been controversial due to the potentially
raised political, ethical, and socioeconomic issues.
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Such complication naturally calls for the inclusion
of decision-making in epidemic control, as it helps
to answer how to take optimal actions to balance
public interest and individual rights. But not until
recent years have there been some research studies
in this direction. Moreover, when multiple authori-
ties are involved in the decision-making process, it is
challenging to analyze how to collectively or compet-
itively make decisions due to the difficulty of solving
this high-dimensional problem.

In this article, we focus on the decision-making de-
velopment for the intervention of COVID-19, aiming
to provide mathematical models and efficient numer-
ical methods, and justifications for related policies
that have been implemented in the past and explain
how the authorities’ decisions affect their neighboring
regions from a game theory viewpoint.

Mathematical models

In a classic, compartmental epidemiological model,
each individual in a geographical region is as-
signed a label, e.g., Susceptible, Exposed, Infectious,
Removed, Vaccinated. Different labels represent dif-
ferent status – S: those who are not yet infected; E:
who have been infected but are not yet infectious
themselves; I: who have been infected and are capa-
ble of spreading the disease to those in the suscep-
tible category, R: who have been infected and then
removed from the disease due to recovery or death,
and V: who have been vaccinated and are immune
to the infection. As COVID-19 progressed, it was
learned that spread from asymptomatic cases was an
important driving force. More refined models may
further split I into mild-symptomatic/asymptomatic
individuals who are in-home for recovery and serious-
symptomatic ones that need hospitalization. We
point to [AZM+20] which considers a similar problem
in the optimal control setting, which includes asymp-
tomatic individuals and the effect of impulses.

Individuals transit between these compartments,
and the labels’ order in a model indicates the flow
patterns between the compartments. For instance, in
a simple SEIR model [LHL87] (see also Figure 1a), a
susceptible becomes exposed after close contact with
infected ones; exposed individuals become infectious

after a latency period; and infected ones become re-
moved afterward due to recovery or death. Let S(t),
E(t), I(t) and R(t) be the proportion of population of
each compartment at time t, the following differential
equations provide the mathematical model:

Ṡ(t) = −βS(t)I(t),

Ė(t) = βS(t)I(t)− γE(t),

İ(t) = γE(t)− λI(t), Ṙ(t) = λI(t),

(1)

where β is the average number of contacts per person
per time, γ describes the latent period when the per-
son has been infected but not yet infectious, and λ
represents the recovery rate measuring the proportion
of people recovered or dead from infected population.

Many infections, such as measles and chickenpox,
confer long-term, if not lifelong, immunity, while oth-
ers, such as influenza, do not. As evidenced by nu-
merous epidemiological and clinical studies analyz-
ing possible factors for COVID reinfections, COVID-
19 falls precisely into the second category [NBN22].
Mathematically, this can be taken into account by
adding a transition I → S.

Though deterministic models such as (1) have re-
ceived more attention in the literature, mainly due
to their tractability, stochastic models have some ad-
vantages. The epidemic-spreading progress is by na-
ture stochastic. Moreover, introducing stochasticity
to the system could account for numerical and empir-
ical uncertainties, and also provide probabilistic pre-
dictions, i.e., a range of possible scenarios associated
with their likelihoods. This is crucial for understand-
ing the uncertainties in the estimates.

One class of stochastic epidemic models uses
continuous-time Markov chains, where the state pro-
cess takes discrete values but evolves in continu-
ous time and is Markovian. In a simple Stochastic
SIS (susceptible-infectious-susceptible) model [KL89]
with a population of N individuals, let Xt be the
number of infected individuals at time t, β the rate of
infected individuals infecting those susceptible, and λ
the rate that an infected individual recovers and be-
comes susceptible again. The transition probabilities

2



Susceptible (S) Exposed (E)

Infectious (I)

Removed (R)

Susceptible (S) Exposed (E)

Infectious (I)

Removed (R)

a (standard SEIR)

b (controlled SEIR)

c (game-theoretic SEIR for two regions)

