
Introduction to Numerical Analysis

Hector D. Ceniceros
© Draft date April 29, 2024

Contents

Contents i

Preface xiii

1 Introduction 3
1.1 What is Numerical Analysis? 3
1.2 An Illustrative Example . 3

1.2.1 An Approximation Principle 4
1.2.2 Divide and Conquer 7
1.2.3 Convergence and Rate of Convergence 8
1.2.4 Error Correction . 9
1.2.5 Richardson Extrapolation 12

1.3 Super-algebraic Convergence 15
1.4 Bibliographic Notes . 20

2 Function Approximation 23
2.1 Norms . 23
2.2 Uniform Polynomial Approximation 25

2.2.1 Bernstein Polynomials and Bézier Curves 26
2.2.2 Weierstrass Approximation Theorem 30

2.3 Best Approximation . 33
2.3.1 Best Uniform Polynomial Approximation 36

2.4 Chebyshev Polynomials . 42
2.5 Bibliographic Notes . 47

3 Interpolation 49
3.1 Polynomial Interpolation . 49

3.1.1 Equispaced and Chebyshev Nodes 52

i

ii CONTENTS

3.2 Connection to Best Uniform Approximation 53
3.3 Barycentric Formula . 55

3.3.1 Barycentric Weights for Chebyshev Nodes 57
3.3.2 Barycentric Weights for Equispaced Nodes 58
3.3.3 Barycentric Weights for General Sets of Nodes 59

3.4 Newton’s Form and Divided Differences 60
3.5 Cauchy Remainder . 63
3.6 Divided Differences and Derivatives 68
3.7 Hermite Interpolation . 69
3.8 Convergence of Polynomial Interpolation 70
3.9 Piecewise Polynomial Interpolation 76
3.10 Cubic Splines . 79

3.10.1 Natural Splines . 81
3.10.2 Complete Splines . 85
3.10.3 Minimal Bending Energy 87
3.10.4 Splines for Parametric Curves 89

3.11 Trigonometric Interpolation 89
3.12 The Fast Fourier Transform 95
3.13 The Chebyshev Interpolant and the DCT 97
3.14 Bibliographic Notes . 99

4 Least Squares 103
4.1 Least Squares for Functions 103

4.1.1 Trigonometric Polynomial Approximation 107
4.1.2 Algebraic Polynomial Approximation 109

4.1.2.1 Gram-Schmidt Orthogonalization 111
4.1.2.2 Orthogonal Polynomials 111

4.1.3 Convergence of Least Squares by Orthogonal Polynomials116
4.1.4 Chebyshev Expansions 117
4.1.5 Decay of Chebyshev Coefficients for Analytic Functions 119
4.1.6 Splines . 120

4.2 Discrete Least Squares Approximation 122
4.3 High-dimensional Data Fitting 127
4.4 Bibliographic Notes . 129

5 Computer Arithmetic 131
5.1 Floating Point Numbers . 131
5.2 Rounding and Machine Precision 132

CONTENTS iii

5.3 Correctly Rounded Arithmetic 133
5.4 Propagation of Errors and Cancellation of Digits 134
5.5 Bibliographic Notes . 135

6 Numerical Differentiation 137
6.1 Finite Differences . 137
6.2 The Effect of Round-Off Errors 141
6.3 Richardson’s Extrapolation . 144
6.4 Fast Spectral Differentiation 145

6.4.1 Fourier Spectral Differentiation 146
6.4.2 Chebyshev Spectral Differentiation 148

6.5 Bibliographic Notes . 149

7 Numerical Integration 153
7.1 Elementary Simpson’s Rule 153
7.2 Interpolatory Quadratures . 156
7.3 Gaussian Quadratures . 158

7.3.1 Convergence of Gaussian Quadratures 161
7.3.2 Computing the Gaussian Nodes and Weights 163

7.4 Clenshaw-Curtis Quadrature 165
7.5 Composite Quadratures . 169
7.6 Modified Trapezoidal Rule . 170
7.7 The Euler-Maclaurin Formula 172
7.8 Romberg Integration . 177
7.9 Bibliographic Notes . 179

8 Linear Algebra 183
8.1 Numerical Linear Algebra . 183

8.1.1 Linear Systems . 183
8.1.2 Eigenvalue Problems 184
8.1.3 Singular Value Decomposition 185

8.2 Notation . 185
8.3 Some Important Types of Matrices 187
8.4 Schur Theorem . 189
8.5 QR Factorization . 190
8.6 Matrix Norms . 192
8.7 Condition Number of a Matrix 197

8.7.1 What to Do When A is Ill-conditioned? 199

iv CONTENTS

8.8 Bibliographic Notes . 199

9 Linear Systems of Equations I 201
9.1 Easy to Solve Systems . 202
9.2 Gaussian Elimination . 204

9.2.1 The Cost of Gaussian Elimination 211
9.3 LU and Choleski Factorizations 213
9.4 Tridiagonal Linear Systems 217
9.5 A 1D BVP: Deformation of an Elastic Beam 218
9.6 A 2D BVP: Dirichlet Problem for the Poisson’s Equation . . . 221
9.7 Linear Iterative Methods for Ax = b 223

9.7.1 Jacobi, Gauss-Seidel, and SOR. 224
9.7.2 Convergence of Linear Iterative Methods 226

9.8 Bibliographic Notes . 231

10 Linear Systems of Equations II 233
10.1 Positive Definite Linear Systems as an Optimization Problem . 233
10.2 Line Search Methods . 235

10.2.1 Steepest Descent . 237
10.3 The Conjugate Gradient Method 241

10.3.1 Generating the Conjugate Search Directions 244
10.3.2 Krylov Subspaces . 246
10.3.3 Convergence of the Conjugate Gradient Method 249
10.3.4 Preconditioned Conjugate Gradient 252

10.4 Bibliographic Notes . 254

11 Eigenvalue Problems 255
11.1 The Power Method . 255
11.2 Householder QR Factorization 259
11.3 The QR Method for Eigenvalues 265
11.4 Reductions Prior to Applying the QR Method. 266
11.5 Bibliographic Notes . 268

12 Non-Linear Equations 271
12.1 Bisection . 271

12.1.1 Convergence of the Bisection Method 273
12.2 Rate of Convergence . 273
12.3 Interpolation-Based Methods 275

CONTENTS v

12.4 Newton’s Method . 276
12.5 The Secant Method . 279
12.6 Fixed Point Iteration . 282
12.7 Systems of Nonlinear Equations 285

12.7.1 Newton’s Method for Systems 286
12.8 Bibliographic Notes . 288

13 Numerical Methods for ODEs 291
13.1 The Initial Value Problem for ODEs 291
13.2 A First Look at Numerical Methods 296
13.3 One-Step and Multistep Methods 300
13.4 Local and Global Error . 300
13.5 Order of a Method and Consistency 305
13.6 Convergence . 306
13.7 Runge-Kutta Methods . 309
13.8 Implementation for Systems 314
13.9 Adaptive Stepping . 316
13.10Embedded Methods . 316
13.11Multistep Methods . 317

13.11.1Adams Methods . 318
13.11.2D-Stability and Dahlquist Equivalence Theorem 319

13.12A-Stability . 326
13.13Numerically Stiff ODEs and L-Stability 332
13.14Bibliographic Notes . 339

14 Numerical Methods for PDE’s 343
14.1 Key Concepts through One Example 343

14.1.1 von Neumann Analysis of Numerical Stability 350
14.1.2 Order of a Method and Consistency 354
14.1.3 Convergence . 355
14.1.4 The Lax-Richmyer Equivalence Theorem 357

14.2 The Method of Lines . 357
14.3 The Backward Euler and Crank-Nicolson Methods 359
14.4 Neumann Boundary Conditions 361
14.5 Higher Dimensions and the ADI Method 362
14.6 Wave Propagation and Upwinding 364
14.7 Advection-Diffusion . 370
14.8 The Wave Equation . 372

vi CONTENTS

14.9 Bibliographic Notes . 375

Bibliography 378

List of Figures

1.1 Trapezoidal rule approximation for definite integrals. The in-
tegrand f is approximated by p1. 5

1.2 Composite trapezoidal rule for N = 5. 7

2.1 The Bernstein basis (weights) bk,n(x) for x = 0.5, n = 16, 32,
and 64. Note how they concentrate more and more around
k/n ≈ x as n increases. 27

2.2 Quadratic Bézier curve. 28

2.3 Example of a composite, quadratic C1 Bézier curve with two
pieces. 29

2.4 Approximation of f(x) = sin(2πx) on [0, 1] by Bernstein poly-
nomials. 32

2.5 If the error function en does not equioscillate at least twice we
could lower ∥en∥∞ by an amount c > 0. 37

2.6 If e1 equioscillates only twice, it would be possible to find a
polynomial q ∈ P1 with the same sign around x1 and x2 as
that of e1 and, after a suitable scaling, use it to decrease the
error. 38

2.7 The Chebyshev polynomials Tn for n = 1, 2, 3, 4, 5, 6. 45

2.8 The Chebyshev nodes (red dots) xj = cos(jπ/n), j = 0, 1, . . . , n
for n = 16. The gray dots on the semi-circle correspond to the
equispaced angles θj = jπ/n, j = 0, 1, . . . , n. 46

3.1 Given the data points (x0, f0), . . . , (xn, fn) (red dots , n =
6), the polynomial interpolation problem consists in finding a
polynomial pn ∈ Pn such that pn(xj) = fj, for j = 0, 1, . . . , n. . 50

3.2 Successive application of Rolle’s Theorem on ϕ(t) for Theo-
rem 3.3, n = 3. 64

vii

viii LIST OF FIGURES

3.3 f(x) = cos(πx) in [0, 2] and its interpolating polynomial p4 at
xj = j/2, j = 0, 1, 2, 3, 4. 66

3.4 The node polynomial w(x) = (x − x0) · · · (x − xn), for equis-
paced nodes and for the zeros of Tn+1 taken as nodes, n = 10. 67

3.5 The node polynomial w(x) = (x − x0) · · · (x − xn), for equis-
paced nodes and for the Chebyshev nodes, the extremal points
of Tn, n = 10. 68

3.6 Lack of convergence of the interpolant pn for f(x) = 1/(1 +
25x2) in [−1, 1] using equispaced nodes. The first row shows
plots of f and pn (n = 10, 20) and the second row shows the
corresponding error f − pn. 71

3.7 Convergence of the interpolant pn for f(x) = 1/(1 + 25x2) in
[−1, 1] using Chebyshev nodes. The first row shows plots of f
and pn (n = 10, 20) and the second row shows the correspond-
ing error f − pn. 71

3.8 Fast convergence of the interpolant pn for f(x) = e−x
2
in

[−1, 1]. Plots of the error f − pn, n = 10, 20 for both the
equispaced (first row) and the Chebyshev nodes (second row). 72

3.9 For uniform convergence of the interpolants pn, n = 1, 2, . . .
to f on [−1, 1], with equi-spaced nodes, f must be analytic in
the shaded, football-like region. 73

3.10 Some level curves of ϕ for the Chebyshev node distribution. . 77
3.11 Piecewise linear interpolation. 78
3.12 Cubic spline s interpolating 5 data points. Each color rep-

resents a cubic polynomial constructed so that s interpolates
the given data, has two continuous derivatives, and s′′(x0) =
s′′(x4) = 0. 80

3.13 Example of a parametric spline representation to interpolate
the given data points (in red). 89

3.14 (a) f(x) = sin x ecosx and its interpolating trigonometric poly-
nomial s4(x) and (b) the maximum error ∥f − sN/2∥∞ for
N = 8, 16, 32. 94

3.15 (a) f(x) = sin(2πx) e−x and its Chebychev interpolant p8(x)
and (b) the maximum error ∥f − pn∥∞ for n = 8, 16, 32. 98

4.1 Geometric interpretation of the least squares approximation
f ∗ to f by functions in W . The error f − f ∗ is orthogonal to W 105

4.2 Basis “hat” functions (n = 5, equi-spaced nodes) for S1
∆. . . . 121

LIST OF FIGURES ix

4.3 The data set {(0, 1.1), (1, 3.2), (2, 5.1), (3, 6.9)} and its least
squares fitting by a linear polynomial. 125

6.1 Behavior of the round-off and discretization errors for the cen-
tered finite difference. The smallest total error is achieved for
a value h∗ around the point where the two errors become com-
parable. 142

6.2 Fourier spectral approximation of the derivative of f(x) =
esinx at xj = 2πj/N , j = 0, 1, . . . , N−1. (a) f ′ and its Fourier
approximation s′4(xj) and (b) the maximum error max

j
|f ′(xj)−

s′N/2(xj)| for N = 8, 16, 32. 147

6.3 Chebychev spectral approximation of the derivative of f(x) =
e−x sin 2πx at xj = cos(πj/n), j = 0, 1, . . . , n. (a) f ′ and
p′16(xj) and (b) the maximum relative error max

j
|f ′(xj)−s′N/2(xj)|/∥f ′∥∞

for n = 8, 16, 32. 150

7.1 Clenshaw-Curtis quadrature and the composite Simpson rule
for the integral of f(x) = ex in [0, 1]. The Clenshaw-Curtis
almost reaches machine precision with just n = 8 nodes. . . . 168

10.1 Levels set of J in 2 dimensions. 234

12.1 Geometric illustration of Newton’s method. Given an approx-
imation x0 of a zero of f , x1 is the zero of the tangent line (in
red) of f at x0. 276

13.1 Forward Euler approximation with ∆t = 2π/20 and exact
solution of the IVP (13.38)-(13.39). 297

13.2 Global and local discretization error of the forward Euler method
at t6 with ∆t = 2π/10 for the IVP (13.38)-(13.39). 301

13.3 A-Stability regions for explicit RK methods of order 1–4. . . . 327

13.4 Region of A-stability for (a) backward Euler and (b) the trape-
zoidal rule method. 329

13.5 A-Stability regions (shown shaded) for the m-step Adams-
Bashforth method for m = 2, 3, 4. 331

13.6 A-Stability regions (shown shaded) for the Adams-Moulton
method of step m = 2, 3, 4. 332

x LIST OF FIGURES

13.7 The exact solution (13.217) of the IVP (13.218)-(13.219) with
α = 0.75 and λ = −1000. 333

13.8 Forward Euler approximation and exact solution of (13.218)-
(13.219) with α = 0.75 and λ = −1000 for t ∈ [0, 0.25]. ∆t =
1/512. 334

13.9 Backward Euler approximation and exact solution of (13.218)-
(13.219) with α = 0.75 and λ = −1000 for t ∈ [0, 0.25]. ∆t =
1/512. 335

13.10Trapezoidal rule approximation compared with the backward
Euler approximation and the exact solution of (13.218)-(13.219)
with α = 0.75 and λ = −1000 for t ∈ [0, 1]. ∆t = 0.05. 336

14.1 Initial temperature (14.13), u(0, x) = f(x). 346
14.2 Exact solution of the heat equation with D = 1 for initial

condition (14.13) and with homogenous Dirichlet boundary
conditions. 346

14.3 Grid in the xt-plane. The interior nodes (where an approxi-
mation to the solution is sought), the boundary points, and
initial value nodes are marked with black, blue, and green
dots, respectively. 347

14.4 Numerical approximation of the heat equation with the for-
ward in time-centered in space finite difference scheme for
α = 0.55 after (a) 30 time steps, (b) 40 time steps, and (c)
100 time steps and for α = 0.5 (d) plotted at different times.
In all the computations ∆x = π/128. 349

14.5 Method of lines. Space is discretized and time is left continuous.358
14.6 Neumann boundary condition at x0 = 0. A “ghost point” (•),

x−1 = −∆x is introduced to implement the boundary condition.361
14.7 Characteristic curves X(t) = x0 + at, for ut + ux = 0 with

a > 0. Note that the slope of the characteristic lines is 1/a. . 365
14.8 Solution of the pure initial value problem for the wave equation

consists of a wave traveling to the left, F (x + at), plus one
traveling to the right, G(x− at). Here a > 0. 373

List of Tables

1.1 Composite Trapezoidal Rule for f(x) = ex in [0, 1]. 9
1.2 Composite trapezoidal rule for f(x) = 1/(2 + sin x) in [0, 2π]. . 14

3.1 Table of divided differences for n = 3. 62

6.1 Approximation of f ′(0) for f(x) = e−x using the forward finite
difference. The decrease factor is error(h

2
)/error(h). 140

6.2 Approximation of f ′(0) for f(x) = e−x using the centered finite
difference. The decrease factor is error(h

2
)/error(h). 140

6.3 Approximation of f ′(0), f ′′(0), and f ′′′(0) for f(x) = e−x using
the discrete Cauchy’s integral formula (6.19) with r = 1 and
N = 4, 8, 16, 32. 143

6.4 The Richardson extrapolation approximation Dext
h f(x0) (6.29)

of f ′(0) for f(x) = e−x. The decrease factor is error(h
2
)/error(h).145

7.1 Romberg integration for f(x) = 3x2ex
3
/(e− 1) in [0, 1]. M=4. 179

11.1 The power method for the matrix A in (11.6) and with initial
vector u0 = [1, 0, 0, 0]T . 257

11.2 The power method for the matrix A in (11.6) and with initial
vector u0 = [1, 1, 1, 1]T . 258

11.3 The inverse power method for the matrix A in (11.6) with
initial vector u0 = [1,−1,−1, 1]T and λ̃ = 37 (λi = 40). 260

13.1 Butcher tableau for a general RK method. 313
13.2 Improved Euler. 313
13.3 Midpoint RK. 313
13.4 Classical fourth order RK. 314
13.5 Backward Euler. 314

xi

xii LIST OF TABLES

13.6 Implicit mid-point rule RK. 314
13.7 Hammer and Hollingworth DIRK. 315
13.8 Two-stage, order 3 SDIRK (γ = 3±

√
3

6
). 315

Preface

Numerical analysis is a discipline of mathematics with applications in prac-
tically every area of science and engineering. There is a large collection of
classical and modern introductory texts on this broad subject. This book
is an attempt to focus on the basic principles of numerical analysis rather
than a presentation of a comprehensive list of numerical methods for different
mathematical problems. To this effect, this book contains a non-traditional
arrangement of a selection of traditional topics and some topics are covered
more extensively than usual. It is written from a mathematical perspective
but always keeping in mind the modern practice of numerical analysis.

This book starts with an introduction to highlight some of the basic prin-
ciples of numerical analysis with one illustrative example, the approximation
of a definite integral. This is followed by some basic topics of approximation
theory. After this, the different ideas of function approximation are used in
the derivation and analysis of a selection of numerical methods. There is no
attempt to cover all major topics of numerical analysis but rather to focus
on a subset which I believe illustrate well fundamental principles and the
power of numerical mathematics. This focused selection of topics was made
to appropriately fit a year-long, undergraduate, introductory course on nu-
merical analysis. In fact, it grew out of a set of lecture notes I prepared for a
three-quarter, upper division undergraduate course of numerical analysis at
the University of California at Santa Barbara.

This book is intended for undergraduate students with a solid mathemat-
ics background. The prerequisites are vector calculus, linear algebra, and an
introductory course in analysis. Some rudimentary knowledge of differential
equations and complex variables is desirable. It is also very important to
have the ability to write simple computer codes to implement the numerical
methods as this is an essential part of learning numerical analysis.

This book is not in finalized form and may contain errors, mis-

xiii

LIST OF TABLES 1

prints, and other inaccuracies. It cannot be used or distributed
without written consent from the author.

Acknowledgements:

2 LIST OF TABLES

Chapter 1

Introduction

1.1 What is Numerical Analysis?

This is an introductory course of numerical analysis, which comprises the
design, analysis, and implementation of constructive methods and algorithms
for the solution of mathematical problems.

Numerical analysis has vast applications both in mathematics and in
modern science and technology. In the areas of the physical and life sciences,
numerical analysis plays the role of a virtual laboratory by providing accu-
rate solutions to the mathematical models representing a given physical or
biological system in which the system’s parameters can be varied at will, in
a controlled way. The applications of numerical analysis also extend to more
modern areas such as data analysis, AI, web search engines, social networks,
and just about anything where computation is involved.

1.2 An Illustrative Example: Approximating

a Definite Integral

The purpose of this chapter is to illustrate with one example some of the
main principles and objectives of numerical analysis. The example is the
calculation of a definite integral:

I[f] =

∫ b

a

f(x)dx. (1.1)

3

4 CHAPTER 1. INTRODUCTION

In most cases we cannot find an exact value of I[f] and very often we only
know the integrand f at a finite number of points in [a, b]. The problem is
then to produce an approximation to I[f] as accurate as we need and at a
reasonable computational cost.

1.2.1 An Approximation Principle

One of the central ideas in numerical analysis is to approximate a given
function or data by simpler functions which we can analytically evaluate,
integrate, differentiate, etc. For example, we can approximate the integrand
f in [a, b] by the segment of the straight line, a polynomial of degree at most
1, that passes through (a, f(a)) and (b, f(b))

f(x) ≈ p1(x) = f(a) +
f(b)− f(a)

b− a (x− a). (1.2)

and approximate the integral of f by the integral of p1, as Fig. 1.1 illustrates,∫ b

a

f(x)dx ≈
∫ b

a

p1(x)dx = f(a)(b− a) + 1

2
[f(b)− f(a)](b− a)

=
1

2
[f(a) + f(b)](b− a).

(1.3)

That is ∫ b

a

f(x)dx ≈ (b− a)
2

[f(a) + f(b)]. (1.4)

The right hand side is known as the (simple) 1 trapezoidal quadrature rule.
A quadrature rule or quadrature formula is a method to approximate an inte-
gral. How accurate is this approximation? Clearly, if f is a linear polynomial
or a constant, then the trapezoidal rule would give us the exact value of the
integral. The underlying question is: how well does a polynomial of degree
at most 1, p1, satisfying

p1(a) = f(a), (1.5)

p1(b) = f(b), (1.6)

1There are simple and composite quadratures, as we will see shortly.

1.2. AN ILLUSTRATIVE EXAMPLE 5

I[f]

f(x)

y

xa b

p1(x)

Figure 1.1: Trapezoidal rule approximation for definite integrals. The inte-
grand f is approximated by p1.

approximate f on the interval [a, b]? The approximation is exact at x = a
and x = b because of (1.5)-(1.6) and is exact for all polynomials of degree
≤ 1. In fact, assuming f ∈ C2[a, b], we are going to prove that for x ∈ [a, b]

f(x)− p1(x) =
1

2
f ′′(ξ(x))(x− a)(x− b), (1.7)

for some ξ(x) ∈ (a, b).
If x = a or x = b, then (1.7) holds trivially. So let us take x in (a, b) and

define the following function of a new variable t

ϕ(t) = f(t)− p1(t)− [f(x)− p1(x)]
(t− a)(t− b)
(x− a)(x− b) . (1.8)

Then ϕ, as a function of t, is C2[a, b] and ϕ(a) = ϕ(b) = ϕ(x) = 0. Since
ϕ(a) = ϕ(x) = 0, by Rolle’s theorem there is ξ1 ∈ (a, x) such that ϕ′(ξ1) = 0
and similarly there is ξ2 ∈ (x, b) such that ϕ′(ξ2) = 0. Because ϕ is C2[a, b] we
can apply Rolle’s theorem one more time, observing that ϕ′(ξ1) = ϕ′(ξ2) = 0,
to conclude that there is a point ξ(x) between ξ1 and ξ2 such that ϕ′′(ξ(x)) =
0. Consequently,

0 = ϕ′′(ξ(x)) = f ′′(ξ(x))− [f(x)− p1(x)]
2

(x− a)(x− b) (1.9)

6 CHAPTER 1. INTRODUCTION

and so

f(x)− p1(x) =
1

2
f ′′(ξ(x))(x− a)(x− b), ξ(x) ∈ (a, b). □ (1.10)

We can now use (1.10) to find the accuracy of the simple trapezoidal rule.
Assuming the integrand f is C2[a, b]∫ b

a

f(x)dx =

∫ b

a

p1(x)dx+
1

2

∫ b

a

f ′′(ξ(x))(x− a)(x− b)dx. (1.11)

Now, (x−a)(x−b) does not change sign in [a, b] and f ′′ is continuous so by the
weighted mean value theorem for integrals, we have that there is η ∈ (a, b)
such that∫ b

a

f ′′(ξ(x))(x− a)(x− b)dx = f ′′(η)

∫ b

a

(x− a)(x− b)dx. (1.12)

The last integral can be easily evaluated by shifting to the midpoint, i.e.,
changing variables to x = y + 1

2
(a+ b) then

∫ b

a

(x− a)(x− b)dx =

∫ b−a
2

− b−a
2

[
y2 −

(
b− a
2

)2
]
dy = −1

6
(b− a)3. (1.13)

Collecting (1.11) and (1.13) we get∫ b

a

f(x)dx =
(b− a)

2
[f(a) + f(b)]− 1

12
f ′′(η)(b− a)3, (1.14)

where η is some point in (a, b). So in the approximation∫ b

a

f(x)dx ≈ (b− a)
2

[f(a) + f(b)].

we make the error

E[f] = − 1

12
f ′′(η)(b− a)3. (1.15)

1.2. AN ILLUSTRATIVE EXAMPLE 7

I[f]

f(x)

y

xx0 x1 x2 x3 x4 x5

Figure 1.2: Composite trapezoidal rule for N = 5.

1.2.2 Divide and Conquer

The error (1.15) of the simple trapezoidal rule grows cubically with the length
of the interval of integration so it is natural to divide [a, b] into smaller subin-
tervals, [x0, x1], [x1, x2], . . . [xN−1, xN], apply the trapezoidal rule on each of
them, and sum up the result. Figure 1.2 illustrates the idea for N = 5. Let
us take subintervals of equal length h = 1

N
(b− a), determined by the points

x0 = a, x1 = x0 + h, x2 = x0 + 2h, . . . , xN = x0 +Nh = b. Then∫ b

a

f(x)dx =

∫ x1

x0

f(x)dx+

∫ x2

x1

f(x)dx+ . . .+

∫ xN

xN−1

f(x)dx

=
N−1∑
j=0

∫ xj+1

xj

f(x)dx.

(1.16)

But we know∫ xj+1

xj

f(x)dx =
1

2
[f(xj) + f(xj+1)]h−

1

12
f ′′(ξj)h

3 (1.17)

for some ξj ∈ (xj, xj+1). Therefore, we get∫ b

a

f(x)dx = h

[
1

2
f(x0) + f(x1) + . . .+ f(xN−1) +

1

2
f(xN)

]
− 1

12
h3

N−1∑
j=0

f ′′(ξj).

8 CHAPTER 1. INTRODUCTION

The first term on the right hand side is called the composite trapezoidal rule:

Th[f] := h

[
1

2
f(x0) + f(x1) + . . .+ f(xN−1) +

1

2
f(xN)

]
. (1.18)

The error of this quadrature is

Eh[f] = −
1

12
h3

N−1∑
j=0

f ′′(ξj) = −
1

12
(b− a)h2

[
1

N

N−1∑
j=0

f ′′(ξj)

]
, (1.19)

where we have used that h = (b−a)/N . The term in brackets is a mean value
of f ′′ (it is easy to prove that it lies between the maximum and the minimum
of f ′′). Since f ′′ is assumed continuous (f ∈ C2[a, b]), by the intermediate
value theorem there is a point ξ ∈ (a, b) such that

f ′′(ξ) =
1

N

N−1∑
j=0

f ′′(ξj). (1.20)

Thus, the error of the simple trapezoidal rule can be written as

Eh[f] = −
1

12
(b− a)h2f ′′(ξ), (1.21)

for some ξ ∈ (a, b).

1.2.3 Convergence and Rate of Convergence

We do not know what the point ξ is in (1.21). If we knew, the error could
be evaluated and we would know the integral exactly, at least in principle,
because

I[f] = Th[f] + Eh[f]. (1.22)

But (1.21) gives us two important properties of the approximation method
in question. First, (1.21) tell us that Eh[f] → 0 as h → 0. That is, the
quadrature rule Th[f] converges to the exact value of the integral as h→ 0.
2 Recall h = (b−a)/N , so as we increase N our approximation to the integral

2Neglecting round-off errors introduced by the computer finite precision representation
of numbers and by computer arithmetic (Chapter 5).

1.2. AN ILLUSTRATIVE EXAMPLE 9

gets better and better. Second, (1.21) tells us how fast the approximation
converges, namely quadratically in h. This is the approximation’s rate of
convergence. If we double N (or equivalently halve h), the error decreases
by a factor of 4. We also say that the error is order h2 and write Eh[f] =
O(h2). The Big ‘O’ notation is used frequently in numerical analysis.

Definition 1.1. We say that g(h) is order hα, and write g(h) = O(hα), if
there is a constant C and h0 such that |g(h)| ≤ Chα for 0 ≤ h ≤ h0, i.e. for
sufficiently small h.

Example 1.1. Let’s check the composite trapezoidal rule approximation for
an integral we can compute exactly. Take f(x) = ex in [0, 1]. The exact value
of the integral is e − 1. The approximation for some values of N is shown
in Table 1.1. Observe how the error |I[f]− T1/N [f]| decreases by a factor of

Table 1.1: Composite Trapezoidal Rule for f(x) = ex in [0, 1].

N T1/N [f] |I[f]− T1/N [f]| Decrease factor
16 1.718841128579994 5.593001209489579× 10−4

32 1.718421660316327 1.398318572816137× 10−4 0.250012206406039
64 1.718316786850094 3.495839104861176× 10−5 0.250003051723810
128 1.718290568083478 8.739624432374526× 10−6 0.250000762913303

(approximately) 1/4 as N is doubled, in accordance to (1.21).

1.2.4 Error Correction

We can get an upper bound for the error using (1.21) and the fact that f ′′

is bounded in [a, b], i.e. |f ′′(x)| ≤M2 for all x ∈ [a, b] for some constant M2.
Then,

|Eh[f]| ≤
1

12
(b− a)h2M2. (1.23)

However, this bound might not be an accurate estimate of the actual error.
This can be seen from (1.19). As N →∞, the term in brackets converges to
a mean value of f ′′, i.e.

1

N

N−1∑
j=0

f ′′(ξj) −→
1

b− a

∫ b

a

f ′′(x)dx =
1

b− a [f
′(b)− f ′(a)], (1.24)

10 CHAPTER 1. INTRODUCTION

as N →∞, which could be significantly smaller than the maximum of |f ′′|.
Take for example f(x) = 1

2
x2 − sin 2πx on [0, 1]. Then, max |f ′′| = 1 + 4π2,

whereas the mean value (1.24) is equal to 1. Thus, (1.23) can overestimate
the error significantly.

Equation (1.19) and (1.24) suggest that asymptotically, that is for suffi-
ciently small h,

Eh[f] = C2h
2 +R(h), (1.25)

where

C2 = −
1

12
[f ′(b)− f ′(a)] (1.26)

and R(h) goes to zero faster than h2 as h→ 0, i.e.

lim
h→0

R(h)

h2
= 0. (1.27)

We say that R(h) = o(h2) (little ‘o’ h2).

Definition 1.2. A function g(h) is little ‘o’ hα if

lim
h→0

g(h)

hα
= 0

and we write g(h) = o(hα).

