
A fast, robust, and non-stiff Immersed Boundary

Method

Hector D. Ceniceros

Department of Mathematics, University of California Santa Barbara, CA 93106

Jordan E. Fisher

Department of Mathematics, University of California Santa Barbara, CA 93106

Abstract

We propose a fast and non-stiff approach for the solutions of the Immersed
Boundary Method, for Newtonian, incompressible flows in two or three di-
mensions. The proposed methodology is built on a robust semi-implicit dis-
cretization introduced by Peskin in the late 70’s which is solved efficiently
through the novel use of a fast, treecode strategy to compute flow-structure
interactions. Optimal multipole-type expansions are performed numerically
by solving a least squares problem with a new, fast iterative algorithm.
The new Immersed Boundary Method is particularly well suited for three-
dimensional applications and/or for problems where the number of immersed
boundary points is large. We demonstrate the efficacy and superiority of the
method over existing approaches with two simple but illustrative examples
in 3D.

Keywords: semi-implicit method, Navier-Stokes equations, treecode,
Krylov subspace method

1. Introduction

The Immersed Boundary (IB) Method, introduced by Peskin [10], offers a
flexible approach for the simulation of flow-structure interaction. It combines

Email addresses: hdc@math.ucsb.edu (Hector D. Ceniceros),
www.math.ucsb.edu/~hdc (Hector D. Ceniceros), jordan@math.ucsb.edu (Jordan E.
Fisher)

Preprint submitted to Journal of Computational Physics January 6, 2011

a Lagrangian representation of the immersed structures with an Eulerian
flow description. The Lagrangian representation of the immersed boundaries
endows the method with a versatile structure-building capability while the
Eulerian flow description permits the use of fast flow solvers. The connection
of the two representations is done seamlessly through spreading (of interfacial
forces) and interpolation (of velocity at the immersed boundary) steps via
mollified delta functions.

The immersed structures often have very stiff components and as a con-
sequence strong tangential forces are generated, which in turn induce severe
time-step restrictions for explicit discretization [12, 11]. Fully implicit dis-
cretizations remove this hindering constraint but are seemingly impractical
due to their elevated cost [14, 7]. Hou and Shi [4, 5] proposed recently a
cost effective 2D semi-implicit method but it is applicable only to simple
periodic interfaces. In [1] we presented, in collaboration with Roma, robust
2D methods for efficiently removing this stiffness for more general immersed
structures, which need not be periodic or even continuous and can include
cross links, tethers, etc. Indeed, it was demonstrated in [1] that the proposed
approaches are applicable to a wide range of structure geometries and fiber
forces and can provide a speedup of many orders of magnitude in comparison
to explicit methods.

Unfortunately, the computational efficiency enjoyed by 2D methods in-
troduced in [1] does not directly carry over to the three-dimensional case.
They rely crucially on the construction of a matrix that encodes the flow-
mediated interactions between immersed boundary points at each timestep
and which we refer to as the flow-structure operator. The size of this ma-
trix is directly related to the number of immersed boundary points. In 3D,
there may be drastically more immersed boundary points, and the resulting
matrix is simply too large to construct explicitly. Hence, we must turn to
matrix-free alternatives.

In this paper we present one such alternative. The new method makes use
of a treecode strategy and is much more robust to increases in fiber points.
In fact, the efficiency is superior enough to allow the method to be used
even when the number of fiber points approaches parity with that of fluid
cells. Here, as it is customary in the IB Method, we consider only periodic
boundary conditions.

In line with the 2D methodology in [1], our starting point is the robust,
semi-implicit scheme introduced by Peskin [10] in the late 70’s, in which the
spreading and interpolation operators are lagged, i.e. evaluated at the current

2

interfacial configuration rather than at the future one. Newren, Fogelson,
Guy, and Kirby proved that this scheme, in its first order or second order
Crank-Nicolson form, is unconditionally stable when inertia is neglected and
the interfacial force is linear and self-adjoint [9]. Numerical experiments
in [9], as well as our own extensive experiments, suggest the robustness of
this discretization extends to the inertial case with nonlinear interfacial force.

This semi-implicit discretization leads to a system of equations, gener-
ally nonlinear, for the interface configuration at the future timestep. The
dominant computational cost of solving this system is the flow-structure op-
erator which was expressed as a matrix in the 2D methodology [1]. From
this perspective, there are two interrelated problems for removing robustly
the numerical stiffness of the IB Method:

1. The design of efficient solvers for the (nonlinear) system of the interface
configuration.

2. The fast evaluation of the flow-structure operator.

In the current work, we focus on the second problem. We show that the
flow-structure operator can be seen as a multipole summation with a suitable
choice of potential. Using the Singular Value Decomposition and a new,
efficient, iterative algorithm we compute L2-optimal far field expansions of
this potential to be used in an effective treecode strategy. This treecode
approach allows for a very fast evaluation of the flow-structure operator.
With that in hand, we solve the implicit system for the interface configuration
with a Krylov subspace method (i.e. Problem 1), employing the treecode
evaluation at every iteration.

We demonstrate here that this treecode-based Krylov subspace method
yields an implicit solver that is asymptotically faster than a single fluid solve.
This contrasts with the implicit solver from the 2D case, which had asymp-
totic cost equal to a fluid solve. Thus, we will see that the present method-
ology is not only an extension of the previous methodologies to the 3D case,
but also a substantial improvement upon them.

The presentation is organized as follows. In Section 2, we review the
formulation of the IB Method. Section 3 presents the discretization with the
focus on Peskin’s semi-implicit scheme with lagged-operators. Following this,
Section 4 provides a brief overview of the computational difficulties associated
with the IB Method, as well as detailing why the 2D methodology proposed
in [1] cannot be directly extended to the 3D case. Section 5 is devoted to
the treecode approach, including a sketch of how to arrive at the needed

3

multipole expansions. A detailed consideration of the multipole expansions
is presented in Appendix B. With the treecode in hand, we proceed to test
problems in Section 6. Finally, some concluding remarks are provided in
Section 7.

2. The Immersed Boundary Method

We now review the IB Method in its simplest form. We consider an incom-
pressible, Newtonian fluid occupying a domain Ω ⊂ R3. Inside this domain
we assume that there is an immersed, neutrally buoyant, elastic structure.
This structure may be a 1D filament or a 2D surface, but may also be a
more complex, dense 3D mesh, or some combination of all these elements.
The structure need not be closed or even continuous. We refer to the set
of points comprising the structure as Γ. We further assume there is some
parametrization of Γ, given over a parameter space B. The configuration of
Γ at time t is then provided in the Lagrangian form X(s, t), where s ∈ B is
a Lagrangian parameter. The fluid and immersed structure form a coupled
system evolving according to:

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ µ∇2u + f , (1)

∇ · u = 0, (2)

∂X

∂t
= u(X, t), (3)

where ρ and µ are the fluid density and fluid viscosity, respectively (both
assumed to be constant). Here u(x, t) and p(x, t) are the velocity field and
the pressure, respectively, described in terms of the Eulerian, Cartesian co-
ordinate x. The term f represents the singularly supported tension force
of the immersed structure acting onto the fluid. The system (1)-(3) is sup-
plemented with initial and boundary conditions. Throughout this work, we
consider only periodic boundary conditions and take Ω = [0, 1]3.

The crux of the IB Method and much of its versatility is the seamless
connection of the Lagrangian representation of the immersed structure with
the Eulerian representation of the flow. This is achieved via the identities:

∂X

∂t
=

∫
Ω

u(x, t)δ(x−X(s, t))dx, (4)

f(x, t) =

∫
B

F(s, t)δ(x−X(s, t))ds, (5)

4

where δ denotes the (three-dimensional) Dirac delta distribution. In (5),
F represents the elastic force density of Γ and is described in Lagrangian
coordinates. Typically, the fiber force at time t, F(·, t), is given as a function
of X(·, t), the configuration of our immersed structure at time t. We denote
this as

F = A(X), (6)

for some potentially nonlinear operator A.