Region 2

Region 1

Figure 1: (a) A simple SEIR model: susceptible individuals become exposed after close contact with infected
ones; those exposed become infectious after a latency period; and those infected become removed afterward
due to recovery or death; (b) Controlled SEIR model: the planner chooses the level of nonpharmaceutical
policies (lockdown or work from home) ` and pharmaceutical policies (effort of vaccination development or
distribution) h affecting the transitions such that only (1 − θ`(t)) of the original susceptible and infectious
individuals can contact each other, and affecting the recovery rate λ(h) from infectious individuals to removed
ones, here θ is used describe the effectiveness of policy `; (c) An illustration of the game-theoretic SEIR
model for two regions.

among states n, n+ 1, n− 1 are

P(Xt+∆t = n+ 1|Xt = n) ≈ β

N
n(N − n)∆t,

P(Xt+∆t = n− 1|Xt = n) ≈ λn∆t,

P(Xt+∆t = n|Xt = n) ≈ 1−
(
β

N
n(N − n) + λn

)
∆t.

Another way to construct a stochastic model is by in-
troducing white noiseWt in (1) [TBV05,All08], which
we shall mainly consider in this paper and describe
in details in the later section.

Control of disease spread

After modeling how diseases are transmitted through
a population, epidemiologists then design corre-
sponding control measures and recommend health-
related policies to the region planner.

In general, there are two types of interventions:
pharmaceutical interventions (PIs), such as getting
vaccinated and taking medicines, and nonpharmaceu-
tical interventions (NPIs), such as requiring manda-
tory social distancing, quarantining infected individ-
uals, and deploying protective resources. For the on-
going COVID-19, intervention policies that have been
implemented include, but are not limited to, issu-
ing lockdown or work-from-home policies, developing
vaccines, and later expanding equitable vaccine dis-
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tribution, providing telehealth programs, deploying
protective resources and distributing free testing kits,
educating the public on how the virus transmits, and
focusing on surface disinfection.

Mathematically, this can be formulated as a con-
trol problem: the planner chooses the level of each
policy affecting the transitions in (1) such that the
region’s overall cost is minimized. Generally, NPIs
help mitigate the spread by lowering the infection
rate β, e.g., a lockdown or work-from-home policy
`(t) implemented at time t modifies the transition to

Ṡ(t) = −β(1− θ`(t))S(t)(1− θ`(t))I(t),

meaning that only (1−θ`(t)) of the original suscepti-
ble and infectious individuals can contact each other
where θ describes the effectiveness of ` [AAL20] (see
Figure 1b). PIs such as taking preventive medicines,
if available, will also lower the infection rate β, while
using antidotes will increase the recovery rate λ. The
modeling of vaccinations is more complex. Depend-
ing on the target disease, it may reduce β (less chance
to be infected) or increase λ (faster recovery). It
may even create a new compartment “Vaccinated”
in which individuals can not be infected and which is
an absorbing state if life-long immunity is gained.

A region planner, taking into account the interven-
tions’ effects on the dynamics (1), decides on policy
by weighing different costs. These costs may include
the economic loss due to decrease in productivity dur-
ing a lockdown, the economic value of life due to
death of infected individuals and other social-welfare
costs due to the aforementioned measurements.

Game-theoretic SEIR Model

Game theory studies the strategic interactions among
rational players and has applications in all fields of
social science, computer science, financial mathemat-
ics, and epidemiology. A game is non-cooperative if
players cannot form alliances or if all agreements need
to be self-enforcing. Nash equilibrium is the most
common kind of self-enforcing agreement [Nas51], in
which a collective strategy emerges from all players in
the game to which no one has an incentive to deviate
unilaterally.

Nowadays, as the world is more interconnected
than ever before, one region’s epidemic policy will
inevitably influence the neighboring regions. For in-
stance, in the US, decisions made by the governor
of New York will affect the situation in New Jer-
sey, as so many people travel daily between the two
states. Imagine that both state governors make de-
cisions representing their own benefits, take into ac-
count others’ rational decisions, and may even com-
pete for the scarce resources (e.g., frontline workers
and personal protective equipment). These are pre-
cisely the features of a non-cooperative game. Com-
puting the Nash equilibrium from such a game will
provide valuable, qualitative guidance and insights
for policymakers on the impact of specific policies.