We then have

I[f] = Th[f] + C2h
2 +R(h) (1.28)

and, for sufficiently small h, C2h
2 is an approximation of the error. If it

is possible and computationally efficient to evaluate the first derivative of
f at the end points of the interval then we can compute directly C2h

2 and
use this leading order approximation of the error to obtain the improved
approximation

T̃h[f] = Th[f]−
1

12
[f ′(b)− f ′(a)]h2. (1.29)

This is called the (composite) modified trapezoidal rule. It then follows from
(1.28) that error of this “corrected approximation” is R(h), which goes to

1.2. AN ILLUSTRATIVE EXAMPLE 11

zero faster than h2. In fact, we will prove later in Chapter 7 that the error
of the modified trapezoidal rule is O(h4).

Often, we only have access to values of f and/or it is difficult to evaluate
f ′(a) and f ′(b). Fortunately, we can compute a sufficiently good approxima-
tion of the leading order term of the error, C2h

2, so that we can use the same
error correction idea that we did for the modified trapezoidal rule. Roughly
speaking, the error can be estimated by comparing two approximations ob-
tained with different h.

Consider (1.28). If we halve h we get

I[f] = Th/2[f] +
1

4
C2h

2 +R(h/2). (1.30)

Subtracting (1.30) from (1.28) we get

C2h
2 =

4

3

(
Th/2[f]− Th[f]

)
+

4

3
(R(h/2)−R(h)) . (1.31)

The last term on the right hand side is o(h2). Hence, for h sufficiently small,
we have

C2h
2 ≈ 4

3

(
Th/2[f]− Th[f]

)
(1.32)

and this could provide a good, computable estimate for the error, i.e.

Eh[f] ≈
4

3

(
Th/2[f]− Th[f]

)
. (1.33)

The key here is that h has to be sufficiently small to make the asymptotic
approximation (1.32) valid. We can check this by working backwards. If h
is sufficiently small, then evaluating (1.32) at h/2 we get

C2

(
h

2

)2

≈ 4

3

(
Th/4[f]− Th/2[f]

)
(1.34)

and consequently the ratio

q(h) =
Th/2[f]− Th[f]
Th/4[f]− Th/2[f]

(1.35)

should be approximately 4. Thus, q(h) offers a reliable, computable indicator
of whether or not h is sufficiently small for (1.33) to be an accurate estimate
of the error.

12 CHAPTER 1. INTRODUCTION

We can now use (1.32) and the idea of error correction to improve the
accuracy of Th[f] with the following approximation 3

Sh[f] := Th[f] +
4

3

(
Th/2[f]− Th[f]

)
=

4Th/2[f]− Th[f]
3

. (1.36)

1.2.5 Richardson Extrapolation

We can view the error correction procedure as a way to eliminate the
leading order (in h) contribution to the error. Multiplying (1.30) by 4 and
subtracting (1.28) to the result we get

I[f] =
4Th/2[f]− Th[f]

3
+

4R(h/2)−R(h)
3

. (1.37)

Note that Sh[f] is exactly the first term in the right hand side of (1.37) and
that the last term converges to zero faster than h2. This very useful and
general procedure in which the leading order component of the asymptotic
form of error is eliminated by a combination of two computations performed
with two different values of h is called Richardson’s extrapolation.

Example 1.2. Consider again f(x) = ex in [0, 1]. With h = 1/16 we get

q

(
1

16

)
=
T1/32[f]− T1/16[f]
T1/64[f]− T1/32[f]

≈ 3.9998 (1.38)

and the improved approximation is

S1/16[f] =
4T1/32[f]− T1/16[f]

3
= 1.718281837561771, (1.39)

which gives us nearly 8 digits of accuracy (error ≈ 9.1×10−9). S1/32 yields an
error ≈ 5.7 × 10−10. It decreased by approximately a factor of 1/24 = 1/16.
This would correspond to fourth order rate of convergence. We will see in
Chapter 7 that indeed this is the case.

Sh[f] is superior than Th[f] in accuracy but apparently at roughly twice
the computational cost. However, if we group together the common terms

3The symbol := means equal by definition.

1.2. AN ILLUSTRATIVE EXAMPLE 13

in Th[f] and Th/2[f] we can compute Sh[f] at about the same computational
cost as that of Th/2[f]:

4Th/2[f]− Th[f] = 4
h

2

[
1

2
f(a) +

2N−1∑
j=1

f(a+ jh/2) +
1

2
f(b)

]

− h
[
1

2
f(a) +

N−1∑
j=1

f(a+ jh) +
1

2
f(b)

]

=
h

2

[
f(a) + f(b) + 2

N−1∑
k=1

f(a+ kh) + 4
N−1∑
k=1

f(a+ kh/2)

]
.

Therefore

Sh[f] =
h

6

[
f(a) + 2

N−1∑
k=1

f(a+ kh) + 4
N−1∑
k=1

f(a+ kh/2) + f(b)

]
. (1.40)

The resulting quadrature formula Sh[f] is known as the composite Simpson’s
rule and, as we will see in Chapter 7, can be derived by approximating the in-
tegrand by polynomials of degree ≤ 2. Thus, based on cost and accuracy, the
composite Simpson’s rule would be preferable to the composite trapezoidal
rule, with one important exception: periodic smooth integrands integrated
over their period (or multiple periods).

Example 1.3. Consider the integral∫ 2π

0

dx

2 + sin x
. (1.41)

Using complex variables techniques (theory of residues) the exact integral can
be computed and it is equal to 2π/

√
3. Note that the integrand is smooth (has

an infinite number of continuous derivatives) and periodic in [0, 2π]. If we
use the composite trapezoidal rule to find approximations to this integral we
obtain the results shown in Table 1.2.

The approximations converge amazingly fast. With N = 32, we already
reach machine precision (with double precision we get about 16 digits of ac-
curacy).

14 CHAPTER 1. INTRODUCTION

Table 1.2: Composite trapezoidal rule for f(x) = 1/(2 + sin x) in [0, 2π].

N T2π/N [f]
∣∣ I[f]− T2π/N [f] ∣∣

8 3.627791516645356 1.927881769203665× 10−4

16 3.627598733591013 5.122577029226250× 10−9

32 3.627598728468435 4.440892098500626× 10−16

Exercises

1.2.1. Review and state the following theorems of Calculus:

a) The intermediate value theorem,

b) The mean value theorem,

c) Rolle’s theorem,

d) The mean value theorem for integrals,

e) The weighted mean value theorem for integrals.

1.2.2. Write a computer code to implement the composite trapezoidal rule

Th[f] = h

[
1

2
f(x0) + f(x1) + . . .+ f(xN−1) +

1

2
f(xN)

]
(1.42)

to approximate the definite integral

I[f] =

∫ b

a

f(x)dx, (1.43)

using the equi-spaced points x0 = a, x1 = x0 + h, x2 = x0 + 2h, . . . , xN = b,
where h = (b− a)/N .

a) Test your code with f(x) = 1/(1 + x)2 in [0, 2] by computing the er-
ror |I[f]− Th[f]| for h = 2/20, 2/40, 2/80, and verify that Th[f] has a
convergent trend at the expected, quadratic rate.

b) Let f(x) =
√
x in [0, 1]. Compute T1/N [f] for N = 16, 32, 64, 128. Do

you see a second order convergence to the exact value of the integral?
Explain.

1.3. SUPER-ALGEBRAIC CONVERGENCE 15

1.2.3. Consider the definite integral

I[cosx2] =

∫ √π/2

0

cosx2dx. (1.44)

We cannot calculate its exact value but we can compute accurate approxima-
tions to it using the composite trapezoidal rule Th[cosx

2]. Let

q(h) =
Th/2[cosx

2]− Th[cosx2]
Th/4[cosx2]− Th/2[cosx2]

. (1.45)

a) Using your code, find a value of h for which q(h) is approximately equal
to 4.

b) Get an approximation of the error, I[cosx2]− Th[cosx2], for that par-
ticular value of h.

c) Use this error approximation to obtain the extrapolated approximation

Sh[cosx
2] = Th[cosx

2] +
4

3

(
Th/2[cosx

2]− Th[cosx2]
)
. (1.46)

d) Explain why Sh[cosx
2] is more accurate and converges faster to I[cosx2]

than Th[cosx
2].

1.2.4. Let f(x) = |x| in [−1, 1]. Prove that T2/N [f] = 1 for all N even so
that the approximation to the integral is exact. What convergence rate do you
expect for N odd? Verify with your code and explain your answer.

1.3 Super-Algebraic Convergence of the Com-

posite Trapezoidal Rule for Smooth Pe-

riodic Integrands

Integrals of periodic integrands appear in many applications, most notably,
in Fourier analysis.

Consider the definite integral

I[f] =

∫ 2π

0

f(x)dx,

16 CHAPTER 1. INTRODUCTION

where the integrand f is periodic in [0, 2π] and has m > 1 continuous deriva-
tives, i.e. f ∈ Cm[0, 2π] and f(x + 2π) = f(x) for all x. Due to periodicity
we can work in any interval of length 2π and if the function has a different
period, with a simple change of variables, we can reduce the problem to one
in [0, 2π].

Consider the equally spaced points in [0, 2π], xj = jh for j = 0, 1, . . . , N
and h = 2π/N . Because f is periodic f(x0 = 0) = f(xN = 2π). Then, the
composite trapezoidal rule becomes

Th[f] = h

[
f(x0)

2
+ f(x1) + . . .+ f(xN−1) +

f(xN)

2

]
= h

N−1∑
j=0

f(xj). (1.47)

Being f smooth and periodic in [0, 2π], it has a uniformly convergent Fourier
series:

f(x) =
a0
2

+
∞∑
k=1

(ak cos kx+ bk sin kx) (1.48)

where

ak =
1

π

∫ 2π

0

f(x) cos kx dx, k = 0, 1, . . . (1.49)

bk =
1

π

∫ 2π

0

f(x) sin kx dx, k = 1, 2, . . . (1.50)

Using the Euler formula4.

eix = cosx+ i sinx (1.51)

we can write

cosx =
eix + e−ix

2
, (1.52)

sinx =
eix − e−ix

2i
(1.53)

and the Fourier series can be conveniently expressed in complex form in terms
of functions eikx for k = 0,±1,±2, . . . so that (1.48) becomes

f(x) =
∞∑

k=−∞
cke

ikx, (1.54)

4i2 = −1 and if c = a+ ib, with a, b ∈ R, then its complex conjugate c̄ = a− ib.

1.3. SUPER-ALGEBRAIC CONVERGENCE 17

where

ck =
1

2π

∫ 2π

0

f(x)e−ikxdx. (1.55)

We are assuming that f is real-valued so the complex Fourier coefficients
satisfy c̄k = c−k, where c̄k is the complex conjugate of ck. We have the
relation 2c0 = a0 and 2ck = ak− ibk for k = ±1,±2, . . ., between the complex
and real Fourier coefficients.

Using (1.54) in (1.47) we get

Th[f] = h
N−1∑
j=0

(∞∑
k=−∞

cke
ikxj

)
. (1.56)

Justified by the uniform convergence of the series we can exchange the finite
and the infinite sums to get

Th[f] =
2π

N

∞∑
k=−∞

ck

N−1∑
j=0

eik
2π
N

j. (1.57)

But

N−1∑
j=0

eik
2π
N

j =
N−1∑
j=0

(
eik

2π
N

)j
. (1.58)

Note that eik
2π
N = 1 precisely when k is an integer multiple of N , i.e. k = ℓN ,

ℓ ∈ Z and if so

N−1∑
j=0

(
eik

2π
N

)j
= N for k = ℓN. (1.59)

Otherwise,

N−1∑
j=0

(
eik

2π
N

)j
=

1−
(
eik

2π
N

)N
1−

(
eik

2π
N

) = 0 for k ̸= ℓN. (1.60)

Employing (1.59) and (1.60) we thus get that

Th[f] = 2π
∞∑

ℓ=−∞
cℓN . (1.61)

18 CHAPTER 1. INTRODUCTION

On the other hand

c0 =
1

2π

∫ 2π

0

f(x)dx =
1

2π
I[f]. (1.62)

Therefore

Th[f] = I[f] + 2π [cN + c−N + c2N + c−2N + . . .] , (1.63)

that is

|Th[f]− I[f]| ≤ 2π [|cN |+ |c−N |+ |c2N |+ |c−2N |+ . . .] . (1.64)

So now, the relevant question is how fast the Fourier coefficients cℓN of f
decay with N . The answer is tied to the smoothness of f . Doing integration
by parts in formula (1.55) for the Fourier coefficients of f we have

ck =
1

2π

1

ik

[∫ 2π

0

f ′(x)e−ikxdx− f(x)e−ikx
∣∣2π
0

]
k ̸= 0 (1.65)

and the last term vanishes due to the periodicity of f(x)e−ikx. Hence,

ck =
1

2π

1

ik

∫ 2π

0

f ′(x)e−ikxdx k ̸= 0. (1.66)

Integrating by parts m times we obtain

ck =
1

2π

(
1

ik

)m ∫ 2π

0

f (m)(x)e−ikxdx k ̸= 0, (1.67)

where f (m) is the m-th derivative of f . Therefore, for f ∈ Cm[0, 2π] and
periodic

|ck| ≤
Am

|k|m , (1.68)

where Am is a constant (depending only on m). Using this in (1.64) we get

|Th[f]− I[f]| ≤ 2πAm

[
2

Nm
+

2

(2N)m
+

2

(3N)m
+ . . .

]
=

4πAm

Nm

[
1 +

1

2m
+

1

3m
+ . . .

]
,

(1.69)

1.3. SUPER-ALGEBRAIC CONVERGENCE 19

and so for m > 1 we can conclude that

|Th[f]− I[f]| ≤
Cm

Nm
. (1.70)

Thus, in this particular case, the rate of convergence of the composite trape-
zoidal rule at equally spaced points is not fixed (to 2). It depends on the
number of derivatives of f and we say that the accuracy and convergence of
the approximation is spectral. Note that if f is smooth, i.e. f ∈ C∞[0, 2π]
and periodic, the composite trapezoidal rule converges to the exact integral
at a rate faster than any power of 1/N (or h)! This is called super-algebraic
convergence.

Exercises

1.3.1. Let f be a 2π periodic function and (Riemann) integrable. Prove∫ 2π+t

t

f(x)dx =

∫ 2π

0

f(x)dx (1.71)

for all t ∈ R. Hint: Consider the function g(t) =
∫ 2π+t

t
f(x)dx and show

g′(t) = 0.

1.3.2. Using (1.52) and (1.53) prove that the Fourier series in real form
(1.48) is equivalent to the Fourier series in complex form (1.54) with c0 =
a0/2, ck =

1
2
(ak − ibk), and c−k = 1

2
(ak + ibk) for k = 1, 2, . . ., assuming f is

a real-valued function.

1.3.3. Let f be a periodic function of period P . Show that its Fourier series
can be written as

∞∑
k=−∞

cke
ik 2π

P
x, (1.72)

where

ck =
1

P

∫ P

0

f(x)e−ik
2π
P

xdx. (1.73)

20 CHAPTER 1. INTRODUCTION

1.3.4. Use your composite trapezoidal rule (with equi-spaced points) code to
approximate the integral ∫ 2π

0

sin2 x

5 + 4 cosx
dx (1.74)

for N = 8, 16, 32 and comment on the convergence rate to the exact value of
π/4.

1.4 Bibliographic Notes

Section 1.1 . In his 1964 textbook, Henrici [Hen64] defines numerical analysis
as “the theory of constructive methods in mathematical analysis”. Ralston
and Rabinowitz devote a section of their textbook [RR01] to the question
What is numerical analysis? They describe numerical analysis as both a sci-
ence and an art: “As a science, then, numerical analysis is concerned with
the processes by which mathematical problems can be solved by the oper-
ations of arithmetic. ... As an art, numerical analysis is concerned with
choosing that procedure (and suitably applying it) which is “‘best suited”’
to the solution of a particular problem”. In a 1992 article, which inspired this
section and this chapter, Trefethen [Tre92] proposes to define numerical anal-
ysis as “the study of algorithms for the problems of continuous mathemat-
ics”. Gautschi [Gau11], in his excellent graduate textbook, defines numerical
analysis as “the branch of mathematics that provides tools and methods for
solving mathematical problems in numerical form”.

Section 1.2. The exposition of Richardson’s extrapolation and the explana-
tion of the meaning of sufficiently small h by checking the q(h) ratios was
inspired by Section 5.5 (extrapolation to the limit; Romberg integration) in
the classical textbook “Elementary Numerical Analysis” [CdB72] by Conte
and de Boor. Richardson extrapolation is named after Lewis F. Richardson,
who applied the technique to finite differences for partial differential equa-
tions [Ric11].

Section 1.3. While the impressive spectral convergence of the composite
trapezoidal rule for periodic integrands is well-known, it appears only on
relatively few numerical analysis textbooks. One book that does include

1.4. BIBLIOGRAPHIC NOTES 21

this important case, and whose presentation inspired this section, is that by
Schwarz [Sch89].

22 CHAPTER 1. INTRODUCTION

Chapter 2

Function Approximation

We saw in the introductory chapter that one key step in the construction of
a numerical method to approximate a definite integral is the approximation
of the integrand by a simpler function, which we can integrate exactly.

The problem of function approximation is central to many numerical
methods. Given a continuous function f in a closed, bounded interval [a, b],
we would like to find a good approximation to it by functions from a certain
class, for example algebraic polynomials, trigonometric polynomials, ratio-
nal functions, radial functions, splines, neural networks, etc. We are going
to measure the accuracy of an approximation using norms and ask whether
or not there is a best approximation out of functions from a given family of
functions. These are the main topics of this introductory chapter in approx-
imation theory.

2.1 Norms

A norm on a vector space V over a field F (R or C for our purposes) is a
mapping

∥ · ∥ : V → [0,∞),

which satisfy the following properties:

(i) ∥x∥ ≥ 0 ∀x ∈ V and ∥x∥ = 0 iff x = 0.

(ii) ∥x+ y∥ ≤ ∥x∥+ ∥y∥ ∀x, y ∈ V .

(iii) ∥λx∥ = |λ| ∥x∥ ∀x ∈ V, λ ∈ F.

23

24 CHAPTER 2. FUNCTION APPROXIMATION

If we relax (i) to just ∥x∥ ≥ 0, we get a semi-norm.
We recall first some of the most important examples of norms in the finite

dimensional case V = Rn (or V = Cn):

∥x∥1 = |x1|+ . . .+ |xn|, (2.1)

∥x∥2 =
√
|x1|2 + . . .+ |xn|2, (2.2)

∥x∥∞ = max{|x1|, . . . , |xn|}. (2.3)

These are all special cases of the lp norm:

∥x∥p = (|x1|p + . . .+ |xn|p)1/p , 1 ≤ p ≤ ∞. (2.4)

If we have weights wi > 0 for i = 1, . . . , n we can also define a weighted lp

norm by

∥x∥w,p = (w1|x1|p + . . .+ wn|xn|p)1/p , 1 ≤ p ≤ ∞. (2.5)

All norms in a finite dimensional space V are equivalent, in the sense that
for any two norms in V , ∥ · ∥α and ∥ · ∥β, there are two constants c and C
such that

∥x∥α ≤ C∥x∥β, (2.6)

∥x∥β ≤ c∥x∥α, (2.7)

for all x ∈ V .
If V is a space of functions defined on a interval [a, b], for example the

space of continuous functions on [a, b], C[a, b], the corresponding norms to
(2.1)-(2.4) are given by

∥u∥1 =
∫ b

a

|u(x)|dx, (2.8)

∥u∥2 =
(∫ b

a

|u(x)|2dx
)1/2

, (2.9)

∥u∥∞ = sup
x∈[a,b]

|u(x)|, (2.10)

∥u∥p =
(∫ b

a

|u(x)|pdx
)1/p

, 1 ≤ p ≤ ∞ (2.11)

2.2. UNIFORM POLYNOMIAL APPROXIMATION 25

and are called the L1, L2, L∞, and Lp norms, respectively. Similarly to (2.5)
we can defined a weighted Lp norm by

∥u∥p =
(∫ b

a

w(x)|u(x)|pdx
)1/p

, 1 ≤ p ≤ ∞, (2.12)

where w is a given positive weight function defined in [a, b]. If w(x) ≥ 0, we
get a semi-norm.

Lemma 2.1.1. Let ∥ · ∥ be a norm on a vector space V then

| ∥x∥ − ∥y∥ |≤ ∥x− y∥. (2.13)

This lemma implies that a norm is a continuous function (on V to R).

Proof. ∥x∥ = ∥x− y + y∥ ≤ ∥x− y∥+ ∥y∥ which gives that

∥x∥ − ∥y∥ ≤ ∥x− y∥. (2.14)

By reversing the roles of x and y we also get

∥y∥ − ∥x∥ ≤ ∥x− y∥. (2.15)

Exercises

2.1.1. Let V be a vector space. Prove that a norm ∥ · ∥ on V defines a
continuous function ∥ · ∥ : V → [0,∞).

2.1.2. Let V = R2. Sketch the closed unit ball, i.e. the set of x ∈ V such
that ∥x∥ ≤ 1 for the norms ∥ · ∥1, ∥ · ∥2, and ∥ · ∥∞.

2.1.3. Prove that ∥x∥∞ ≤ ∥x∥2 and ∥x∥2 ≤
√
n∥x∥∞ for all x ∈ Rn.

2.2 Uniform Polynomial Approximation

There is a fundamental result in approximation theory: any continuous func-
tion on a closed, bounded interval can be approximated uniformly, i.e. in
the ∥ · ∥∞ norm (Exercise 2.2.1a), with arbitrary accuracy by a polynomial.

26 CHAPTER 2. FUNCTION APPROXIMATION

This is the celebrated Weierstrass approximation theorem. We are going to
present a constructive proof due to S. Bernstein, which uses a class of poly-
nomials that have found widespread applications in computer graphics and
animation. Historically, the use of these so-called Bernstein polynomials in
computer assisted design (CAD) was introduced by two engineers working in
the French car industry: Pierre Bézier at Renault and Paul de Casteljau at
Citroën.

2.2.1 Bernstein Polynomials and Bézier Curves

Given a function f on [0, 1], the Bernstein polynomial of degree n ≥ 1 is
defined by

Bnf(x) =
n∑

k=0

f (k/n)

(
n

k

)
xk(1− x)n−k, (2.16)

where (
n

k

)
=

n!

(n− k)!k! , k = 0, . . . , n (2.17)

are the binomial coefficients. Note that Bnf(0) = f(0) and Bnf(1) = f(1)
for all n. The terms

bk,n(x) =

(
n

k

)
xk(1− x)n−k, k = 0, . . . , n, (2.18)

which are all nonnegative, are called the Bernstein basis polynomials and can
be viewed as x-dependent weights that sum up to one:

n∑
k=0

bk,n(x) =
n∑

k=0

(
n

k

)
xk(1− x)n−k = [x+ (1− x)]n = 1. (2.19)

Thus, for each x ∈ [0, 1], Bnf(x) represents a weighted average of the values
of f at 0, 1/n, 2/n, . . . , 1. Moreover, as n increases the weights bk,n(x), for
0 < x < 1, concentrate more and more around the points k/n close to x as
Fig. 2.1 indicates for bk,n(0.5).

For n = 1, the Bernstein polynomial is just the straight line connecting
f(0) and f(1), B1f(x) = (1− x)f(0) + xf(1). Given two points P0 and P1

2.2. UNIFORM POLYNOMIAL APPROXIMATION 27

0.0 0.5 1.0
k/n

0.00

0.25

b k
,n

(0
.5

)

B16(0.5)
B32(0.5)
B64(0.5)

Figure 2.1: The Bernstein basis (weights) bk,n(x) for x = 0.5, n = 16, 32,
and 64. Note how they concentrate more and more around k/n ≈ x as n
increases.

28 CHAPTER 2. FUNCTION APPROXIMATION

P0 P2

P1

Figure 2.2: Quadratic Bézier curve.

in the plane or in space, the segment of the straight line connecting them
can be written in parametric form as

B1(t) = (1− t)P0 + tP1, t ∈ [0, 1]. (2.20)

With three points, P0,P1,P2, we can employ the quadratic Bernstein basis
polynomials to get a more useful parametric curve

B2(t) = (1− t)2P0 + 2t(1− t)P1 + t2P2, t ∈ [0, 1]. (2.21)

This curve connects again P0 and P2 but P1 can be used to control how
the curve bends. More precisely, the tangents at the end points are B′2(0) =
2(P1 − P0) and B′2(1) = 2(P2 − P1), which intersect at P1, as Fig. 2.2
illustrates. These parametric curves formed with the Bernstein basis polyno-
mials are called Bézier curves and have been widely employed in computer
graphics, specially in the design of vector fonts, and in computer animation.
A Bézier curve of degree n ≥ 1 can be written in parametric form as

Bn(t) =
n∑

k=0

bk,n(t)Pk, t ∈ [0, 1]. (2.22)

The pointsP0,P1, . . . ,Pn are called control points. Often, low degree (quadratic
or cubic) Bézier curves are pieced together to represent complex shapes.
These composite Bézier curves are broadly used in font generation. For exam-
ple, the TrueType font of most computers today is generated with composite,

2.2. UNIFORM POLYNOMIAL APPROXIMATION 29

Figure 2.3: Example of a composite, quadratic C1 Bézier curve with two
pieces.

quadratic Bézier curves while the Metafont used in these pages, via LATEX,
employs composite, cubic Bézier curves. For each character, many pieces of
Bézier curves are stitched together. To have some degree of smoothness (C1),
the common point for two pieces of a composite Bézier curve has to lie on
the line connecting the two adjacent control points on either side as Fig. 2.3
shows.

Let us now do some algebra to prove some useful identities of the Bern-
stein polynomials. First, for f(x) = x we have,

n∑
k=0

k

n

(
n

k

)
xk(1− x)n−k =

n∑
k=1

kn!

n(n− k)!k!x
k(1− x)n−k

= x
n∑

k=1

(
n− 1

k − 1

)
xk−1(1− x)n−k

= x
n−1∑
k=0

(
n− 1

k

)
xk(1− x)n−1−k

= x [x+ (1− x)]n−1 = x.

(2.23)

Now for f(x) = x2, we get

n∑
k=0

(
k

n

)2(
n

k

)
xk(1− x)n−k =

n∑
k=1

k

n

(
n− 1

k − 1

)
xk(1− x)n−k (2.24)

and writing

k

n
=
k − 1

n
+

1

n
=
n− 1

n

k − 1

n− 1
+

1

n
, (2.25)

30 CHAPTER 2. FUNCTION APPROXIMATION

we have

n∑
k=0

(
k

n

)2(
n

k

)
xk(1− x)n−k = n− 1

n

n∑
k=2

k − 1

n− 1

(
n− 1

k − 1

)
xk(1− x)n−k

+
1

n

n∑
k=1

(
n− 1

k − 1

)
xk(1− x)n−k

=
n− 1

n

n∑
k=2

(
n− 2

k − 2

)
xk(1− x)n−k + x

n

=
n− 1

n
x2

n−2∑
k=0

(
n− 2

k

)
xk(1− x)n−2−k + x

n
.

Thus,

n∑
k=0

(
k

n

)2(
n

k

)
xk(1− x)n−k = n− 1

n
x2 +

x

n
. (2.26)

Now, expanding
(
k
n
− x
)2

and using (2.19), (2.23), and (2.26) it follows that

n∑
k=0

(
k

n
− x
)2(

n

k

)
xk(1− x)n−k = 1

n
x(1− x). (2.27)

2.2.2 Weierstrass Approximation Theorem

Theorem 2.1. (Weierstrass Approximation Theorem) Let f be a continu-
ous function in a closed, bounded interval [a, b]. Given ϵ > 0, there is a
polynomial p such that

max
a≤x≤b

|f(x)− p(x)| < ϵ.

Proof. We are going to work on the interval [0, 1]. For a general interval
[a, b], we consider the change of variables x = a + (b − a)t for t ∈ [0, 1] so
that F (t) = f(a+ (b− a)t) is continuous in [0, 1].

Using (2.19), we have

f(x)−Bnf(x) =
n∑

k=0

[
f(x)− f

(
k

n

)](
n

k

)
xk(1− x)n−k. (2.28)

2.2. UNIFORM POLYNOMIAL APPROXIMATION 31

Since f is continuous in [0, 1], it is also uniformly continuous. Thus, given
ϵ > 0 there is δ = δ(ϵ) > 0, independent of x, such that

|f(x)− f(k/n)| < ϵ

2
if |x− k/n| < δ. (2.29)

Moreover,

|f(x)− f(k/n)| ≤ 2∥f∥∞ for all x ∈ [0, 1], k = 0, 1, . . . , n. (2.30)

We now split the sum in (2.28) in two sums, one over the points such that
|k/n− x| < δ and the other over the points such that |k/n− x| ≥ δ:

f(x)−Bnf(x) =
∑

|k/n−x|<δ

[
f(x)− f

(
k

n

)](
n

k

)
xk(1− x)n−k

+
∑

|k/n−x|≥δ

[
f(x)− f

(
k

n

)](
n

k

)
xk(1− x)n−k.

(2.31)

Using (2.29) and (2.19) it follows immediately that the first sum is bounded
by ϵ/2. For the second sum we have∑

|k/n−x|≥δ

∣∣∣∣f(x)− f (kn
)∣∣∣∣ (nk

)
xk(1− x)n−k

≤ 2∥f∥∞
∑

|k/n−x|≥δ

(
n

k

)
xk(1− x)n−k

≤ 2∥f∥∞
δ2

∑
|k/n−x|≥δ

(
k

n
− x
)2(

n

k

)
xk(1− x)n−k

≤ 2∥f∥∞
δ2

n∑
k=0

(
k

n
− x
)2(

n

k

)
xk(1− x)n−k

=
2∥f∥∞
nδ2

x(1− x) ≤ ∥f∥∞
2nδ2

.

(2.32)

Therefore, there is N such that for all n ≥ N the second sum in (2.31) is
bounded by ϵ/2 and this completes the proof.

Figure 2.4 shows approximations of f(x) = sin(2πx) by Bernstein poly-
nomials of degree n = 10, 20, 40. Observe that ∥f − Bnf∥∞ decreases by
roughly one half as n is doubled, suggesting a slow O(1/n) convergence even
for this smooth function.

32 CHAPTER 2. FUNCTION APPROXIMATION

0.0 0.5 1.0
x

0.0

0.5

1.0

f

f(x)
B10(x)
B20(x)
B40(x)

Figure 2.4: Approximation of f(x) = sin(2πx) on [0, 1] by Bernstein polyno-
mials.

Exercises

2.2.1. We say that a sequence of functions {fn} defined on [a, b] converges
uniformly to a function f if for each ϵ > 0, there is N , which depends only
on ϵ and [a, b] but is independent of x, such that

|fn(x)− f(x)| < ϵ, if n > N , for all x ∈ [a, b]. (2.33)

a) Define the sequence of numbers {Mn}, where Mn = ∥fn − f∥∞. Prove
that {fn} converges uniformly to f in [a, b] if and only if {Mn} con-
verges to zero as n→∞.

b) Prove that the sequence of functions given by

fn(x) =

(
n− 1

n

)
x2 +

1

n
x, 0 ≤ x ≤ 1 (2.34)

converges uniformly to f(x) = x2 in [0, 1].

c) Does the sequence fn(x) = xn defined in [0, 1) converge uniformly?