3. Discretization

We discretize Ω as a uniform N × N × N Cartesian grid GΩ with grid
size h = 1/N . We represent our structure Γ as a collection of NB points and
define hB = 1/NB. Note that different conventions may be used to discretize
the Lagrangian parameter space B when Γ is not one-dimensional. We call
our discretization GB and take it to be a one dimensional index space, so that
the discretized structure X may be considered as an array of NB 3-vectors,
{Xi}NB

i=1.
We employ a semi-implicit discretization for the equations of motion [10],

ρ

(
un+1 − un

∆t
+ un ·Dhu

n

)
= −Dhp

n+1 + µLhu
n+1 + SnAhB(Xn+1), (7)

Dh · un+1 = 0, (8)

Xn+1 −Xn

∆t
= S∗nun+1, (9)

where a superscript n denotes a numerical approximation taken at the time
n∆t and ∆t is the timestep. We use standard, second order finite differences
for the spatial derivatives. The spatial operators Dh and Lh are the standard,
second order approximations to the gradient and the Laplacian, respectively,
and AhB is a suitable discrete version of A.
Sn and S∗n are the lagged spreading and interpolation operators, respec-

tively, given by

(SnG)(x) =
∑
s∈GB

G(s)δh(x−Xn(s))hB, (10)

(S∗nw)(s) =
∑
x∈GΩ

w(x)δh(x−Xn(s))h3, (11)

5

where δh(x) = dh(x0)dh(x1)dh(x2) and dh is an approximation of the one-
dimensional Dirac delta distribution. These operators are called lagged be-
cause the interface configuration Xn is used instead of the future configu-
ration Xn+1. With this choice, Sn and S∗n are linear with respect to the
future configuration. We stress that this linearity is critical to the numerical
efficiency of our algorithm.

There is flexibility in the choice of dh but for concreteness in the presen-
tation we choose Peskin’s delta [10]:

dh(r) =

{
1

4h

(
1 + cos(πr

2h
)
)

if |r| ≤ 2h,

0 otherwise.
(12)

We note that the analogous semi-implicit discretization for Stokes flow is
known to be stable when AhB is linear and self-adjoint, as proved in [9]. Our
own extensive experiments, as well as results presented in [9], suggest that
(7)-(9) are also stable for convective flows with non-linear AhB , with only a
mild CFL condition.

The discretization (7)-(9) presents a formidable implicit system to solve.
Before outlining a method of solution, we seek a simpler representation. Let
us rewrite (7) as

un+1 = −∆t

ρ
Dhp

n+1 + ν∆tLhu
n+1 + an+1, (13)

where ν = µ/ρ and

an+1 =
∆t

ρ
SnAhB(Xn+1) + un −∆t un · ∇hu

n. (14)

We can eliminate the pressure term in (13) using (8), by introducing a discrete
projection Ph defined as

v = Phv + Dhφv, Dh · Phv = 0, PhDhφv = 0, (15)

for any smooth vector field v defined on the grid GΩ. Applying Ph to (13),
using (8), and the fact that for periodic boundary conditions Lh and Ph
commute we get

un+1 = ν∆tLhu
n+1 + Pha

n+1, (16)

that is
un+1 = (I − ν∆tLh)

−1Pha
n+1. (17)

6

Let us denote
Lh = (I − ν∆tLh)

−1Ph. (18)

We refer to Lh as the fluid solver. Using Lh, the semi-implicit method (7)-(9)
can be expressed as

un+1 = Lhan+1, (19)

Xn+1 = Xn + ∆tS∗nun+1, (20)

where an+1 is given by (14). Eliminating un+1 in (20) we obtain a system of
equations for the immersed boundary configuration Xn+1:

Xn+1 =MnAhB(Xn+1) + bn, (21)

where
Mn = αS∗nLhSn, (22)

with

α =
(∆t)2

ρ
(23)

and
bn = Xn + ∆tS∗nLh[un −∆tun · ∇hu

n]. (24)

We have thus reduced (7)-(9) to a single system of equations involving only
the unknown Xn+1. After solving this system we can obtain un+1 via (19).
We call the linear operator Mn the flow-structure operator.

4. Building an efficient and robust, non-stiff IB Method

Within our framework, there are two main difficulties to produce a cost-
efficient and robust, non-stiff IB Method. The first is the heavy cost of
applying and inverting the flow-structure operator Mn. The second is to
produce an effective, in general nonlinear, iterative solver for the implicit
system (21). Because AhB can be a very general nonlinear operator, the
second problem can prove difficult.

In [1] we approached both of these problems. The computational cost
of evaluating expressions of the form MnF was reduced by representing the
linear operator in matrix form. We employed a multigrid to efficiently solve
systems of the form MnF = b and (I −MnAhB)X = b, for linear AhB .

The second problem is more application dependent. Provided the Jaco-
bian J of AhB is negative semi-definite, we showed that Newton’s iterations

7

of the system (21) converge well, as was also demonstrated by Mori and Pe-
skin in [8]. The linear system obtained at each iteration of Newton’s method
can be solved with the same techniques used in the case where AhB is linear.
Handling a non-definite J is more challenging. In [1] a splitting algorithm
was proposed which performs well for the wide class of functions AhB such
that the eigenvalues of J are all large in magnitude. Additional work remains
to be done for the case where the eigenvalues of J are mixed in magnitude.

The present work focuses on the first problem: the large computational
cost associated with flow-structure operator Mn. The matrix form of Mn

has O(N2
B) terms. In 2D, we typically have NB ∼ N . The cost of evaluating

MnF is then O(N2), which is slightly smaller than the O(N2 logN) cost of
applying Lh. In 3D, an immersed surface may require NB ∼ N2 fiber points.
The resulting matrix form of Mn would then have O(N4) terms, which is
much greater than the O(N3 logN) cost of applying Lh. Directly extending
the matrix method to 3D is therefore impractical. We instead turn to an
alternative method for efficiently handling Mn within our implicit system.

To isolate the problem at hand we consider only simple, linear forcing
functions AhB . We may rewrite (21) as the linear system

(I −MnAhB)Xn+1 = bn, (25)

where I is the identity operator. If AhB is negative semi-definite then
I −MnAhB is positive definite. A multitude of iterative methods exist to
efficiently solve positive definite systems. For this work, we make use of the
matrix-free, Conjugate Gradient Method (CG). Iterations of CG require an
evaluation of the operator I −MnAhB , and hence an evaluation ofMh. CG
can require upward of a dozen iterations to achieve adequate convergence, so
it is critical to streamline the evaluations of Mh.

Our solution to this problem is to adapt a treecode strategy for use with
the IB Method. The methodology is elaborated in the following section.

While we focus here on a simple, linear AhB , the proposed methodology
can also be applied directly to more general linear AhB as long as they are
negative semi-definite. Moreover, it is also applicable when AhB is nonlinear
but has a negative semi-definite Jacobian. In such nonlinear situations, as
demonstrated in 2D [1], Newton’s method in concert with a fast methodol-
ogy to evaluate flow-structure interactions, yields an efficient method. As
mentioned above, fiber forces with a non-definite Jacobian with both large
and small eigenvalues are more challenging and remain to be investigated.

8

5. Treecode Evaluation

Treecodes are efficient ways to evaluate certain sums. Suppose we have
an expression of the form

NB∑
j=1

φ(Xj,Xi)Fj, (26)

where {Fj}NB
j=1 is a collection of forces, and φ is some tensor valued potential.

Expression (26) is referred to as a multipole summation. Evaluating (26)
for all 1 ≤ i ≤ NB directly requires O(N2

B) operations. However, treecodes
can reduce the overall computational cost to O(NB logNB), provided φ is
sufficiently regular.

To make use of a treecode approach within the IB Method context, we
must first recast products of the formMnF as multipole summations. Recall
Mn = αS∗nLhSn is a linear function from R3NB to R3NB . For a component-
wise calculation of Mn, we focus on two fiber points located at x ∈ Ω and
y ∈ Ω. We take e1, e2, and e3 to be the canonical basis vectors of R3 and
define the scalar field

δx(z) ≡ δh(z− x). (27)

Hence, eiδx is the field obtained by spreading the unit force ei at x to the
fluid domain. We denote the influence of this force field on the fluid velocity
as uix ≡ Lheiδx. The induced velocity on y is now just an interpolation of uix
at y. We perform this procedure for i = 1, 2, 3 and store the three resulting
vectors as a 3× 3 matrix (tensor) defined via

(Gh(x,y))ij ≡ αhB
∑
z∈GΩ

uixj(z)δh (z− y)h3, (28)

where uixj is the j-th component of uix and the summation against δh provides
the necessary interpolation. Gh is a tensor valued function, acting on Ω×Ω
and returning a 3 × 3 matrix that specifies how forces at x affect the fiber
displacement at y. If there is a force f on x then the induced displacement
at y is simply Gh(x,y)f . Evaluating Gh for all ordered pairs (Xi,Xj), we
have that

(MnF)i =
∑

0≤j≤NB

Gh(Xj,Xi)Fj, for 0 ≤ i ≤ NB, (29)

9

which is exactly of the form (26). One can also arrive at this representation
by making use of the Fourier transform.

In practice, calculating Gh(x,y) for any pair of points x,y ∈ Ω is pro-
hibitively expensive. It would require a fluid solve, i.e. O(N3 logN) op-
erations per pair of points. To overcome this limitation, following [1], we
approximate Gh(x,y) by Gh(0,x−y), which we denote simply as Gh(x−y).
Gh can now be seen as a tensor field over Ω. We precompute and store the
values of Gh(z) for every z ∈ GΩ. This allows us to reduce future costs of
evaluating Gh(z) to O(1). When z /∈ GΩ we use trilinear interpolation to
approximate Gh(z).