We now introduce a multi-region stochastic SEIR
model [XBH+22] to capture the game features in epi-
demic control. We give an illustration for two re-
gions in Figure 1c. Each region’s population is di-
vided into four compartments: Susceptible, Exposed,
Infectious, and Removed. Denote by Snt , E

n
t , I

n
t , R

n
t

the proportion of the population in the four com-
partments of the region n at time t. They satisfy
the following stochastic differential equations (SDEs),
which have included interventions (PIs and NPIs),
stochastic factors, and game features,

dSnt = −
N∑
k=1

βnkSnt I
k
t (1− θ`nt )(1− θ`kt ) dt

− v(hnt )Snt dt− σsnSnt dW sn
t , (2)

dEnt =

N∑
k=1

βnkSnt I
k
t (1− θ`nt )(1− θ`kt ) dt (3)

− γEnt dt+ σsnS
n
t dW sn

t − σenEnt dW en
t ,

dInt = (γEnt − λ(hnt )Int ) dt+ σenE
n
t dW en

t , (4)

dRnt = λ(hnt )Int dt+ v(hnt )Snt dt, (5)

where n ∈ N := {1, 2, . . . , N} is the collection of N
regions, Wt with different superscripts indicate white
noise for a compartment in a specific region, `t ≡
(`1t , . . . , `

N
t ) and ht ≡ (h1

t , . . . , h
N
t ) are NPIs and PIs

chosen by the region planners at time t. The planner
of region n minimizes its region’s cost within a period
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[0, T ]:

Jn(`,h) := E
[ ∫ T

0

e−rtPn
[
(Snt + Ent + Int )`nt w

+a(κInt χ+ pInt c)
]

+ e−rtη(hnt )2 dt

]
.

(6)

We explain the model (2)–(6) in details:

S. In (2), βnk denotes the average number of contacts
of infected people in region k with susceptible ones
in region n per time unit. Although some regions
may not be geographically connected, the transmis-
sion between the two is still possible due to air travel,
but is still less intensive than the transmission within
the region, i.e., βnk > 0 and βnn � βnk for all k 6= n.
The decision for NPIs of region n’s planner is given
by `nt ∈ [0, 1]. In particular, it represents the fraction
of the population being under NPIs (such as social
distancing) at time t. We assume that those under
interventions cannot be infected. However, the policy
may only be partially effective as essential activities
(food production and distribution, health, and ba-
sic services) have to continue. We use θ ∈ [0, 1] to
measure this effectiveness. The transition rate under
policy ` thus become βnkSnt I

k
t (1−θ`nt )(1−θ`kt ). The

case θ = 1 means the policy is fully effective. One can
also view θ as the level of public compliance.

The planner of region n also makes the decision
hnt ∈ [0, 1]. This represents the effort, at time t, that
the planner puts into PIs. We refer to this term,
hnt , as the health policy. It will influence the vaccina-
tion availability v(·) and the recovery rate λ(·) of this
model. v(hnt ) denotes the vaccination availability of
region n at time t. In this model, we assume that
once vaccinated, the susceptible individuals v(hnt )Snt
become immune to the disease, and join the removed
category Rnt . This assumption is not very consis-
tent with COVID-19 but reasonable for a short-term
decision-making problem. We model it as an increas-
ing function of hnt , and if the vaccine has not yet been
developed, we can define v(x) = 0 for x ≤ h.

E. In (3), γ describes the latent period when the
person is infected but is not yet infectious. It is the
inverse of the average latent time and we assume γ

to be identical across all regions. The transition be-
tween En and In is proportional to the fraction of
exposed individuals, i.e., γEnt .

