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Abstract

When binary liquid mixtures are cooled rapidly from a homogeneous phase into a two-

phase system, domains of the two equilibrium phases form and grow (‘coarsen‘) with time.

In the absence of an external forcing due to gravity or an imposed shear flow, a dynamical-

scaling regime emerges in which the domain morphology is statistically self-similar at different

times with a length-scale that grows with time. In the presence of gravity, however, multiple

length scales develop with the system coarsening more rapidly in the direction of the force.

The late-time behavior of such a system is characterized in this study by the calculation of

anisotropic growth laws. Gravitational effects significantly affect scaling laws even with small

density mismatch and the growth mechanism has some similarities to the sedimentation process.

However very few numerical studies have been made of such effects and this is one of the first.
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1 Introduction

Phase separation during quenching of binary-mixture melts occurs in a variety of practically im-

portant systems e.g. during the fabrication of multiphase materials. Physicists have characterized

the phase transition of a binary mixture by a universal length scale that has a growth law depen-

dent on the regime of the separation. Using scaling arguments it is possible to find three regimes:

diffusive, viscous and inertial. Siggia [1] added a cut-off length above which gravitational forces

have an important effect. However, very little work, either experimental or numerical has been

done to elucidate phase separation phenomena with density mismatch between the domains - a

circumstance that often occurs. Here we investigate numerically this problem using a phase field

approach for small density mismatch.

Phase field models offer a systematic physical approach for investigating complex multiphase

system behavior, such as near-critical interfacial phenomena. However, because interfaces are re-

placed by thin transition regions (diffuse interfaces), phase field simulations demand robust numer-

ical methods that can efficiently achieve high resolution and accuracy. We use an accurate and effi-

cient numerical method, developed by the authors in [2], to solve the coupled Cahn-Hilliard/Navier-

Stokes system of equations for binary, known as Model H, with small density mismatch between

the phases in the Boussinesq approximation. The numerical method is a time-split scheme that

combines a novel semi-implicit discretization for the convective Cahn-Hilliard equation with a

stiffly stable time-discretization of the projection method for the Navier-Stokes equations. We

employ high-resolution spatial discretizations to be able to accurately resolve thin interfaces. The

Cahn-Hilliard equation is discretized in space (pseudo) spectrally (via FFT for periodic boundary

conditions). We solve the Navier-Stokes modified creeping flow equations with a pseudo-spectral

method [3]. The numerical method is robust and with low computational cost.

We find that gravitational effects may significantly affect scaling laws even with small density
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mismatch. Also, we present a simulation of the effect of gravity during the diffusive and viscous

regime, which to our knowledge is the first reported, and characterize the break down of the usual

Siggia-type universal scaling.

This work underlines the importance of gravitational forces in determining phase microstruc-

ture characteristics, and explains the experimental difficulties in validating theoretical growth laws

on earth even with fluids that have small density mismatch [19]. Therefore, in testing theories for

scaling of coarsening processes, particularly in the late stages, experiments in microgravity envi-

ronments are very desirable as small density mismatches are nearly unavoidable in practical phase

separating systems.

2 Phase separation and coarsening

We consider isothermal spinodal decomposition of symmetric binary mixtures under deep quenches.

In this case, the fluid motion arise from moving interfaces which create a characteristic ‘bicontin-

uous’ pattern and thermal fluctuations can be disregarded at long times. The state of the system

at any given time can be described by an order parameter φ which is the relative concentration of

the two components. A free energy of a bulk system can be defined for times when the system is

not in equilibrium [4] and if the effective interactions between the mixture components are short

ranged, this free energy can be written as a functional of φ

F [φ] =
∫

Ω

{
f(φ(x)) +

1
2
k|∇φ(x)|2

}
dx, (1)

where Ω is the region of space occupied by the system. The term f(φ(x)) is the bulk energy

density, which depends only on the local concentration and the temperature T . We use the Landau

expression which has two minima corresponding to the two stable phases of the fluid

f(φ) =
α

4

(
φ −

√
β

α

)2(
φ +

√
β

α

)2

, (2)
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for the bulk free energy density, where α > 0 and β = β(T ) with β(T ) < 0 for T > Tc and β(T ) > 0

for T < Tc.