For a given set of parameters (∆t, µ, ρ, h,Ω) defining the discretized fluid
domain and the fluid material properties, Gh need only be calculated once
and can be reused throughout a simulation and in fact, in any other simula-
tions with identical fluid parameters. The price we pay for this computational
speedup is the error incurred by assuming translational invariance, as well as
by using interpolation between grid points. As we show below, these errors
do not degrade the overall accuracy of the IB Method.

In the continuous case the flow-mediated interaction between two fiber
points is (exactly) translation invariant, that is,

lim
h→0

Gh(x + z,y + z) = lim
h→0

Gh(x,y), for any z ∈ Ω. (30)

Thus, in the limit as h → 0, the approximation Gh(x,y) = Gh(x − y) is
exact. In the case of a 2D fluid, it was proved in [1] that each component
of the error |(Gh(x,y) − Gh(x − y))ij| is smaller than O(h) and does not
deteriorate the global accuracy of the IB Method. In 3D, the same argument
carries through with minimal modification (see Appendix C).

Given our approximation to Gh we can now cast our fluid evaluations as
multipole summations of the form

(MnF)i =
∑

0≤j≤NB

Gh(Xj −Xi)Fj. (31)

Calculating this sum directly is equivalent to the matrix method proposed
in [1], and requires O(N4) operations when NB ∼ N2. The goal now is to
apply a treecode algorithm to accelerate the evaluation of this sum, ideally
reducing the cost from O(N2

B) to O(NB logNB). In the following two sub-
sections we overview the basics of treecodes. We will elaborate in Section 5.3
on the far field expansions of Gh that enable a treecode strategy to perform
well for our particular problem.

10

5.1. Overview

For those unfamiliar with treecodes we briefly review the main ideas here.
We recommend an alternative exposition by Li, Johnston, and Krasny in [6].

The general strategy is to make use of far field expansions of Gh to com-
press the outgoing effect of clusters of fiber points. Assume we have two
subsets of our domain Ω, Ωin and Ωout, such that Gh has a valid expansion
in Ωin × Ωout given by

Gh(x− y) ≈
p∑

k=1

Ak(x)Bk(y), for x ∈ Ωin and y ∈ Ωout. (32)

Ωout serves to restrict the location of our pole, the outgoing influence, while
Ωin serves to restrict the point of evaluation, the incoming position. Our
expansion terms {Ak}pk=1 and {Bk}pk=1 are collections of 3×3 matrix (tensor)
fields defined on Ωin and Ωout respectively, with multiplication between two
tensors defined componentwise, and multiplication between a tensor and a
vector defined via the usual matrix-vector multiplication. If we further define

Bin = {1 ≤ i ≤ NB|Xi ∈ Ωin}, (33)

Bout = {1 ≤ i ≤ NB|Xi ∈ Ωout}, (34)

then we can consider the subproblem of calculating the influence of all the
fiber points in Ωout on the fiber points in Ωin:∑

j∈Bout

Gh(Xi −Xj)Fj, for i ∈ Bin. (35)

Calculating this summation for all i inBin requiresO(|Bin|·|Bout|) operations,
where | · | denotes the number of elements in a set. We seek to reduce this
cost. Substituting (32) in (35) yields

∑
j∈Bout

Gh(Xj −Xi)Fj =
∑
j∈Bout

(
p∑

k=1

Ak(Xi)Bk(Xj)

)
Fj

= ET

p∑
k=1

Ak(Xi)
∑
j∈Bout

Bk(Xj)F̃j. (36)

Here F̃j is a 3 × 3 matrix (tensor) where (F̃j)ab = (Fj)b and E is a 3-vector
whose components are all one. The additional complication of defining F̃j

11

arises because the product of Ak and Bk in (32) is understood component-
wise. The vector E serves to collapse the final sum into a vector.

The summation over Bout in (36) may be calculated independently of i.
Thus, given

Hk ≡
∑
j∈Bout

Bk(Xj)F̃j, (37)

we can efficiently calculate (35) via

ET

p∑
k=1

Ak(Xi)Hk, for i ∈ Bin. (38)

Using (38) to compute (35) requires O(p|Bin|+ |Bout|) operations, which may
be substantially fewer than O(|Bin| · |Bout|) if p� |Bout|. This compression
is one of the main ingredients of a treecode. The remaining difficulty is that
Ωin and Ωout generally do not cover our entire domain. There may be fiber
points Xi and Xj where i, j do not belong to Bout, Bin, hence the interaction
between Xi and Xj would not be accounted for in (35).

To remedy this we must choose multiple pairs of (Ωin,Ωout) so that every
ordered pair of fiber points (Xi,Xj) is represented exactly once. This is
essentially an organizational problem, and the standard procedure is to use
binary space partitioning. In 3D this is known as an octree whereas in 2D it
is called a quadtree.

5.2. The octree

An octree is constructed by successively subdividing our domain Ω =
[0, 1]3 into smaller cubic domains called panels. Starting with the domain
itself, called the Root Panel, we divide it into eight equal octants called child
panels (of the root) then recursively we define the eight children of each of
those child panels and so on. This subdivision process is stopped for a panel
which has fewer that an (arbitrarily set) minimum number of fiber points (10
here).

The totality of the Root Panel and all of its branches is collectively known
as the octree. Visualizing an octree in 3D is difficult. For demonstrative
purposes we present in Figure 1 a drawing of a quadtree in 2D.

A point x is well-separated from a panel P if its distance to the center
of the panel is about 3/2 the size of the panel [see (A.2)]. Given a panel
P , we consider those points that are well-separated from P so that for these

12

points (ΩP
in) a multipole expansion could be used to calculate the effect of

the outgoing influence of all the fiber points in P (ΩP
out). We assume that

we can expand Gh over ΩP
in × ΩP

out, arriving at two collections of coefficient
functions {APk }pk=1 and {BP

k }pk=1.
Suppose now that we are given a fiber force F and wish to evaluate its

influence at points x in the fluid domain. For each x this influence is given
by ∑

1≤j≤NB

Gh(x−Xj)Fj. (39)

To evaluate this efficiently, we first loop over each panel P and calculate
the far field expansion of all the poles located in P . The k-th term of this

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 1: An ellipse shaped fiber X, with a quadtree decomposition of the space
[0, 1]× [0, 1] containing it.

13

expansion is given by

HP
k ≡

∑
j∈BP

out

BP
k (Xj)F̃j. (40)

If x is well separated from P , then the incoming effect on x from P is given
by

ET

p∑
k=1

APk (Xi)H
P
k . (41)

We can now evaluate the entire influence of F on a point x, recursively. We
start with the panel P = Root. If x is well separated from P then we evaluate
the influence of P on x via (41). Otherwise, if P has children we recursively
apply this process to those child panels. If instead P is childless, we directly
evaluate the influence of every fiber point in P on x, using (35). Summing
all these influences from every branch of the recursion provides the desired
total influence on x.

Note that (40) only needs to be calculated once per panel, and may be
reused for calculating the influence at multiple points x. Because each fiber
point Xi is contained in at most logN panels, the total cost of computing
HP
k for all panels P is at most O(NB logNB). Calculating the influence at

a given x involves at most O(logN) panels, and hence the cost is at most
O(p logN). The total cost of evaluating MnF is thus O(pNB logNB).

A detailed description of the octree creation and point evaluation is pre-
sented in Appendix A.

5.3. Expansions

In order to make use of a treecode we must be able to find expansions (32)
of Gh associated with particular pairs (Ωin,Ωout). Here, Gh is a summation
of discrete stokeslets. In free space, the continuous stokeslet has convenient
analytic expansions useful for fast summation, see for instance [13]. The
same is not true for the discrete stokeslet corresponding to a periodic domain,
and much less so for the particular summation of stokeslets that yields Gh.
Fortunately, an analytic expansion is not indispensable in practice. What we
seek are collections of tensor valued function {Ak}∞k=1 and {Bk}∞k=1 defined
on Ω such that

Gh(x− y) =
∞∑
k=1

Ak(x)Bk(y), (42)

14

and, moreover, such that truncating the above expansion to p terms yields an
adequate approximation, provided that x and y are well separated in some
sense. That is, given two disjoint subsets Ωin and Ωout of our domain, we
hope that for some small value of p and for a specified tolerance ε that∥∥∥∥∥

(
Gh(x− y)−

p∑
k=1

Ak(x)Bk(y)

)
f

∥∥∥∥∥
2

< ε ‖f‖2 , (43)

for all f ∈ R3, x ∈ Ωin, and y ∈ Ωout.
For a given p, finding the optimal expansion that allows for the smallest

ε that satisfies (43) for all f ,x,y is an open question, and is likely computa-
tionally intractable.