I and R. In (4) and (5), λ(·) represents the recovery
rate. For the infected individuals, a fraction λ(hn)In

(including both death and recovery from the infec-
tion) joins the removed category Rn per time unit.
The rate is determined by the average duration of
infection D. We model the duration and the recov-
ery rate related to the health policy hnt decided by
its planner. The more effort put into the region (e.g.,
expanding hospital capacity and creating more drive-
thru testing sites), the more clinical resources the re-
gion will have and the more resources will be acces-
sible by patients, which could accelerate the recovery
and slow down death. The death rate, denoted by
κ(·), is crucial for computing the cost of the region n.

Cost. In (6), each region planner faces four types
of cost. One is the economic activity loss due to the
lockdown policy, where w is the productivity rate per
individual, and Pn is the population of the region
n. The second one is due to the death of infected
individuals. Here, κ is the death rate which we as-
sume for simplicity to be constant, and χ denotes the
economic cost of each death. The hyperparameter a
describes how planners weigh deaths and infections
as compared to other costs. The third one is the in-
patient cost, where p is the hospitalization rate, and
c is the cost per in-patient per day. The last term
η(hnt )2 quantifies the grants for health policies. We
choose a quadratic form so that the function is con-
cave in hnt . This is to account for the law of diminish-
ing marginal utility: the marginal utility from each
additional unit declines as investment increases. All
costs are discounted by an exponential function e−rt,
where r is the risk-free interest rate, to take into ac-
count the time preference. Note that region n’s cost
depends on all regions’ policies (`,h), as {Ik, k 6= n}
appearing in the dynamics of Sn. Thus we write it
as Jn(`,h).

The above model (2)–(5) is by no doubt a prototype,
and one can generalize it by considering reinfections
(adding transmission from Rn to Sn), asymptomatic
population (adding asymptomatic compartment An),

5



different control policy for Sn and In (using `S and
`I in (2)–(3)), different fatality rates for young and
elder population (introducing κY and κE in (6)).

Nash equilibria and the HJB system

As explained above, the interaction between region
planners can be viewed as a non-cooperative game,
when Nash equilibrium is the notion of optimality.

Definition 1. A Nash equilibrium (NE) is a tuple
(`∗,h∗) = (`1,∗, h1,∗, . . . , `N,∗, hN,∗) ∈ AN such that
∀n ∈ N and (`n, hn) ∈ A,

Jn(`∗,h∗) ≤ Jn((`−n,∗, `n), (h−n,∗, hn)),

where `−n,∗ represents strategies of players other than
the n-th one:

`−n,∗ := [`1,∗, . . . , `n−1,∗, `n+1,∗, . . . , `N,∗] ∈ AN−1.

Here A denotes the set of admissible strategies for
each player and AN is the produce of N copies of A.
For simplicity, we have assumed that all players take
actions in the same space.

Under proper conditions, the NE is obtained by
solving N -coupled Hamilton-Jacobi-Bellman (HJB)
equations via dynamic programming [CD18, Sec-
tion 2.1.4]. To simplify the notation, we concatenate
the states into a vector form Xt ≡ [St,Et, It]

T ≡
[S1
t , · · · , SNt , E1

t , · · · , ENt , I1
t , · · · , INt ]T ∈ R3N , and

denote its dynamics by

dXt = b(t,Xt, `(t,Xt),h(t,Xt)) dt+ Σ(Xt) dWt.

For the sake of simplicity, we omit the actual defini-
tion of b, fn and Σ and refer [XBH+22] for further
details. Let V n(t,x) be the minimized cost defined
in (6) if the system starts at Xt = x. Then, V n,
n = 1, . . . , N solves

∂tV
n + inf

(`n,hn)∈[0,1]2
Hn(t,x, (`,h)(t,x),∇xV

n)

+
1

2
Tr(Σ(x)THessxV

nΣ(x)) = 0, (7)

with V n(T,x) = 0, where Hn is the usual Hamilto-
nian defined by

Hn(t,x, `,h,p) = b(t,x, `,h) · p+ fn(t,x, `n, hn).

Enhanced Deep Fictitious Play

Solving for the NE of the game is equivalent to solving
the N -coupled HJB equations of dimension (3N + 1)
defined in Equation (7). Due to the high dimension-
ality, this is a formidable numerical challenge. We
overcome this through a deep learning methodology
we call Enhanced Deep Fictitious Play, being broadly
motivated by the method of fictitious play introduced
by Brown [Bro51].