Thus f(φ) has two nontrivial minima φ± = ±
√

β
α corresponding to local equilibrium solutions

for T < Tc. For T > Tc the equilibrium solution is simply φ0 = 0. The term 1
2k|∇φ(x)|2 with k

positive constant quantifies the additional free energy contributions arising from local concentration

fluctuations, which, in the demixing process, appear in the interfacial regions between the emerging

domains of the two stable phases with concentrations φ±.The chemical potential µ is defined as

µ(φ) =
δF [φ]
δφ(x)

= f ′(φ(x)) − k∇2φ(x). (3)

The equilibrium interface profile can be found by minimizing the functional F [φ] with respect to

variations of the function φ, i.e. solving the equation µ(φ) = δF [φ]/δφ = αφ3 − βφ − k∇2φ = 0.

Besides the two stable uniform solutions φ± = ±
√

β
α representing the coexisting bulk phases, there

is a one-dimensional (say along the z-direction) non-uniform solution φ0(z) = φ+ tanh(z/
√

2ξ) that

satisfies the boundary conditions φ0(z → ±∞) = ±φ (see [5, 6]). This solution was first found by

Van der Waals [7] to describe the equilibrium profile for a plane interface normal to the z direction,

of thickness proportional to ξ =
√

k/β, that separates the two bulk phases. Cahn and Hilliard [8, 9]

generalized the problem to time-dependent situations by approximating interfacial diffusion fluxes

as being proportional to chemical potential gradients, enforcing conservation of the field. The

convective Cahn-Hilliard equation can be written as

∂φ

∂t
+ u · ∇φ = M∇2µ, (4)

where u is the velocity field and M > 0 is the mobility or Onsager coefficient. Equation (4) models

the creation, evolution, and dissolution of diffusively controlled phase-field interfaces [10] (for a

review of the Cahn-Hilliard model see for example [11]). We define the interface thickness to be

the distance from 0.9φ− to 0.9φ+ so that the equilibrium interface thickness is 2
√

2ξ tanh−1(0.9) =
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4.164ξ. This width contains 98.5% of the surface tension stress [12]. In equilibrium the surface

tension σ of an interface is equal to the integral of the free energy density along the interface. For

a plane interface σ is given by [5]

σ = k

∫ +∞

−∞

(
dφ0

dz

)2

dz =
√

2
3

k1/2β3/2

α
. (5)

It is evident that we can control the surface tension and interface width through the parameters k,

α, and β.

We model the fluid dynamics by the Navier-Stokes equations with a phase field-dependent

surface force [13] and simplified with the creeping flow approximation:

−∇p + η∇2u + µ∇φ + (ρ − ρ0)a = 0, (6)

∇ · u = 0, (7)

where u is the velocity field, p is a scalar related to the pressure that enforces the incompressibility

constraint (7), η is the viscosity and a is the acceleration (gravitational) field (Boussinesq approx-

imation). The coupled Cahn-Hilliard/Navier-Stokes system (4) − (7) is referred to as “Model H”

according to the nomenclature of Hohenberg and Halperin [14].

2.1 Nondimensionalization

To nondimensionalize the governing equations (4)-(7) we choose as a convenient characteristic

length, Lc, for our simulations the mean field thickness ξ of the interface, i.e Lc = ξ while Uc is

a characteristic fluid velocity. The characteristic time Tc is the time required for the fluid to be

convected a distance of the order of the interface thickness (in the absence of capillarity), Tc = ξ/Uc.

Local interfacial curvature generates stress which drives fluid motion. It is natural then to scale

the pseudo-pressure with surface tension times a term of the same order as the local curvature i.e.

the 1/ξ. The order parameter φ is scaled with its mean-field equilibrium value φ+ =
√

β/α. With
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this scaling, −1 ≤ φ ≤ 1 and the interface dividing the two fluids is between φ = −0.9 and φ = 0.9.

Summarizing we have

u′ = u/Uc, t
′ = t/Tc,x′ = x/Lc, p

′ = p/(σ/Lc). (8)

The equations (4)-(7) become

∂φ

∂t
+ u · ∇φ =

1
Pe

∇2µ, (9)

−∇p + Ca∇2u + µ∇φ + Boez = 0, (10)

∇ · u = 0, (11)

where µ = φ3 − φ − ∇2φ is the dimensionless chemical potential. The dimensionless groups used

above are the Peclet number Pe, the capillary number Ca and the Bond number Bo given by

Pe =
Ucξ

2

Mσ
, Ca =

ηUc

σ
, Bo =

(ρ − ρ0)aξ2

σ
(12)

respectively. Physically, the Pe number is the ratio between the diffusive time scale ξ3/(Mσ)

and the convective time scale ξ/Uc, the capillary number Ca provides a measure of the relative

magnitude of viscous and capillary (or interfacial tension) forces at the interface and the Bond

number Bo is the ratio of the acceleration (gravitational) forces and surface tension forces. Note

that with this nondimensionalization the length of the fluid domain is interpreted in units of

interface thickness ξ.