We solve instead a least squares problem. We will search for the individual
components of our tensors separately. Looking at each ab components, for
a, b = x, y, z, we seek the expansion coefficients {(Ak)ab}pk=1 and {(Bk)ab}pk=1

such that we minimize the L2-norm of the difference between Gh and our
approximate expansion. That is, we seek to minimize∥∥∥∥∥
(
Gh −

p∑
k=1

AkBk

)
ab

∥∥∥∥∥
2

2

≡
∫∫ (

Gh(x− y)−
p∑

k=1

Ak(x)Bk(y)

)2

ab

dxdy,

(44)
where AkBk is understood to be a function over Ωin×Ωout, and the integrals
are taken over x ∈ Ωin and y ∈ Ωout. We approximate the integral in (44) as

∑(
Gh(x− y)−

p∑
k=1

Ak(x)Bk(y)

)2

ab

h6, (45)

where the outer sum is taken over the Eulerian grid points in our subsets,
x ∈ Ωin ∩ Gh and y ∈ Ωout ∩ Gh. Note that this minimization problem
is decoupled with respect to the components of our tensors. We may thus
consider the task of minimizing (45) as nine separate minimization problems.

It is useful to view our problem as a statement about matrices. To do
this we first write (Gh)ab as an N3 ×N3 matrix, which we refer to as G̃ and
which is given by the relation

G̃ij = Gh((j0, j1, j2)h− (i0, i1, i2)h), (46)

where i = i0 + i1N + i2N
2 and j = j0 + j1N + j2N

2 for any 0 ≤ il < N ,
0 ≤ jl < N , with l = 0, 1, 2. We may likewise write (Ak)ab and (Bk)ab as

15

N3-vectors labeled Ãk and B̃k. We now stitch our collections of vectors {Ãk}
and {B̃k} into matrices. Given p, we define an N3 × p matrix U , a p × N3

matrix V , and a p× p diagonal matrix Σ via

Ujk =
(Ãk)j∥∥∥Ãk∥∥∥

2

, Vkj =
(B̃k)j∥∥∥B̃k

∥∥∥
2

, Σkk =
∥∥∥Ãk∥∥∥

2

∥∥∥B̃k

∥∥∥
2
, (47)

for 1 ≤ j ≤ N3 and 1 ≤ k ≤ p.
The p columns of U are simply the normalized vector encodings of the

p coefficient functions {Ak}pk=1. The rows of V are likewise formed from
{Bk}pk=1. Note that we may reorder our indices such that {Σkk}pk=1 is a
decreasing sequence.

We can now express our sum (45) as
∥∥∥G̃− UΣV

∥∥∥2

F
h6, where ‖·‖F is

the Frobenius matrix norm. Minimizing the Frobenius norm here is a well-
studied least squares problem. It is known that if we take p = N3 and find
the optimal expansion minimizing (45) then we recover G̃ exactly. That is,
G̃ = UΣV . This is precisely the Singular Value Decomposition (SVD) of G̃.

The key property of this decomposition for our needs is that, for a given
p < N3, truncating the SVD to p terms provides the minimizing expansion
for (45). That is, given the SVD of G̃, we can obtain the optimal p-term
expansion coefficient functions {Ak}pk=1 , {Bk}pk=1 from the first p columns of

U
√

Σ and the first p rows of
√

ΣV , respectively. This result is known as the
Eckart-Young theorem [2] and the resulting expansion is the so-called rank-1
decomposition.

Using this optimal p-term expansion, the L2-error (45) is given by the
square sum of the neglected singular values,(

N3∑
k=p+1

Σ2
kk

)1/2

. (48)

The accuracy of our p-term expansion is thus directly related to the rate of
decay of the singular values of G̃. The faster the singular values decay the
fewer terms we require in our expansion to accurately capture the behavior
of G̃. Figure 2 shows the sharp decay of the singular values of G̃, where we
have encoded in G̃ the xx and xy components of Gh respectively. It is this
marked decay that allows for an efficient treecode approach.

16

Calculating the SVD of G̃ can be expensive. Fortunately, as with the
construction of Gh, this is a one time cost that can be spread over multiple
simulations. However, some care must still be taken as a direct approach to
calculating the SVD of G̃ would requireO(N9) operations. In Appendix B we
propose an efficient strategy to reduce the cost to O(pN3 logN) operations.

Finally, turning back to our original optimization problem of minimizing
(44), we approximate Ak(x) and Bk(x) at arbitrary positions x ∈ Ωin and
y ∈ Ωout by using trilinear interpolation between the surrounding Eulerian
grid points. Gh is smooth away from the origin, and its singular vectors are
likewise smooth. Trilinear interpolation thus introduces an error of at most
O(h2). For a given interaction between two fiber points we commit this error
p times, for a total error on the order of O(ph2). Assuming h is sufficiently
small, this error is smaller than the O(h) error of our expansion and the
O(h) error of the IB Method. A numerical verification of the error rate of
our expansion is presented below in Section 5.5.

5.4. Decomposition group

We have seen how to arrive at a decomposition of Gh over a subdomain
Ωin ×Ωout. However, our treecode makes use of O(N logN) different subdo-
mains. Each subdomain will require a suitable decomposition. Fortunately,
we may recycle many of these decompositions for use over multiple subdo-
mains.

Specifically, given two panels P 1 and P 2 at the same depth in our oc-
tree, we may take their expansion coefficient functions to be identical up to
translation. That is, given z ∈ Ω,

AP1
k (cP1 + z) = AP2

k (cP2 + z), (49)

BP1
k (cP1 + z) = BP2

k (cP2 + z), (50)

provided the functions are defined at the points of evaluation. Here, cPi

denotes the center of panel Pi, i = 1, 2.
Due to this equivalence we only need logN decompositions: one for

each level of our octree. The total precomputational cost of calculating our
lookup tables is thus O(pN3 log2N), and the total memory requirement is
O(pN3 logN).

5.5. Treecode benchmarks

We present a numerical validation and performance evaluation of the
treecode. To this end, we use a test problem which consists of an immersed,

17

flat plate with fiber points Xi tethered to fixed points T and with a fiber
force AhB(X) = σ(T−X) (see Section 6 for details on this problem setup).
We fix N = 128, σ = 107, ∆t = 0.002, and vary NB and p.

The performance of the treecode is analyzed through the performance
of two different function calls: the evaluation function, which takes in a
fiber force F and returns the influence at every fiber point X; and a pre-
evaluation function, which does a variety of computations used to streamline
the evaluation function. The pre-evaluation function is called only once per
timestep

We examine accuracy first. There are two confounding factors that de-
grade the accuracy of our treecode. The first is that we approximate Gh as a
truncated rank-1 decomposition. The second is that we introduce error into
the simulation by assuming translation invariance of Gh. In order to analyze
the first component separately we consider an immersed plate where the fiber
points lie exactly on Eulerian intersection. This avoids the introduction of
any error from translation.

We calculate the error according to the following procedure. We first
make an O(h) perturbation of the fiber X. This perturbation generates a
force F on the fiber. We then evaluate MnF using both the treecode and a
direct fluid solve and take the sup norm of the difference.

The blue line in Figure 3 shows the resulting decrease in error for increas-
ing values of p. If we do not restrict the fiber points to Eulerian intersections
then the above procedure returns a different decay line, seen as the green
line in Figure 3. Note that past p = 10 no additional reduction in error is
achieved. This is the point at which the O(h) error from our approximation
to Gh overwhelms the error introduced by using a truncated expansion. In
actual simulations fiber points can not be restricted to Eulerian intersections,
hence any value of p > 10 would be computationally wasteful.

If we fix p = 10 and compute the error for various values of h we see that
it does indeed decrease at least as fast as O(h), as seen in Figure 4, consistent
with the error bound presented in Appendix C.

We now analyze the performance of the treecode. All units of time are
given as multiples of the average time to perform a fluid solve with N = 128.
We first fix p = 10 and vary NB. The resulting CPU time for the evaluation
of MnF for an arbitrary F is shown in Figure 5. The corresponding CPU
time for the pre-evaluation call is given in Figure 6. Both scale nearly linearly
in NB, as expected.

Most analytic expansions used for treecodes and FMM codes, including

18

Taylor series expansions, are not optimal, in the sense that a different ex-
pansion would yield higher accuracy for the same number of terms. We
approximate directly the L2-optimal expansion. We note that the extension
of treecodes and FMM codes to generic kernels, and the associated use of the
SVD decomposition in particular, has been studied since the early 90s, see
e.g. [3] for a more detailed exposition.

6. Numerical Results

6.1. An immersed plate.

For the first test of our proposed methodology we simulate flow past an
immersed plate. The plate is a flat square of dimensions 1/2 by 1/2 and is
discretized as an (M+1)×(M+1) grid of fiber points, where M =

⌊
N
√

2/2
⌋
.