Deep Learning. Deep learning leverages a class of
computational models composed of multiple process-
ing layers to learn representations of data with mul-
tiple levels of abstraction [LBH15]. Deep neural net-
works are effective tools for approximating unknown
functions in high-dimensional space. In recent years,
we have witnessed noticeable success in a marriage
of deep learning and computational mathematics to
solve high-dimensional differential equations. Specif-
ically, deep neural networks show strong capability in
solving stochastic control and games [HJE18, HL22].
Below, we take a simple example to illustrate how a
deep neural network is determined for function ap-
proximation.

Suppose we would like to approximate a map y =
f(x) by a neural network NN (x,w) in which one
seeks to obtain appropriate parameters of the net-
work, w, through a process called training. This con-
sists of minimizing a loss function that measures the
discrepancies between the approximation and true
values over the so-called training set {xi}Ni=1. Such a
loss function has the general form

L(w) =
1

N

N∑
i=1

Li(f(xi),NN (xi,w)) + λR(w),

where R(w) is a regularization term on the pa-
rameters. The first term Li(f(xi),NN (xi,w)) en-
sures that the predictions of NN (xi,w) match ap-
proximately the true value f(xi) on the training set
{xi}Ni=1. Here, Li could be a direct distance like the
Lp norm or error terms derived from some complex
simulations associated with f(xi) and NN (xi,w).
The hyperparameter λ characterizes the relative im-
portance between the two terms in L(w). To find an
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optimal set of parameters w∗, one solves the prob-
lem of minimizing L(w) by the stochastic gradient
descent (SGD) method [BCN18]. Regarding the ar-
chitecture of NN (x,w), there is a wide variety of
choices depending on the problem, for example fully
connected neural networks, convolutional neural net-
works, recurrent neural networks, and transformers.
In this work, we choose fully connected neural net-
works to approximate the solution and constructed
the loss function by simulating the backward differ-
ential equations corresponding to the HJB equations.

Enhanced Deep Fictitious Play. Note that the
HJB system (7) is difficult to solve due to the high
dimensionality of the N -coupled equations. What if
we could decouple the system to N separate equa-
tions, each of which is easier to solve? This is the
central idea of fictitious play, where we update our
approximations to the optimal policies of each player
iteratively stage by stage. In each stage, instead of
updating the approximations of all the players to-
gether by solving the giant system, we do it sep-
arately and parallelly. Each player solves for her
own optimal policy assuming that the other play-
ers are taking their approximated optimal strate-
gies from the last stage. Let us denote the opti-
mal policy and corresponding value function of the
single player n in stage m as αn,m and V n,m, re-
spectively, and the collection of these two quantities
for all the players as αm = (α1,m, ..., , αN,m) and
V m = (V 1,m, ..., V N,m). Finally, let us denote the
optimal policies and corresponding value functions
for all the players except for player n as α−n,m =
(α1,m, ..., αn−1,m, αn+1,m, ..., , αN,m) and V −n,m =
(V 1,m, ..., V n−1,m, V n+1,m, ..., , V N,m), where αn,m is
a concatenation of lockdown policies and vaccination
policies, i.e., (`n,m, hn,m). At stage m + 1, we can
solve for the optimal policy and value function of
player n given other players are taken the known poli-
cies α−n,m and the corresponding value V −n,m. The
logic of fictitious play is shown in Figure 2, where
players iteratively decide optimal policies in stage
m+1, based on other players’ optimal policies in stage
m. This is slightly different than the usual simulta-
neous fictitious play, where the belief is described by

the time average of past play and the distinction is
further discussed in [HH20].

Figure 2: Schematic plot of fictitious play: each
player derives optimal policies at stage m+ 1 assum-
ing other players take optimal strategies at stage m.

The Enhanced Deep Fictitious Play (DFP) algo-
rithm we have designed, built from the Deep Fic-
titious Play (DFP) algorithm [HH20], reduces time
cost from O(M2) to O(M) and memory cost from
O(M) to O(1), with M as the total number of ficti-
tious play iterations.