2.2 Dynamical scaling and domain growth

The physics of spinodal decomposition involves diffusion, capillary forces, viscous forces and fluid

inertia. In the case of a deep quench and no external drive we assume that the interface can be

characterized by a single length scale that is smooth with radii of curvature that scales as the

domain size itself, which is much larger than the interfacial thickness. This length gives a measure
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of how fast the domains grow. The domain patterns grow with a time-dependent characteristic

length-scale

L(t) ∼ tn (13)

with a growth exponent n, where n depends on the mechanism controlling growth e.g. diffusion,

viscous or inertial. Model H describes a system order parameter coupled to hydrodynamic flow and

in the absence of an external drive gives rise to three different growth regimes. For the diffusive

regime L � √
Mη and n = 1/3, for the viscous regime

√
Mη � L � η2/(ρσ) and n = 1, for the

inertial regime L � η2/(ρσ) and n = 2/3.

Finally, we consider the presence of an external drive i.e. gravity. We can think of a transition

to gravity dominated flow arising when heavy domains resting on top of light ones become unstable

i.e. when the gravitational force on the more dense phase overcomes the interfacial tension which

keeps them suspended. In our model gravity becomes important when [1]

L(t) � σ

(ρ − ρ0)g
. (14)

This process can be considered analogous to sedimentation. In fact it is possible to derive

similar criteria via the balance of the Stokes friction coefficient and the diffusion time [15] to get

(14) (called also the ”Laplace length”). Once the instability occurs we have additional length scales

since we have a faster growth in the gravity direction and a method to measure the anisotropic

growth laws needs to be defined. From the knowledge of the structure factor one computes the

average size of domains in the different directions Lx, Ly and Lz, for example

Lx(t) = π

∫
dkS(k, t)∫

dk|kx|S(k, t)
, (15)

and analogously for the other directions. In Figure 1 we give a qualitative (graphical) interpretation

of the various coarsening regimes.
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3 Numerical method

The numerical method we employ is based on that introduced in [2] with one main modification:

because of the periodic boundary conditions and the Stokes flow approximation we can use a fully

spectral discretization. The time discretization is based on a semi-implicit scheme combined with

a time-split strategy. This discretization effectively decouples Cahn-Hilliard and Navier-Stokes

solvers and yields an efficient and robust modular scheme.

The outline of the method is as follows. Given φn and un the objective is to solve for φn+1 and

un+1 with the steps:

1. Solve the Cahn-Hilliard equation with a semi-implicit method and spectral spatial discretiza-

tion to obtain φn+1.

2. Using φn+1 compute the surface force and solve the Navier-Stokes modified creeping flow

equations with a Fourier-Fourier-Fourier (spectral) method [3].

The C-H step consist of second order semi-implicit SBDF (Semi-backward difference formula)

time advancement [2]. The accuracy and stability of the method are documented in [2]. The

overall scheme for the convective Cahn-Hilliard equation and the creeping flow equation has only

a CFL stability condition:

∆tcfl ≤
( |u|max

∆x
+

|v|max

∆y
+

|w|max

∆z

)−1

, (16)

where (u, v, w) are the components of the velocity field.
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4 Numerical study of gravitational effects on spinodal decompo-

sition

Our method has allowed us to numerically simulate gravitational effects on spinodal decomposition

of a binary mixture with phases of equal viscosity and mobility, in three dimensions. The grid

size is 192 × 192 × 192, the domain size is L = 266 which corresponds to a 3 mesh-point thick

interface [2] and the boundary conditions are periodic. The initial conditions consist of uniformly

distributed random fluctuations of amplitude 0.05 around a zero background, i.e. critical quench.

We implement adaptive time stepping based on the CFL condition (16).

Figure 1 shows the evolution of the interfaces during the coarsening process. Regions rich in the

lighter component (φ = 1) are rendered in grey and regions rich in the heavier component (φ = −1)

comprise the surrounding (transparent) phase. The two domains become anisotropic in time and

elongated in the direction of gravity.