2.3. BEST APPROXIMATION 33

2.2.2. Let f and g in C[0, 1], α and β constants, and denote by Bnf the
Bernstein polynomial of f of degree n. Prove that

a) Bn(αf + βg) = αBnf + βBng, i.e. Bn is a linear operator in C[0, 1].

b) If f(x) ≥ g(x) for all x ∈ [0, 1] then Bnf(x) ≥ Bng(x) for all x ∈ [0, 1],
i.e. Bn is a monotone operator.

2.2.3. Write down the simple Bézier cubic curve B3(t), t ∈ [0, 1] for the four
control points P0, P1, P2, and P3 and prove that

a) B3(0) = P0 and B3(1) = P3.

b) The tangent line at P0 is the line connecting P0 to P1 and the tangent
line at P3 is the line connecting P2 to P3.

2.2.4. Write down a general Bezier curve of order 4 in parametric form.
How many control points does it have?

2.2.5. Let

f(x) =

{
x for 0 ≤ x ≤ 1/2,

1− x for 1/2 < x ≤ 1.
(2.35)

Write a code to construct the corresponding Bernstein polynomials and use
it to estimate the rate of convergence of Bnf to f .

2.2.6. Generate your own version of the integral sign∫
by using a composite, quadratic Bézier curve (you may write a short code for
it). Make sure the curve is C1.

2.3 Best Approximation

We just saw that any continuous function f on a closed, bounded interval
can be approximated uniformly with arbitrary accuracy by a polynomial.
Ideally, we would like to find the closest polynomial, say of degree at most n,
to the function f when the distance is measured in the supremum (infinity)

34 CHAPTER 2. FUNCTION APPROXIMATION

norm, or in any other norm we choose. There are three important elements
in this general problem: the space of functions we want to approximate, the
norm, and the family of approximating functions. The following definition
makes this more precise.

Definition 2.1. Given a normed, vector space V and a subspace W of V ,
p∗ ∈ W is called a best approximation of f ∈ V by elements in W if

∥f − p∗∥ ≤ ∥f − p∥, for all p ∈ W. (2.36)

For example, the normed, vector space V could be C[a, b] with the supre-
mum norm (2.10) and W could be the set of all polynomials of degree at
most n, which henceforth we will denote by Pn.

Theorem 2.2. Let W be a finite-dimensional subspace of a normed, vector
space V . Then, for every f ∈ V , there is at least one best approximation to
f by elements in W .

Proof. Since W is a subspace 0 ∈ W and for any candidate p ∈ W for best
approximation to f we must have

∥f − p∥ ≤ ∥f − 0∥ = ∥f∥. (2.37)

Therefore we can restrict our search to the set

F = {p ∈ W : ∥f − p∥ ≤ ∥f∥}. (2.38)

F is closed and bounded and because W is finite-dimensional it follows that
F is compact. Now, the function p 7→ ∥f − p∥ is continuous on this compact
set and hence it attains its minimum in F .

If we remove the finite-dimensionality of W then we cannot guarantee
that there is a best approximation as the following example shows.

Example 2.1. Let V = C[0, 1/2] and W be the space of all polynomials
(clearly a subspace of V). Take f(x) = 1/(1 − x) for x ∈ [0, 1/2] and note
that

1

1− x − (1 + x+ x2 + . . .+ xN) =
xN+1

1− x. (2.39)

2.3. BEST APPROXIMATION 35

Therefore, given ϵ > 0 there is N such that

max
x∈[0,1/2]

∣∣∣∣ 1

1− x − (1 + x+ x2 + . . .+ xN)

∣∣∣∣ = (1

2

)N

< ϵ. (2.40)

Thus, if there is a best approximation p∗ in the supremum norm, necessarily
∥f − p∗∥∞ = 0, which implies

p∗(x) =
1

1− x (2.41)

This is of course impossible since p is a polynomial.

Theorem 2.2 does not guarantee uniqueness of best approximation. Strict
convexity of the norm gives us a sufficient condition.

Definition 2.2. A norm ∥ · ∥ on a vector space V is strictly convex if for all
f ̸= g in V with ∥f∥ = ∥g∥ = 1 then

∥θf + (1− θ)g∥ < 1, for all 0 < θ < 1.

In other words, a norm is strictly convex if its unit ball is strictly convex.

Note the use of the strict inequality ∥θf +(1− θ)g∥ < 1 in the definition.
The p-norm is strictly convex for 1 < p <∞ but not for p = 1 or p =∞.

Theorem 2.3. Let V be a vector space with a strictly convex norm, W a
subspace of V , and f ∈ V . If p∗ and q∗ are best approximations of f in W
then p∗ = q∗.

Proof. Let M = ∥f − p∗∥ = ∥f − q∗∥. If p∗ ̸= q∗, by the strict convexity of
the norm∥∥∥∥θ(f − p∗M

)
+ (1− θ)

(
f − q∗
M

)∥∥∥∥ < 1, for all 0 < θ < 1. (2.42)

That is,

∥θ(f − p∗) + (1− θ)(f − q∗)∥ < M, for all 0 < θ < 1. (2.43)

Taking θ = 1/2 we get

∥f − 1

2
(p∗ + q∗)∥ < M, (2.44)

which is impossible because 1
2
(p∗ + q∗) is in W and cannot be a better ap-

proximation.

36 CHAPTER 2. FUNCTION APPROXIMATION

2.3.1 Best Uniform Polynomial Approximation

Given a continuous function f on a closed, bounded interval [a, b] we know
there is at least one best approximation p∗n to f , in any given norm, by
polynomials of degree at most n because the dimension of Pn is finite. The
norm ∥ · ∥∞ is not strictly convex so Theorem 2.3 does not apply. However,
due to a special property (called the Haar property) of the vector space Pn,
which is that the only element of Pn that has more than n roots is the
zero element, we will see that the best uniform approximation out of Pn is
unique and is characterized by a very peculiar property. Specifically, the
error function

en(x) = f(x)− p∗n(x), x ∈ [a, b], (2.45)

has to equioscillate at least n+2 points, between +∥en∥∞ and −∥en∥∞. That
is, there are k points, x1, x2, . . . , xk, with k ≥ n+ 2, such that

en(x1) = ±∥en∥∞
en(x2) = −en(x1),
en(x3) = −en(x2),

...

en(xk) = −en(xk−1).

(2.46)

For if not, it would be possible to find a polynomial of degree at most n, with
the same sign at the extremal points of en (at most n sign changes), and use
this polynomial to decrease the value of ∥en∥∞. This would contradict the
fact that p∗n is a best approximation. This is easy to see for n = 0 as it is
impossible to find a polynomial of degree 0 (a constant) with one change of
sign. This is the content of the next result.

Theorem 2.4. The error en = f − p∗n has at least two extremal points, x1
and x2, in [a, b] such that |en(x1)| = |en(x2)| = ∥en∥∞ and en(x1) = −en(x2)
for all n ≥ 0.

Proof. The continuous function |en(x)| attains its maximum ∥en∥∞ in at least
one point x1 in [a, b]. Suppose ∥en∥∞ = en(x1) and that en(x) > −∥en∥∞ for
all x ∈ [a, b]. Then, m = minx∈[a,b] en(x) > −∥en∥∞ and we have some room
to decrease ∥en∥∞ by shifting down en a suitable amount c. In particular, if

2.3. BEST APPROXIMATION 37

a b
−∥en∥∞

0

∥en∥∞

x

en(x)
en(x)− c

Figure 2.5: If the error function en does not equioscillate at least twice we
could lower ∥en∥∞ by an amount c > 0.

we take c as one half the gap between the minimum m of en and −∥en∥∞,

c =
1

2
(m+ ∥en∥∞) > 0, (2.47)

and subtract it to en, as shown in Fig. 2.5, we have

−∥en∥∞ + c ≤ en(x)− c ≤ ∥en∥∞ − c. (2.48)

Therefore, ∥en − c∥∞ = ∥f − (p∗n + c)∥∞ = ∥en∥∞ − c < ∥en∥∞ but
p∗n + c ∈ Pn so this is impossible since p∗n is a best approximation. A similar
argument can be used when en(x1) = −∥en∥∞.

Before proceeding to the general case, let us look at the n = 1 situation.
Suppose there are only two alternating extremal points x1 and x2 for e1 as
described in (2.46). We are going to construct a linear polynomial that has
the same sign as e1 at x1 and x2 and which can be used to decrease ∥e1∥∞.
Suppose e1(x1) = ∥e1∥∞ and e1(x2) = −∥e1∥∞. Since e1 is continuous, we
can find small closed intervals I1 and I2, containing x1 and x2, respectively,

38 CHAPTER 2. FUNCTION APPROXIMATION

a b
−∥e1∥∞

0

∥e1∥∞

x1 x2x0

I1 I2

x

e1(x)
q(x)

Figure 2.6: If e1 equioscillates only twice, it would be possible to find a
polynomial q ∈ P1 with the same sign around x1 and x2 as that of e1 and,
after a suitable scaling, use it to decrease the error.

and such that

e1(x) >
∥e1∥∞

2
for all x ∈ I1, (2.49)

e1(x) < −
∥e1∥∞

2
for all x ∈ I2. (2.50)

Since I1 and I2 are disjoint sets, we can choose a point x0 between the two
intervals. Then, it is possible to find q ∈ P1 that passes through x0 and that
is positive in I1 and negative in I2 as Fig. 2.6 depicts. We are now going to
pick a suitable constant α > 0 such that ∥f − p∗1 − αq∥∞ < ∥e1∥∞. Since
p∗1 + αq ∈ P1 this would be a contradiction to the fact that p∗1 is a best
approximation.

Let R = [a, b] \ (I1 ∪ I2) and d = max
x∈R
|e1(x)|. Clearly d < ∥e1∥∞. Choose

α such that

0 < α <
1

2∥q∥∞
(∥e1∥∞ − d) . (2.51)

On I1, we have

0 < αq(x) <
1

2∥q∥∞
(∥e1∥∞ − d) q(x) ≤

1

2
(∥e1∥∞ − d) < e1(x). (2.52)

2.3. BEST APPROXIMATION 39

Therefore

|e1(x)− αq(x)| = e1(x)− αq(x) < ∥e1∥∞, for all x ∈ I1. (2.53)

Similarly, on I2, we can show that |e1(x)−αq(x)| < ∥e1∥∞. Finally, on R we
have

|e1(x)− αq(x)| ≤ |e1(x)|+ |αq(x)| ≤ d+
1

2
(∥e1∥∞ − d) < ∥e1∥∞. (2.54)

Therefore, ∥e1 − αq∥∞ = ∥f − (p∗1 + αq)∥∞ < ∥e1∥∞, which contradicts the
best approximation assumption on p∗1.

Theorem 2.5. (Chebyshev Equioscillation Theorem) Let f ∈ C[a, b]. Then,
p∗n in Pn is a best uniform approximation of f if and only if there are at least
n + 2 points in [a, b], where the error en = f − p∗n equioscillates between the
values ±∥en∥∞ as defined in (2.46).

Proof. We first prove that if the error en = f − p∗n, for some p∗n ∈ Pn,
equioscillates at least n+ 2 times then p∗n is a best approximation. Suppose
the contrary. Then, there is qn ∈ Pn such that

∥f − qn∥∞ < ∥f − p∗n∥∞. (2.55)

Let x1, . . . , xk, with k ≥ n+ 2, be the points where en equioscillates. Then

|f(xj)− qn(xj)| < |f(xj)− p∗n(xj)|, j = 1, . . . , k (2.56)

and since

f(xj)− p∗n(xj) = −[f(xj+1)− p∗n(xj+1)], j = 1, . . . , k − 1 (2.57)

we have that

qn(xj)− p∗n(xj) = f(xj)− p∗n(xj)− [f(xj)− qn(xj)] (2.58)

changes signs k − 1 times, i.e. at least n + 1 times. But qn − p∗n ∈ Pn.
Therefore qn = p∗n, which contradicts (2.55), and consequently p∗n has to be
a best uniform approximation of f .

For the other half of the proof the idea is the same as for n = 1 but we need
to do more bookkeeping. We are going to partition [a, b] into the union of
sufficiently small subintervals so that we can guarantee that |en(t)− en(s)| ≤

40 CHAPTER 2. FUNCTION APPROXIMATION

∥en∥∞/2 for any two points t and s in each of the subintervals. Let us label
by I1, . . . , Ik, the subintervals on which |en(x)| achieves its maximum ∥en∥∞.
Then, on each of these subintervals either en(x) > ∥en∥∞/2 or en(x) <
−∥en∥∞/2. We need to prove that en changes sign at least n+ 1 times.

Going from left to right, we can label the subintervals I1, . . . , Ik as a (+)
or (−) subinterval depending on the sign of en. For definiteness, suppose I1
is a (+) subinterval then we have the groups

{I1, . . . , Ik1}, (+)

{Ik1+1, . . . , Ik2}, (−)
...

{Ikm+1, . . . , Ik}, (−)m.

We have m changes of sign so let us assume that m ≤ n. We already know
m ≥ 1. Since the sets, Ikj and Ikj+1 are disjoint for j = 1, . . . ,m, we can
select points t1, . . . , tm, such that tj > x for all x ∈ Ikj and tj < x for all
x ∈ Ikj+1. Then, the polynomial

q(x) = (t1 − x)(t2 − x) · · · (tm − x) (2.59)

has the same sign as en in each of the extremal intervals I1, . . . , Ik and q ∈ Pn.
The rest of the proof is as in the n = 1 case to show that p∗n + αq would be
a better approximation to f than p∗n.

Theorem 2.6. Let f ∈ C[a, b]. The best uniform approximation p∗n to f by
elements of Pn is unique.

Proof. Suppose q∗n is also a best approximation, i.e.

∥en∥∞ = ∥f − p∗n∥∞ = ∥f − q∗n∥∞.

Then, the midpoint r = 1
2
(p∗n + q∗n) is also a best approximation, for r ∈ Pn

and

∥f − r∥∞ = ∥1
2
(f − p∗n) +

1

2
(f − q∗n)∥∞

≤ 1

2
∥f − p∗n∥∞ +

1

2
∥f − q∗n∥∞ = ∥en∥∞.

(2.60)

2.3. BEST APPROXIMATION 41

Let x1, . . . , xn+2 be extremal points of f−r with the alternating property
(2.46), i.e. f(xj) − r(xj) = (−1)m+j ∥en∥∞ for some integer m and j =
1, . . . n+ 2. This implies that

f(xj)− p∗n(xj)
2

+
f(xj)− q∗n(xj)

2
= (−1)m+j ∥en∥∞, j = 1, . . . , n+ 2.

(2.61)

But |f(xj) − p∗n(xj)| ≤ ∥en∥∞ and |f(xj) − q∗n(xj)| ≤ ∥en∥∞. As a conse-
quence,

f(xj)− p∗n(xj) = f(xj)− q∗n(xj) = (−1)m+j ∥en∥∞, j = 1, . . . , n+ 2,
(2.62)

and it follows that

p∗n(xj) = q∗n(xj), j = 1, . . . , n+ 2. (2.63)

Therefore, q∗n = p∗n.

Exercises

2.3.1. Let V be a normed linear space and W a subspace of V . Let f ∈ V .
Prove that the set of best approximations to f by elements inW is a convex set
(i.e. any point in the line segment connecting any two best approximations
is also a best approximation).

2.3.2. Let V = R3 with the ∥ · ∥∞norm,W=span{(0,1,0),(0,0,1)}, and f =
(5, 1,−1). (a) Show that the best approximation to f is not unique. (b) Draw
the (convex) set of all best approximations to f .

2.3.3. Let f ∈ C[a, b]. Prove that the best uniform approximation to f by a
constant is given by

p∗0 =
1

2

(
max
x∈[0,1]

f(x) + min
x∈[0,1]

f(x)

)
. (2.64)

2.3.4. Let f(x) = cos 4πx for x ∈ [0, 1]. Find the best uniform polynomial
approximation of f by polynomials up to degree 3 and explain your answer.
Hint: look at the equioscillation of f itself.

42 CHAPTER 2. FUNCTION APPROXIMATION

2.4 Chebyshev Polynomials

The best uniform approximation of f(x) = xn+1 in [−1, 1] by polynomials of
degree at most n can be found explicitly and the solution introduces one of
the most useful and remarkable polynomials, the Chebyshev polynomials.

Let p∗n ∈ Pn be the best uniform approximation to xn+1 in the interval
[−1, 1] and as before define the error function as en(x) = xn+1− p∗n(x). Note
that since en is a monic polynomial (its leading coefficient is 1) of degree
n + 1, the problem of finding p∗n is equivalent to finding, among all monic
polynomials of degree n+1, the one with the smallest deviation (in absolute
value) from zero in [−1, 1].

According to Theorem 2.5, there exist n+ 2 distinct points,

−1 ≤ x1 < x2 < · · · < xn+2 ≤ 1, (2.65)

such that

e2n(xj) = ∥en∥2∞, for j = 1, . . . , n+ 2. (2.66)

Now consider the polynomial

q(x) = ∥en∥2∞ − e2n(x). (2.67)

Then, q(xj) = 0 for j = 1, . . . , n + 2. Each of the points xj in the interior
of [−1, 1] is also a local minimum of q, then necessarily q′(xj) = 0 for j =
2, . . . n + 1. Thus, the n points x2, . . . , xn+1 are zeros of q of multiplicity at
least two. But q is a nonzero polynomial of degree 2n+2 exactly. Therefore,
x1 and xn+2 have to be simple zeros and so x1 = −1 and xn+2 = 1. Note
that the polynomial p(x) = (1− x2)[e′n(x)]2 ∈ P2n+2 has the same zeros as q
and so p = cq, for some constant c. Comparing the coefficient of the leading
order term of p and q it follows that c = (n+ 1)2. Therefore, en satisfies the
ordinary differential equation

(1− x2)[e′n(x)]2 = (n+ 1)2
[
∥en∥2∞ − e2n(x)

]
. (2.68)

We know e′n ∈ Pn and its n zeros are the interior points x2, . . . , xn+1. There-
fore, e′n cannot change sign in [−1, x2]. Suppose it is nonnegative for x ∈
[−1, x2] (we reach the same conclusion if we assume e′n(x) ≤ 0) then, taking
square roots in (2.68) we get

e′n(x)√
∥en∥2∞ − e2n(x)

=
n+ 1√
1− x2

, for x ∈ [−1, x2]. (2.69)

2.4. CHEBYSHEV POLYNOMIALS 43

We can integrate this ordinary differential equation using the trigonometric
substitutions en(x) = ∥en∥∞ cosϕ and x = cos θ, for the left and the right
hand side respectively, to obtain

− cos−1
(
en(x)

∥en∥∞

)
= −(n+ 1)θ + C, (2.70)

where C is a constant of integration. Choosing C = 0 (so that en(1) = ∥en∥∞)
we get

en(x) = ∥en∥∞ cos [(n+ 1)θ] (2.71)

for x = cos θ ∈ [−1, x2] with 0 < θ ≤ π. Recall that en is a polynomial of
degree n+1 then so is cos[(n+1) cos−1 x]. Since these two polynomials agree
in [−1, x2], (2.71) must also hold for all x in [−1, 1].

Definition 2.3. The Chebyshev polynomial (of the first kind) of degree n,
Tn is defined by

Tn(x) = cosnθ, x = cos θ, 0 ≤ θ ≤ π. (2.72)

Note that (2.72) only defines Tn for x ∈ [−1, 1]. However, once the
coefficients of this polynomial are determined we can define it for any real
(or complex) x.

Using the trigonometry identity

cos(n+ 1)θ + cos(n− 1)θ = 2 cosnθ cos θ, (2.73)

we immediately get

Tn+1(cos θ) + Tn−1(cos θ) = 2Tn(cos θ) · cos θ (2.74)

and going back to the x variable we obtain the recursion formula

T0(x) = 1,

T1(x) = x,

Tn+1(x) = 2xTn(x)− Tn−1(x), n ≥ 1,

(2.75)

44 CHAPTER 2. FUNCTION APPROXIMATION

which makes it more evident the Tn for n = 0, 1, . . . are indeed polynomials
of exactly degree n. Let us generate a few of them.

T0(x) = 1,

T1(x) = x,

T2(x) = 2x · x− 1 = 2x2 − 1,

T3(x) = 2x · (2x2 − 1)− x = 4x3 − 3x,

T4(x) = 2x(4x3 − 3x)− (2x2 − 1) = 8x4 − 8x2 + 1

T5(x) = 2x(8x4 − 8x2 + 1)− (4x3 − 3x) = 16x5 − 20x3 + 5x.

(2.76)

From these few Chebyshev polynomials, and from (2.75), we see that

Tn(x) = 2n−1xn + lower order terms (2.77)

and that Tn is an even (odd) function of x if n is even (odd), i.e.

Tn(−x) = (−1)nTn(x). (2.78)

The Chebyshev polynomials Tn, for n = 1, 2, . . . , 6 are plotted in Fig. 2.7.
Going back to (2.71), since the leading order coefficient of en is 1 and that
of Tn+1 is 2n, it follows that ∥en∥∞ = 2−n. Therefore

p∗n(x) = xn+1 − 1

2n
Tn+1(x) (2.79)

is the best uniform approximation of xn+1 in [−1, 1] by polynomials of degree
at most n. Equivalently, as noted in the beginning of this section, the monic
polynomial of degree n with smallest supremum norm in [−1, 1] is

T̃n(x) =
1

2n−1
Tn(x). (2.80)

Hence, for any other monic polynomial p of degree n

max
x∈[−1,1]

|p(x)| > 1

2n−1
. (2.81)

The zeros and extremal points of Tn are easy to find. Because Tn(x) =
cosnθ and 0 ≤ θ ≤ π, the zeros occur when θ is an odd multiple of π/2.
Therefore,

x̄j = cos

(
(2j + 1)

n

π

2

)
j = 0, . . . , n− 1 (2.82)

2.4. CHEBYSHEV POLYNOMIALS 45

1 0 1
1

0

1
T1

1 0 1
1

0

1

T2

1 0 1
1

0

1

T3

1 0 1
1

0

1
T4

1 0 1
1

0

1
T5

1 0 1
1

0

1
T6

Figure 2.7: The Chebyshev polynomials Tn for n = 1, 2, 3, 4, 5, 6.

are the zeros of Tn.
The extremal points of Tn (the points x where Tn(x) = ±1) correspond

to nθ = jπ for j = 0, 1, . . . , n, that is

xj = cos

(
jπ

n

)
, j = 0, 1, . . . , n. (2.83)

These points are called Chebyshev, Chebyshev-Lobatto, or Gauss-Lobatto
points and are very useful in applications. We will simply call them Cheby-
shev points or Chebyshev nodes. Figure 2.8 shows the Chebyshev nodes for
n = 16. Note that they are more clustered at the end points of the interval
and that xj for j = 1, . . . , n− 1 are local extremal points. Therefore

T ′n(xj) = 0, for j = 1, . . . , n− 1. (2.84)

In other words, the Chebyshev points (2.83) are the n − 1 zeros of T ′n plus
the end points x0 = 1 and xn = −1.

Using the Chain Rule we can differentiate Tn with respect to x:

T ′n(x) = −n sinnθ
dθ

dx
= n

sinnθ

sin θ
, (x = cos θ). (2.85)

46 CHAPTER 2. FUNCTION APPROXIMATION

y

x−1 1

Figure 2.8: The Chebyshev nodes (red dots) xj = cos(jπ/n), j = 0, 1, . . . , n
for n = 16. The gray dots on the semi-circle correspond to the equispaced
angles θj = jπ/n, j = 0, 1, . . . , n.

Therefore

T ′n+1(x)

n+ 1
− T ′n−1(x)

n− 1
=

1

sin θ
[sin(n+ 1)θ − sin(n− 1)θ] (2.86)

and since sin(n+ 1)θ − sin(n− 1)θ = 2 sin θ cosnθ, we get that

T ′n+1(x)

n+ 1
− T ′n−1(x)

n− 1
= 2Tn(x). (2.87)

The polynomial

Un(x) =
T ′n+1(x)

n+ 1
=

sin(n+ 1)θ

sin θ
, (x = cos θ) (2.88)

is called the second kind Chebyshev polynomial of degree n. Thus, the
Chebyshev nodes (2.83) are the zeros of the polynomial

qn+1(x) = (1− x2)Un−1(x). (2.89)

Exercises

2.4.1. Prove that every polynomial p ∈ Pn has a unique representation of the
form

p(x) = a0 + a1T1(x) + . . .+ anTn(x). (2.90)

2.5. BIBLIOGRAPHIC NOTES 47

2.4.2. Prove that for all nonnegative integers m and n and all x ∈ [−1, 1]

2Tm(x)Tn(x) = Tm+n(x) + T|m−n|(x). (2.91)

2.4.3. Prove that for all nonnegative integers m and n and all x ∈ [−1, 1]
the Chebyshev polynomial commute under composition:

Tm(x)(Tn(x)) = Tn(x)(Tm(x)) = Tmn(x). (2.92)

2.4.4. Show that for all x ∈ [−1, 1]

Tn(x) =
1

2

(
x+
√
x2 − 1

)n
+

1

2

(
x−
√
x2 − 1

)n
. (2.93)

Hint: use cosnθ = 1
2
(eiθ)n + 1

2
(e−iθ)n and Euler’s formula.

2.4.5. Ontain the following integration formula for n ≥ 2∫
Tn(x)dx =

1

2

(
Tn+1(x)

n+ 1
− Tn−1(x)

n− 1

)
+ C (2.94)

2.5 Bibliographic Notes

Section 2.1. A simple proof that all norms on a finite dimensional, vector
space are equivalent can be found in [Hac94], Section 2.6.

Section 2.2. A historical account of the invention of Bezier curves and sur-
faces used in CAD is given by G. Farin [Far02]. The excellent book on
approximation theory by Rivlin [Riv81] contains Berstein’s proof of Weier-
strass theorem. Other fine textbooks on approximation theory that are the
main sources for this chapter and the next one are the classical books by
Cheney [Che82] and Davis [Dav75]. There are many proofs of Weierstrass
approximation theorem. One of great simplicity, due to H. Lebesgue, is
masterfully presented by de la Vallée Poussin in his lectures on function ap-
proximation [dLVP19].

Section 2.3. This section follows the material on best approximation in
[Riv81] (Introduction and Chapter 1) and in [Dav75] (Chapter 7). Exam-
ple 2.1 is from Rivlin’s book [Riv81].

48 CHAPTER 2. FUNCTION APPROXIMATION

Section 2.4. The construction of the solution to the best uniform approx-
imation of xn+1 by polynomials of degree at most n, or equivalently the
polynomial of degree ≤ n that deviates the least from zero, is given in
[Riv81, Tim94]. In particular, Timan [Tim94] points out that Chebyshev
arrived at his equi-oscillation theorem by considering this particular prob-
lem. An excellent reference for Chebyshev polynomials is the monograph by
Rivlin [Riv20].

Chapter 3

Interpolation

One of the most useful tools for approximating a function or a given data
set is interpolation, where the approximating function is required to coincide
with a give set of values. In this chapter, we focus on (algebraic) polynomial
and piece-wise polynomial interpolation (splines), and trigonometric inter-
polation.

3.1 Polynomial Interpolation

The polynomial interpolation problem can be stated as follows: Given n+ 1
data points, (x0, f0), (x1, f1)..., (xn, fn), where x0, x1, . . . , xn are distinct, find
a polynomial pn ∈ Pn, which satisfies the interpolation conditions:

pn(x0) = f0,
pn(x1) = f1,

...
pn(xn) = fn.

The points x0, x1, . . . , xn are called interpolation nodes and the values f0, f1, . . . , fn
are data supplied to us or they can come from a function f we would like
to approximate, in which case fj = f(xj) for j = 0, 1, . . . , n. Figure 3.1
illustrates the interpolation problem for n = 6.

Let us represent such polynomial as pn(x) = a0+a1x+ · · ·+anxn. Then,
the interpolation conditions imply

a0 + a1x0 + · · ·+ anx
n
0 = f0,

49

50 CHAPTER 3. INTERPOLATION

x

pn(x)

Figure 3.1: Given the data points (x0, f0), . . . , (xn, fn) (, n = 6), the poly-
nomial interpolation problem consists in finding a polynomial pn ∈ Pn such
that pn(xj) = fj, for j = 0, 1, . . . , n.

a0 + a1x1 + · · ·+ anx
n
1 = f1,

...

a0 + a1xn + · · ·+ anx
n
n = fn.

This is a linear system of n+1 equations in n+1 unknowns (the polynomial
coefficients a0, a1, . . . , an). In matrix form:

1 x0 x20 · · ·xn0
1 x1 x21 · · ·xn1
...
1 xn x2n · · ·xnn



a0
a1
...
an

 =


f0
f1
...
fn.

 (3.1)

Does this linear system have a solution? Is this solution unique? The answer
is yes to both. Here is a simple proof. Take fj = 0 for j = 0, 1, . . . , n. Then
pn(xj) = 0, for j = 0, 1, ..., n but pn is a polynomial of degree at most n, it
cannot have n+1 zeros unless pn ≡ 0, which implies a0 = a1 = · · · = an = 0.
That is, the homogenous problem associated with (3.1) has only the trivial
solution. Therefore, (3.1) has a unique solution.

Example 3.1. As an illustration let us consider interpolation by a polyno-
mial p1 ∈ P1. Suppose we are given (x0, f0) and (x1, f1) with x0 ̸= x1. We

3.1. POLYNOMIAL INTERPOLATION 51

wrote p1 explicitly in (1.2) [with x0 = a and x1 = b]. We write it now in a
different form:

p1(x) =

(
x− x1
x0 − x1

)
f0 +

(
x− x0
x1 − x0

)
f1. (3.2)

Clearly, this polynomial has degree at most 1 and satisfies the interpolation
conditions:

p1(x0) = f0, (3.3)

p1(x1) = f1. (3.4)

Example 3.2. Given (x0, f0), (x1, f1), and (x2, f2), with x0, x1 and x2 dis-
tinct, let us construct p2 ∈ P2 that interpolates these points. The form we
have used for p1 in (3.2) is suggestive of how we can write p2:

p2(x) =
(x− x1)(x− x2)
(x0 − x1)(x0 − x2)

f0+
(x− x0)(x− x2)
(x1 − x0)(x1 − x2)

f1+
(x− x0)(x− x1)
(x2 − x0)(x2 − x1)

f2.

If we define

l0(x) =
(x− x1)(x− x2)
(x0 − x1)(x0 − x2)

, (3.5)

l1(x) =
(x− x0)(x− x2)
(x1 − x0)(x1 − x2)

, (3.6)

l2(x) =
(x− x0)(x− x1)
(x2 − x0)(x2 − x1)

, (3.7)

then we simply have

p2(x) = l0(x)f0 + l1(x)f1 + l2(x)f2. (3.8)

Note that each of the polynomials (3.5), (3.6), and (3.7) are exactly of degree
2 and they satisfy lj(xk) = δjk

1. Therefore, it follows that p2 given by (3.8)
satisfies the desired interpolation conditions:

p2(x0) = f0,

p2(x1) = f1,

p2(x2) = f2.

(3.9)

1δjk is the Kronecker delta, i.e. δjk = 0 if k ̸= j and 1 if k = j.