We illustrate one stage of enhanced deep fictitious
play in Figure 3. At the (m + 1)th stage, given the
optimal policies αm at the previous stage, for n =
1, . . . , N , the algorithm solves the following partial
differential equations (PDEs),

∂tV
n,m+1

+ inf
αn∈[0,1]2

Hn(t,x, (αn,α−n,m)(t,x),∇xV
n,m+1)

+
1

2
Tr(Σ(x)THessxV

n,m+1Σ(x)) = 0, (8)

with V n,m+1(T,x) = 0, and obtains the optimal
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strategy of the (m+ 1)th stage:

αn,m+1 =

arg min
αn∈[0,1]2

Hn(t,x, (αn,α−n,m)(t,x),∇xV
n,m+1(t,x)).

For simplicity of notations, we omit the stage num-
ber m in the superscript in the following discussions.
The solution to Equation (8) is approximated by solv-
ing the equivalent backward stochastic differential
equations (BSDEs) using neural networks [HJE18]:

Xn
t =x0 +

∫ t

0

µn(s,Xn
s ;α−n(s,Xn

s )) ds

+

∫ t

0

Σ(Xn
s ) dWs,

Y nt =

∫ T

t

gn(s,Xn
s , Z

n
s ;α−n(s,Xn

s )) ds

−
∫ T

t

(Zns )T dWs.

(9)

(10)

The nonlinear Feynman-Kac formula [PP92] yields:

Y nt = V n(t,Xn
t ) and Znt = Σ(Xn

t )T∇xV
n(t,Xn

t ).

Here µn and gn are derived by rewriting (8) to ∂tV
n+

1
2Tr(Σ(x)THessxV

nΣ(x)) + µn(t,x;α−n) · ∇xV
n +

gn(t,x,Σ(x)T∇xV
n;α−n) = 0; see [XBH+22, Ap-

pendix A.2]. Notice that, we parametrized V n by
neural networks (denote as V -networks) so Y nt and
Znt could all be computed by a function of V -
networks. The loss function to update the V -network
is constructed by simulating the BSDE along the
time axis and penalizing the difference between the
true terminal value and the simulated terminal value
based on neural networks of Y .

In Enhanced DFP, we further parameterize αn (de-
note as α-networks). In each stage, the loss function
with respect to the V -network and the α-network of
player n is defined by the weighted sum of two terms:
the loss related to BSDE (9)–(10) to approximate
its solution and the error of approximating the op-
timal strategy αn by α-networks. We denote ‖ · ‖2
as the 2-norm, αn and α̃n as the derived and ap-
proximated optimal control of player n in the current

stage, α̃−n = (α̃1,m, ..., α̃n−1,m, α̃n+1,m, ..., α̃N,m) as
the collection of approximated optimal controls from
the last stage except player n, and τ as a hyperpa-
rameter balancing the two types of errors in the loss
function. Then the Enhanced DFP solves

inf
Y n
0 ,α̃

n,{Zn
t }0≤t≤T

E(|Y nT |
2

+ τ

∫ T

0

‖αn(s,Xn
s )− α̃n(s,Xn

s )‖22 ds)

s.t. Xn
t = x0 +

∫ t

0

µn(s,Xn
s ; α̃−n(s,Xn

s )) ds

+

∫ t

0

Σ(Xn
s ) dWs,

Y nt = Y n0 −
∫ t

0

gn(s,Xn
s , Z

n
s ; α̃−n(s,Xn

s )) ds

+

∫ t

0

(Zns )T dWs,

αn(s,Xn
s ) = arg min

βn

Hn(s,Xn
s , (β

n, α̃−n)(s,Xn
s ), Zns ).