This yields NB = 529, 2116, and 8281 for N = 32, 64, and 128 respectively.
For each j, k such that 0 ≤ j ≤ M, 0 ≤ k ≤ M we have a fiber point

Xj,k ∈ Ω. Each fiber point Xj,k is tethered to a corresponding fixed point
Tj,k ∈ Ω given by

Tj,k = (0.25, 0.25, 0.5) +
1

2M
(j, k, 0). (51)

The tethers induce a force AhB(X) = σ(T − X) which acts to restore the
plate to equilibrium, as well as to bind the plate against the fluid flow pushing
against it. The initial configuration of the plate is taken to be the equilibrium
state X0 = T. Note that, among non-empty Eulerian grid cells, the average
number of fiber points per cell is roughly 2. This is the minimum density
needed to prevent unreasonable spurious currents across the plate.

A fluid flow is induced by adding a time dependent forcing vector f(t) to
the right hand side of (7). We take f(t) = 100(0, sin θ(t), cos θ(t)), where
θ(t) = 4 cos(6πt/T)/π and T = 0.25 is the total simulation time. The
addition of f(t) alters the explicit term bn in our implicit system to

bn = Xn + ∆tS∗nLh[un −∆tun · ∇hu
n + ∆tf(tn)]. (52)

The induced flow has a Reynolds number of about 10.
AhB is affine, not linear, thus we cannot directly apply CG to solve the

implicit system. Suppose we denote our initial guess for Xn+1 as Xn+1,0.
We define X̄n+1 = Xn+1 −Xn+1,0 and recast our implicit system in terms of
X̄n+1. We define A′hB(X) = −σX and a new explicit term

b̄n = Xn−Xn+1,0+∆tS∗nLh[un−∆tun ·∇hu
n+AhB(Xn+1,0)+∆tf(tn)]. (53)

19

Table 1: ∆t in the explicit simulations of the immersed plate for various values of N and
σ. ∆t is approximately the largest stable timestep, given by the formula ∆t = 10hσ−1/2.

σ = 107 σ = 108 σ = 109 σ = 1010 σ = 1011

N = 32 3.125·10−5 9.882·10−6 3.125·10−6 9.882·10−7 3.125·10−7

N = 64 1.563·10−5 4.941·10−6 1.563·10−6 4.941·10−7 1.563·10−7

N = 128 7.813·10−6 2.471·10−6 7.813·10−7 2.471·10−7 7.813·10−8

Our implicit system then becomes

X̄n+1 =MnA′hB(X̄n+1) + b̄n. (54)

Here A′hB is linear negative definite, thus I−MnA′hB is positive definite and
we can solve (54) via CG. For these particular (semi-implicit) simulations we
take Xn+1,0 = Xn.

We perform both explicit and implicit simulations for N = 32, 64, 128
and various values of σ. The explicit simulation uses a standard Forward
Euler/Backward Euler (FE/BE) discretization, i.e. implicit in the viscous
term but explicit in all the other terms, including the tension force. The
largest stable timestep is given by the empirical formula ∆t = 10hσ−1/2.
Table 1 provides a list of the values of ∆t required for a stable simulation
using the FE/BE discretization. Note that even for modest resolutions the
timestep is prohibitively small.

In marked contrast, for the semi-implicit, lagged operators discretization
a constant timesteps of ∆t = 0.002 is sufficient to maintain both stability
and accuracy for all resolutions and values of σ. Our proposed fast solution
strategy yields total computation times that are several orders of magnitude
smaller than those for the popular FE/BE method. The total CPU time is
shown in Table 2. The savings are striking; computations that would take
over a month to perform with the FE/BE (even with a modest N = 128)
can be done in minutes using the proposed new approach. Note also that
as σ increases the total CPU time using the new methodology is almost
invariant, whereas for the explicit FE/BE simulations the total CPU time
grows markedly.

In Table 3 we provide a break down of the computational costs associated
with a single implicit timestep for the case of the immersed plate. All units

20

Table 2: Total CPU time in hours for the explicit and implicit simulations of the immersed
plate, with varying values of σ. ∗ denotes an extrapolated value.

σ = 107 σ = 108 σ = 109 σ = 1010 σ = 1011

N = 32
Implicit 0.012 0.011 0.011 0.013 0.012

Explicit 0.214 0.675 2.146 6.806 21.296

σ = 107 σ = 108 σ = 109 σ = 1010 σ = 1011

N = 64
Implicit 0.109 0.109 0.106 0.111 0.108

Explicit 4.072 12.906 40.813∗ 129.063∗ 408.133∗

σ = 107 σ = 108 σ = 109 σ = 1010 σ = 1011

N = 128
Implicit 0.896 0.889 0.897 0.892 0.896

Explicit 64.779∗ 204.8481∗ 647.787∗ 2048.481∗ 6477.867∗

of time are given as multiples of the average time to perform a fluid solve
for the given value of N . Of note is that the cost of performing Conjugate
Gradient, typically requiring 5 to 10 iterations, is only a small contribution
to the overall computational cost. The predominant costs come from the
fluid solves and the treecode initialization and pre-evaluation.

Figure 7 presents a depiction of the flow using streamlines in a sequence of
snapshots. A cross-section of the z-component of the velocity is also plotted
below the plate. The flow has the expected periodic behavior while the
structure of the plate is maintained throughout the simulation.

6.2. An oscillating spheroid

In the immersed plate test described above, the geometry of the structure
is trivial and the deformations are negligible. Of course, the true power of
the IB methodology lies in its seamless handling of both rigid and dynamic,
flexible interfaces and in its structure-building capability. As an example of
a simulation with a dynamic, flexible interface we consider now an immersed,

21

Table 3: A break down of average CPU time for different components of the implicit
timestep. Time is given as multiples of the average time to perform a fluid solve. Included
in the Tree Initialization is the pre-evaluation cost.

N = 32 N = 64 N = 128

Fluid Solves 2.000 2.000 2.000
Tree Initialization 1.166 1.125 1.107

Conjugate Gradient 0.394 0.327 0.295
Total 3.560 3.452 3.403

oscillating spheroid given by

(x− 0.5)2

(0.2 + 0.05 sin θ(t))2
+

(y − 0.5)2

(0.2 + 0.05 sin θ(t))2
+

(z − 0.5− 0.05 cos θ(t))2

(0.2− 0.1 sin θ(t))2
= 1,

(55)
where θ(t) = 2πt/T , t is the current simulation time and T = 0.25 is the total
simulation time. Equation (55) yields a spheroid centered at (0.5, 0.5, 0.5 +
0.05 cos θ) with an equatorial radius of 0.2 + 0.05 sin θ and a polar radius of
0.2−0.1 sin θ. The prescribed motion induces a flow with a Reynolds number
of about 10.

The shape of the spheroid is maintained by tethers. At time tn each fiber
point Xn

j is tethered to its respective location on the spheroid Tn
j . The sphere

itself is discretized by triangulating a regular octahedron, yielding NB = 578,
2502, and 10406 fiber points when N = 32, 64, and 128, respectively. When
solving for Xn+1 in the semi-implicit, lagged operators discretization, we take
our initial guess to be Xn+1,0 = Tn+1.

As in the previous example, we compare (explicit) FE/BE simulations
with the proposed, fast, semi-implicit approach. For the FE/BE method the
stable timestep is determined by the empirical formula ∆t = 0.5 ·10−1hσ−1/2.
Table 4 provides a list of stable, explicit timesteps for this problem. The
required ∆t for a stable FE/BE simulation is even smaller than that in the
plate example. Again, such direct, FE/BE simulations are impractical and
would require a massive computational effort even for modest resolutions.
For the implicit, lagged operators discretization it is again sufficient to fix
∆t = 0.002 to maintain both accuracy and stability for all resolutions, N =
32, 64, and 128. A comparison of the total CPU time for all simulations is
presented in Table 5. As in the plate example, the CPU time for the fast,

22

Table 4: ∆t in the FE/BE explicit simulations of the immersed spheroid for various
values of N and σ. ∆t is approximately the largest stable timestep, given by the formula
∆t = 0.5 · 10−1hσ−1/2.

σ = 105 σ = 106 σ = 107 σ = 108 σ = 109

N = 32 4.941·10−6 1.563·10−6 4.941·10−7 1.563·10−7 4.941·10−8

N = 64 2.471·10−6 7.813·10−7 2.471·10−7 7.813·10−8 2.471·10−8

N = 128 1.235·10−6 3.906·10−7 1.235·10−7 3.906·10−8 1.235·10−8

semi-implicit simulations is almost invariant as σ increases. The numbers are
even more striking than in the preceding example; for N = 128 and σ = 109,
the proposed approach is six orders of magnitude faster than the commonly
used FE/BE approach. A depiction of the flow obtained using the new fast,
semi-implicit approach is presented in Figure 8.