52 CHAPTER 3. INTERPOLATION

We can now write down the polynomial pn of degree at most n that
interpolates n+1 given values, (x0, f0), . . . , (xn, fn), where the interpolation
nodes x0, . . . , xn are assumed distinct. Define

lj(x) =
(x− x0) · · · (x− xj−1)(x− xj+1) · · · (x− xn)

(xj − x0) · · · (xj − xj−1)(xj − xj+1) · · · (xj − xn)

=
n∏

k=0
k ̸=j

(x− xk)
(xj − xk)

, for j = 0, 1, ..., n.
(3.10)

These polynomials are called (polynomial) cardinal functions or fundamental
polynomials of degree n. For simplicity, we are omitting in the notation their
dependence on the n+ 1 nodes x0, x1, . . . , xn. Since lj(xk) = δjk,

pn(x) = l0(x)f0 + l1(x)f1 + · · ·+ ln(x)fn =
n∑

j=0

lj(x)fj (3.11)

interpolates the given data, i.e., it satisfies pn(xj) = fj for j = 0, 1, 2, . . . , n.
Relation (3.11) is called the Lagrange form of the interpolating polynomial.

The following result summarizes our discussion.

Theorem 3.1. Given the n+ 1 values (x0, f0), . . . , (xn, fn), for x0, x1, ..., xn
distinct, there is a unique polynomial pn of degree at most n such that pn(xj) =
fj for j = 0, 1, . . . , n.

Proof. pn in (3.11) is of degree at most n and interpolates the data. Unique-
ness follows from the fundamental theorem of algebra, as noted earlier. Sup-
pose there is another polynomial qn of degree at most n such that qn(xj) = fj
for j = 0, 1, . . . , n. Consider r = pn − qn. This is a polynomial of degree at
most n and r(xj) = pn(xj)− qn(xj) = fj− fj = 0 for j = 0, 1, 2, . . . , n, which
is impossible unless r ≡ 0. This implies qn = pn.

3.1.1 Equispaced and Chebyshev Nodes

There are two special sets of nodes that are particularly important in ap-
plications. The uniform or equispaced nodes in an interval [a, b] are given
by

xj = a+ jh, j = 0, 1, . . . , n with h = (b− a)/n. (3.12)

3.2. CONNECTION TO BEST UNIFORM APPROXIMATION 53

These nodes yield very accurate and efficient trigonometric polynomial inter-
polation but are generally not good for (algebraic) polynomial interpolation
as we will see later.

One of the preferred set of nodes for high order, accurate, and computa-
tionally efficient polynomial interpolation is the Chebyshev nodes, introduced
in Section 2.4. In [−1, 1], they are given by

xj = cos

(
jπ

n

)
, j = 0, . . . , n, (3.13)

and are the extremal points of the Chebyshev polynomial (2.72) of degree n.
Note that these nodes are obtained from the equispaced points θj = j(π/n),
j = 0, 1, . . . , n in [0, π] by the one-to-one relation x = cos θ, for θ ∈ [0, π].
As defined in (3.13), the nodes go from 1 to -1 so sometimes the alternative
definition xj = − cos(jπ/n) is used. The Chebyshev nodes are not equally
spaced and tend to cluster toward the end points of the interval (see Fig. 2.8).
For a general interval [a, b], we can do the simple change of variables

x =
1

2
(a+ b) +

1

2
(b− a)t, t ∈ [−1, 1], (3.14)

to obtain the corresponding Chebyshev nodes in [a, b].

3.2 Connection to Best Uniform Approxima-

tion

Given a continuous function f in [a, b], its best uniform approximation p∗n in
Pn is characterized by an error, en = f − p∗n, which equioscillates, as defined
in (2.46), at least n + 2 times. Therefore en has a minimum of n + 1 zeros
and consequently, there exists x0, . . . , xn such that

p∗n(x0) = f(x0),

p∗n(x1) = f(x1),

...

p∗n(xn) = f(xn).

(3.15)

In other words, p∗n is the polynomial of degree at most n that interpolates
the function f at n+1 zeros of en. Rather than finding these zeros, a natural

54 CHAPTER 3. INTERPOLATION

and more practical question is: given (x0, f(x0)), (x1, f(x1)), . . . , (xn, f(xn)),
where x0, . . . , xn in [a, b] are distinct, how close is the interpolating polyno-
mial pn ∈ Pn of f at these nodes to the best uniform approximation p∗n ∈ Pn

of f?
To obtain a bound for ∥pn−p∗n∥∞ we note that pn−p∗n is a polynomial of

degree at most n which interpolates f − p∗n. Therefore, we can use Lagrange
formula to represent it:

pn(x)− p∗n(x) =
n∑

j=0

lj(x)[f(xj)− p∗n(xj)]. (3.16)

It then follows that

∥pn − p∗n∥∞ ≤ Λn∥f − p∗n∥∞, (3.17)

where

Λn = max
a≤x≤b

n∑
j=0

|lj(x)| (3.18)

is called the Lebesgue constant and depends only on the interpolation nodes,
not on f . On the other hand, we have that

∥f − pn∥∞ = ∥f − p∗n − pn + p∗n∥∞ ≤ ∥f − p∗n∥∞ + ∥pn − p∗n∥∞. (3.19)

Using (3.17) we obtain

∥f − pn∥∞ ≤ (1 + Λn)∥f − p∗n∥∞. (3.20)

This inequality connects the interpolation error ∥f − pn∥∞ with the best
approximation error ∥f−p∗n∥∞. What happens to these errors as we increase
n? To make it more concrete, suppose we have a triangular array of nodes
as follows:

x
(0)
0

x
(1)
0 x

(1)
1

x
(2)
0 x

(2)
1 x

(2)
2

...

x
(n)
0 x

(n)
1 . . . x

(n)
n

...

(3.21)

3.3. BARYCENTRIC FORMULA 55

where a ≤ x
(n)
0 < x

(n)
1 < · · · < x

(n)
n ≤ b for n = 0, 1, Let pn be the

interpolating polynomial of degree at most n of f at the nodes corresponding
to the n+1 row of (3.21). By the Weierstrass Approximation Theorem (p∗n is
a better approximation or at least as good as that provided by the Bernstein
polynomial),

∥f − p∗n∥∞ → 0 as n→∞. (3.22)

However, it can be proved that

Λn >
2

π2
log n− 1 (3.23)

and hence the Lebesgue constant is not bounded in n. Therefore, we cannot
conclude from (3.20) and (3.22) that ∥f − pn∥∞ → 0 as n → ∞, i.e. that
the interpolating polynomial, as we add more and more nodes, converges
uniformly to f . In fact, given any distribution of points, organized in a
triangular array (3.21), it is possible to construct a continuous function f
for which its interpolating polynomial pn (corresponding to the nodes on the
n-th row of (3.21)) will not converge uniformly to f as n→∞.

Convergence of polynomial interpolation depends on both the regularity
of f and the distribution of the interpolation nodes. We will discuss this
further in Section 3.8.

3.3 Barycentric Formula

The Lagrange form of the interpolating polynomial

pn(x) =
n∑

j=0

lj(x)fj

is not convenient for computations. The evaluation of each lj costs O(n)
operations and there are n of these evaluations for a total cost of O(n2) op-
erations. Also, if we want to increase the degree of the polynomial we cannot
reuse the work done in getting and evaluating a lower degree one. How-
ever, we can obtain a more efficient formula by rewriting the interpolating
polynomial in the following way. Let

ω(x) = (x− x0)(x− x1) · · · (x− xn). (3.24)

56 CHAPTER 3. INTERPOLATION

Then, differentiating this polynomial of degree n+1 and evaluating at x = xj
we get

ω′(xj) =
n∏

k=0
k ̸=j

(xj − xk), for j = 0, 1, . . . , n. (3.25)

Therefore, each of the fundamental polynomials may be written as

lj(x) =

ω(x)

x− xj
ω′(xj)

=
ω(x)

(x− xj)ω′(xj)
, (3.26)

for x ̸= xj, j = 0, 1, . . . , n and lj(xj) = 1 follows from L’Hôpital rule.

Defining

λj =
1

ω′(xj)
, for j = 0, 1, . . . , n, (3.27)

we can recast Lagrange formula as

pn(x) = ω(x)
n∑

j=0

λj
x− xj

fj. (3.28)

This modified Lagrange formula is computationally more efficient than the
original formula if we need to evaluate pn at more than one point. This is
because the λj’s only depend on the interpolation nodes and can be precom-
puted for a one-time cost of O(n2) operations. After that, each evaluation of
pn only costs O(n) operations. Unfortunately, the λj’s as defined in (3.27)
grow exponentially with the length of the interpolation interval so that (3.28)
can only be used for moderate size n, without having to rescale the interval.
We can eliminate this problem by noting that from (3.11) with f(x) ≡ 1 it
follows that

1 =
n∑

j=0

lj(x) = ω(x)
n∑

j=0

λj
x− xj

. (3.29)

Dividing (3.28) by (3.29), we get the so-called barycentric formula for inter-

3.3. BARYCENTRIC FORMULA 57

polation:

pn(x) =

n∑
j=0

λj
x− xj

fj

n∑
j=0

λj
x− xj

, for x ̸= xj, j = 0, 1, . . . , n. (3.30)

If x coincides with one of the nodes xj, the interpolation property pn(xj) = fj
should be used.

The numbers λj depend only on the nodes x0, x1, ..., xn and not on given
values f0, f1, ..., fn. We can obtain them explicitly for both the Chebyshev
nodes (3.13) and for the equally spaced nodes (3.12) and can be precomputed
efficiently for a general set of nodes.

3.3.1 Barycentric Weights for Chebyshev Nodes

The Chebyshev nodes are the zeros of qn+1(x) = (1 − x2)Un−1(x), where
Un−1(x) = sinnθ/ sin θ, x = cos θ is the Chebyshev polynomial of the second
kind of degree n − 1, with leading order coefficient 2n−1 [see Section 2.4].
Since the λj’s can be defined up to a multiplicative constant (which would
cancel out in the barycentric formula) we can take λj to be proportional to
1/q′n+1(xj). Since

qn+1(x) = sin θ sinnθ, (3.31)

differentiating we get

q′n+1(x) = −n cosnθ − sinnθ cot θ. (3.32)

Thus,

q′n+1(xj) =


−2n, for j = 0,

−(−1)jn, for j = 1, . . . , n− 1,

−2n (−1)n for j = n.

(3.33)

We can factor out −n in (3.33) to obtain the barycentric weights for the
Chebyshev points

λj =


1
2
, for j = 0,

(−1)j, for j = 1, . . . , n− 1,
1
2
(−1)n for j = n.

(3.34)

58 CHAPTER 3. INTERPOLATION

Note that for a general interval [a, b], the term (a + b)/2 in the change of
variables (3.14) cancels out in (3.25) but we gain an extra factor of [(b−a)/2]n.
However, this factor can be omitted as it does not alter the barycentric
formula. Therefore, the same barycentric weights (3.34) can also be used for
the Chebyshev nodes in an interval [a, b].

3.3.2 Barycentric Weights for Equispaced Nodes

For equispaced points, xj = x0 + jh, j = 0, 1, . . . , n we have

λj =
1

(xj − x0) · · · (xj − xj−1)(xj − xj+1) · · · (xj − xn)
=

1

(jh)[(j − 1)h] · · · (h)(−h)(−2h) · · · (j − n)h
=

1

(−1)n−jhn[j(j − 1) · · · 1][1 · 2 · · · (n− j)]

=
1

(−1)n−jhnn!
n!

j!(n− j)!

=
1

(−1)nhnn! (−1)
j

(
n

j

)
.

We can omit the factor 1/((−1)nhnn!) because it cancels out in the barycen-
tric formula. Thus, for equispaced nodes we can use

λj = (−1)j
(
n

j

)
, j = 0, 1, . . . n. (3.35)

Note that in this case the λj’s grow very rapidly with n, limiting the use
of the barycentric formula to only moderate size n for equispaced nodes.
However, as we will see, equispaced nodes are not a good choice for accurate,
high order polynomial interpolation in the first place.

3.3. BARYCENTRIC FORMULA 59

3.3.3 Barycentric Weights for General Sets of Nodes

The barycentric weights for a general set of nodes can be computed efficiently
by using the definition (3.27), i.e.

λj =
1

n∏
k=0
k ̸=j

(xj − xk)
, j = 0, 1, . . . n (3.36)

and by noting the following. Suppose we have the barycentric weights for the
nodes x0, x1, . . . , xm−1 and let us call these λ

(m−1)
j , for j = 0, 1, . . . ,m − 1.

Then, the barycentric weights λ
(m)
j for the set of nodes x0, x1, . . . , xm can be

computed reusing the previous values:

λ
(m)
j =

λ
(m−1)
j

xj − xm
, for j = 0, 1, . . .m− 1 (3.37)

and for j = m we employ directly the definition:

λ(m)
m =

1
m−1∏
k=0

(xm − xk)
. (3.38)

Algorithm 3.1 shows the procedure in pseudo-code.

Algorithm 3.1 Barycentric weights for general nodes

1: λ
(0)
0 ← 1

2: for m = 1, . . . , n do
3: for j = 0, . . . ,m− 1 do

4: λ
(m)
j ← λ

(m−1)
j

xj−xm

5: end for
6: λ

(m)
m ← 1

m−1∏
k=0

(xm − xk)

7: end for

60 CHAPTER 3. INTERPOLATION

3.4 Newton’s Form and Divided Differences

There is another representation of the interpolating polynomial pn that is
convenient for the derivation of some numerical methods and for the eval-
uation of relatively low order pn. The idea of this representation, due to
Newton, is to use successively lower order polynomials for constructing pn.

Suppose we have gotten pn−1 ∈ Pn−1, the interpolating polynomial of
(x0, f0), (x1, f1), . . . , (xn−1, fn−1) and we would like to obtain pn ∈ Pn, the in-
terpolating polynomial of (x0, f0), (x1, f1), . . . , (xn, fn) by reusing pn−1. The
difference between these polynomials, r = pn−pn−1, is a polynomial of degree
at most n. Moreover, for j = 0, . . . , n− 1

r(xj) = pn(xj)− pn−1(xj) = fj − fj = 0. (3.39)

Therefore, r can be factored as

r(x) = cn(x− x0)(x− x1) · · · (x− xn−1). (3.40)

The constant cn is called the n-th divided difference with respect to x0, x1, ..., xn,
and is usually denoted by f [x0, . . . , xn]. Thus, we have

pn(x) = pn−1(x) + f [x0, . . . , xn](x− x0)(x− x1) · · · (x− xn−1). (3.41)

By the same argument, we have

pn−1(x) = pn−2(x) + f [x0, . . . , xn−1](x− x0)(x− x1) · · · (x− xn−2), (3.42)

etc. So we arrive at Newton’s form of pn:

pn(x) = f [x0] + f [x0, x1](x− x0) + . . .+ f [x0, . . . , xn](x− x0) · · · (x− xn−1).
(3.43)

Note that for n = 1,

p1(x) = f [x0] + f [x0, x1](x− x0) (3.44)

and the interpolation property gives

f0 = p1(x0) = f [x0], (3.45)

f1 = p1(x1) = f [x0] + f [x0, x1](x1 − x0). (3.46)

(3.47)

3.4. NEWTON’S FORM AND DIVIDED DIFFERENCES 61

Therefore

f [x0] = f0, (3.48)

f [x0, x1] =
f1 − f0
x1 − x0

, (3.49)

and

p1(x) = f0 +

(
f1 − f0
x1 − x0

)
(x− x0) . (3.50)

Define f [xj] = fj for j = 0, 1, ...n. The following identity will allow us to
compute all the required divided differences, order by order.

Theorem 3.2.

f [x0, x1, ..., xk] =
f [x1, x2, ..., xk]− f [x0, x1, ..., xk−1]

xk − x0
. (3.51)

Proof. Let pk−1 be the interpolating polynomial of degree at most k − 1 of
(x0, f0), . . . , (xk−1, fk−1) and qk−1 the interpolating polynomial of degree at
most k − 1 of (x1, f1), . . . , (xk, fk). Then

p(x) = qk−1(x) +

(
x− xk
xk − x0

)
[qk−1(x)− pk−1(x)]. (3.52)

is a polynomial of degree at most k and for j = 1, 2,k − 1

p(xj) = fj +

(
xj − xk
xk − x0

)
[fj − fj] = fj.

Moreover, p(x0) = pk−1(x0) = f0 and p(xk) = qk−1(xk) = fk. Therefore,
p = pk, the interpolation polynomial of degree at most k of the points
(x0, f0), (x1, f1), . . . , (xk, fk). From (3.43), the leading order coefficient of
pk is f [x0, ..., xk]. Equating this with the leading order coefficient of p

f [x1, ..., xk]− f [x0, x1, ...xk−1]
xk − x0

,

gives (3.51).

To obtain the divided differences of pn we construct a table using (3.51),
computing all first order divided differences, then the second order ones, etc.
This process is illustrated in Table 3.1 for n = 3.

62 CHAPTER 3. INTERPOLATION

Table 3.1: Table of divided differences for n = 3.

xj fj 1st order 2nd order 3rd order
x0 f0
x1 f1 f [x0, x1] =

f1−f0
x1−x0

x2 f2 f [x1, x2] =
f2−f1
x2−x1

f [x0, x1, x2] =
f [x1,x2]−f [x0,x1]

x2−x0

x3 f3 f [x2, x3] =
f3−f2
x3−x2

f [x1, x2, x3] =
f [x2,x3]−f [x1,x2]

x3−x1
f [x0, x1, x2, x3] =

f [x1,x2,x3]−f [x0,x1,x2]
x3−x0

Example 3.3. Take the data set (0, 1), (1, 2), (2, 5), (3, 10). Then

xj fj
0 1

1 2 2−1
1−0 = 1

2 5 5−2
2−1 = 3 3−1

2−0 = 1

3 10 10−5
3−2 = 5 5−3

3−1 = 1 1−1
3−0 = 0

so

p3(x) = 1 + 1(x− 0) + 1(x− 0)(x− 1) + 0(x− 0)(x− 1)(x− 2) = 1 + x2.

After computing the divided differences, we need to evaluate pn at a given
point x. This can be done efficiently by suitably factoring it. For example,
for n = 3 we have

p3(x) = c0 + c1(x− x0) + c2(x− x0)(x− x1) + c3(x− x0)(x− x1)(x− x2)
= c0 + (x− x0) {c1 + (x− x1)[c2 + (x− x2)c3]}

For general n we can use the Horner-like scheme in Algorithm 3.2 to get y =
pn(x), given the divided difference coefficients c0, c1, . . . , cn and the evaluation
point x.

Algorithm 3.2 Horner Scheme to evaluate pn at x in Newton’s form

1: y ← cn
2: for k = n− 1, . . . , 0 do
3: y ← ck + (x− xk) ∗ y
4: end for

3.5. CAUCHY REMAINDER 63

3.5 Cauchy Remainder

We now assume the data fj = f(xj), j = 0, 1, . . . , n come from a sufficiently
smooth function f , which we are trying to approximate with an interpolating
polynomial pn, and we focus on the error f − pn of such approximation.

In Chapter 1 we proved that if x0, x1, and x are in [a, b] and f ∈ C2[a, b]
then

f(x)− p1(x) =
1

2
f ′′(ξ(x))(x− x0)(x− x1),

where p1 is the polynomial of degree at most 1 that interpolates (x0, f(x0)),
(x1, f(x1)) and ξ(x) ∈ (a, b). The general result about the interpolation error
is the following theorem:

Theorem 3.3. Let f ∈ Cn+1[a, b], x0, x1, ..., xn ∈ [a, b] distinct, x ∈ [a, b],
and pn be the interpolation polynomial of degree at most n of f at x0, ..., xn.
Then,

f(x)− pn(x) =
1

(n+ 1)!
f (n+1)(ξ(x))(x− x0)(x− x1) · · · (x− xn), (3.53)

where min{x0, . . . , xn, x} < ξ(x) < max{x0, . . . , xn, x}.

Proof. The right hand side of (3.53) is known as the Cauchy remainder.
For x equal to one of the nodes xj the result is trivially true. Take x fixed

not equal to any of the nodes and define

ϕ(t) = f(t)− pn(t)− [f(x)− pn(x)]
(t− x0)(t− x1) · · · (t− xn)
(x− x0)(x− x1) · · · (x− xn)

. (3.54)

Clearly, ϕ ∈ Cn+1[a, b] and vanishes at t = x0, x1, ..., xn, x. That is, ϕ has at
least n+2 distinct zeros. Applying Rolle’s theorem n+1 times we conclude
that there exists a point ξ(x) ∈ (a, b) such that ϕ(n+1)(ξ(x)) = 0 (see Fig. 3.2
for an illustration of the n = 3 case). Therefore,

0 = ϕ(n+1)(ξ(x)) = f (n+1)(ξ(x))− [f(x)− pn(x)]
(n+ 1)!

(x− x0)(x− x1) · · · (x− xn)

from which (3.53) follows. Note that the repeated application of Rolle’s theo-
rem implies that ξ(x) is between min{x0, x1, ..., xn, x} and max{x0, x1, ..., xn, x}.

64 CHAPTER 3. INTERPOLATION

x0 x1 x x2 x3

φ(t)

ξ1 ξ2 ξ3 ξ4

φ′(t)

ξ5 ξ6 ξ7

φ′′(t)

ξ8 ξ ξ9

φ′′′(t)

Figure 3.2: Successive application of Rolle’s Theorem on ϕ(t) for Theo-
rem 3.3, n = 3.

3.5. CAUCHY REMAINDER 65

Example 3.4. Let us find an approximation to cos(0.8π) using interpolation
of the values (0, 1), (0.5, 0), (1,−1), (1.5, 0), (2, 1). We first employ Newton’s
divided differences to get p4.

xj fj
0 1

0.5 0 −2
1 −1 −2 0

1.5 0 2 4 8/3

2 1 2 0 −8/3 −8/3
Thus,

p4(x) = 1− 2x+
8

3
x(x− 0.5)(x− 1)− 8

3
x(x− 0.5)(x− 1)(x− 1.5).

Then, cos(0.8π) ≈ p4(0.8) = −0.8176. Let us find an upper bound for the
error using the Cauchy remainder. Since f(x) = cos(πx), |f 5(x)| ≤ π5 for
all x. Therefore,

| cos(0.8π)− p4(0.8)| ≤
π5

5!
|(0.8− 0)(0.8− 0.5)(0.8− 1)(0.8− 1.5)(0.8− 2)|

≈ 0.10.

(3.55)

This is a significant overestimate of the actual error | cos(0.8π)− p4(0.8)| ≈
0.0086 because we replaced f (5)(ξ(x)) with a global bound of the fifth deriva-
tive. Figure 3.3 shows a plot of f and p4. Note that the interpolation nodes
are equispaced and the largest error is produced toward the end of the inter-
polation interval.

We have no control on the term f (n+1)(ξ(x)) but if we have freedom to
select the interpolation nodes x0, . . . , xn, we can choose them so that the
node polynomial

w(x) = (x− x0)(x− x1) · · · (x− xn) (3.56)

has the smallest possible infinity norm. In [−1, 1], we know the answer
for we have proved in Section 2.4 that the monic Chebyshev polynomial

66 CHAPTER 3. INTERPOLATION

0.0 0.5 1.0 1.5 2.0

−1

0

1 f(x) = cos(πx)

p4(x)

Figure 3.3: f(x) = cos(πx) in [0, 2] and its interpolating polynomial p4 at
xj = j/2, j = 0, 1, 2, 3, 4.

T̃n+1 = Tn+1/2
n is the monic polynomial of degree n+1 with smallest infinity

norm in [−1, 1]. Hence, if the interpolation nodes are taken to be the zeros

of T̃n+1, namely

xj = cos

(
(2j + 1)

n+ 1

π

2

)
, j = 0, 1, . . . n. (3.57)

∥w∥∞ = maxx∈[−1,1] |w(x)| is minimized and ∥w∥∞ = 2−n. Figure 3.4 shows a
plot of w for equispaced nodes and for the nodes (3.57) for n = 10 in [−1, 1].
For equispaced nodes, w oscillates unevenly with much larger (absolute) val-
ues toward the end of the interval than around the center. In contrast, for
the nodes (3.57), w equioscillates between ±1/2n, which is a small fraction
of maximum amplitude of the equispaced-node w. The following theorem
summarizes this observation.

Theorem 3.4. Let Πn be the interpolating polynomial of degree at most n of
f ∈ Cn+1[−1, 1] with respect to the nodes (3.57) then

∥f − Πn∥∞ ≤
1

2n(n+ 1)!
∥fn+1∥∞. (3.58)

3.5. CAUCHY REMAINDER 67

−1 0 1

x

−0.0075

0

0.0075
w(x) equispaced
w(x) Chebyshev (zeros)

Figure 3.4: The node polynomial w(x) = (x−x0) · · · (x−xn), for equispaced
nodes and for the zeros of Tn+1 taken as nodes, n = 10.

The Chebyshev nodes,

xj = cos

(
jπ

n

)
, j = 0, 1, . . . , n, (3.59)

which are the extremal points and not the zeros of the corresponding Cheby-
shev polynomial, do not minimize maxx∈[−1,1] |w(x)|. However, they are
nearly optimal. More precisely, since the Chebyshev nodes (3.59) are the
zeros of the (monic) polynomial [see (2.89) and (3.31)]

1

2n−1
(1− x2)Un−1(x) =

1

2n−1
sin θ sinnθ, x = cos θ. (3.60)

We have that

∥w∥∞ = max
x∈[−1,1]

∣∣∣∣ 1

2n−1
(1− x2)Un−1(x)

∣∣∣∣ = 1

2n−1
. (3.61)

Thus, the Chebyshev nodes yield a ∥w∥∞ of no more than a factor of two
from the optimal value. Figure 3.5 compares w for equispaced nodes and for
the Chebyshev nodes. For the latter, w is qualitatively very similar to that
with the (3.57) nodes but, as we just proved, with an amplitude twice as
large.

68 CHAPTER 3. INTERPOLATION

−1 0 1

x

−0.0075

0

0.0075
w(x) equispaced
w(x) Chebyshev (extremal)

Figure 3.5: The node polynomial w(x) = (x−x0) · · · (x−xn), for equispaced
nodes and for the Chebyshev nodes, the extremal points of Tn, n = 10.

3.6 Divided Differences and Derivatives

We now relate divided differences to the derivatives of f using the Cauchy
remainder. Take an arbitrary point t distinct from x0, . . . , xn. Let pn+1 be
the interpolating polynomial of f at x0, . . . , xn, t and pn that at x0, . . . , xn.
Then, Newton’s formula (3.41) implies

pn+1(x) = pn(x) + f [x0, . . . , xn, t](x− x0)(x− x1) · · · (x− xn). (3.62)

Noting that pn+1(t) = f(t) we get

f(t) = pn(t) + f [x0, . . . , xn, t](t− x0)(t− x1) · · · (t− xn). (3.63)

Since t was arbitrary we can set t = x and obtain

f(x) = pn(x) + f [x0, . . . , xn, x](x− x0)(x− x1) · · · (x− xn), (3.64)

and upon comparing with the Cauchy remainder we get

f [x0, ..., xn, x] =
f (n+1)(ξ(x))

(n+ 1)!
. (3.65)

3.7. HERMITE INTERPOLATION 69

If we set x = xn+1 and relabel n+ 1 by k we have

f [x0, ..., xk] =
1

k!
f (k)(ξ), (3.66)

where min{x0, . . . , xk} < ξ < max{x0, . . . , xk}.
Suppose that we now let x1, ..., xk → x0. Then ξ → x0 and

lim
x1,...,xk→x0

f [x0, ..., xk] =
1

k!
f (k)(x0). (3.67)

We can use this relation to define a divided difference where there are
coincident nodes. For example f [x0, x1] when x0 = x1 by f [x0, x0] = f ′(x0),
etc. This is going to be very useful for interpolating both function and
derivative values.

3.7 Hermite Interpolation

The Hermite interpolation problem is the following: given values of f and
some of its derivatives at the nodes x0, x1, ..., xn, find the polynomial of small-
est degree interpolating those values. This polynomial is called the Hermite
interpolation polynomial and can be obtained with a minor modification to
Newton’s representation of the interpolating polynomial.

For example, suppose we look for a polynomial p of lowest degree which
satisfies the interpolation conditions:

p(x0) = f(x0),

p′(x0) = f ′(x0),

p(x1) = f(x1),

p′(x1) = f ′(x1).

We can view this problem as a limiting case of polynomial interpolation of
f at two pairs of coincident nodes, x0, x0, x1, x1 and we can use Newton’s
interpolation form to obtain p. The table of divided differences, in view of
(3.67), is

xj fj
x0 f(x0)
x0 f(x0) f ′(x0)
x1 f(x1) f [x0, x1] f [x0, x0, x1]
x1 f(x1) f ′(x1) f [x0, x1, x1] f [x0, x0, x1, x1]

(3.68)

70 CHAPTER 3. INTERPOLATION

and

p(x) = f(x0) + f ′(x0)(x− x0) + f [x0, x0, x1](x− x0)2
+ f [x0, x0, x1, x1](x− x0)2(x− x1).

(3.69)

Example 3.5. Let f(0) = 1, f ′(0) = 0 and f(1) =
√
2. Find the Hermite

interpolation polynomial.
We construct the table of divided differences as follows:

xj fj
0 1
0 1 f ′(0) = 0

1
√
2 (
√
2− 1)/(1− 0) =

√
2− 1 (

√
2− 1− 0)/(1− 0) =

√
2− 1

and therefore

p(x) = 1 + 0(x− 0) + (
√
2− 1)(x− 0)2 = 1 + (

√
2− 1)x2. (3.70)

3.8 Convergence of Polynomial Interpolation

From the Cauchy remainder formula

f(x)− pn(x) =
1

(n+ 1)!
f (n+1)(ξ(x))(x− x0)(x− x1) · · · (x− xn)

it is clear that the accuracy of the interpolating polynomial pn of f depends
on both the regularity of f and the distribution of the interpolation nodes
x0, x1, . . . , xn.

The function

f(x) =
1

1 + 25x2
x ∈ [−1, 1], (3.71)

provides a classical example, due to Runge, that illustrates the importance
of node distribution. It has an infinite number of continuous derivatives,
i.e. f ∈ C∞[−1, 1] (in fact f is real analytic in the whole real line, i.e.
it has a convergent Taylor series to f(x) for every x ∈ R). Nevertheless,
for the equispaced nodes (3.12) pn does not converge uniformly to f(x) as
n → ∞. In fact it diverges quite dramatically toward the end points of the
interval as Fig. 3.6 demonstrates. In contrast, as Fig. 3.7 shows, there is fast

3.8. CONVERGENCE OF POLYNOMIAL INTERPOLATION 71

−1 0 1

0

2
f(x)

p10(x)

−1 0 1

0

−60

f(x)

p20(x)

−1 0 1

0

2

f(x)− p10(x)

−1 0 1

0

−60

f(x)− p20(x)

Figure 3.6: Lack of convergence of the interpolant pn for f(x) = 1/(1+25x2)
in [−1, 1] using equispaced nodes. The first row shows plots of f and pn
(n = 10, 20) and the second row shows the corresponding error f − pn.

−1 0 1
0

1
f(x)

p10(x)

−1 0 1
0

1
f(x)

p20(x)

−1 0 1

0.00

0.15

f(x)− p10(x)

−1 0 1

0.00

0.15

f(x)− p20(x)

Figure 3.7: Convergence of the interpolant pn for f(x) = 1/(1 + 25x2) in
[−1, 1] using Chebyshev nodes. The first row shows plots of f and pn (n =
10, 20) and the second row shows the corresponding error f − pn.