(11)

In each stage, there are two types of optimal strate-
gies for player n: 1. the derived optimal strategy
αn by solving arg minβn Hn in the last equation of
(11); 2. the approximated optimal strategy α̃n also
known as α-networks for reducing the non-trivial cost
of evaluating αn. Take stage m + 1 as an example,
αn,m+1 depends on players’ last stage optimal policies
α−n,m which in turn depends on α−n,m−1. The eval-
uation of the current stage strategy αn,m+1 actually
requires the recursive iteration of optimal strategies
from all previous stages. Enhanced DFP unblocks
the computation bottleneck by introducing approxi-
mated optimal strategy α̃n, which approximates αn.
Although representing αn with a neural network α̃n

introduces approximation errors, it allows us to effi-
ciently access the proxy of the optimal strategy α−n

in the current stage by calling corresponding net-
works, instead of storing and calling all the previous
strategies α−n,m−1, . . . ,α−n,1 due to the recursive
dependence. This is the key factor that Enhanced
Deep Fictitious Play addresses leading to reduction
in both time and memory complexity compared to
Deep Fictitious Play.
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Equation 1 BSDE 1 VP 1

Equation 2 BSDE 2 VP 2

Equation N BSDE N VP N

NNs

Figure 3: Illustration of one stage of enhanced deep
fictitious play. At the (m + 1)th stage, one needs to
solve the PDEs (8), which is approximated by solving
the BSDEs (9)-(10). Then with the help of neural
networks, one solves the variational problem (VP)
given by Equation (11) to get the optimal strategy.

To implement the loss function defined in (11), we
discretize and simulate the BSDE by Euler’s method
with a partition on a time interval [0, T ]. The expec-
tation in the loss function is approximated by Monte
Carlo samples of Ws in the stochastic process. Then,
we use the stochastic gradient descent method to up-
date V n and α̃n in the current stage for player n. In
parallel, we update the V -network and α-network for
each player. The updated networks of each player
will be observable for other players in future stages.

A Regional COVID-19 Study

In this section, we apply the multi-region stochas-
tic SEIR model (2)–(6) to analyze optimal COVID-
19 policies in three adjacent states: New York, New
Jersey and Pennsylvania. This case study focuses on
180 days starting from 03/15/2020, and solves for
the optimal policies of the three states corresponding
to Nash Equilibrium by the Enhanced Deep Ficti-
tious Play Algorithm. We denote New York (NY) as
region 1, New Jersey (NJ) as region 2 and Pennsyl-
vania (PA) as region 3, with population P1 = 19.54
million, P2 = 8.91 million, and P3 = 12.81 million
during the case study time range, respectively. We
assume that (a) 90% of any state’s population resides

in their own state at a given time; (b) the remain-
ing population(travellers) visit the other states at an
equal chance; (c) there is no travel outside of the
three states, that is, NY-NJ-PA is a closed system.
The parameters in (2)-(6) are estimated based on
the above assumptions and public information about
COVID-19: β = 0.17, κ = 0.65%

13 , λ = 1
13 , γ = 1

5 , p =
228.7× 10−5, c = 73300/13. Other parameters in the
model are chosen at: r = 0, w = 172.6, χ = 1.96×106.
The hyperparameters, θ and a, which represent pol-
icy effectiveness and planners’ views on the death of
human beings will change the optimal policies. For
results including vaccination controls, we point to
[OS21], which considers an optimal control problem
for vaccines and testing of COVID-19. However, in
the time period we study, vaccination was not avail-
able, so we ignore the health policy h and mainly
solve for the lockdown policy of each state.

Figure 4 shows the Nash equilibrium policies in
NY, NJ, and PA in a setting where the policy effec-
tiveness is θ = 0.99, i.e., 99% of the residents will
follow the lockdown orders. The weight parameter
quantifying each planner’s view is a = 100, i.e., each
governor values human life 100 times more than the
economic value of a human life. The resulting Nash
equilibrium of this scenario corresponds to the plan-
ners taking action at an early stage by implementing
strict lockdown policies and later relaxing the pol-
icy as the infections improve. In the end, the per-
centage of Susceptible, Exposed, Infectious, and Re-
moved stays almost constant. The pandemic will be
significantly mitigated in this scenario of proactive
lockdown for both planners and residents. As a com-
parison, [XBH+22, Figure 2] illustrates a scenario of
how the pandemic gets out of control if governors
show inaction or issue mild lockdown policies.
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