6.3. Accuracy

There are a number of differences between our implicit methodology and
the standard FE/BE explicit methodology. Each difference is a potential
source of additional numerical error: the larger timestep taken, the implicit
discretization itself, the assumption of translation invariance of Gh, the tri-
linear interpolation used to calculate values of the form Gh(z), the far field
expansion of Gh, and approximate nature of the Krylov subspace solvers. We
have been extra careful to ensure that each of these errors is no more than
O(h), the underlying order of the IB Method and verify numerically that
these errors do not accumulate.

To analyze error accumulation we again turn to our simulations of a plate
and a sphere. For the following simulations we fix the immersed structure
via tether points with spring constant σ = 106 and induce a simple flow by
adding a constant force f = (0, 0, 1) to every point of the fluid domain. We
perform the simulation first for N = 128 using the explicit method and store
the resulting fluid velocity at time T = 0.1 as u128. This velocity field will
serve as a our standard by which we gauge the accuracy of other simulations.

We now perform the same simulation twice for N = 32, 64, and 96, once
using the explicit method and once using our implicit methodology. We
calculate the relative error between a velocity field ũ and our standard u128

by taking the l2-norm, ‖u128 − ũ‖l2 / ‖u128‖l2 . For simplicity we downsample

23

Table 5: Total CPU time in hours for the explicit and semi-implicit simulations of the
immersed spheroid, with varying values of σ. ∗ denotes an extrapolated value.

σ = 105 σ = 106 σ = 107 σ = 108 σ = 109

N = 32
Implicit 0.013 0.015 0.015 0.016 0.016

Explicit 4.405 13.675 43.467 135.742∗ 429.701∗

σ = 105 σ = 106 σ = 107 σ = 108 σ = 109

N = 64
Implicit 0.127 0.134 0.140 0.138 0.137

Explicit 83.155∗ 253.626∗ 822.769∗ 2595.119∗ 8213.271∗

σ = 105 σ = 106 σ = 107 σ = 108 σ = 109

N = 128
Implicit 1.057 1.125 1.141 1.151 1.167

Explicit 1326.0∗ 4170.7∗ 13904.8∗ 43827.9∗ 134516.2∗

all velocity fields to a 32× 32× 32 grid. The resulting errors can be seen in
Table 6.

The relative errors from our implicit simulations are roughly the same as
those from the explicit simulations, confirming that our fast implicit method-
ology is not generating any unacceptable inaccuracies.

Finally, we perform one more test to verify that approximating Gh as
translation invariant does not lead either to a degradation of the overall
accuracy. We perform the same implicit simulations as above except we shift
the immersed boundary upward by a distance of h/2. If Gh were exactly
translation invariant then the resulting simulation would be identical to the
original simulation up to a shift of the velocity field. This is the case with
the continuous equations. For our discrete simulations Gh is not exactly
translation invariant and there is a difference between the corresponding
velocity fields. Calculating the relative difference using the l2-norm as before,
we see that this difference is less than 1%, or smaller than the error of the
method.

24

Table 6: The relative error between various low resolution simulations and a high resolution
explicit simulation.

N = 32 N = 64 N = 96

Plate
Implicit 0.160 0.0327 0.015

Explicit 0.222 0.073 0.024

N = 32 N = 64 N = 96

Sphere
Implicit 0.058 0.015 0.005

Explicit 0.089 0.029 0.009

7. Conclusion

In [1], novel expedited methods for the semi-implicit system (7)-(9) in 2D
were proposed. The cost of the implicit solvers therein presented were on the
order of the cost of a fluid solve, allowing for efficient implicit timesteping
with computational cost on the same order as that of an explicit timestep.
The direct extension of that methodology to 3D proved unfeasible due to the
large number of fiber points common to 3D IB applications.

In this paper, we presented an entirely new, alternative methodology
suitable for the 3D case and for when there is a large number of immersed
boundary point. We showed that the efficiency of the proposed fast semi-
implicit solver, relative to the cost of a fluid solve, is asymptotically superior
to the solvers in the 2D case. Indeed, in our test problems, we demonstrated
that solving the implicit system was not the predominant cost for the semi-
implicit timestep, but was rather overshadowed by the cost of the necessary
fluid solves. Thus, we have shown that the stiffness inherent in many IB
applications can be eliminated via a robust, semi-implicit discretization for
a minimal cost. More importantly, the proposed approach scales very well as
NB increases, allowing the new methodology to be applied to a wide range
of complex structures. The computational savings obtained with the new
methodology are enormous. IB Method computations that would typically
require weeks or months using the standard, FE/BE approach can now be
performed in just minutes.

25

Acknowledgments

The authors would like to thank Profs. Alexandre Roma and Paul J.
Atzberger for insightful conversations about this work. Partial support for
this work was provided by the National Science Foundation under Grant
number DMS 1016310.

Appendix A. The octree

We start by defining the notion of a panel. A panel is simply a cubic
subset of Ω, together with an optional collection of 8 child panels that divide
the parent into equal octants. Let P be a panel. To P we associate three
vectors, P.c, P.a, P.b ∈ Ω. P.a and P.b serve to define the domain of P ,
given by

P.Λ = [P.a0, P.b0]× [P.a1, P.b1]× [P.a2, P.b2] ⊆ Ω. (A.1)

The center of P is denoted P.c = (P.a + P.b)/2. This will be the center
of expansion for poles inside P . We also associate to P a collection of fiber
points P.Y consisting of those points of the fiber configuration X lying within
the domain P.Λ. The children of P , if it has any, are denoted by P.Child[i],
for 0 ≤ i < 8. The children divide P.Λ equally, by splitting it into 8 pieces
via the 3 planes x = P.c0, y = P.c1, and z = P.c2.

Given a domain Ω = [0, 1]3, we define an initial panel called Root, speci-
fied by the bounds Root.a = (0, 0, 0) and Root.b = (1, 1, 1). We now recur-
sively define child panels, creating the 8 children of Root, then the 8 children
of each of those children, and so on. For a panel P with few fiber points in its
domain, say |P.Y| < MinPoints, we truncate the recursive process, leaving
P childless. For a pseudocode version of this process, see Function Appendix
A.1 CreatePanel. For our simulations we take MinPoints = 10. A rigorous
accounting of the treecode costs can lead to an optimal value of MinPoints,
but we did not pursue such an analysis here.

The totality of Root and all of its branches is collectively known as the
octree. We now introduce the concept of well separatedness. Given a point
x and a panel P we say that x is well separated from P provided that

|xi − P.ci| ≥ 3(P.ci − P.ai), for i = 0, 1, 2, (A.2)

that is, provided that x is sufficiently far from the center of P . We now
consider the pair of subsets (Ωin,Ωout), where Ωin is the collection of points

26

in Ω that are well separated from P , and Ωout = P.Λ is the domain of P . We
assume that we can expand Gh over Ωin × Ωout, arriving at two collections
of coefficient functions {Ak}pk=1 and {Bk}pk=1. We associate our subsets and
coefficients with P by labeling the subsets P.Ωin and P.ΩOut, and by labeling
the coefficients P.Ak and P.Bk. In addition, we define

P.Bout = {i ∈ B|Xi ∈ P.Y}, (A.3)

as the collection of indices associated with fiber points in P.Y.
Suppose now that we are given a fiber force F and wish to evaluate its

influence at points x in the fluid domain. For each x this influence is given
by ∑

1≤j≤NB

Gh(x−Xj)Fj. (A.4)

To evaluate this efficiently, we first loop over each panel P and calculate the
far field expansion of all the poles located in P.Λ. The k-th term of this
expansion is given by

P.Hk ≡
∑

j∈P.Bout

P.Bk(Xj)F̃j. (A.5)

If x is well separated from P , then the incoming effect on x from P is given
by

ET

p∑
k=1

P.Ak(Xi)P.Hk. (A.6)

We can now evaluate the entire influence of F on a point x. The process is
best described in recursive form. A pseudocode is presented in Function Ap-
pendix A.2 Evaluate.

Because our treecode must be invoked multiple times per timestep, it is
critical to streamline its evaluation. There are two key points to keep in mind.
First, calculations of the expansion coefficients can be recycled. In Section 5.3
we will detail the form of the coefficient functions Ak and Bk. Each evaluation
requires an expensive trilinear interpolation. Avoiding duplications of these
calculations provides substantial speedup. Second, using the treecode to
evaluate the influence at a particular point x requires traversing the octree.
This traversal can be stored as a template so that additional evaluations at
x do not require a recursive call.

27

There are thus two different function calls: the actual evaluation function,
which takes in a fiber force F and returns the influence over the entire struc-
ture X; and a pre-evaluation function, which does a variety of computations
used to streamline the evaluation function. The cost of the pre-evaluation
function is much higher than that of the evaluation function itself. However,
the pre-evaluation function is called only once per timestep.