72 CHAPTER 3. INTERPOLATION

−1 0 1

−5× 10−6

0

n = 10

Equispaced

−1 0 1

4× 10−12

n = 20

Equispaced

−1 0 1

−5× 10−7

5× 10−7
Chebyshev

−1 0 1

−10−14

10−14Chebyshev

Figure 3.8: Fast convergence of the interpolant pn for f(x) = e−x
2
in [−1, 1].

Plots of the error f − pn, n = 10, 20 for both the equispaced (first row) and
the Chebyshev nodes (second row).

and uniform convergence of pn to f when the Chebyshev nodes (3.13) are
employed.

Now consider

f(x) = e−x
2

, x ∈ [−1, 1]. (3.72)

The interpolating polynomial pn converges to f , even when equispaced nodes
are used. In fact, the convergence is noticeably fast. Figure 3.8 shows plots of
the error f − pn, n = 10, 20, for both equispaced and Chebyshev nodes. The
interpolant p10 has already more than 5 and 6 digits of accuracy for the eq-
uispaced and Chebyshev nodes, respectively. Note that the error when using
Chebyshev nodes is significantly smaller and more equidistributed through-
out the interval [−1, 1] than when using equispaced nodes. For the latter, as
we have seen earlier, the error is substantially larger toward the endpoints of
the interval than around the center.

What is so special about f(x) = e−x
2
? The function f(z) = e−z

2
, z ∈ C

is analytic in the entire complex plane2. Using complex variables analysis, it

2A function of a complex variable f(z) is said to be analytic in an open set D if it has

3.8. CONVERGENCE OF POLYNOMIAL INTERPOLATION 73

−1 0 1

−0.5255i

0

0.5255i

Figure 3.9: For uniform convergence of the interpolants pn, n = 1, 2, . . .
to f on [−1, 1], with equi-spaced nodes, f must be analytic in the shaded,
football-like region.

can be shown that if f is analytic in a sufficiently large region of the complex
plane containing [−1, 1] 3 then ∥f − pn∥∞ → 0. Just how large the region
of analyticity needs to be? it depends on the asymptotic distribution of the
nodes as n → ∞. We will show next that for equispaced nodes, f must
be analytic in the football-like region shown in Fig. 3.9 for pn to converge
uniformly to f in [−1, 1], as n → ∞. The Runge function (3.71) is not
analytic in this region (it has singularities at ±i/5) and hence the divergence
of pn. In contrast, for the Chebyshev nodes, it suffices that f be analytic in
any region containing [−1, 1], however thin this region might be, to guarantee
the uniform convergence of pn to f in [−1, 1], as n→∞.

Let us consider the interpolation error, evaluated at a complex point

a derivative at every point of D. If f is analytic in D then all its derivatives exist and are
analytic in D.

3Of course, the same arguments can be applied for a general interval [a, b].

74 CHAPTER 3. INTERPOLATION

z ∈ C 4:

f(z)− pn(z) = f(z)−
n∑

j=0

lj(z)f(xj). (3.73)

Employing (3.26), we can rewrite this as

f(z)− pn(z) = f(z)−
n∑

j=0

ω(z)

(z − xj)ω′(xj)
f(xj), (3.74)

where ω(z) = (z−x0)(z−x1) · · · (z−xn). Using the calculus of residues, the
right hand side of (3.74) can be expressed as a contour integral:

f(z)− pn(z) =
1

2πi

∮
C

ω(z)

ω(ξ)

f(ξ)

ξ − z dξ, (3.75)

where C is a positively oriented closed curve that encloses [−1, 1] and z but
not any singularity of f . The integrand has a simple pole at ξ = z with
residue f(z). It also has simple poles at ξ = xj for j = 0, 1, . . . , n with
corresponding residues −f(xj)ω(z)/[(z−xj)ω′(xj)], which produces −pn(z).
Expression (3.75) is called Hermite’s formula for the interpolation remainder.

To estimate |f(z)− pn(z)| using (3.75) we need to estimate |ω(z)|/|ω(ξ)|
for ξ ∈ C and z inside C. To this end, it is convenient to choose a contour C
on which |ω(ξ)| is approximately constant for sufficiently large n. Note that

|ω(ξ)| =
n∏

j=0

|ξ − xj| = exp

(
n∑

j=0

log |ξ − xj|
)
. (3.76)

In the limit as n→∞, we can view the interpolation nodes as a continuum
of a density ρ (or limiting distribution), with∫ 1

−1
ρ(x)dx = 1, (3.77)

so that, for sufficiently large n,

the total number of nodes in [α, β] = (n+ 1)

∫ β

α

ρ(x)dx, (3.78)

4The rest of this section uses complex variables theory.

3.8. CONVERGENCE OF POLYNOMIAL INTERPOLATION 75

for −1 ≤ α < β ≤ 1. Therefore, assuming the interpolation nodes have a
limiting distribution ρ, we have

1

n+ 1

n∑
j=0

log |ξ − xj| −−−→
n→∞

∫ 1

−1
log |ξ − x|ρ(x)dx. (3.79)

Let us define the function

ϕ(ξ) = −
∫ 1

−1
log |ξ − x|ρ(x)dx. (3.80)

Then, for sufficiently large n, |ω(z)|/|ω(ξ)| ≈ e−(n+1)[ϕ(z)−ϕ(ξ)]. The level
curves of ϕ, i.e. the set of points ξ ∈ C such that ϕ(ξ) = c, with c constant,
approximate large circles for very large and negative values of c. As c is
increased, the level curves shrink. Let z0 be the singularity of f closest to
the origin. Then, we can take any ϵ > 0 and select C to be the level curve
ϕ(ξ) = ϕ(z0)+ϵ so that f is analytic on and inside C. Take z inside C. From
(3.75), (3.79), and (3.80)

|f(z)− pn(z)| ≤
1

2π

∮
C

|ω(z)|
|ω(ξ)|

|f(ξ)|
|ξ − z|ds

≤ constant e−(n+1)[ϕ(z)−(ϕ(z0)+ϵ)].

(3.81)

Therefore, it follows that |f(z)− pn(z)| → 0 as n→∞ and the convergence
is exponential. Note that this holds as long as z is inside the chosen contour
C. If z is outside the level curve ϕ(ξ) = ϕ(z0), i.e. ϕ(z) < ϕ(z0), then
|f(z)− pn(z)| diverges exponentially. Therefore, pn converges (uniformly) to
f in [−1, 1] if and only if f is analytic on and inside the smallest level curve
of ϕ that contains [−1, 1]. More precisely, let γ be the supremum over all the
values of c for which [−1, 1] lies inside the level set curve ϕ(ξ) = c. Define
the region

Dγ = {z ∈ C : ϕ(z) ≥ γ}. (3.82)

Then, we have the following result.

Theorem 3.5. The f be analytic in any region containing Dγ in its interior.
Then,

|f(z)− pn(z)| −−−→
n→∞

0, uniformly, for z ∈ Dγ. (3.83)

76 CHAPTER 3. INTERPOLATION

For equispaced nodes, the number of nodes is the same (asymptotically)
for all intervals of the same length. Therefore, ρ is a constant. The nor-
malization condition (3.77) implies that ρ(x) = 1/2 for equispaced points in
[−1, 1]. It can be shown that with ρ(x) = 1/2 we get

ϕ(ξ) = 1− 1

2
Re {(ξ + 1) log(ξ + 1)− (ξ − 1) log(ξ − 1)} . (3.84)

The curve of ϕ that bounds Dγ for equispaced nodes is the one that passes
through ±1, has value 1 − log 2, and is shown in Fig. 3.9. It crosses the
imaginary axis at ±0.5255...i. On the hand, the level curve that passes
through ±i/5 crosses the real axis at about ±0.7267.... Thus, there is uniform
convergence of pn to f in the reduced interval [−0.72, 0.72].

The Chebyshev points xj = cos θj, j = 0, 1, . . . , n, are equispaced in θ
(θj = jπ/n) and since∫ β

α

ρ(x)dx =

∫ cos−1 α

cos−1 β

ρ(cos θ) sin θdθ, (3.85)

then ρ(cos θ) sin θ = ρ(x)
√
1− x2 must be constant. Using (3.77), it follows

the density for Chebyshev nodes is

ρ(x) =
1

π
√
1− x2

, x ∈ [−1, 1]. (3.86)

With this node distribution it can be shown that

ϕ(ξ) = log
2

|ξ +
√
ξ2 − 1|

. (3.87)

The level curves of ϕ in this case are the points ξ ∈ C such that |ξ +√
ξ2 − 1| = c, with c constant. These are ellipses with foci at ±1 as shown

in Fig. 3.10. The level curve that passes through ±1 degenerates into the
interval [−1, 1].

3.9 Piecewise Polynomial Interpolation

One way to avoid the oscillatory behavior of high-order interpolation when
the interpolation nodes do not cluster appropriately is to employ low order
polynomials in small subintervals.

3.9. PIECEWISE POLYNOMIAL INTERPOLATION 77

−1 0 1
−1

0

1

Figure 3.10: Some level curves of ϕ for the Chebyshev node distribution.

Given the nodes a = x0 < x1 . . . < xn = b we can consider the subin-
tervals [x0, x1], ..., [xn−1, xn] and construct in each a polynomial degree at
most k (for k ≥ 1 small) that interpolates f . For k = 1, on each [xj, xj+1],
j = 0, 1, . . . , n− 1, we know there is a unique polynomial sj ∈ P1 that inter-
polates f at xj and xj+1. Thus, there is a unique, continuous piecewise linear
interpolant s of f at the given n+ 1 nodes. We simply use P1 interpolation
for each of its pieces:

sj(x) = fj +
fj+1 − fj
xj+1 − xj

(x− xj), x ∈ [xj, xj+1], (3.88)

for j = 0, 1, . . . , n − 1 and we have set fj = f(xj). Figure 3.11 shows an
illustration of this piecewise linear interpolant s.

Assuming that f ∈ C2[a, b], we know that

f(x)− s(x) = 1

2
f ′′(ξ(x))(x− xj)(x− xj+1), x ∈ [xj, xj+1], (3.89)

where ξ(x) is some point between xj and xj+1. Then,

max
xj≤x≤xj+1

|f(x)− p(x)| ≤ 1

2
∥f ′′∥∞ max

xj≤x≤xj+1

|(x− xj)(x− xj+1)|, (3.90)

78 CHAPTER 3. INTERPOLATION

x0 x1 x2 x3 x4

Figure 3.11: Piecewise linear interpolation.

where ∥f ′′∥∞ is the sup norm of f ′′ over [a, b]. Now, the max at the right
hand side is attained at the midpoint (xj + xj+1)/2 and

max
xj≤x≤xj+1

|(x− xj)(x− xj+1)| =
(
xj+1 − xj

2

)2

=
1

4
h2j , (3.91)

where hj = xj+1 − xj. Therefore

max
xj≤x≤xj+1

|f(x)− p(x)| ≤ 1

8
∥f ′′∥∞ h2j . (3.92)

If we add more nodes, we can make hj sufficiently small so that the error
is smaller than a prescribed tolerance δ. That is, we can pick hj such that
1
8
∥f ′′∥∞h2j ≤ δ, which implies

hj ≤
√

8δ

∥f ′′∥∞
. (3.93)

This gives us an adaptive procedure to obtain a desired accuracy.
Continuous, piecewise quadratic interpolants (k = 2) can be obtained by

adding an extra point in each subinterval, say its midpoint, so that each piece

3.10. CUBIC SPLINES 79

sj ∈ P2 is the one that interpolates f at xj,
1
2
(xj + xj+1), xj+1. For k = 3, we

need to add 2 more points on each subinterval, etc. This procedure allows
us to construct continuous, piecewise polynomial interpolants of f and if
f ∈ Ck+1[a, b] one can simply use the Cauchy remainder on each subinterval
to get a bound for the error, as we did for the piecewise linear case.

Sometimes a smoother piecewise polynomial interpolant s is needed. If
we want s ∈ Cm[a, b] then on the first subinterval, [x0, x1], we can take an
arbitrary polynomial of degree at most k (k + 1 degrees of freedom) but
in the second subinterval the corresponding polynomial has to match m+ 1
(continuity plusm derivatives) conditions at x1 so we only have k−m degrees
of freedom for it, and so on. Thus, in total we have k+1+ (n− 1)(k−m) =
n(k−m) +m+1 degrees of freedom. For m = k we only have k+1 degrees
of freedom and since s ∈ Pk on each subinterval, it must be a polynomial
of degree at most k in the entire interval [a, b]. Moreover, since polynomials
are C∞ it follows that s ∈ Pk on [a, b] for m ≥ k. So we restrict ourselves
to m < k and specifically focus on the case m = k − 1. These functions are
called splines.

Definition 3.1. Given a partition

∆ = {a = x0 < x1 . . . < xn = b} (3.94)

of [a, b], the functions in the set

Sk
∆ =

{
s : s ∈ Ck−1[a, b], s

∣∣
[xj ,xj+1] ∈ Pk, j = 0, 1, . . . , n− 1

}
(3.95)

are called splines of degree k (or order k+ 1). The nodes xj, j = 0, 1, . . . , n,
are called knots or breakpoints.

Note that if s and r are in Sk
∆ so is as + br, i.e. Sk

∆ is a linear space, a
subspace of Ck−1[a, b]. The piecewise linear interpolant is a spline of degree
1. We are going to study next splines of degree 3.

3.10 Cubic Splines

Several applications require smoother approximations than that provided by
a piece-wise linear interpolation. For example, continuity up to the second
derivative is generally desired in computer graphics applications. With the
C2 requirement, we need to consider splines of degree k ≥ 3. The case k = 3

80 CHAPTER 3. INTERPOLATION

x0 x1 x2 x3 x4

Figure 3.12: Cubic spline s interpolating 5 data points. Each color represents
a cubic polynomial constructed so that s interpolates the given data, has two
continuous derivatives, and s′′(x0) = s′′(x4) = 0.

is the most widely used and the corresponding splines are simply called cubic
splines.

We consider here cubic splines that interpolate a set of values f0, f1, . . . , fn
at the nodes a = x0 < x1 . . . < xn = b, i.e. s ∈ S3

∆ with s(xj) = fj,
j = 0, 1, . . . , n. We call such a function a cubic spline interpolant. Figure 3.12
shows an example of a cubic spline interpolating 5 data points. The cubic
polynomial pieces (sj for j = 0, 1, 2, 3), appearing in different colors, are
stitched together so that s interpolates the given data and has two continuous
derivatives. The same data points have been used in both Fig. 3.11 and
Fig. 3.12. Note the striking difference of the two interpolants.

As we saw in Section 3.9, there are n+3 degrees of freedom to determine
s ∈ S3

∆, two more than the n + 1 interpolation conditions. The two extra
conditions could be the first or the second derivative of s at the end points
(x = a, x = b). Note that if s ∈ S3

∆ then s′′ ∈ S1
∆, i.e. the second derivative

of a cubic spline is a continuous, piece-wise linear spline. Consequently, s′′ is
determined uniquely by its (n+ 1) values

mj = s′′(xj), j = 0, 1, . . . , n. (3.96)

3.10. CUBIC SPLINES 81

In the following construction of cubic spline interpolants we impose the n+1
interpolation conditions plus two extra conditions to find the unique values
mj, j = 0, 1, . . . , n that s′′ must have at the nodes in order for s to be C2[a, b].

3.10.1 Natural Splines

Cubic splines with a vanishing second derivative at the first and last node,
m0 = 0 and mn = 0, are called natural cubic splines. They are useful in
graphics but not good for approximating a function f , unless f happens to
also have vanishing second derivatives at x0 and xn.

We are now going to derive a linear system of equations for the values
m1,m2, . . . ,mn−1 that define the natural cubic spline interpolant. Once this
system is solved we obtain the spline piece by piece.

In each subinterval [xj, xj+1], s is a polynomial sj ∈ P3, which we may
represent as

sj(x) = Aj(x− xj)3 +Bj(x− xj)2 + Cj(x− xj) +Dj, (3.97)

for j = 0, 1, . . . , n− 1. To simplify the formulas below we let

hj = xj+1 − xj. (3.98)

The spline s interpolates the given data. Thus, for j = 0, 1, . . . n− 1

sj(xj) = Dj = fj, (3.99)

sj(xj+1) = Ajh
3
j +Bjh

2
j + Cjhj +Dj = fj+1. (3.100)

Now s′j(x) = 3Aj(x−xj)2+2Bj(x−xj)+Cj and s
′′
j (x) = 6Aj(x−xj)+2Bj.

Therefore, for j = 0, 1, . . . n− 1

s′j(xj) = Cj, (3.101)

s′j(xj+1) = 3Ajh
2
j + 2Bjhj + Cj, (3.102)

and

s′′j (xj) = 2Bj, (3.103)

s′′j (xj+1) = 6Ajhj + 2Bj. (3.104)

Since s′′ is continuous

mj+1 = s′′(xj+1) = s′′j+1(xj+1) = s′′j (xj+1) (3.105)

82 CHAPTER 3. INTERPOLATION

and we can write (3.103)-(3.104) as

mj = 2Bj, (3.106)

mj+1 = 6Ajhj + 2Bj. (3.107)

We now write Aj, Bj, Cj, and Dj in terms of the unknown values mj and
mj+1, and the known values fj and fj+1. We have

Dj = fj,

Bj =
1

2
mj,

Aj =
1

6hj
(mj+1 −mj)

and substituting these values in (3.100) we get

Cj =
1

hj
(fj+1 − fj)−

1

6
hj(mj+1 + 2mj).

Let us collect all our formulas for the spline coefficients:

Aj =
1

6hj
(mj+1 −mj), (3.108)

Bj =
1

2
mj, (3.109)

Cj =
1

hj
(fj+1 − fj)−

1

6
hj(mj+1 + 2mj), (3.110)

Dj = fj, (3.111)

for j = 0, 1, . . . , n− 1. So far we have only used that s and s′′ are continuous
and that s interpolates the given data. We are now going to impose the
continuity of the first derivative of s to determine equations for the unknown
values mj, j = 1, 2, . . . , n− 1. Substituting (3.108)-(3.111) in (3.102) we get

s′j(xj+1) = 3Ajh
2
j + 2Bjhj + Cj

= 3
1

6hj
(mj+1 −mj)h

2
j + 2

1

2
mjhj +

1

hj
(fj+1 − fj)

− 1

6
hj(mj+1 + 2mj)

=
1

hj
(fj+1 − fj) +

1

6
hj(2mj+1 +mj)

(3.112)

3.10. CUBIC SPLINES 83

and decreasing the index by 1

s′j−1(xj) =
1

hj−1
(fj − fj−1) +

1

6
hj−1(2mj +mj−1). (3.113)

Continuity of the first derivative means s′j−1(xj) = s′j(xj) for j = 1, 2, ..., n−1.
Therefore, for j = 1, . . . , n− 1

1

hj−1
(fj − fj−1) +

1

6
hj−1(2mj +mj−1) = Cj

=
1

hj
(fj+1 − fj)−

1

6
hj(mj+1 + 2mj)

(3.114)

which can be written as

hj−1mj−1 + 2(hj−1 + hj)mj + hjmj+1 =

− 6

hj−1
(fj − fj−1) +

6

hj
(fj+1 − fj), j = 1, . . . , n− 1.

(3.115)

This is a linear system of n−1 equations for the n−1 unknownsm1,m2, . . . ,mn−1.
In matrix form

a1 b1
c1 a2 b2

c2
.
.

.
. bn−2

cn−2 an−1





m1

m2
...
...
...
...

mn−1


=



d1
d2
...
...
...
...

dn−1


, (3.116)

where

aj = 2(hj−1 + hj), j = 1, 2, . . . , n− 1, (3.117)

bj = hj, j = 1, 2, . . . , n− 2, (3.118)

cj = hj, j = 1, 2, . . . , n− 2, (3.119)

dj = −
6

hj−1
(fj − fj−1) +

6

hj
(fj+1 − fj), j = 1, . . . , n− 1. (3.120)

Note that we have used m0 = mn = 0 in the first and last equation of this
linear system. The matrix of the linear system (3.116) is strictly diagonally

84 CHAPTER 3. INTERPOLATION

dominant, a concept we make precise in the definition below. A consequence
of this property is that the matrix is nonsingular and therefore the linear
system (3.116) has a unique solution. Moreover, this tridiagonal linear system
can be solved efficiently with Algorithm 9.5. Once m1,m2, . . . ,mn−1 are
found, the spline coefficients can be computed from (3.108)-(3.111).

Definition 3.2. An n×n matrix A with entries aij, i, j = 1, . . . , n is strictly
diagonally dominant if

|aii| >
n∑

j=1
j ̸=i

|aij|, for i = 1, . . . , n. (3.121)

Theorem 3.6. Let A be a strictly diagonally dominant matrix. Then A is
nonsingular.

Proof. Suppose the contrary, that is there is x ̸= 0 such that Ax = 0. Let k
be an index such that |xk| = ∥x∥∞. Then, the k-th equation in Ax = 0 gives

akkxk +
n∑

j=1
j ̸=k

akjxj = 0 (3.122)

and consequently

|akk||xk| ≤
n∑

j=1
j ̸=k

|akj||xj|. (3.123)

Dividing by |xk|, which by assumption in nonzero, and using that |xj|/|xk| ≤
1 for all j = 1, . . . , n, we get

|akk| ≤
n∑

j=1
j ̸=k

|akj|, (3.124)

which contradicts the fact that A is strictly diagonally dominant.

Example 3.6. Find the natural cubic spline that interpolates (0, 0), (1, 1), (2, 0).
We know m0 = 0 and m2 = 0. We only need to find m1 (only 1 in-
terior node). The system (3.115) degenerates to just one equation. With
h0 = h1 = 1 we have

m0 + 4m1 +m2 = 6[f0 − 2f1 + f2]⇒ m1 = −3

3.10. CUBIC SPLINES 85

In [0, 1]:

A0 =
1

6
(m1 −m0) =

(
1

6

)
(−3) = −1

2
,

B0 =
1

2
m0 = 0

C0 = f1 − f0 −
1

6
(m1 + 2m0) = 1 +

1

2
=

3

2
,

D0 = f0 = 0.

Thus, s0(x) = A0(x− 0)3 +B0(x− 0)2 + C0(x− 0) +D0 = −1
2
x3 + 3

2
x.

In [1, 2]:

A1 =
1

6
(m2 −m1) =

(
1

6

)
(3) =

1

2
,

B1 =
1

2
m1 = −

3

2
,

C1 = f2 − f1 −
1

6
(m2 + 2m1) = 0− 1− 1

6
(−6) = 0,

D1 = f1 = 1.

and s1(x) =
1
2
(x − 1)3 − 3

2
(x − 1)2 + 1. Therefore, the natural cubic spline

that interpolates the given data is

s(x) =


−1

2
x3 + 3

2
x, x ∈ [0, 1],

1
2
(x− 1)3 − 3

2
(x− 1)2 + 1, x ∈ [1, 2].

3.10.2 Complete Splines

If we are interested in approximating a function with a cubic spline inter-
polant it is generally more accurate to specify the first derivative at the
endpoints instead of imposing a vanishing second derivative. A cubic spline
where we specify s′(a) and s′(b) is called a complete spline.

In a complete spline the values m0 and mn of s′′ at the endpoints be-
come unknowns together with m1,m2, . . . ,mn−1. Thus, we need to add two
more equations to have a complete system for all the n+ 1 unknown values
m0,m1, . . . ,mn. Recall that

sj(x) = Aj(x− xj)3 +Bj(x− xj)2 + Cj(x− xj) +Dj

86 CHAPTER 3. INTERPOLATION

and so s′j(x) = 3Aj(x− xj)2 + 2Bj(x− xj) + Cj. Therefore

s′0(x0) = C0 = f ′0, (3.125)

s′n−1(xn) = 3An−1h
2
n−1 + 2Bn−1hn−1 + Cn−1 = f ′n, (3.126)

where f ′0 = f ′(x0) and f ′n = f ′(xn). Substituting C0, An−1, Bn−1, and Cn−1
from (3.108)-(3.110) we get

2h0m0 + h0m1 =
6

h0
(f1 − f0)− 6f ′0, (3.127)

hn−1mn−1 + 2hn−1mn = − 6

hn−1
(fn − fn−1) + 6f ′n. (3.128)

If we append (3.127) and (3.127) at the top and the bottom of the system
(3.115), respectively and set h−1 = hn = 0 we obtain the following tridiagonal
linear system for the values of the second derivative of the complete spline
at the knots:

a0 b0
c0 a1 b1

c1
.
.

.
. bn−1

cn−1 an





m0

m1
...
...
...
...
mn


=



d0
d1
...
...
...
...
dn


, (3.129)

where

aj = 2(hj−1 + hj), j = 0, 1, . . . , n, (3.130)

bj = hj, j = 0, 1, . . . , n− 1, (3.131)

cj = hj, j = 0, 1, . . . , n− 1, (3.132)

d0 =
6

h0
(f1 − f0)− 6f ′0, (3.133)

dj = −
6

hj−1
(fj − fj−1) +

6

hj
(fj+1 − fj), j = 1, . . . , n− 1, (3.134)

dn = − 6

hn−1
(fn − fn−1) + 6f ′n. (3.135)

3.10. CUBIC SPLINES 87

As in the case of natural cubic splines, this linear system is also diago-
nally dominant (hence nonsingular) and can be solved efficiently with Al-
gorithm 9.5.

It can be proved that if f is sufficiently smooth its complete spline inter-
polant s produces an error ∥f − s∥∞ ≤ Ch4, where h = maxi hi, whereas for
the natural cubic spline interpolant the error deteriorates to O(h2) near the
endpoints.

3.10.3 Minimal Bending Energy

Consider a curve given by y = f(x) for x ∈ [a, b], where f ∈ C2[a, b]. Its
curvature is

κ(x) =
f ′′(x)

[1 + (f ′(x))2]3/2
(3.136)

and a measure of how much the curve ”curves” or bends is its bending energy

Eb =

∫ b

a

κ2(x)dx. (3.137)

For curves with small |f ′| compared to 1, κ(x) ≈ f ′′(x) and Eb ≈ ∥f ′′∥22. We
are going to show that cubic splines interpolants are C2 functions that have
minimal ∥f ′′∥2, in a sense we make more precise below. To show this we are
going to use the following two results.

Lemma 3.10.1. Let s ∈ S3
∆ be a cubic spline interpolant of f ∈ C2[a, b] at

the nodes ∆ = {a = x0 < x1 . . . < xn = b}. Then, for all g ∈ S1
∆∫ b

a

[f ′′(x)− s′′(x)]g(x)dx = [f ′(b)− s′(b)]g(b)− [f ′(a)− s′(a)]g(a). (3.138)

Proof.∫ b

a

[f ′′(x)− s′′(x)]g(x)dx =
n−1∑
j=0

∫ xj+1

xj

[f ′′(x)− s′′(x)]g(x)dx. (3.139)

We can integrate by parts on each interval:∫ xj+1

xj

[f ′′(x)− s′′(x)]g(x)dx = [f ′(x)− s′(x)]g(x)
∣∣∣∣∣
xj+1

xj

−
∫ xj+1

xj

[f ′(x)− s′(x)]g′(x)dx.
(3.140)

88 CHAPTER 3. INTERPOLATION

Substituting this in (3.139) the boundary terms telescope and we obtain∫ b

a

[f ′′(x)− s′′(x)]g(x)dx = [f ′(b)− s′(b)]g(b)− [f ′(a)− s′(a)]g(a)

−
n−1∑
j=0

∫ xj+1

xj

[f ′(x)− s′(x)]g′(x)dx.
(3.141)

On each subinterval [xj, xj+1], g
′ is constant and f − s vanishes at the end-

points. Therefore, the last term is zero.

Theorem 3.7. Let s ∈ S3
∆ be the (natural or complete) cubic spline inter-

polant of f ∈ C2[a, b] at the nodes ∆ = {a = x0 < x1 . . . < xn = b}. Then,

∥s′′∥2 ≤ ∥f ′′∥2. (3.142)

Proof.

∥f ′′ − s′′∥22 =
∫ b

a

[f ′′(x)− s′′(x)]2dx = ∥f ′′∥22 + ∥s′′∥22 − 2

∫ b

a

f ′′(x)s′′(x)dx

= ∥f ′′∥22 − ∥s′′∥22 − 2

∫ b

a

[f ′′(x)− s′′(x)]s′′(x)dx.
(3.143)

By Lemma 3.10.1 with g = s′′ the last term vanishes for the natural spline
(s′′(a) = s′′(b) = 0) and for the complete spline (s′(a) = f ′(a) and s′(b) =
f ′(b)) and we get the identify

∥f ′′ − s′′∥22 = ∥f ′′∥22 − ∥s′′∥22 (3.144)

from which the results follows.

In Theorem 3.7 f could be substituted for any sufficiently smooth inter-
polant g of the given data.

Theorem 3.8. Let s ∈ S3
∆ and g ∈ C2[a, b] both interpolate the values

f0, f1, . . . , fn at the nodes ∆ = {a = x0 < x1 . . . < xn = b}. Then,

∥s′′∥2 ≤ ∥g′′∥2, (3.145)

if either s′′(a) = s′′(b) = 0 (natural spline) or s′(a) = g′(a) and s′(b) = g′(b)
(complete spline).

3.11. TRIGONOMETRIC INTERPOLATION 89

−8 −6 −4 −2 0 2 4 6 8

−6

−4

−2

0

2

4

6

Figure 3.13: Example of a parametric spline representation to interpolate
the given data points (in red).

3.10.4 Splines for Parametric Curves

In computer graphics and animation it is often required to construct smooth
curves that are not necessarily the graph of a function but that have a
parametric representation x = x(t) and y = y(t) for t ∈ [a, b]. Hence
we need to determine two splines interpolating (tj, xj) and (tj, yj) (j =
0, 1, . . . n), respectively. Usually, only the position of the “control points”
(x0, y0), . . . (xn, yn) is given and not the parameter values t0, t1, . . . , tn. In
such cases, we can use the distances of consecutive control points to generate
appropriate tj’s as follows:

t0 = 0, tj = tj−1 +
√

(xj − xj−1)2 + (yj − yj−1)2, j = 1, 2, . . . n. (3.146)

Figure 3.13 shows an example of this approach.

3.11 Trigonometric Interpolation

We consider now the important case of interpolation of a periodic array of
data (x0, f0), (x1, f1), . . . , (xN , fN) with fN = f0, and xj = j(2π/N), j =
0, 1, . . . , N , by a trigonometric polynomial.

90 CHAPTER 3. INTERPOLATION

Definition 3.3. A function of the form

sn(x) =
n∑

k=−n
cke

ikx, (3.147)

where c0, c1, c−1, . . . , cn, c−n are complex, or equivalently of the form5

sn(x) =
1

2
a0 +

n∑
k=1

(ak cos kx+ bk sin kx) (3.148)

where the coefficients a0, a1, b1, . . . , an, bn are real is called a trigonometric
polynomial of degree (at most) n.