We can characterize how the gravitational field interferes with spinodal decomposition by com-

puting the characteristic length scale (growth rate) L(t) as a function of time for diffusive or viscous

regimes and for different Bond numbers i.e. different gravitational field strengths. Because of the

anisotropy of the system, we calculate growth rates in both the z gravity direction (vertical in Fig.

1) and the x direction (horizontal, normal to gravity in Figure 1) using definition (15). The growth

rate in the y direction is similar to that in the x direction due to the symmetry of the system.

Figures 2(a) and 2(c) (log-log scale) show the domain growth in the z direction as a function of

time starting from a diffusive regime condition (Pe = 0.5, Ca = 70.0) and as a function of the Bo

number. The growth law for Bo = 0.0 obeys the classic Lifshitz-Slyozov [17] growth law L(t) ∼ t1/3

thus validating our computational procedures. At a late stage and Bo > 0.0, the data exhibit an

approximately linear growth Lz ∼ t, typical of the viscous regime and independent of gravity (Bo),
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giving a strong indication that a universal scaling exists in the gravity direction. Further, we find

that the growth rate in the gravity (z) direction of Lz(t) is considerably faster than that of the

no-gravity case. This occurs even with small gravity values, with Bo values as low as 0.003. More-

over, Lz(t) � Lx(t) (where Lx(t) is the length scale in the x direction, see Fig. 2(b) and 2(d)).

This is not surprising since experimental results show similar sensitivity to gravity [19, 15] but no

measure of the growth law has been reported due to experimental difficulties.

The effect of gravity demonstrated by our numerical results is in accordance with the analytical

result in (14). Figure 2(b) and 2(d) (log-log scale) show the characteristic domain size in the x

direction Lx(t) as a function of time t. In this regime a trend is not evident: the length scale in

the x direction with gravity (Bo > 0) resembles the Lifshitz-Slyozov growth law [17] at the initial

stage but it deviates at later times becoming slower. To understand more clearly the asymptotic

fate of the regime in this direction we need higher resolution simulations to be able to explore a

wider range of length scales.

In Figure 3 we show results corresponding to the viscous regime parameters (Pe = 96.0, Ca =

20.0). For Bo = 0.0 (no gravity) we find a linear growth L(t) ∼ t as predicted by [1]. Again the

growth of the length scale, Lz(t) ∼ t1.5 i.e. is considerably faster than that for the no-gravity case,

and in the other direction characterized by lengths scale Lx, even with small gravity values (Figure

3(a)). There is evidence of collapse to the same universal slope (independent of Bo) at later stages

(Figure(3(c)). The conditions of deviation from the no-gravity case were characterized using (15).

In the x direction (Figure 3(b) and 3(d)) the slowing down of the growth rate due to gravity is

more evident than in the diffusive case (Figures 2(b) and 2(d)).
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5 Concluding Remarks

We used an accurate and efficient numerical method to compute phase ordering kinetics coupled

with fluid dynamics to study the effect of gravity on critical spinodal decomposition of a binary

mixture. Our results demonstrate that there is reasonable dynamical scaling in the direction of

gravity in the diffusive and viscous regime, but a breakdown appears in the dynamical scaling in the

transverse directions. Furthermore, the growth in the direction of gravity is much faster than that

in the transverse directions, and those in the no-gravity case. Our results are in broad agreement

and extend numerical results from previous studies of different but related models [18], leading us

to believe that all these models share similar asymptotic scaling. Finally, we should remark that

gravitational effects are very important in the context of the segregation of binary fluids, even when

density mismatches are small.
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Figure 1: Evolution of φ represented by iso-surfaces of separation of the two fluids at φ = 0.0,

at different times. (a) t = 3105.0, (b) t = 4741.0, (c) t = 7601.7, (d) t = 10686.5. Pe = 0.5,

Ca = 70.0, Bo = 0.03, N = 192, L = 266.
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Figure 2: Length scales in the gravitational direction, Lz, and the transverse directions, Lx, vs

time. Pe = 0.5, Ca = 70.0, Bo as a parameter. (a) Lz(t), (b) Lx(t), (c) Lz(t) (loglog plot), (d)

Lx(t) (loglog plot).
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Figure 3: Domain size vs time. Pe = 96.0, Ca = 20.0, Bo as a parameter. (a) Lz(t), (b) Lx(t), (c)

Lz(t) (loglog plot), (d) Lx(t) (loglog plot).
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