We mention one further implementation detail regarding the treatment
of the domain P.Ωin for a given panel P . Rather than treating this is as a
single domain, we break it into eight equally sized pieces, corresponding to
the eight octants around the panel’s center P.c. For each piece we must then
have separate collections of coefficient functions {P.Ak}pk=1, {P.Bk}pk=1, as
well as a separate expansion {P.Hk}pk=1.

This additional detail may seem costly at first, but in fact it increases the
speed of the treecode substantially. By restricting our attention to a smaller
domain it is possible to find expansions which converge much more rapidly.

function Appendix A.1 CreatePanel(a,b)

P ← newPanel
P.a = a
P.b = b
P.c = (a + b)/2
if P.Parent exists then

P.Y = P.Parent.Y ∩ P.Λ
else

P.Y = Xn ∩ P.Λ
if |P.Y| > MinPoints then

P.Child[0] = CreatePanel(P.a, P.c)
P.Child[1] = CreatePanel([P.c0, P.a1, P.a2], [P.b0, P.c1, P.c2])
P.Child[2] = CreatePanel([P.a0, P.c1, P.a2], [P.c0, P.b1, P.c2])
P.Child[3] = CreatePanel([P.c0, P.c1, P.a2], [P.b0, P.b1, P.c2])
P.Child[4] = CreatePanel([P.a0, P.a1, P.c2], [P.c0, P.c1, P.b2])
P.Child[5] = CreatePanel([P.c0, P.a1, P.c2], [P.b0, P.c1, P.b2])
P.Child[6] = CreatePanel([P.a0, P.c1, P.c2], [P.c0, P.b1, P.b2])
P.Child[7] = CreatePanel(P.c, P.b)

return P

28

function Appendix A.2 Evaluate(x, P)

if x ∈ P.Ωin then {x is well separated from P}

return ET

p∑
k=1

P.Ak(Xi)P.Hk

else
if P has children then

S = 0 {the 3× 3 zero tensor}
for i = 0 to 7 do

S = S + Evaluate(x, P.Child[i])
return S

else {do a direct summation}
return

∑
j∈P.Bout

Gh(x,Xj)Fj

Appendix B. Computing the far field expansions

Appendix B.1. Precomputing the Gh lookup table

In Section 5, we derived the componentwise definition of Mn as

(MnF)i ≈
∑

0≤j≤NB

Gh(Xj −Xi)Fj, for 0 ≤ i ≤ NB. (B.1)

This requires evaluation of the function Gh, defined in (28). To perform this
evaluation efficiently we first precompute the values of Gh on our Eulerian
grid Gh. We refer to the resulting tensor field over Gh as a lookup table. The
steps for creating the lookup table are as follows.

1. First, we spread a unit force ei at the origin, obtaining a force field
defined as eiδ(x) at any x ∈ Gh.

2. We calculate the influence of this force field on the fluid velocity by
applying the operator Lh, obtaining the vector field ui0 ≡ Lh(eiδh).

3. We spread the velocity ui0 at every point x ∈ Gh, defining

(Gh(x))i ≡ αhB
∑
z∈GΩ

ui0(z)δh (z− x)h3. (B.2)

4. Repeating the above for i = 0, 1, 2, we arrive at our 3×3 tensor lookup
table Gh over Gh.

29

We can now rapidly evaluate terms of the form Gh(Xj −Xi) by looking up
the value of Xj −Xi on our lookup table. For vectors that do not lie exactly
on an Eulerian intersection we make use of trilinear interpolation.

Appendix B.2. Calculating a truncated SVD of restrictions of Gh

The far field expansions of Gh that we employ are known as rank-1 de-
compositions, and can be obtained via the Singular Value Decomposition.
Note that when we decompose Gh we consider it properly as a function de-
fined on Ω×Ω, not as a field over Ω. For actual evaluations of Gh, however,
we still assume translation invariance, treating Gh as a field and making use
of our lookup table on Gh.

Treating Gh as a function defined only on Gh × Gh, we may write Gh as
an N3×N3 matrix and seek its SVD. Typical SVD algorithms would require
O(N9) operations. This is too great a cost, even for a precomputation. The
two key ingredients for accelerating the computation of the SVD are, first,
that we only require the first p singular values of Gh, not all N3 of them,
and, second, that our approximation to Gh is convolutional. We present
an algorithm that takes advantage of these ingredients. While matrices are
convenient for relating to the SVD, in what follows we treat Gh directly as a
function, and abandon any use of matrices.

We will focus on the discretized domain Gh and a particular pair of sub-
sets, (Ωin,Ωout), over which we wish to decompose Gh. We will require a few
definitions. Given two functions f and g defined over Ωin ∩Gh and Ωout ∩Gh
respectively, we define the outer product f ⊗ g via the relation

(f ⊗ g) (x,y) = f(x)g(y), (B.3)

for x ∈ Ωin∩Gh, y ∈ Ωout∩Gh. If f ′ is another function defined over Ωin∩Gh,
and both f and f ′ are 3× 3 tensor fields, then we define the componentwise
inner product 〈f, f ′〉 to be a 3× 3 tensor given by

〈f, f ′〉ij =
∑

fij(x)f ′ij(x), (B.4)

where the sum is taken over all x ∈ Ωin ∩ Gh.
For a scalar function f defined on Gh, the L2 norm is given by

‖f‖2
2 =

∑
x∈Gh

f(x)2. (B.5)

30

For functions with other domains the norm is implicitly taken over the entire
domain of the function. For a 3×3 tensor valued function g on Gh, we define
‖g‖2 to be a 3× 3 tensor given by (‖g‖2)ij = ‖gij‖2.

Now, we are seeking a collection of 2p functions, {Ak}pk=1 and {Bk}pk=1,
each a 3× 3 tensor field over Gh, such that the rank-1 decomposition

p∑
k=1

Ak ⊗Bk (B.6)

is as close as possible to Gh in the L2 sense. From SVD theory we know that
given this truncated decomposition we will have simultaneously minimized∥∥∥∥∥Gh −

q∑
k=1

Ak ⊗Bk

∥∥∥∥∥
2

(B.7)

for any q such that 1 ≤ q ≤ p, where the norm is taken over the domain
Ωin ∩ Gh × Ωout ∩ Gh. We may take advantage of this result by first finding
A1 and B1 such that (B.7) is minimized for q = 1. Next, we can hold A1 and
B1 fixed as we seek the A2 and B2 that minimize (B.7) for q = 2. Assuming
we have iterated this procedure up to q = l − 1, we detail the procedure for
finding Al and Bl.

First, Al and Bl are exactly the tensor fields that minimize

L ≡
∥∥∥∥∥Gh −

l∑
k=1

Ak ⊗Bk

∥∥∥∥∥
2

2

= ‖G′h − Al ⊗Bl‖2
2 , (B.8)

where

G′h ≡ Gh −
l−1∑
k=1

Ak ⊗Bk. (B.9)

If we fix Bl then we can minimize L in (B.8) by the method of least squares.
We fix a z in Ωin and derive L with respect to Al(z), obtaining

−1

2

∂L

∂Al(z)
= −1

2

∂

∂Al(z)

∑
(G′h(x,y)− Al(x)Bl(y))

2
, (B.10)

where the sum is taken over x ∈ Ωin∩Gh,y ∈ Ωout∩Gh. Dropping the terms
independent of Al(z) leaves∑

(G′h(z,y)− Al(z)Bl(y))Bl(y)

=
[∑

G′h(z,y)Bl(y)
]
− Al(z) ‖Bl‖2

2 , (B.11)

31

where the sum is now over y ∈ Ωout ∩ Gh. The sum in (B.11) is nearly a
convolution. We seek to recast it as such.

First, we define the indicator functions

Iin(x) =

{
1 if x ∈ Ωin ∩ Gh
0 otherwise,

(B.12)

and

Iout(x) =

{
1 if x ∈ Ωout ∩ Gh
0 otherwise.

(B.13)

Al is a field over Ωin ∩ Gh, but we may identify AlIin with a field defined
over all of Gh in the natural way. We may likewise identify BlIout with a field
defined over all of Gh. These identifications allow us to express the sum in
(B.11) as a convolution against Gh over all of Gh, minus some correction.[∑

G′h(z,y)Bl(y)
]

=
[∑

Gh(z− y)Bl(y)
]
−

l−1∑
k=1

∑
Ak(z)Bk(y)Bl(y) (B.14)

= [(Gh ∗ (BlIout))Iin] (z)−
l−1∑
k=1

Ak(z) 〈Bk, Bl〉 .