The values fj, j = 0, 1, . . . , N , could come from a 2π-periodic func-
tion, f(j 2π/N) = fj, or can simply be given data. Note that the inter-
polation nodes are equi-spaced points in [0, 2π]. One can accommodate
any other period by doing a simple scaling. Because of periodicity (fN =
f0), we only have N independent data points (x0, f0), . . . , (xN−1, fN−1) or
(x1, f1), . . . , (xN , fN). The interpolation problem is then to find a trigonomet-
ric polynomial sn of lowest degree such that sn(xj) = fj, for j = 0, 1, . . . , N−
1. Such polynomial has 2n + 1 coefficients. If we take n = N/2 (assuming
N even), we have N + 1 coefficients to be determined but only N inter-
polation conditions. An additional condition arises by noting that the sine
term of highest wavenumber, k = N/2, vanishes at the equi-spaced nodes,
sin(N

2
xj) = sin(jπ) = 0. Thus, the coefficient bN/2 is irrelevant for interpo-

lation and we can set it to zero. Consequently, we look for a trigonometric
polynomial of the form

sN/2(x) =
1

2
a0 +

N/2−1∑
k=1

(ak cos kx+ bk sin kx) +
1

2
aN/2 cos

(
N

2
x

)
. (3.149)

The convenience of the 1/2 factor in the last term will be seen in the formulas
we obtain below for the coefficients.

It is conceptually and computationally simpler to work with the corre-
sponding trigonometric polynomial in complex form

sN/2(x) =

N/2∑′′

k=−N/2

cke
ikx, (3.150)

5Recall 2 cos kx = eik + e−ik and 2i sin kx = eik − e−ik

3.11. TRIGONOMETRIC INTERPOLATION 91

where the double prime in the summation sign means that the first and last
terms (k = −N/2 and k = N/2) have a factor of 1/2. It is also understood
that c−N/2 = cN/2, which is equivalent to the bN/2 = 0 condition in (3.149).

Theorem 3.9.

sN/2(x) =

N/2∑′′

k=−N/2

cke
ikx (3.151)

interpolates (j2π/N, fj), j = 0, . . . , N − 1 if and only if

ck =
1

N

N−1∑
j=0

fje
−ik2πj/N , k = −N

2
, . . . ,

N

2
. (3.152)

Proof. Substituting (3.152) in (3.151) we get

sN/2(x) =

N/2∑′′

k=−N/2

cke
ikx =

N−1∑
j=0

fj
1

N

N/2∑′′

k=−N/2

eik(x−xj),

with xj = j2π/N and defining the cardinal functions

lj(x) =
1

N

N/2∑′′

k=−N/2

eik(x−xj) (3.153)

we obtain

sN/2(x) =
N−1∑
j=0

lj(x)fj. (3.154)

Note that we have written sN/2 in a form similar to the Lagrange form of poly-
nomial interpolation. We will prove that for j andm in the range 0, . . . , N−1

lj(xm) =

{
1 for m = j,

0 for m ̸= j,
(3.155)

and in view of (3.154), sN/2 satisfies the interpolation conditions.

92 CHAPTER 3. INTERPOLATION

Now,

lj(xm) =
1

N

N/2∑′′

k=−N/2

eik(m−j)2π/N (3.156)

and ei(±N/2)(m−j)2π/N = e±i(m−j)π = (−1)(m−j) so we can combine the first
and the last term and remove the double prime from the sum:

lj(xm) =
1

N

N/2−1∑
k=−N/2

eik(m−j)2π/N

=
1

N

N/2−1∑
k=−N/2

ei(k+N/2)(m−j)2π/Ne−i(N/2)(m−j)2π/N

= e−i(m−j)π
1

N

N−1∑
k=0

eik(m−j)2π/N .

Recall that (see Section 1.3)

1

N

N−1∑
k=0

e−ik(j−m)2π/N =

{
1 if (j−m

N
) ∈ Z,

0 otherwise.
(3.157)

Then, (3.155) follows and

sN/2(xm) = fm, m = 0, 1, . . . N − 1. (3.158)

Now suppose sN/2 interpolates (j2π/N, fj), j = 0, . . . , N − 1. Then, the
ck coefficients of sN/2 satisfy

N/2∑′′

k=−N/2

cke
ik2πj/N = fj, j = 0, 1, . . . , N − 1. (3.159)

Since c−N/2 = cN/2, we can write (3.159) equivalently as the linear system

N/2−1∑
k=−N/2

cke
ik2πj/N = fj, j = 0, 1, . . . , N − 1. (3.160)

3.11. TRIGONOMETRIC INTERPOLATION 93

From the discrete orthogonality of the complex exponential (3.157), it follows
that the matrix of coefficients of (3.160) has orthogonal columns and hence
it is nonsingular. Therefore, (3.160) has a unique solution and thus the ck
coefficients must be those given by (3.152).

Using the relations c0 =
1
2
a0, ck =

1
2
(ak − ibk), c−k = c̄k, we find that

sN/2(x) =
1

2
a0 +

N/2−1∑
k=1

(ak cos kx+ bk sin kx) +
1

2
aN/2 cos

(
N

2
x

)
interpolates (j2π/N, fj), j = 0, . . . , N − 1 if and only if

ak =
2

N

N−1∑
j=0

fj cos kxj, k = 0, 1, . . . , N/2, (3.161)

bk =
2

N

N−1∑
j=0

fj sin kxj, k = 1, . . . , N/2− 1. (3.162)

A smooth periodic function f can be approximated accurately by its inter-
polating trigonometric polynomial of low to moderate degree. Figure 3.14(a)
shows the approximation of f(x) = sinx ecosx on [0, 2π] by s4 (N = 8). The
graphs of f and sN/2 are almost indistinguishable. In fact, the interpolating
trigonometric polynomial sN/2 converges uniformly to f exponentially fast
as Fig. 3.14(b) demonstrates (note that the vertical axis uses a logarithmic
scale).

Note also that derivatives of sN/2 can be easily computed

s
(p)
N/2(x) =

N/2∑′′

k=−N/2

(ik)pcke
ikx. (3.163)

The Fourier coefficients of the p-th derivative of sN/2 can thus be readily

obtained from the DFT of f (the ck’s) and s
(p)
N/2 yields an accurate approx-

imation of f (p) if this is smooth. We discuss the implementations details of
this approach in Section 6.4.

Let us go back to the complex, interpolating trigonometric polynomial
(3.150). Its coefficients ck are periodic of period N ,

ck+N =
1

N

N−1∑
j=0

fje
−i(k+N)xj =

1

N

N−1∑
j=0

fje
−ikxje−ij2π = ck. (3.164)

94 CHAPTER 3. INTERPOLATION

0 π 2π

x

−2

0

2

(a)

f(x) = sin x ecosx

s4(x)

8 16 32

N

10−15

10−12

10−9

10−6

10−3

(b)

‖f − sN/2‖∞

Figure 3.14: (a) f(x) = sinx ecosx and its interpolating trigonometric poly-
nomial s4(x) and (b) the maximum error ∥f − sN/2∥∞ for N = 8, 16, 32.

3.12. THE FAST FOURIER TRANSFORM 95

Now, from (3.160) we have

fj =

N/2−1∑
k=−N/2

cke
ikxj =

−1∑
k=−N/2

cke
ikxj +

N/2−1∑
k=0

cke
ikxj

=
N−1∑

k=N/2

cke
ikxj +

N/2−1∑
k=0

cke
ikxj

=
N−1∑
k=0

cke
ikxj ,

(3.165)

where we have used that ck+N = ck to shift the sum from −N/2 to -1 to the
sum from N/2 to N −1. Combining this with the formula for the ck’s we get
the discrete Fourier transform (DFT) pair

ck =
1

N

N−1∑
j=0

fje
−ikxj , k = 0, . . . , N − 1, (3.166)

fj =
N−1∑
k=0

cke
ikxj , j = 0, . . . , N − 1. (3.167)

The set of coefficients (3.166) is known as the DFT of the periodic array
f0, f1, . . . , fN−1 and (3.167) is called the inverse DFT. It is important to note
that the DFT coefficients for k = N/2, . . . , N − 1 correspond to those for
k = −N/2, . . . ,−1 of the interpolating trigonometric polynomial sN/2.

3.12 The Fast Fourier Transform

The direct evaluation of the DFT or the inverse DFT is computationally ex-
pensive, it requires O(N2) operations. However, there is a remarkable algo-
rithm which achieves this in merely O(N log2N) operations. This algorithm
is known as the Fast Fourier Transform.

We now look at the main ideas of this widely used algorithm.
Let us define dk = Nck for k = 0, 1, . . . , N − 1, and ωN = e−i2π/N . Then

we can rewrite the DFT (3.166) as

dk =
N−1∑
j=0

fjω
kj
N , k = 0, 1, . . . , N − 1. (3.168)

96 CHAPTER 3. INTERPOLATION

Let N = 2n. If we split the even-numbered and the odd-numbered points
we have

dk =
n−1∑
j=0

f2jω
2jk
N +

n−1∑
j=0

f2j+1ω
(2j+1)k
N (3.169)

But

ω2jk
N = e−i2jk

2π
N = e

−ijk 2π
N
2 = e−ijk

2π
n = ωkj

n , (3.170)

ω
(2j+1)k
N = e−i(2j+1)k 2π

N = e−ik
2π
N e−i2jk

2π
N = ωk

Nω
kj
n . (3.171)

Thus, denoting f e
j = f2j and f

o
j = f2j+1, we get

dk =
n−1∑
j=0

f e
j ω

jk
n + ωk

N

n−1∑
j=0

f o
j ω

jk
n (3.172)

We have reduced the problem to two DFT’s of size n = N
2
plus N multipli-

cations (and N sums). The numbers ωk
N , k = 0, 1, . . . , N − 1 depend only on

N so they can be precomputed once and stored for other DFT’s of the same
size N .

If N = 2p, for p positive integer, we can repeat the process to reduce each
of the DFT’s of size n to a pair of DFT’s of size n/2 plus n multiplications
(and n additions), etc. We can do this p times so that we end up with 1-point
DFT’s, which require no multiplications!

Let us count the number of operations in the FFT algorithm. For simplic-
ity, let is count only the number of multiplications (the numbers of additions
is of the same order). Let mN be the number of multiplications to compute
the DFT for a periodic array of size N and assume that N = 2p. Then

mN = 2mN
2
+N

= 2m2p−1 + 2p

= 2(2m2p−2 + 2p−1) + 2p

= 22m2p−2 + 2 · 2p
= · · ·
= 2pm20 + p · 2p = p · 2p
= N log2N,

3.13. THE CHEBYSHEV INTERPOLANT AND THE DCT 97

where we have used that m20 = m1 = 0 (no multiplication is needed for DFT
of 1 point). To illustrate the savings, if N = 220, with the FFT we can obtain
the DFT (or the inverse DFT) in order 20×220 operations, whereas the direct
methods requires order 240, i.e. a factor of 1

20
220 ≈ 52429 more operations.

The FFT can also be implemented efficiently when N is the product of small
primes.

3.13 The Chebyshev Interpolant and the DCT

We take now a closer look at polynomial interpolation of a function f in
[−1, 1]6 at the Chebyshev nodes

xj = cos

(
jπ

n

)
, j = 0, 1, . . . , n. (3.173)

The unique interpolating polynomial pn ∈ Pn of f at the n + 1 Chebyshev
nodes, which we will call the Chebyshev interpolant, can be evaluated effi-
ciently using its barycentric representation (Section 3.3). However, there is
another representation of pn that is also computationally efficient and use-
ful for obtaining fast converging methods for integration and differentiation.
This alternative representation is based on an expansion of Chebyshev poly-
nomials and the DCT, the discrete cosine transform.

Since pn ∈ Pn, there are unique coefficients c0, c1, . . . , cn such that

pn(x) =
1

2
c0 +

n−1∑
k=1

ckTk(x) +
1

2
cnTn(x) :=

n∑′′

k=0

ckTk(x). (3.174)

The 1/2 factor for k = 0, n is introduced for convenience to have one formula
for all the ck’s, as we will see below. Under the change of variable x = cos θ,
for θ ∈ [0, π] we get

pn(cos θ) =
1

2
c0 +

n−1∑
k=1

ck cos kθ +
1

2
cn cosnθ. (3.175)

Let Πn(θ) = pn(cos θ) and F (θ) = f(cos θ). By extending F evenly over
[π, 2π] and using Theorem 3.9, we conclude that Πn(θ) interpolates F (θ) =

6For a function defined in an interval [a, b] the change of variables t = 1
2 (1−x)a+ 1

2 (1+
x)b could be used.

98 CHAPTER 3. INTERPOLATION

−1 0 1

x

−2

−1

0

1

2

(a)

f(x)

p8(x)

8 16 32

n

10−14

10−10

10−6

10−2

(b)

‖f − pn‖∞

Figure 3.15: (a) f(x) = sin(2πx) e−x and its Chebychev interpolant p8(x)
and (b) the maximum error ∥f − pn∥∞ for n = 8, 16, 32.

f(cos θ) at the equally spaced points θj = jπ/n, j = 0, 1, ...n if and only if

ck =
2

n

n∑′′

j=0

F (θj) cos kθj, k = 0, 1, .., n. (3.176)

These are the (type I) Discrete Cosine Transform (DCT) coefficients of F
and we can compute them efficiently in O(n log2 n) operations with the fast
DCT, an FFT-based algorithm which exploits that F is even and real. 7 Fig-
ure 3.15(a) presents a plot of f(x) = sin(2πx)e−x on [−1, 1] and its Cheby-
shev interpolant p8, whose coefficients ck were obtained with the fast DCT.
The two graphs almost overlap. Figure. 3.15(a) shows the fast, uniform con-
vergence of the Chebychev interpolant. With just n = 32, near machine
precision is obtained.

One application of Chebyshev interpolation and its connection with the
DCT is the Clenshaw-Curtis quadrature, which we consider in Section 7.4.

7Using the full FFT requires extending F evenly to [π, 2π], doubling the size of the
arrays, and is thus computationally less efficient than the fast DCT.

3.14. BIBLIOGRAPHIC NOTES 99

3.14 Bibliographic Notes

Section 3.1 The simple proof of existence and uniqueness of the interpolating
polynomial using (3.1) appears in the book by Davis [Dav75].

Section 3.2. Rivlin [Riv81] provides a derivation of the bound for the Lebesgue
constant Λ > 2

π2 log n − 1. There is a sharper estimate Λ > 2
π
log n − c for

some positive constant c due to Erdös [Erd64]. Davis [Dav75] has a deeper
discussion of the issue of convergence given a triangular system of nodes.
He points to the independent discovery by Faber and Bernstein in 1914 that
given any triangular system in advance, it is possible to construct a con-
tinuous function for which the interpolating polynomial does not converge
uniformly to this function.

Section 3.3. Berrut and Trefethen [BT04] provide an excellent review of
barycentric interpolation, including a discussion of numerical stability and
historical notes. They also show that in most cases this should be the method
of choice for repeated evaluation of the interpolating polynomial. For histori-
cal reasons explained in [BT04], barycentric interpolation has rarely appeared
in numerical analysis textbooks. Among the rare exceptions are the books
by Schwarz [Sch89], Greenbaum and Chartier [GC12], and Gautschi [Gau11].
Our presentation here follows the latter. Our derivation of the barycentric
weights for the Chebyshev nodes follows that of Salzer [Sal72].

Section 3.4. Divided differences receive considerable attention as an inter-
polation topic in most classical, numerical analysis textbooks (see for ex-
ample [CdB72, Hil13, RR01, IK94]). Here, we keep our presentation to a
minimum to devote more space to barycentric interpolation (which is more
efficient for the evaluation of the interpolating polynomial) and to other in-
terpolation topics not extensively treated in most traditional textbooks. The
emphasis of this section is to establish the connection of divided differences
with the derivatives of f and later to Hermite interpolation.

Section 3.5. The elegant proof of Theorem 3.3 has been attributed to Cauchy
(see for example [Gau11]). The interpolation error in the form (3.64) was
derived by Cauchy in 1840 [Cau40]. The minimization of the node polyno-
mial w(x) = (x − x0) · · · (x − xn) by the zeros of Tn+1 is covered in many
textbooks (e.g. [Dav75, Hil13, Sch89, Gau11]). However, the more practical

100 CHAPTER 3. INTERPOLATION

bound (3.61) for the Chebyshev nodes (the extremal points of Tn) is more
rarely found. The derivation here follows that of Salzer [Sal72].

Section 3.6. Gautschi [Gau11] makes the observation that (3.64) is a tautol-
ogy because f [x0, . . . , xn, x] involves itself the value f(x) so it really reduces
to a trivial identity. However, the connection of divided differences with
the derivatives of f obtained from (3.64) and the Cauchy remainder has im-
portant consequences and applications; one of them is Hermite interpolation.

Section 3.7. Hermite interpolation is treated more extensively in [SB02,
KC02]. Here, we make use of the notion of coincident nodes (see e.g. [Dav75])
and the connection of divided differences with derivatives to link Hermite in-
terpolation with Newton’s interpolation form.

Section 3.8. Runge [Run01] presented his famous example f(x) = 1/(1+x2)
in the interval [−5, 5]. Here, we have rescaled it for the interval [−1, 1]. Runge
employs Hermite formula [Her77] for the interpolation error for the analysis
of interpolation with equispaced nodes. The convergence theorem for poly-
nomial interpolation and its proof have been adapted from [Kry12, For96].

Section 3.9 and Section 3.10. The canonical reference for splines is de
Boor’s monograph [dB78]. This interpolation subject is also excellently
treated in the numerical analysis textbooks by Kincaid and Cheney [KC02],
Schwarz [Sch89], and Gautschi [Gau11], whose presentations inspired these
two sections. The use of (3.146) for obtaining the parameter values tj in
splines for parametric, smooth curves is proposed in [Sch89].

Section 3.11. Trigonometric interpolation appears in most modern numerical
analysis textbooks, e.g. [Sch89, KC02, SB02, Sau12]. It is a central topic of
spectral methods.

Section 3.12. The FFT algorithm was proposed by Cooley and Tukey [CT65]
in 1965. It is now understood [HJB85] that this famous algorithm was discov-
ered much earlier by Gauss, around 1805. The sorting out of the coefficients
(not described in this text) using binary representation of the indices is pro-
vided in [CT65]. Sauer’s book [Sau12] has an excellent section on the FFT
and signal processing and a chapter on the DCT and compression.

3.14. BIBLIOGRAPHIC NOTES 101

Section 3.13. Despite its usefulness, Chebyshev interpolation is rarely found
in introductory numerical analysis textbooks. One exception is the book by
Schwarz [Sch89].

102 CHAPTER 3. INTERPOLATION

Chapter 4

Least Squares

In this chapter we study the best approximation in the L2 or the 2-norm,
which is called the least squares approximation. We consider both approxi-
mation of continuous functions (using the L2 norm) and discrete (data) sets
(using the Euclidean, 2-norm). The theory is the same for both settings
except that integrals are replaced by sums in the latter. Throughout this
chapter ∥ · ∥ is the (weighted) L2 or the 2-norm, unless otherwise noted.

4.1 Least Squares for Functions

Definition 4.1. A set of functions {ϕ0, ..., ϕn} defined on an interval [a, b]
is said to be linearly independent if

c0ϕ0(x) + c1ϕ1(x) + . . . cnϕn(x) = 0, for all x ∈ [a, b], (4.1)

then c0 = c1 = . . . = cn = 0. Otherwise, it is said to be linearly dependent.

Example 4.1. The set of functions {ϕ0, ..., ϕn}, where ϕk is a polynomial
of degree exactly k for k = 0, 1, . . . , n is linearly independent on any interval
[a, b]. For c0ϕ0 + c1ϕ1 + . . . cnϕn is a polynomial of degree at most n and
hence c0ϕ0(x) + c1ϕ1(x) + . . . cnϕn(x) = 0 for all x in a given interval [a, b]
implies c0 = c1 = . . . = cn = 0. In particular, the set {1, x, . . . , xn} is linearly
independent.

We are going to use the weighted L2 norm. This is given in terms of the

103

104 CHAPTER 4. LEAST SQUARES

inner product

⟨f, g⟩ =
∫ b

a

f(x)g(x)w(x)dx, (4.2)

where w(x) ≥ 0 for all x ∈ (a, b) 1 and the overline denotes the complex
conjugate. We have

∥f∥ =
√
⟨f, f⟩. (4.3)

Definition 4.2. Two functions f and g are orthogonal, with respect to the
inner product ⟨·, ·⟩, if ⟨f, g⟩ = 0.

Theorem 4.1. Pythagorean Theorem. If f and g are orthogonal, then

∥f + g∥2 = ∥f∥2 + ∥g∥2. (4.4)

Proof.

∥f + g∥2 = ⟨f + g, f + g⟩
= ⟨f, f⟩+ ⟨f, g⟩+ ⟨g, f⟩+ ⟨g, g⟩
= ⟨f, f⟩+ ⟨g, g⟩ = ∥f∥2 + ∥g∥2.

(4.5)

Given a continuous function f and a set of linearly independent, contin-
uous functions {ϕ0, ..., ϕn} both defined on [a, b], the least squares problem
is to find the best approximation to f in the L2 norm by functions in

W = Span{ϕ0, ..., ϕn}. (4.6)

Since W is finite-dimensional and the L2 norm is strictly convex, we know
(Theorem 2.2 and Theorem 2.3) there is a unique best approximation f ∗ ∈ W
to f . That is, there is a unique f ∗ ∈ W such that

∥f − f ∗∥ ≤ ∥f − g∥, ∀g ∈ W. (4.7)

This best approximation f ∗ is called the least squares approximation to f (by
functions in W) because it minimizes the squared error ∥f −g∥2 over g ∈ W .
It has a geometric interpretation: the error f − f ∗ is orthogonal to W :

⟨f − f ∗, g⟩ = 0, ∀g ∈ W, (4.8)

4.1. LEAST SQUARES FOR FUNCTIONS 105

f

f ∗

f − f ∗

W

Figure 4.1: Geometric interpretation of the least squares approximation f ∗

to f by functions in W . The error f − f ∗ is orthogonal to W

as Fig. 4.1 illustrates. That is, f ∗ is the orthogonal projection of f onto
W . Since all functions in W are linear combinations of ϕ0, ϕ1, . . . , ϕn, this
geometric characterization of the least squares approximation is equivalent
to ⟨f − f ∗, ϕj⟩ = 0 for j = 0, 1, . . . , n and writing f ∗ = c0ϕ0 + . . . cnϕn we
obtain the normal equations

n∑
k=0

⟨ϕk, ϕj⟩ck = ⟨f, ϕj⟩, j = 0, 1, . . . , n. (4.9)

We will show that this linear system of equations for c0, c1, . . . , cn has a
unique solution but first let’s state and prove the geometric characterization
of f ∗.

Theorem 4.2. The least squares approximation to f by functions in W is
characterized by the geometric property (4.8).

Proof. By uniqueness of the least squares approximation (Theorem 2.2 and
Theorem 2.3)) we only need to show that if f ∗ ∈ W satisfies the geometric
property then it is a least squares approximation to f .

Suppose f − f ∗ is orthogonal to W and let g ∈ W . Then, f ∗ − g is also
in W and hence orthogonal to f − f ∗. Therefore,

∥f − g∥2 = ∥f − f ∗ + f ∗ − g∥2 = ∥f − f ∗∥2 + ∥f ∗ − g∥2, (4.10)

where we have used the Pythagorean theorem in the last equality. From
(4.10) it follows that ∥f − g∥ ≥ ∥f − f ∗∥ for all g ∈ W .

1More precisely, we will assume w(x) ≥ 0,

∫ b

a

w(x)dx > 0, and

∫ b

a

xkw(x)dx < +∞
for k = 0, 1, We call such a w an admissible weight function.

106 CHAPTER 4. LEAST SQUARES

We now prove that if the set {ϕ0, ..., ϕn} is linearly independent then
there is a unique solution c∗0, . . . , c

∗
n of the normal equations (4.9), so that

f ∗ = c∗0ϕ0+. . . c
∗
nϕn. Equivalently, we will show that the homogeneous system

n∑
k=0

⟨ϕk, ϕj⟩ck = 0, j = 0, 1, . . . , n, (4.11)

has only the trivial solution. Indeed,∥∥∥∥∥
n∑

k=0

ckϕk

∥∥∥∥∥
2

=

〈
n∑

k=0

ckϕk,
n∑

j=0

cjϕj

〉

=
n∑

k=0

n∑
j=0

⟨ϕk, ϕj⟩ckc̄j

=
n∑

j=0

(
n∑

k=0

⟨ϕk, ϕj⟩ck
)
c̄j =

n∑
j=0

0 c̄j = 0.

(4.12)

Therefore
n∑

k=0

ckϕk(x) = 0 for all x ∈ [a, b]. By the linear independence of

the set {ϕ0, ϕ1, . . . , ϕn} it follows that c0 = c1 = . . . = cn = 0.

Orthogonality plays a central role in the least squares problem. But it is
also important to keep in mind the minimization character of the solution.
Indeed, if f ∗ is the best L2-approximation of f inW then for any fixed g ∈ W
J(ϵ) = ∥f − f ∗ + ϵg∥2 has a minimum at ϵ = 0. But

J(ϵ) = ∥f − f ∗∥2 + ϵ⟨f − f ∗, g⟩+ ϵ⟨g, f − f ∗⟩+ ϵ2∥g∥2. (4.13)

This is a parabola opening upwards. Hence the minimum is at its critical
point. Since J ′(ϵ) = 2Re⟨f − f ∗, g⟩ + 2ϵ∥g∥2 and we know the minimum is
attained at ϵ = 0 it follows that Re⟨f − f ∗, g⟩ = 0. Repeating the argument
for −ig it follows that Im⟨f − f ∗, g⟩ = 0 and consequently ⟨f − f ∗, g⟩ = 0.

Definition 4.3. {ϕ0, ..., ϕn} is an orthogonal set if ⟨ϕj, ϕk⟩ = 0 for all j ̸= k
(j, k = 0, 1, . . . , n). If in addition ∥ϕk∥ = 1 for k = 0, 1, . . . , n, {ϕ0, ..., ϕn} is
called an orthonormal set.

4.1. LEAST SQUARES FOR FUNCTIONS 107

If {ϕ0, ..., ϕn} is an orthogonal set of functions, then the normal equations
(4.9) simplify to

⟨ϕk, ϕk⟩ck = ⟨f, ϕk⟩, k = 0, 1, . . . , n, (4.14)

which can be solved immediately to give

ck =
1

∥ϕk∥2
⟨f, ϕk⟩, k = 0, 1, . . . , n. (4.15)

These ck’s are called (generalized) Fourier coefficients. They are a generaliza-
tion of the familiar Fourier coefficients, obtained from the set of trigonomet-
ric functions {1, cosx, sinx, . . . , cosnx, sinnx} or equivalently from the set
{1, eix, e−ix, . . . , einx, e−inx}, as we will see next. Note that the Fourier coef-
ficients (4.15) are independent of n. If we have computed ck, k = 0, 1, . . . , n
and would like to increase n we just need to compute the new coefficients
k > n and reuse the previously computed ones.

4.1.1 Trigonometric Polynomial Approximation

The set {1, eix, e−ix, . . . , einx, e−inx} is an orthogonal set with the inner prod-
uct (4.2) and w ≡ 1, on any interval of length 2π, say [0, 2π], for

⟨eijx, eikx⟩ =
∫ 2π

0

ei(j−k)xdx = 0, for j ̸= k. (4.16)

Thus, the least squares approximation to a function f (defined on [0, 2π]
and squared integrable), i.e. the best approximation in the L2 norm, by a
trigonometric polynomial of degree at most n (see Definition 3.3) is given by
the truncated Fourier series of f :

f ∗(x) =
n∑

k=−n
cke

ikx, (4.17)

ck =
1

2π
⟨f, eikx⟩ = 1

2π

∫ 2π

0

f(x)e−ikxdx, k = 0,±1, . . . ,±n. (4.18)

108 CHAPTER 4. LEAST SQUARES

or equivalently

f ∗(x) =
1

2
a0 +

n∑
k=1

(ak cos kx+ bk sin kx) , (4.19)

ak =
1

π

∫ 2π

0

f(x) cos kxdx, k = 0, 1, . . . , n, (4.20)

bk =
1

π

∫ 2π

0

f(x) sin kxdx, k = 1, . . . , n. (4.21)

That is, the solution of the normal equations in this case are the (traditional)
Fourier coefficients of f . Assuming f is a smooth, 2π-periodic function (with
a uniformly convergent Fourier series),

f(x) =
∞∑

k=−∞
cke

ikx, (4.22)

the squared error is given by

∥f − f ∗∥2 =
〈∑
|k|>n

cke
ikx,

∑
|j|>n

cje
ijx

〉
= 2π

∑
|k|>n

|ck|2. (4.23)

If f is 2π-periodic and f ∈ Cm[0, 2π] for m ≥ 1, its Fourier coefficients decay
like |ck| ≤ Am|k|−m for some constant Am [cf. (1.68)]. Then,

∥f − f ∗∥2 ≤ 4πA2
m

∞∑
k=n+1

1

k2m
(4.24)

and if we use the bound

∞∑
k=1

1

k2m
<

∫ ∞
n+1

dx

x2m
=

1

(2m− 1)(n+ 1)2m−1
(4.25)

we obtain

∥f − f ∗∥ ≤ Cm

(n+ 1)m−1/2
, (4.26)

for some constant Cm.

4.1. LEAST SQUARES FOR FUNCTIONS 109

In practice, we approximate the Fourier coefficients (4.18) with the com-
posite trapezoidal rule at N = 2n equi-spaced-points

ck ≈ c̃k =
1

N

N−1∑
j=0

f(j2π/N)e−ikj2π/N . (4.27)

Now, substituting (4.22) with x = j2π/N

c̃k =
1

N

N−1∑
j=0

(∞∑
l=−∞

cle
ilj2π/N

)
e−ikj2π/n

=
∞∑

l=−∞
cl

(
1

N

N−1∑
j=0

ei(l−k)j2π/N
) (4.28)

and using the discrete orthogonality of the complex exponential (3.157) we
get

c̃k = ck + ck−N + ck+N + ck−2N + ck+2N + (4.29)

For computational efficiency we take N = 2n and obtain the discrete Fourier
coefficients c̃k for k = −N/2, . . . , N/2 − 1 with the FFT, i.e. in practice we
use the Fourier interpolant

sN/2(x) =

N/2∑′′

k=−N/2

c̃ke
ikx (4.30)

instead of f ∗. From (4.29), the error |c̃k − ck| depends on the decay of
the Fourier coefficients ck±lN , l = 1, 2, . . ., for |k ± lN | ≥ N/2 (given that
|k| ≤ N/2). In particular, if f is periodic and f ∈ Cm[0, 2π] we can pro-
ceed as we did for c0 in Section 1.3 to show that |c̃k − ck| = O(N−m) for
k = −N/2, . . . , N/2 − 1. Thus, the additional error of using the Fourier
interpolant instead of f ∗ is asymptotically the same order as the error of the
least squares approximation.

4.1.2 Algebraic Polynomial Approximation

Let us consider now the least squares approximation of f by algebraic poly-
nomials of degree at most n. If we choose {1, x, . . . , xn} as a basis for Pn

110 CHAPTER 4. LEAST SQUARES

and w ≡ 1, the least squares approximation can be written as f ∗(x) =
c0+c1x+ . . .+cnx

n, where the coefficients ck, k = 0, 1, . . . , n are the solution
of the normal equations (4.9). Thus, in principle we just need to solve this
(n+1)× (n+1) linear system of equations. There are however two problems
with this approach:

a) It is difficult to solve this linear system numerically for even moderate
n because the matrix of coefficients is very sensitive to small perturba-
tions and this sensitivity increases rapidly with n. For example, if we
take the interval [0, 1] the matrix of coefficients in the normal equations
system is



1

1

1

2
· · · 1

n+ 1

1

2

1

3
· · · 1

n+ 2
...

...
. . .

...
1

n+ 1

1

n+ 2
· · · 1

2n+ 1


. (4.31)

Numerical solutions in double precision (about 16 digits of accuracy)
of a linear system with this matrix (known as the Hilbert matrix, of
size n+ 1) will lose all accuracy for n ≥ 11.

b) If we want to increase the degree of the approximating polynomial we
need to start all over again and solve a larger set of normal equations.
That is, we cannot reuse the c0, c1, . . . , cn we already found.

Fortunately, we can overcome these two problems with orthogonalization.

4.1. LEAST SQUARES FOR FUNCTIONS 111

4.1.2.1 Gram-Schmidt Orthogonalization

Given a set of linearly independent functions {ϕ0, . . . , ϕn} we can produce
an orthogonal set {ψ0, . . . , ψn} by doing the Gram-Schmidt procedure:

ψ0 = ϕ0,

ψ1 = ϕ1 − r01ψ0,

⟨ψ1, ψ0⟩ = 0⇒ r01 =
⟨ψ0, ϕ1⟩
⟨ψ0, ψ0⟩

ψ2 = ϕ2 − r02ψ0 − r12ψ1,

⟨ψ2, ψ0⟩ = 0⇒ r02 =
⟨ψ0, ϕ2⟩
⟨ψ0, ψ0⟩

⟨ψ2, ψ1⟩ = 0⇒ r12 =
⟨ψ1, ϕ2⟩
⟨ψ1, ψ1⟩

,

etc.

We can write this procedure recursively as

ψ0 = ϕ0,

For k = 1, . . . , n

ψk = ϕk −
k−1∑
j=0

rjkψj, rjk =
⟨ψj, ϕk, ⟩
⟨ψj, ψj⟩

.

(4.32)

4.1.2.2 Orthogonal Polynomials

Let us take the set {1, x, . . . , xn} on an interval [a, b]. We can use the Gram-
Schmidt process to obtain an orthogonal set {ψ0, ..., ψn} of polynomials with
respect to the inner product (4.2). Each ψk, k = 0, . . . , n, is a polynomial
of degree k, determined up to a multiplicative constant (orthogonality is
not changed). Suppose we select ψk, k = 0, 1, . . . , n to be monic, i.e. the
coefficient of xk is 1. Then, ψk+1 − xψk is a polynomial of degree at most k
and we can write

ψk+1 − xψk =
k∑

j=0

cjψj, (4.33)

112 CHAPTER 4. LEAST SQUARES

for some coefficients cj, j = 0, . . . , k. Taking the inner product of (4.33) with
ψm for m = 0, . . . , k − 2 we get

−⟨ψk, xψm⟩ = cm⟨ψm, ψm⟩, m = 0, . . . , k − 2.

But the left hand side is zero because xψm ∈ Pk−1 and hence it is orthogonal
to ψk. Therefore, cj = 0 for j = 0, . . . , k − 2. Setting αk = −ck and
βk = −ck−1 (4.33) simplifies to

ψk+1 − xψk = −αkψk − βkψk−1. (4.34)

Taking the inner product of this expression with ψk and using orthogonality
we get

−⟨xψk, ψk⟩ = −αk⟨ψk, ψk⟩
and therefore

αk =
⟨xψk, ψk⟩
⟨ψk, ψk⟩

.

Similarly, taking the inner product of (4.34) with ψk−1 we obtain

−⟨xψk, ψk−1⟩ = −βk⟨ψk−1, ψk−1⟩

but ⟨xψk, ψk−1⟩ = ⟨ψk, xψk−1⟩ and xψk−1 = ψk + pk−1, where pk−1 ∈ Pk−1.
Then,

⟨ψk, xψk−1⟩ = ⟨ψk, ψk⟩+ ⟨ψk, pk−1⟩ = ⟨ψk, ψk⟩,
where we have used orthogonality in the last equation. Therefore,

βk =
⟨ψk, ψk⟩
⟨ψk−1, ψk−1⟩

.

Collecting the results we obtain a three-term recursion formula

ψ0(x) = 1, (4.35)

ψ1(x) = x− α0, α0 =
⟨xψ0, ψ0⟩
⟨ψ0, ψ0⟩

(4.36)

and for k = 1, . . . n

αk =
⟨xψk, ψk⟩
⟨ψk, ψk⟩

, βk =
⟨ψk, ψk⟩
⟨ψk−1, ψk−1⟩

, (4.37)

ψk+1(x) = (x− αk)ψk(x)− βkψk−1(x). (4.38)

4.1. LEAST SQUARES FOR FUNCTIONS 113

If the interval is symmetric with respect to the origin, [−a, a], and the weight
function is even, w(−x) = w(x), the orthogonal polynomials have parity, i.e.
ψk(x) = (−1)kψk(−x). This follows from the simple change of variables

y = −x. Define ψ̃j(x) = (−1)jψj(−x). Then, for j ̸= k

⟨ψ̃j, ψ̃k⟩ =
∫ a

−a
ψ̃j(x)ψ̃k(x)w(x)dx

= (−1)j+k

∫ a

−a
ψj(−x)ψk(−x)w(x)dx

= (−1)j+k

∫ a

−a
ψj(y)ψk(y)w(y)dy = (−1)j+k⟨ψj, ψk⟩ = 0.

(4.39)

Since the orthogonal polynomials are defined up to a multiplicative constant
and we have fixed that by choosing them to be monic, we conclude that
ψ̃k = ψk, i.e. ψk(x) = (−1)kψk(−x), for k = 0, 1, . . . , n.

Example 4.2. Let [a, b] = [−1, 1] and w(x) ≡ 1. The corresponding orthog-
onal polynomials are known as the Legendre polynomials and are used in
a variety of numerical methods. Because of the interval and weight function
symmetry ψ2

k is even and xψ2
kw is odd for all k. Consequently, αk = 0 for all

k.

We have ψ0(x) = 1 and ψ1(x) = x. We can now use the three-term
recursion (4.38) to obtain

β1 =

∫ 1

−1
x2dx∫ 1

−1
dx

= 1/3

and ψ2(x) = x2 − 1
3
. Now for k = 2 we get

β2 =

∫ 1

−1
(x2 − 1

3
)2dx∫ 1

−1
x2dx

= 4/15

and ψ3(x) = x(x2− 1
3
)− 4

15
x = x3− 3

5
x. We now collect Legendre polynomials

114 CHAPTER 4. LEAST SQUARES

we have found:

ψ0(x) = 1,

ψ1(x) = x,

ψ2(x) = x2 − 1

3
,

ψ3(x) = x3 − 3

5
x.

Example 4.3. The Hermite polynomials are the orthogonal polynomials
in (−∞,∞) with the weight function2 w(x) = e−x

2/2. Again, due to symme-
try αk = 0, ∀k ∈ N. Let us find the first few Hermite polynomials. We have
ψ0(x) ≡ 1, ψ1(x) = x. Now,

β1 =

∫ ∞
−∞

x2e−x
2/2dx∫ ∞

−∞
e−x

2/2dx

=

√
2π√
2π

= 1, (4.40)

and so ψ2(x) = x2 − 1.

β2 =

∫ ∞
−∞

(x2 − 1)2e−x
2/2dx∫ ∞

−∞
x2e−x

2/2dx

=
2
√
2π√
2π

= 2, (4.41)

and ψ3(x) = x(x2−1)−2x = x3−3x. Thus, the first 4 Hermite polynomials
are

ψ0(x) = 1,

ψ1(x) = x,

ψ2(x) = x2 − 1,

ψ3(x) = x3 − 3x.

Example 4.4. Chebyshev polynomials
We introduced in Section 2.4 the Chebyshev polynomials. As we have

seen, they have remarkable properties. We now add one more important
property: orthogonality.

2There is an alternative definition with the weight w(x) = e−x2

4.1. LEAST SQUARES FOR FUNCTIONS 115

The Chebyshev polynomials are orthogonal with respect to the weight func-
tion w(x) = 1/

√
1− x2. Indeed, recall Tk(x) = cos kθ, (x = cos θ, θ ∈ [0, π]).

Then,

⟨Tj, Tk⟩ =
∫ 1

−1
Tj(x)Tk(x)

dx√
1− x2

=

∫ π

0

cos jθ cos kθdθ (4.42)

and since 2 cos jθ cos kθ = cos(j + k)θ + cos(j − k)θ, we get for j ̸= k

⟨Tj, Tk⟩ =
1

2

[
1

j + k
sin(j + k)θ +

1

j − k sin(j − k)θ
]∣∣∣∣π

0

= 0. (4.43)

Moreover, using 2 cos2 kθ = 1 + cos 2kθ we obtain ⟨Tk, Tk⟩ = π/2 for k > 0
and ⟨T0, T0⟩ = π. Therefore,

⟨Tj, Tk⟩ =


0 for j ̸= k,
π
2

for j = k > 0,

π for j = k = 0.

(4.44)

Finding αk and βk in the three-term recursion formula (4.38) is in general
a tedious process and is limited to our ability to evaluate the corresponding
integrals. Fortunately, the recursion coefficients are known for several orthog-
onal polynomials (e.g. Legendre, Hermite, Chebyshev, Laguerre). Moreover,
in the discrete case, when the integrals are replaced by sums, αk and βk can
be evaluated directly with a simple computer code. Lastly, as we will see
in Section 7.3.2, the three-term recursion formula can be used to cast the
problem of finding the zeros of orthogonal polynomials into an eigenvalue
problem more appropriate for computation.

Theorem 4.3. The zeros of orthogonal polynomials are real, simple, and
they all lie in (a, b).

Proof. Indeed, ψk(x) is orthogonal to ψ0(x) = 1 for each k ≥ 1, thus∫ b

a

ψk(x)w(x)dx = 0 (4.45)

i.e. ψk has to change sign in [a, b] so it has a zero, say x1 ∈ (a, b). Suppose x1
is not a simple zero, then q(x) = ψk(x)/(x − x1)2 is a polynomial of degree
k − 2 and so

0 = ⟨ψk, q⟩ =
∫ b

a

ψ2
k(x)

(x− x1)2
w(x)dx > 0,

116 CHAPTER 4. LEAST SQUARES

which is of course impossible. Assume that ψk(x) has only l zeros in (a, b),
x1, . . . , xl. Then ψk(x)(x − x1) · · · (x − xl) = qk−l(x)(x − x1)

2 · · · (x − xl)
2,

where qk−l(x) is a polynomial of degree k − l which does not change sign in
[a, b]. Then

⟨ψk, (x− x1) · · · (x− xl)⟩ =
∫ b

a

qk−j(x)(x− x1)2 · · · (x− xl)2w(x)dx ̸= 0

but ⟨ψk, (x− x1) · · · (x− xl)⟩ = 0 for l < k. Therefore l = k.

4.1.3 Convergence of Least Squares by Orthogonal Poly-
nomials

The three-term recursion formula allows to generate sets of orthogonal poly-
nomials {ψ0, ψ1, . . . , ψn} for any n ∈ N. A natural question is if the least
squares approximation improves with increasing n.

Given f ∈ C[a, b], let us denote by sn the least squares approximation to
f by the linear span of the first n+1 orthogonal polynomials {ψ0, ψ1, . . . , ψn},
i.e.

sn =
n∑

k=0

⟨f, ψk⟩
∥ϕk∥2

ψk. (4.46)

Since sn is the best approximation in the L2 norm

∥f − sn∥ ≤ ∥f − p∗n∥, (4.47)

where p∗n is the best uniform (i.e. sup norm) approximation to f in Pn. Now,
for any g ∈ C[a, b]

∥g∥2 = ⟨g, g⟩ =
∫ b

a

|g(x)|2w(x)dx ≤ ∥g∥2∞
∫ b

a

w(x)dx, (4.48)

and thus ∥g∥ ≤ C∥g∥∞. Together with (4.47) this implies

∥f − sn∥ ≤ C∥f − p∗n∥∞. (4.49)

By Weierstrass approximation theorem ∥f−p∗n∥∞ → 0 as n→∞. Therefore
∥f − sn∥ → 0 as n → ∞. Note that this does not imply ∥f − sn∥∞ → 0 as
n→∞. In fact, it is generally not true for continuous functions.

4.1. LEAST SQUARES FOR FUNCTIONS 117

Formally, to each f ∈ C[a, b] we can assign an orthogonal polynomial
expansion

f ∼
∞∑
k=0

⟨f, ψk⟩
∥ϕk∥2

ψk. (4.50)

The partial sums of this expansion are precisely the least squares approxi-
mations of f .

4.1.4 Chebyshev Expansions

The set of Chebyshev polynomials {T0, T1, . . . , Tn} is orthogonal with respect
to the inner product

⟨f, g⟩ =
∫ 1

−1
f(x)g(x)

1√
1− x2

dx. (4.51)

Given f ∈ C[−1, 1], the least squares approximation sn, in the norm defined
by the inner product (4.51), by polynomials of degree at most n is given by

sn(x) =

n∑′

k=0

ckTk(x), x ∈ [−1, 1], (4.52)

where

ck =
2

π
⟨f, Tk⟩ =

2

π

∫ 1

−1
f(x)Tk(x)

1√
1− x2

dx, (4.53)

for k = 0, 1, . . . , n, and the prime in the summation means the k = 0 term
has a factor of 1/2, i.e. sn = 1

2
c0 + c1T1 + . . . cnTn.

It can be shown that if f is Lipschitz, then ∥f − sn∥∞ → 0 as n → ∞
and we can write

f(x) =

∞∑′

k=0

ckTk(x), x ∈ [−1, 1], (4.54)

where ck = 2
π
⟨f, Tk⟩, k = 0, 1, The right hand side of (4.54) is called the

Chebyshev expansion of f .

118 CHAPTER 4. LEAST SQUARES

Assuming f is smooth and using the orthogonality of the Chebyshev
polynomials we have

∥f − sn∥2 =
〈 ∞∑

k=n+1

ckTk,
∞∑

k=n+1

ckTk

〉
=
π

2

∞∑
k=n+1

|ck|2. (4.55)

Thus, the least squares error depends on the rate of decay of the Chebyshev
coefficients ck for k ≥ n+ 1.

There is a clear parallel with Fourier series. With the change of variables
x = cos θ, (4.53) becomes

ck =
2

π

∫ π

0

f(cos θ) cos kθdθ. (4.56)

If f is smooth so is F (θ) = f(cos θ) as a function of θ. Moreover, the odd
derivatives of F vanish at θ = 0 and θ = π so that two successive integrations
by parts of (4.56) give∫ π

0

F (θ) cos kθdθ = −1

k

∫ π

0

F ′(θ) sin θdθ = − 1

k2

∫ π

0

F ′′(θ) cos θdθ. (4.57)

Thus, if f ∈ Cm[−1, 1] we can perform m integrations by parts to conclude
that |ck| ≤ Am/k

m (k > 0) for some constant Am. Finally, by (4.24)-(4.26)
we obtain

∥f − sn∥ ≤ Cm(n+ 1)−m+1/2, (4.58)

for some constant Cm.
Often in applications, the Chebyshev interpolant is used instead of the

least squares approximation. The coefficients (4.56) are approximated with
the composite trapezoidal rule (6.34) at equi-spaced points in θ and computed
efficiently with the fast DCT as pointed out in Section 3.13. The error made
by this approximation depends again on the high wavenumber decay of the
Chebyshev coefficients. Indeed

c̃k =
2

n

n∑′′

j=0

f(cos θj) cos kθj

=
2

n

n∑′′

j=0

(∞∑′

l=0

cl cos lθj

)
cos kθj

=

∞∑′

l=0

cl

(
2

n

n∑′′

j=0

cos kθj cos lθj

)
,

(4.59)

4.1. LEAST SQUARES FOR FUNCTIONS 119

where θj = jπ/n and we employed in the second equality the Chebyshev
expansion of f at x = cos θj. Now,

n∑′′

j=0

cos kθj cos lθj =
1

2

2n−1∑
j=0

cos kθj cos lθj

=
1

4

2n−1∑
j=0

[cos(k + l)θj + cos(k − l)θj] .
(4.60)

Then, by the discrete orthogonality of the complex exponential (3.157) we
obtain the discrete orthogonality of the Chebyshev polynomials:

n∑′′

j=0

cos kθj cos lθj =


n/2 if either k+l

2n
∈ Z or k−l

2n
∈ Z,

n if both k+l
2n
∈ Z and k−l

2n
∈ Z,

0 otherwise.

(4.61)

Using this in (4.59) it follows that

c̃k = ck + c2n−k + c2n+k + c4n−k + c4n+k + . . . (4.62)

for k = 0, 1, . . . , n. Thus, a bound for the error |c̃k − ck| can be obtained
from the asymptotic decay of the Chebyshev coefficients, just as in the Fourier
case.

4.1.5 Decay of Chebyshev Coefficients for Analytic Func-
tions

If we extend F (θ) = f(cos θ) evenly to [π, 2π], F (θ) = F (2π− θ), θ ∈ [π, 2π],
we get

ck =
1

π

∫ 2π

0

f(cos θ) cos kθdθ. (4.63)

In other words, the Chebyshev expansion of f(x) is the (cosine) Fourier
expansion of f(cos θ).

To estimate the rate of decay of the Chebyshev coefficients we are going
to go to the complex plane. Letting z = eiθ, cos θ = 1

2
(z + 1/z), we turn

(4.63) into

ck =
1

2πi

∮
|z|=1

f

(
z + 1/z

2

)(
zk + 1/zk

) dz
z
. (4.64)

120 CHAPTER 4. LEAST SQUARES

The transformation

w(z) =
1

2

(
z +

1

z

)
(4.65)

maps the unit circle |z| = 1 into [−1, 1], twice. On the other hand, for a
circle |z| = ρ with ρ ̸= 1 we have

w(ρeiθ) =
1

2

(
ρ+

1

ρ

)
cos θ + i

1

2

(
ρ− 1

ρ

)
sin θ. (4.66)

Writing w = u+ iv we get

u2[
1
2
(ρ+ ρ−1)

]2 +
v2[

1
2
(ρ− ρ−1)

]2 = 1, (4.67)

which is the equation of an ellipse Eρ with major and minor semi-axes
1
2
(ρ+ ρ−1) and 1

2
(ρ− ρ−1), respectively and foci at (±1, 0). By symmetry,

(4.65) maps the circle |z| = 1/ρ also into the ellipse Eρ.

Theorem 4.4. If f is analytic on and inside the ellipse Eρ, for some ρ > 1,
then

|ck| ≤
C

ρk
. (4.68)

Proof. From (4.64),

|ck| ≤
∣∣∣∣ 1

2πi

∮
|z|=1/ρ

f

(
z + 1/z

2

)
zk−1dz

∣∣∣∣
+

∣∣∣∣ 1

2πi

∮
|z|=ρ

f

(
z + 1/z

2

)
z−k−1dz

∣∣∣∣ , (4.69)

where we have used contour deformation (a consequence of Cauchy’s theo-
rem) to change the integration paths. Each term on the right hand side of
(4.69) is bounded by Mρ−k, where M = maxz∈Eρ |f(z)|.

4.1.6 Splines

We have used splines for interpolation but we could also use them to approx-
imate, in the least squares sense, a continuous function on an interval [a, b].

4.1. LEAST SQUARES FOR FUNCTIONS 121

ϕ0 ϕ1 ϕ2 ϕ3 ϕ4 ϕ5

y

xx0 x1 x2 x3 x4 x5

Figure 4.2: Basis “hat” functions (n = 5, equi-spaced nodes) for S1
∆.

As an illustration we look now at the approximation by splines of degree 1,
S1
∆, i.e. continuous, piecewise linear functions. Recall that, given a partition

∆ = {a = x0 < x1 . . . < xn = b}, the set Sk
∆ of splines of degree k (see

Definition 3.1) is a subspace of Ck−1[a, b] of dimension n+ k.
Set x−1 = x0 and xn+1 = xn. The following set of “hat” functions

ϕj(x) =


x− xj−1
xj − xj−1

, for x ∈ [xj−1, xj],

xj+1 − x
xj+1 − xj

, for x ∈ [xj, xj+1],

0, otherwise,

j = 0, 1, . . . , n (4.70)

is a convenient basis for S1
∆. Figure 4.2 plots these functions for an equi-

spaced partition with n = 5. Note that ϕ0 and ϕn are only half “hat”
functions. The first and the second parts of their definition (4.70), respec-
tively, should be disregarded. Clearly, ϕj ∈ S1

∆ for all j. {ϕ0, ϕ1, . . . , ϕn} is
not an orthogonal set but each function is nonzero only in a small region
(small support) and ϕj(xi) = δij, for i, j = 0, 1, . . . , n.

Let us prove that {ϕ0, ϕ1, . . . , ϕn} is indeed a basis of S1
∆.

1) It is linearly independent, for if

n∑
j=0

cjϕj(x) = 0, ∀x ∈ [a, b], (4.71)

taking x = xj and using ϕj(xi) = δij, it follows that cj = 0 for j = 0, 1, . . . , n.
2) It spans S1

∆, since any s ∈ S1
∆ can be represented as

s(x) =
n∑

j=0

s(xj)ϕj(x). (4.72)

122 CHAPTER 4. LEAST SQUARES

The equality follows because the right hand side has the same values as s at
xi for i = 0, 1, . . . , n and since they are both in S1

∆ they must be equal.
As we know, we can represent the least squares approximation s∗ ∈ S1

∆

to f as s∗ = c∗0ϕ0 + . . . + c∗nϕn, where the c∗k, k = 0, . . . , n, are the unique
solution of the normal equations

n∑
k=0

⟨ϕk, ϕj⟩ck = ⟨f, ϕj⟩, j = 0, 1, . . . , n.

Now, ⟨ϕk, ϕj⟩ = 0 if ϕk and ϕj do not overlap, i.e. |k − j| > 1 and by direct
integration we get

⟨ϕj, ϕj⟩ =
∫ b

a

ϕ2
j(x)dx =

∫ xj+1

xj−1

ϕ2
j(x)dx =

1

3
(hj−1 + hj), (4.73)

⟨ϕj−1, ϕj⟩ =
∫ b

a

ϕj−1(x)ϕj(x)dx =

∫ xj

xj−1

ϕj−1(x)ϕj(x)dx =
1

6
hj−1, (4.74)

⟨ϕj+1, ϕj⟩ =
∫ b

a

ϕj+1(x)ϕj(x)dx =

∫ xj+1

xj

ϕj+1(x)ϕj(x)dx =
1

6
hj, (4.75)

where hj = xj+1 − xj. Hence, we obtain the tridiagonal linear system (note
h−1 = hn = 0)

1

6
hjcj−1 +

1

3
(hj−1 + hj)cj +

1

6
hj−1cj+1 = ⟨f, ϕj⟩, j = 0, 1, . . . , n. (4.76)

This system is diagonally dominant and the solution can be found efficiently
with Algorithm 9.5. There is one caveat though, in general the right hand
side, ⟨f, ϕj⟩, j = 0, 1, . . . , n needs to be approximated numerically.

We close this section with one observation. The second derivative of the
(complete or natural) cubic spline interpolant sI ∈ S3

∆ of f is the L2-best
approximation to f ′′ in S1

∆. That is,

∥f ′′ − s′′I∥ ≤ ∥f ′′ − s∥, ∀s ∈ S1
∆. (4.77)

This follows immediately from Lemma 3.10.1 by taking g = s′′I .

4.2 Discrete Least Squares Approximation

Suppose that we are given a data set (x0, f0), (x1, f1), · · · , (xN , fN) and we
would like to find the best 2-norm approximation f ∗ of these data in

W = span{ϕ0, ϕ1, . . . , ϕn},

4.2. DISCRETE LEAST SQUARES APPROXIMATION 123

where {ϕ0, ϕ1, . . . , ϕn} is a set of linearly independent functions defined on
an interval containing x0, . . . , xN and N >> n. The problem is same as
the least squares problem for function approximation, except that now we
measure the error using the 2-norm:

∥f − g∥2 =
N∑
j=0

|fj − gj|2 , g ∈ W, (4.78)

where gj = g(xj). The inner product is now the usual dot product

⟨f, g⟩ =
N∑
j=0

fj ḡj. (4.79)

In more generality we could use a weighted 2-norm,

∥f∥2 =
N∑
j=0

|fj|2wj, (4.80)

where wj > 0, j = 0 . . . , N are given weights, but here we only consider the
case wj = 1 for all j.

The solution of the discrete least square problem is again characterized
by the orthogonality of the error and we can write the least squares ap-
proximation f ∗ ∈ W explicitly when the set of functions {ϕ0, ϕ1, . . . , ϕn} is
orthogonal with respect to the inner product (4.79).

W = Pn is often used for data fitting, particularly for small n. It is worth
noting that when N = n the solution to the discrete least squares problem
in Pn is the interpolating polynomial pn of the data, for

∥f − pn∥2 =
n∑

j=0

|fj − pn(xj)|2 = 0. (4.81)

The case W = P1 is also known as linear regression. Taking ϕ0(x) ≡ 1,
ϕ1(x) = x the normal equations

1∑
k=0

⟨ϕk, ϕj⟩ck = ⟨f, ϕj⟩, j = 0, 1,

124 CHAPTER 4. LEAST SQUARES

become (
N∑
j=0

1

)
c0 +

(
N∑
j=0

xj

)
c1 =

N∑
j=0

fj, (4.82)(
N∑
j=0

xj

)
c0 +

(
N∑
j=0

x2j

)
c1 =

N∑
j=0

xjfj. (4.83)

This 2 × 2 linear system can be easily solved to obtain c0 and c1 and the
least square approximation is f ∗(x) = c0 + c1x. For larger n, it is more
appropriate to employ an orthogonal basis for Pn. This can be obtained
using the three-term recursion formula (4.38), which in this discrete setting
is easy to implement because the coefficients αk and βk are just simple sums
instead of integrals.

Example 4.5. Suppose we are given the data set

{(0, 1.1), (1, 3.2), (2, 5.1), (3, 6.9)}
and we would like to fit it to a line (in the least squares sense). Performing
the sums, the normal equations of (4.82)-(4.83) become

4c0 + 6c1 = 16.3, (4.84)

6c0 + 14c1 = 34.1. (4.85)

Solving this 2 × 2 linear system we get c0 = 1.18 and c1 = 1.93. Thus, the
least squares approximation is

p∗1(x) = 1.18 + 1.93x

and the square of the error is

3∑
j=0

[fj − (1.18 + 1.93xj)]
2 = 0.023.

Figure 4.3 shows the data and its least squares fit, p∗1(x) = 1.18 + 1.93x.

Example 4.6. Fitting to an exponential y = aebx. In this case the approx-
imating function is not a linear combination of given (linearly independent)
functions. Thus, the problem of finding the parameters a and b that minimize

N∑
j=0

[fj − aebxj]2

4.2. DISCRETE LEAST SQUARES APPROXIMATION 125

0 1 2 3

x

1

2

3

4

5

6

7

f data points
p∗1(x) = 1.18 + 1.93x

Figure 4.3: The data set {(0, 1.1), (1, 3.2), (2, 5.1), (3, 6.9)} and its least
squares fitting by a linear polynomial.

is nonlinear. However, we can turn it into a linear problem by taking the
natural logarithm of y = aebx, i.e. ln y = ln a+bx. Thus, tabulating (xj, ln fj)
we obtain the normal equations(

N∑
j=0

1

)
ln a+

(
N∑
j=0

xj

)
b =

N∑
j=0

ln fj, (4.86)(
N∑
j=0

xj

)
ln a+

(
N∑
j=0

x2j

)
b =

N∑
j=0

xj ln fj, (4.87)

and solve this linear system for ln a and b. Then, a = eln a and b = b.

If b is given and we only need to determine a then the problem is linear
as we are looking a function of the form aϕ0, where ϕ0(x) = ebx. We only
have one normal equation to solve(

N∑
j=0

e2bxj

)
a =

N∑
j=0

fje
bxj , (4.88)

126 CHAPTER 4. LEAST SQUARES

from which we obtain

a =

N∑
j=0

fje
bxj

N∑
j=0

e2bxj

. (4.89)

Example 4.7. Discrete orthogonal polynomials. Let us construct the first
few orthogonal polynomials with respect to the discrete inner product and
xj = (j + 1)/10, j = 0, 1, . . . , 9. We have ψ0(x) = 1 and ψ1(x) = x − α0,
where

α0 =
⟨xψ0, ψ0⟩
⟨ψ0, ψ0⟩

=

9∑
j=0

xj

9∑
j=0

1

= 0.55.

and hence ψ1(x) = x− 0.55. Now,

ψ2(x) = (x− α1)ψ1(x)− β1ψ0(x), (4.90)

α1 =
⟨xψ1, ψ1⟩
⟨ψ1, ψ1⟩

=

9∑
j=0

xj(xj − 0.55)2

9∑
j=0

(xj − 0.55)2

= 0.55, (4.91)

β1 =
⟨ψ1, ψ1⟩
⟨ψ0, ψ0⟩

= 0.0825. (4.92)

Therefore, ψ2(x) = (x − 0.55)2 − 0.0825. We can now use these orthogonal
polynomials to find the least squares approximation p∗2 by polynomial of degree
at most two of a set of data (x0, f0), (x1, f1), · · · , (x9, f9). Let us take fj =
x2j + 2xj + 3, for j = 0, 1, . . . , 9. Clearly, the least squares approximation
should be p∗2(x) = x2 + 2x + 3. Let us confirm this by using the orthogonal

4.3. HIGH-DIMENSIONAL DATA FITTING 127

polynomials ψ0, ψ1 and ψ2. The coefficients are given by

c0 =
⟨f, ψ0⟩
⟨ψ0, ψ0⟩

= 4.485, (4.93)

c1 =
⟨f, ψ1⟩
⟨ψ1, ψ1⟩

= 3.1, (4.94)

c2 =
⟨f, ψ2⟩
⟨ψ2, ψ2⟩

= 1, (4.95)

which gives, p∗2(x) = (x−0.55)2−0.0825+(3.1)(x−0.55)+4.485 = x2+2x+3.

4.3 High-dimensional Data Fitting

In many applications each data point contains many variables. For example,
a value for each pixel in an image, or clinical measurements of a patient, etc.
We can put all these variables in a vector x ∈ Rd for d >> 1. Associated
with x there is a scalar quantity f that can be measured or computed so
that our data set consists of the points (xj, fj), with xj ∈ Rd and fj ∈ R, for
j = 1, . . . , N .

A central problem in machine learning is that of predicting f from a
given large, high-dimensional dataset; this is called supervised learning. The
simplest approach is to postulate a linear relation

f(x) = a0 + aTx (4.96)

and determine the bias coefficient a0 ∈ R and the vector a ∈ Rd as a least
squares solution, i.e. such that they minimize

N∑
j=1

[fj − (a0 + aTxj)]
2.

We have already talked about the case d = 1. Here we are interested in
d >> 1.