Requiring that the derivatives of L be zero in (B.11), we solve for Al as

Al =
1

‖Bl‖2
2

[
(Gh ∗ (BlIout))Iin −

l−1∑
k=1

Ak 〈Bk, Bl〉
]
. (B.15)

If we fix Al we can solve the equivalent least squares problem for Bl, obtaining

Bl =
1

‖Al‖2
2

[
(Gh ∗ (AlIin))Iout −

l−1∑
k=1

Bk 〈Ak, Al〉
]
. (B.16)

Equations (B.15) and (B.16) must be solved simultaneously. We approximate
the solution to this system via the iterative method

An+1
l =

1

‖Bn
l ‖2

2

[
(Gh ∗ (Bn

l Iout))Iin −
l−1∑
k=1

Ak 〈Bk, B
n
l 〉
]
,

Bn+1
l =

1∥∥An+1
l

∥∥2

2

[
(Gh ∗ (An+1

l Iin))Iout −
l−1∑
k=1

Bk 〈Ak, Anl 〉
]
.

(B.17)

32

We require an initial guess for this iteration, call it B0
l , with the restriction

that B0
l not be a linear combination of {Bk}l−1

1 .
(B.17) is a type of power method. Power methods are known to converge

quickly provided the singular values of Gh are sufficiently separated. For our
particular problem (B.17) converges in 20 to 30 iterations. A stopping criteria
can be improvised based on

∥∥Bn+1
l −Bn

l

∥∥, but for simplicity we simply fix
the number of iterations at 30.

We have written (B.17) in a form that allows for a minimum of com-
putational effort. The convolutions against Gh may be efficiently computed
in discrete Fourier space at an O(N3 logN) cost, while the inner products
require only O(N3) operations each. Thus, the total cost per iteration of
(B.17) is O(N3 logN). We require O(logN) decompositions, hence the total
precomputational cost is O(30pN3 log2N).

Appendix C. Translation Error

The efficiency of the proposed methodology relies partly on the approxi-
mate translation invariance of the discrete Green’s function Gh, constructed
in Section 5. In [1], it was shown that in 2D the error |(Gh(x,y)−Gh(x−y))ij|
is smaller than O(h). We sketch here the extension of this result to the 3D
case. Note that there are some notational differences between this paper
and [1].

First, we require a Green’s function gh associated with the operator Lh.
Gh, the Green’s function relating the influence of one fiber point on another,
can be written as a summation involving gh. Bounds on gh will lead to
bounds on the translation error associated with Gh.

We define three force fields

fi(x)j =

{
1/h3 if x = 0, i = j

0 otherwise,
(C.1)

for i, j = 1, 2, 3. These force fields correspond to a suitably scaled point force
along a cardinal direction centered at the origin. With these we define the
3× 3 tensor field

gh(x)ij = Lh(fi)j. (C.2)

33

Following Lemma 5.1 in [1] we may bound the components of gh via

‖(gh)ij‖∞ ≤
∑ 1

1 + 16ν∆t|k|2

≤ C

∫ √
2

2
N

0

1

1 + 16ν∆tr2
r2 dr < C

N

∆t
,

(C.3)

where the sum is over the set {k ∈ Z3 | |ki| < N/2}, and the integral is
obtained from a spherical coordinate transformation.

Consider now two fiber points, located at x and y. We wish to bound
the tensor components of the error Gh(x,y)−Gh(x− y). The bound given
in Theorem 5.1 in [1] tells us that

|(Gh(x,y)−Gh(x− y))ij| <
2(∆t)2

ρ
‖(gh)ij‖∞ hB. (C.4)

Assuming ∆t ∝ h and hB ∝ h2, then (C.4) combined with (C.3) gives us the
bound

|Gh(x,y)−Gh(x− y)|ij < Ch2, (C.5)

which is smaller than the O(h) error of the IB Method.

References

[1] H. D. Ceniceros, J. E. Fisher, and A. M. Roma. Efficient solutions to
robust, semi-implicit discretizations of the immersed boundary method.
Journal of Computational Physics, 228(19):7137 – 7158, 2009.

[2] C. Eckart and G. Young. The approximation of one matrix by another
of lower rank. Psychometrika, 1(3):211–218, 1936.

[3] Z. Gimbutas and V. Rokhlin. A generalized fast multipole method
for nonoscillatory kernals. SIAM Journal on Scientific Computing,
24(3):796, 2002.

[4] T. Y. Hou and Z. Shi. An efficient semi-implicit immersed boundary
method for the Navier-Stokes equations. J. Comput. Phys., 227:8968–
8991, 2008.

[5] T. Y. Hou and Z. Shi. Removing the stiffness of elastic force from the
immersed boundary method for 2D Stokes equations. J. Comput. Phys.,
227:9138–9169, 2008.

34

[6] P. Li, H. Johnston, and R. Krasny. A cartesian treecode for screened
coulomb interactions. Journal of Computational Physics, 228(10):3858
– 3868, 2009.

[7] A. A. Mayo and C. S. Peskin. An implicit numerical method for fluid
dynamics problems with immersed elastic boundaries. In A. Y. Cheer
and C. P. Van Dam, editors, Fluid Dynamics in Biology: Proceedings
of the AMS-IMS-SIAM Joint Summer Research Conference on Bioflu-
iddynamics, pages 261–277. American Mathematical Society, 1993.

[8] Y. Mori and C. S. Peskin. Implicit second-order immersed boundary
methods with boundary mass. Comput. Methods Appl. Mech. Engrg.,
197:2049–2067, 2008.

[9] E. P. Newren, A. L. Fogelson, R. D. Guy, and R. M. Kirby. Uncondi-
tionally stable discretizations of the immersed boundary equations. J.
Comput. Phys., 222:702–719, 2007.

[10] C. S. Peskin. Numerical analysis of blood flow in the heart. J. Comput.
Phys, 25:220–252, 1977.

[11] J. M. Stockie and B. R. Wetton. Analysis of stiffness in the immersed
boundary method and implications for time-stepping schemes. J. Com-
put. Phys., 154:41–64, 1999.

[12] J. M. Stockie and B. T. R. Wetton. Stability analysis for the immersed
fiber problem. SIAM J. Appl. Math, 55(6):1577–1591, 1995.

[13] A.-K. Tornberg and L. Greengard. A fast multipole method for the
three-dimensional Stokes equations. Journal of Computational Physics,
227(3):1613 – 1619, 2008.

[14] C. Tu and C. S. Peskin. Stability and instability in the computations of
flows with moving immersed boundaries: a comparison of three methods.
SIAM J. Sci. Stat. Comput., 13(6):1361–1376, 1992.

35

0 10 20 30 40 50
n

−3

−2

−1

0

1

2

3

lo
g 1

0
s n

0 10 20 30 40 50
n

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

lo
g 1

0
s n

Figure 2: Singular values of the discrete Green’s function: (Gh)xx component (top) and
(Gh)xy component (bottom). ’o’ markers are for N = 32, ’x’ markers are for N = 64, and
’4’ makers are for N = 128.

36

0 10 20 30 40 50
p

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

lo
g 1

0
||e
|| 0

Figure 3: Log of the sup norm of the difference between MnF calculated via a fluid
solve and via the treecode for various values of p, where p is the number of terms in the
treecode’s far field expansion. N = 128 and NB = N2/4. The blue line is for a plate with
fiber points aligned to the Eulerian grid. The green line is for a plate with no restrictions
on the fiber point locations.

37

2.2 2.1 2.0 1.9 1.8 1.7 1.6 1.5
log10h

1.0

1.2

1.4

1.6

1.8

2.0

2.2

lo
g 1

0|
| e
|| 0

Figure 4: Log of the sup norm of the difference betweenMnF calculated via a fluid solve
and via the treecode for various values of h, with p = 10. The solid blue line is the error.
The dashed green line is a reference line with slope 1.

0 2000 4000 6000 8000 10000
Nb

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

C
P

U
ti

m
e

Figure 5: CPU time for the evaluation of MnF via the treecode for increasing values of
NB , where p = 10. Time is given as multiples of the average time to perform a fluid solve,
for N = 128.

38

0 2000 4000 6000 8000 10000
Nb

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

C
P

U
ti

m
e

Figure 6: CPU time for the treecode pre-evaluation for increasing values of NB , where
p = 10. Time is given as multiples of the average time to perform a fluid solve, for
N = 128. The green line represents the cost of one fluid solve.

39

Figure 7: Plot of the immersed plate with flow lines. The plate is drawn in black.
Below the plate is a cross-section of the z-component of the velocity field with an
associated color bar. N = 128, and NB = 8192. Frames shown at total simulation
time T = 0.020, 0.142, and 0.208, from top to bottom.

40

Figure 8: Plot of the immersed spheroid, drawn in green. Cutting the spheroid is
a cross-section of the velocity magnitude scalar field with an associated color bar.
N = 128, and NB = 10406. Frames shown at total simulation time T = 0.006,
0.062, and 0.126, from top to bottom.

41