If we append an extra component, equal to 1, to each data vector xj so
that now xj = [1, xj1, . . . , xjd]

T , for j = 1, . . . , N , we can write (4.96) as

f(x) = aTx (4.97)

128 CHAPTER 4. LEAST SQUARES

and the dimension d is increased by one, d ← d + 1, and relabeled again d.
We are seeking a vector a ∈ Rd that minimizes

J(a) =
N∑
j=1

[fj − aTxj]2. (4.98)

Putting the data xj, j = 1, . . . , N as rows of an N × d matrix X and the fj,
j = 1, . . . , N as the components of a (column) vector f , i.e.

X =

 x1
...
xN

 and f =

f1...
fN

 (4.99)

we can write (4.98) as

J(a) = ⟨f −Xa, f −Xa⟩ = ∥f −Xa∥2, (4.100)

where ⟨·, ·⟩ is the standard inner product in RN . Thus, we are looking for
the least squares approximation f ∗ to f by functions in

W = span{columns of X}.

We can find this from its geometric characterization:

⟨f − f ∗, w⟩ = 0, ∀w ∈ W. (4.101)

Since f − f ∗ is orthogonal to W if it is orthogonal to each column of X, i.e.
XT (f − f ∗) = 0, writing f ∗ = Xa∗ it follows that a∗ should be a solution of
the linear system

XTXa = XTf. (4.102)

These are the normal equations of this least squares problem. If the columns
of X are linearly independent, i.e. if for every a ̸= 0 we have that Xa ̸= 0,
then the d×d matrix XTX is positive definite and hence nonsingular. Thus,
in this case, there is a unique solution to mina∈Rd ∥f −Xa∥2 given by

a∗ = (XTX)−1XTf. (4.103)

The d×N matrix

X† = (XTX)−1XT (4.104)

4.4. BIBLIOGRAPHIC NOTES 129

is called the pseudoinverse of the N × d matrix X. Note that if X were
square and nonsingular X† would coincide with the inverse X−1.

Orthogonality is again central for the computation of a least squares ap-
proximation. Rather than working with the normal equations, whose matrix
XTX may be very sensitive to perturbations in the data such as noise, we
employ an orthogonal basis for the approximating subspace W to find a so-
lution. While in principle this can be done by applying the Gram-Schmidt
process (cf. Section 4.1.2.1) to the columns of X, this is a numerically un-
stable procedure. A more efficient method using a sequence of orthogonal
transformations, known as Householder reflections (see Section 11.2), is usu-
ally preferred. Once this orthonormalization process is completed we get
X = QR [see (8.30)], where

Q =


∗ · · · ∗
... · · · ...

Q̃
...

...
∗ · · · ∗

 , R =


R̃

0 · · · 0
...

...
0 · · · 0

 . (4.105)

Here Q is an N ×N orthogonal matrix (i.e. QTQ = QQT = I). The N × d
block Q̃ consists of columns that form an orthonormal basis for the column
space of X and R̃ is a d× d upper triangular matrix.

Using this QR factorization of the matrix X we have

∥f −Xa∥2 = ∥f −QRa∥2 = ∥QT (f −QRa)∥2 = ∥QTf −Ra∥2. (4.106)

Therefore, a solution to mina∈Rd ∥f−Xa∥2 is obtained by solving the system
Ra = QTf . Because of the zero block in R, the problem reduces to solving
the d× d upper triangular system

R̃a = Q̃Tf. (4.107)

If the matrix X is full rank there is a unique solution to (4.107). Note
however that the last N − d equations in Ra = QTf may be satisfied or not
(that depends on f) but we have no control on them.

4.4 Bibliographic Notes

Section 4.1 . The main objective of this section is to emphasize that this par-
ticular case of best approximation has a useful geometric interpretation and

130 CHAPTER 4. LEAST SQUARES

that orthogonality plays a central role both in the theory and in actual com-
putations. We separate the continuous and discrete cases. Gautschi [Gau11]
presents a unified approach. Good references for orthogonal polynomials are
the classical book by Szegö [Sze39] and the more modern monograph by
Gautschi [Gau04]. The convergence of the least squares approximation is
treated more extensively in [Che82]. The estimate of the Chebyshev coef-
ficients for analytic functions is from Rivlin’s monograph [Riv20]. Finally,
the least squares approximation by splines is a popular technique in data
analytics (see, for example, smoothing splines in [HTF09]).

Section 4.2 . Our presentation was influenced by the data fitting section in
Conte and de Boor’s classical book [CdB72], which also has a fortran code
for the generation of discrete orthogonal polynomials.

Section 4.3 . This section was drawn from Section 4.8 of [SB02]. The dis-
cussion of the QR factorization has been postponed to the linear algebra
part of this text as this matrix factorization also plays an important role in
numerical methods for eigenvalue problems.

Chapter 5

Computer Arithmetic

Up to now, we have tacitly assumed that all the needed numerical com-
putations were to be done with exact arithmetic. In reality, a computer
approximates numbers using only a finite number of digits. Thus, all numer-
ical computations executed in a computer inevitably involve this additional,
number approximation. In this chapter, we will discuss briefly the basics of
computer number representation and computer arithmetic, focusing on one
of their most important aspects, which is the potential cancellation of digits
of accuracy.

5.1 Floating Point Numbers

Floating point numbers are based on scientific notation in binary (base 2).
For example,

(1.0101)2 × 22 = (1 · 20 + 0 · 2−1 + 1 · 2−2 + 0 · 2−3 + 1 · 2−4)× 22

= (1 +
1

4
+

1

16
)× 4 = 5.2510.

We can write any non-zero real number x in normalized, binary, scientific
notation as

x = ±S × 2E, 1 ≤ S < 2, (5.1)

where S is called the significant or mantissa and E is the exponent. In
general, S is an infinite expansion of the form

S = (1.b1b2 · · ·)2. (5.2)

131

132 CHAPTER 5. COMPUTER ARITHMETIC

In a computer, a real number is represented in scientific notation but
using a finite number of binary digits (bits). We call these numbers floating
point numbers. In single precision (SP), floating point numbers are stored
in 32-bit words whereas in double precision (DP), used in most scientific
computing applications, a 64-bit word is employed: 1 bit is used for the sign,
52 bits for S, and 11 bits for E. This memory limits produce a large but
finite set of floating point numbers that can be represented in a computer.
Moreover, the floating points numbers are not uniformly distributed!

The maximum exponent possible in DP would be 211 − 1 = 2047 but
this is shifted to allow an approximately even representation of small and
large numbers. So we actually have Emin = −1022, Emax = 1023. Conse-
quently, the smallest and the largest DP floating point numbers which can
be represented in DP are

Nmin = min
x∈DP

|x| = 2−1022 ≈ 2.2× 10−308, (5.3)

Nmax = max
x∈DP

|x| = (1.1.....1)2 · 21023 = (2− 2−52) · 21023 ≈ 1.8× 10308. (5.4)

If in the course of a computation a number is produced which is bigger than
Nmax we get an overflow error and the computation would halt. If the number
is less than Nmin (in absolute value) then an underflow error occurs.

5.2 Rounding and Machine Precision

To represent a real number x as a floating point number, rounding has to be
performed to retain only the numbers of binary bits allowed in the significant.

Let x ∈ R and its binary expansion be x = ±(1.b1b2 · · ·)2× 2E. One way
to approximate x to a floating number with d bits in the significant is to
truncate or chop discarding all the bits after bd, i.e.

x∗ = chop(x) = ±(1.b1b2 · · · bd)2 × 2E. (5.5)

Recall that in DP d = 52.
A better way to approximate a real number with a floating point number

is to do rounding up or down (to the nearest floating point number), just as
we do when we round in base 10. In binary, rounding is simpler because bd+1

can only be 0 (we round down) or 1 (we round up). We can write this type
of rounding in terms of the chopping described above as

x∗ = round(x) = chop(x+ 2−(d+1) × 2E). (5.6)

5.3. CORRECTLY ROUNDED ARITHMETIC 133

Definition 5.1. Given an approximation x∗ to x, the absolute error is
defined by |x− x∗| and the relative error by |x−x∗

x
|, for x ̸= 0.

The relative error is generally more meaningful than the absolute error
to measure a given approximation. The relative error in chopping and in
rounding (called a round-off error) are∣∣∣∣x− chop(x)

x

∣∣∣∣ ≤ 2−d2E

(1.b1b2 · · ·)2E
≤ 2−d, (5.7)∣∣∣∣x− round(x)

x

∣∣∣∣ ≤ 1

2
2−d. (5.8)

The number 2−d is called machine precision or epsilon (eps). In DP, eps =
2−52 ≈ 2.22 × 10−16. The smallest DP number greater than 1 is 1+eps. As
we will see below, it is more convenient to write (5.8) as

round(x) = x(1 + δ), |δ| ≤ eps. (5.9)

5.3 Correctly Rounded Arithmetic

Computers today follow the IEEE standard for floating point representation
and arithmetic. This standard requires a consistent floating point represen-
tation of numbers across computers and correctly rounded arithmetic.

In correctly rounded arithmetic, the computer operations of addition, sub-
traction, multiplication, and division are the correctly rounded value of the
exact result. For example, if x and y are floating point numbers and ⊕ is the
machine addition, then

x⊕ y = round(x+ y) = (x+ y)(1 + δ+), |δ+| ≤ eps, (5.10)

and similarly for computer subtraction, multiplication, and division.
One important interpretation of (5.10) is as follows. Assuming x+ y ̸= 0,

write

δ+ =
1

x+ y
[δx + δy].

Then,

x⊕ y = (x+ y)

[
1 +

1

x+ y
(δx + δy)

]
= (x+ δx) + (y + δy). (5.11)

134 CHAPTER 5. COMPUTER ARITHMETIC

The computer addition ⊕ is giving the exact result but for a sightly perturbed
data. This interpretation is the basis for backward error analysis, which
is used to study how round-off errors propagate in a numerical algorithm.

5.4 Propagation of Errors and Cancellation

of Digits

Let round(x) and round(y) denote the floating point approximation of x and
y, respectively, and assume that their product is computed exactly, i.e

round(x)·round(y) = x(1+δx)·y(1+δy) = x·y(1+δx+δy+δxδy) ≈ x·y(1+δx+δy),

where |δx|,|δy| ≤ eps. Therefore, for the relative error we get∣∣∣∣x · y − round(x) · round(y)
x · y

∣∣∣∣ ≈ |δx + δy|, (5.12)

which is acceptable.
Let us now consider addition (or subtraction):

round(x) + round(y) = x(1 + δx) + y(1 + δy) = x+ y + xδx + yδy

= (x+ y)

(
1 +

x

x+ y
δx +

y

x+ y
δy

)
,

where we have assume x+ y ̸= 0. The relative error is∣∣∣∣x+ y − (round(x) + round(y))

x+ y

∣∣∣∣ = ∣∣∣∣ x

x+ y
δx +

y

x+ y
δy

∣∣∣∣ . (5.13)

If x and y have the same sign then x
x+y

, y
x+y

are both positive and bounded

by 1. Therefore the relative error is less than |δx + δy|, which is fine. But if
x and y have different sign and are close in magnitude, then the error could
be largely amplified because | x

x+y
|, | y

x+y
| can be very large.

Example 5.1. Suppose we have 10 bits of precision and

x = (1.01011100 ∗ ∗)2 × 2E,

y = (1.01011000 ∗ ∗)2 × 2E,

5.5. BIBLIOGRAPHIC NOTES 135

where the ∗ stands for inaccurate bits that, for example, were generated in
previous floating point computations. Then, in this 10 bit precision arithmetic

z = x− y = (1.00 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗)2 × 2E−6. (5.14)

We end up with only 2 bits of accuracy in z. Any further computations using
z will result in an accuracy of 2 bits or lower!

Example 5.2. Sometimes we can rewrite the difference of two very close
numbers to avoid digit cancellation. For example, suppose we would like to
compute

y =
√
1 + x− 1

for x > 0 and very small. Clearly, we will have loss of digits if we proceed
directly. However, if we rewrite y as

y = (
√
1 + x+ 1)

√
1 + x− 1√
1 + x+ 1

=
x√

1 + x+ 1

then the computation can be performed at nearly machine precision level.

5.5 Bibliographic Notes

Sections 5.1-5.4. This is usually the first chapter in most numerical analysis
textbooks. We have decided to present it only now and to keep it to a
minimum because often students find the topics of floating point arithmetic
and round-off errors tedious. But more importantly, many students get the
discouraging misconception that numerical analysis is a subject just about
round-off errors when they are first introduced to it through this particular
topic. The analysis of round-off errors is an important but small part of the
broad field of numerical analysis. The book of Wilkinson [Wil94] provides
many examples of backward (and forward) error analysis in the context of
computations involving polynomials and for numerical linear algebra.

The main sources for this short chapter on computer arithmetic were
the excellent monograph by Overton [Ove01] and Chapter 1 of Gautschi’s
book [Gau11].

136 CHAPTER 5. COMPUTER ARITHMETIC

Chapter 6

Numerical Differentiation

In this chapter we look at the approximation of the derivative(s) of a function
f at a point, given a few values of f at neighboring points, via interpolation.
The resulting formulas are called finite difference formulas. We also look
briefly at spectral derivative approximations using the fast Fourier transform.

6.1 Finite Differences

Suppose f is a differentiable function and we’d like to approximate f ′(x0)
given the value of f at x0 and at neighboring points x1, x2, . . . , xn. We could
approximate f by its interpolating polynomial pn at those points and use

f ′(x0) ≈ p′n(x0). (6.1)

There are several other possibilities. For example, we can approximate
f ′(x0) by the derivative of the cubic spline interpolant of f evaluated at x0,
or by the derivative of the least squares Chebyshev expansion of f , etc.

We are going to focus here on simple, finite difference formulas obtained
by differentiating low order interpolating polynomials.

Assuming x, x0, . . . , xn ∈ [a, b] and f ∈ Cn+1[a, b], we have

f(x) = pn(x) +
1

(n+ 1)!
f (n+1)(ξ(x))ωn(x), (6.2)

for some ξ(x) ∈ (a, b) and

ωn(x) = (x− x0)(x− x1) · · · (x− xn). (6.3)

137

138 CHAPTER 6. NUMERICAL DIFFERENTIATION

Thus,

f ′(x0) = p′n(x0) +
1

(n+ 1)!

[
d

dx
f (n+1)(ξ(x))ωn(x) + f (n+1)(ξ(x))ω′n(x)

]∣∣∣∣
x=x0

.

But ωn(x0) = 0 and ω′n(x0) = (x0 − x1) · · · (x0 − xn), thus

f ′(x0) = p′n(x0) +
1

(n+ 1)!
f (n+1)(ξ0)(x0 − x1) · · · (x0 − xn), (6.4)

where ξ0 is between min{x0, x1, . . . , xn} and max{x0, x1, . . . , xn}.

Example 6.1. Take n = 1 and x1 = x0 + h (h > 0). In Newton’s form

p1(x) = f(x0) +
f(x0 + h)− f(x0)

h
(x− x0), (6.5)

and p′1(x0) =
1
h
[f(x0+h)− f(x0)]. We obtain the forward difference formula

for approximating f ′(x0)

D+
h f(x0) :=

f(x0 + h)− f(x0)
h

. (6.6)

From (6.4) the error in this approximation is

f ′(x0)−D+
h f(x0) =

1

2!
f

′′
(ξ0)(x0 − x1) = −

1

2
f ′′(ξ0)h. (6.7)

Example 6.2. Take again n = 1 but now x1 = x0 − h. Then p′1(x0) =
1
h
[f(x0)− f(x0 − h)] and we get the backward difference formula for approx-

imating f ′(x0)

D−h f(x0) :=
f(x0)− f(x0 − h)

h
. (6.8)

Its error is

f ′(x0)−D−h f(x0) =
1

2
f ′′(ξ0)h. (6.9)

Example 6.3. Let n=2 and x1 = x0−h, x2 = x0+h. Then, p2 in Newton’s
form is

p2(x) = f [x1] + f [x1, x0](x− x1) + f [x1, x0, x2](x− x1)(x− x0).

6.1. FINITE DIFFERENCES 139

Let us obtain the divided difference table:

x0 − h f(x0 − h)
f(x0)−f(x0−h)

h

x0 f(x0)
f(x0+h)−2f(x0)+f(x0−h)

2h2

f(x0+h)−f(x0)
h

x0 + h f(x0 + h)

Therefore,

p′2(x0) =
f(x0)− f(x0 − h)

h
+
f(x0 + h)− 2f(x0) + f(x0 − h)

2h2
h

and thus

p′2(x0) =
f(x0 + h)− f(x0 − h)

2h
. (6.10)

This defines the centered difference formula to approximate f ′(x0)

D0
hf(x0) :=

f(x0 + h)− f(x0 − h)
2h

. (6.11)

Its error is

f ′(x0)−D0
hf(x0) =

1

3!
f ′′′(ξ0)(x0 − x1)(x0 − x2) = −

1

6
f ′′′(ξ0)h

2. (6.12)

Example 6.4. Let n = 2 and x1 = x0+h, x2 = x0+2h. The table of divided
differences is

x0 f(x0)
f(x0+h)−f(x0)

h

x0 + h f(x0 + h) f(x0+2h)−2f(x0+h)+f(x0)
2h2

f(x0+2h)−f(x0+h)
h

x0 + 2h f(x0 + 2h).

Therefore,

p′2(x0) =
f(x0 + h)− f(x0)

h
+
f(x0 + 2h)− 2f(x0 + h) + f(x0)

2h2
(−h)

140 CHAPTER 6. NUMERICAL DIFFERENTIATION

and simplifying

p′2(x0) =
−f(x0 + 2h) + 4f(x0 + h)− 3f(x0)

2h
. (6.13)

If we use this sided difference to approximate f ′(x0), the error is

f ′(x0)− p′2(x0) =
1

3!
f ′′′(ξ0)(x0 − x1)(x0 − x2) =

1

3
h2f ′′′(ξ0), (6.14)

which is twice as large as that of the centered finite difference formula.

Example 6.5. Tables 6.1 and 6.2 show the approximations of the derivative
for f(x) = e−x at x0 = 0, obtained with the forward and the centered finite
differences, respectively. The rate of convergence is evidenced in the last
column, the decrease factor. The error decreases by approximately a factor
of 1/2 when h is halved for the forward difference (linear rate of convergence)
and by approximately a factor of 1/4 for the centered difference (second order
of convergence).

Table 6.1: Approximation of f ′(0) for f(x) = e−x using the forward finite
difference. The decrease factor is error(h

2
)/error(h).

h D+
h f(0) |D+

h f(0)− f ′(0)| Decrease factor
0.20 -0.90634623 0.09365377
0.10 -0.95162582 0.04837418 0.51652147
0.05 -0.97541151 0.02458849 0.50829781
0.025 -0.98760352 0.01239648 0.50415789

Table 6.2: Approximation of f ′(0) for f(x) = e−x using the centered finite
difference. The decrease factor is error(h

2
)/error(h).

h D0
hf(0) |D0

hf(0)− f ′(0)| Decrease factor
0.20 -1.00668001 0.00668001
0.10 -1.0016675 0.00166750 0.24962530
0.05 -1.00041672 0.00041672 0.24990627
0.025 -1.00010417 0.00010417 0.24997656

6.2. THE EFFECT OF ROUND-OFF ERRORS 141

6.2 The Effect of Round-Off Errors

In numerical differentiation we take differences of values, which for small h,
could be very close to each other. As we know, this leads to loss of accuracy
because of finite precision, floating point arithmetic. For example, consider
the centered difference formula (6.11). For simplicity, let us suppose that
h has an exact floating point representation and that we make no rounding
error when doing the division by h. That is, suppose that the only source of
round-off error is in the computation of the difference

f(x0 + h)− f(x0 − h).

Then, f(x0 + h) and f(x0− h) are replaced by f(x0 + h)(1+ δ+) and f(x0−
h)(1 + δ−), respectively with |δ+| ≤ eps and |δ−| ≤ eps (recall eps is the
machine precision) and we have

f(x0 + h)(1 + δ+)− f(x0 − h)(1 + δ−)

2h
=
f(x0 + h)− f(x0 − h)

2h
+ rh,

where

rh =
f(x0 + h)δ+ − f(x0 − h)δ−

2h
.

Clearly,

|rh| ≤ (|f(x0 + h)|+ |f(x0 − h)|)
eps

2h
≈ |f(x0)|

eps

h
.

The approximation error or truncation error for the centered finite difference
approximation is −1

6
f ′′′(ξ0)h2. Thus, the total error can be approximately

bounded by 1
6
h2∥f ′′′∥∞ + |f(x0)| epsh . Differentiating this error bound with

respect to h and setting the derivative to zero, we find that it has a minimum
at the value

h∗ =

(
3
|f(x0)|
∥f ′′′∥∞

eps

) 1
3

. (6.15)

Consequently, the total error can at most be decreased to O(eps
2
3), i.e. we

do not get machine precision. Figure 6.1 shows the behavior of the round-off
and discretization errors as a function of h for the centered finite difference.
When these two errors become comparable, around the point h∗, decreasing h

142 CHAPTER 6. NUMERICAL DIFFERENTIATION

0 h0 10 4

h

0

10 9

Errors

Discretization error
Round-off error

Figure 6.1: Behavior of the round-off and discretization errors for the cen-
tered finite difference. The smallest total error is achieved for a value h∗

around the point where the two errors become comparable.

further does not decrease the total error as roundoff errors start to dominate.

The dominant effect of roundoff errors in finite differences when h is very
small is exacerbated in finite differences for higher order derivatives. If f can
be extended to an analytic function in a region of the complex plane, a more
accurate approximation of the derivatives of f can be obtained by employing
Cauchy’s integral formula for the n-th derivative of f :

f (n)(z0) =
n!

2πi

∫
C

f(z)

(z − z0)n+1
dz, (6.16)

where C is a simple closed contour around z0 and f is analytic on and inside
C. Parametrizing C as a circle of radius r we get

f (n)(z0) =
n!

2πrn

∫ 2π

0

f(z0 + reiθ)e−inθdθ. (6.17)

The integrand is periodic and smooth so it can be approximated with spectral
accuracy with the composite trapezoidal rule.

6.2. THE EFFECT OF ROUND-OFF ERRORS 143

Table 6.3: Approximation of f ′(0), f ′′(0), and f ′′′(0) for f(x) = e−x using
the discrete Cauchy’s integral formula (6.19) with r = 1 and N = 4, 8, 16, 32.

N f ′(0) approx. f ′′(0) approx. f ′′′(0) approx.
4 -1.008336089225849 1.002778328947104 -1.0011906265077144
8 -1.0000027557319253 1.000000551146385 -1.000000150312653
16 -1.0000000000000027 1.0000000000000004 -1.0000000000000029
32 -1.0000000000000000 1.0000000000000002 -1.0000000000000009

Example 6.6. We are going to use (6.17) to approximate the first and second
derivatives (n = 1, 2) of f(x) = e−x at 0. First, because f is real-valued we
have

f (n)(0) =
n!

2πrn

∫ 2π

0

Re
{
f(reiθ)e−inθ

}
dθ

=
n!

2πrn

∫ 2π

0

e−r cos θ cos(nθ + r sin θ)dθ.

(6.18)

We now approximate the integral with the composite trapezoidal rule using
N equi-spaced points θj = 2πj/N , j = 0, 1, . . . , N − 1:

f (n)(0) ≈ n!

Nrn

N−1∑
j=0

e−r cos θj cos(nθj + r sin θj) (6.19)

Table 6.3 shows the fast convergence of the approximations to f ′(0), f ′′(0),
and f ′′′(0) and demonstrates that it is possible to achieve machine precision
(O(10−16) in DP) accuracy with a modest N even for higher derivatives of
f . However, it is important to keep in mind the underlying assumptions for
the use of (6.16): f is an analytic function in a region containing a disk
centered at z0 and we have access to N equi-spaced values of f on boundary
of that disk.

144 CHAPTER 6. NUMERICAL DIFFERENTIATION

6.3 Richardson’s Extrapolation

Another approach to obtain finite difference formulas to approximate deriva-
tives is through Taylor expansions. For example,

f(x0 + h) = f(x0) + f ′(x0)h+
1

2
f ′′(x0)h

2 +
1

3!
f (3)(x0)h

3 + . . . (6.20)

f(x0 − h) = f(x0)− f ′(x0)h+
1

2
f ′′(x0)h

2 − 1

3!
f (3)(x0)h

3 + . . . (6.21)

Then, subtracting (6.21) from (6.20), we have f(x0 + h) − f(x0 − h) =
2f ′(x0)h+ 2

3!
f ′′′(x0)h3 + · · · and therefore

f(x0 + h)− f(x0 − h)
2h

= f ′(x0) + c2h
2 + c4h

4 + · · · , (6.22)

where the cn, for n even, are constants.
Similarly, if we add (6.20) and (6.21) we obtain

f(x0 + h) + f(x0 − h) = 2f(x0) + f ′′(x0)h
2 +

1

12
f (4)(x0)h

4 + · · · (6.23)

and consequently

f ′′(x0) =
f(x0 + h)− 2f(x0) + f(x0 − h)

h2
− 1

12
f (4)(x0)h

2 + · · · (6.24)

The finite difference

D2
hf(x0) =

f(x0 + h)− 2f(x0) + f(x0 − h)
h2

(6.25)

is thus a second order approximation of f ′′(x0). Moreover

D2
hf(x0) = f ′′(x0) + c̃2h

2 + c̃4h
4 + . . . (6.26)

for some constants c̃2, c̃4, . . . and h sufficiently small.
From (6.22) we know that asymptotically

D0
hf(x0) = f ′(x0) + c2h

2 + c4h
4 + · · · (6.27)

so we could apply Richardson extrapolation once to obtain a fourth order
approximation of f ′(x0). Evaluating (6.27) at h/2 we get

D0
h/2f(x0) = f ′(x0) +

1

4
c2h

2 +
1

16
c4h

4 + · · · (6.28)

6.4. FAST SPECTRAL DIFFERENTIATION 145

and multiplying this equation by 4, subtracting (6.27) to the result and
dividing by 3 we obtain

Dext
h f(x0) :=

4D0
h/2f(x0)−D0

hf(x0)

3
= f ′(x0) + Ch4 + · · · , (6.29)

where C is a constant. The new method Dext
h f(x0) has order of convergence

4 for about twice the amount of work needed for D0
hf(x0). Table 6.4 shows

the approximation Dext
h f(0) of f ′(0), again for f(x) = e−x, and its error for

h = 0.2/2j, j = 0, 1, 2, 3. The error decreases by a factor of approximately
0.0625 = 2−4 when halving h, confirming that the method is O(h4) accurate.
Note that with h = 0.025, Dext

h f(0) has about 8 digits of accuracy whereas
D0

hf(0) has only 3 (Table 6.2).

Round-off errors are still O(eps/h) and the minimum total error will occur
when O(h4) is O(eps/h), i.e. when h = O(eps1/5). Thus, for Dext

h f(x0) the
minimum total error that can be achieved is O(eps4/5).

Table 6.4: The Richardson extrapolation approximation Dext
h f(x0) (6.29) of

f ′(0) for f(x) = e−x. The decrease factor is error(h
2
)/error(h).

h Dext
h f(0) |Dext

h f(0)− f ′(0)| Decrease factor
0.20 -0.999996662696098 0.0000033373039020
0.10 -0.9999997916046542 0.0000002083953458 0.062444222
0.05 -0.9999999869781995 0.0000000130218005 0.062486042
0.025 -0.9999999991861838 0.0000000008138162 0.062496444

6.4 Fast Spectral Differentiation

In many applications, such as finding approximate solutions of differential
equations, we need to obtain accurate approximations of derivatives not just
at one point but at all the interpolation points. This type of approxima-
tions could get computationally expensive if computed directly and for a
large number of points. Fortunately, we can do this task both efficiently
and accuracy using the fast Fourier transform in two important cases, when
the approximation uses the trigonometric interpolant and when it uses the
Chebychev interpolant.

146 CHAPTER 6. NUMERICAL DIFFERENTIATION

6.4.1 Fourier Spectral Differentiation

Let us suppose that we have values fj, j = 0, 1, . . . , N − 1 of a 2π-periodic
function (or simply a periodic array of values) corresponding to the equivalent-
spaced nodes xj = 2πj/N , j = 0, 1, . . . , N − 1. Consider the trigonometric
interpolant of these values

sN/2(x) =

N/2∑′′

k=−N/2

cke
ikx. (6.30)

Since

s′N/2(x) =

N/2∑′′

k=−N/2

ikcke
ikx, (6.31)

we can compute the coefficients ikck of the trigonometric polynomial s′N/2

from the discrete Fourier coefficients ck of f , which in turn can be evaluated
efficiently with the FFT, and then transform back (take the inverse DFT)
to get the array s′N/2(xj), j = 0, 1, . . . , N − 1. However, there are two im-

portant details: the coefficients ck for k = −N/2, . . . ,−1 of the interpolant
correspond to ck, k = N/2, . . . , N − 1 of the DFT (see) and cN/2 = c−N/2.
The latter implies that cN/2 is real and that the highest wave number term,
called the Nyquist mode, in sN/2 is cN/2 cos

(
N
2
x
)
, whose derivative vanishes

at the nodes xj = j2π/N , j = 0, 1, . . . , N − 1. Consequently, we need to set
to zero the k = N/2 coefficient of s′N/2. Thus, to obtain an approximation of
the derivative at the equi-spaced points we proceed as follows:

a) Compute the DFT of f (i.e. the coefficients ck, k = 0, 1, . . . , N − 1)
with the FFT.

b) Define the array of coefficients

i[0, c1, . . . , (N/2− 1)cN/2−1, 0, (−N/2 + 1)cN/2+1, . . . ,−cN−1] (6.32)

c) Perform the inverse DFT (inverse FFT) of (6.32) to get the array cor-
responding to s′N/2(xj), j = 0, 1, . . . , N − 1.

We call this approach Fourier spectral differentiation or Fourier spectral ap-
proximation of the derivative.

6.4. FAST SPECTRAL DIFFERENTIATION 147

0 π 2π

−2

0

2

(a)

f ′(x)

s′4(xj)

8 16 32

N

10−15

10−12

10−9

10−6

10−3

(b)
maxj |f ′(xj)− s′N/2(xj)|

Figure 6.2: Fourier spectral approximation of the derivative of f(x) = esinx

at xj = 2πj/N , j = 0, 1, . . . , N − 1. (a) f ′ and its Fourier approximation
s′4(xj) and (b) the maximum error max

j
|f ′(xj)− s′N/2(xj)| for N = 8, 16, 32.

Example 6.7. Figure 6.2 shows the Fourier spectral approximation of the
derivative of f(x) = esinx at the points xj = 2πj/N , j = 0, 1, . . . , N − 1
for N = 8 and the maximum error for N = 8, 16, 32. As it is evident from
Fig. 6.2(b), the spectral approximation converges exponentially to f ′ (note
the logarithmic scale on the vertical axis).

Approximations to higher derivatives f (p) can be computed similarly by
using (ik)pck as the discrete Fourier coefficients of s

(p)
N/2. Again, for odd

derivatives (p odd) the Nyquist mode, k = N/2, needs to be set to zero.

148 CHAPTER 6. NUMERICAL DIFFERENTIATION

6.4.2 Chebyshev Spectral Differentiation

Recall (see Section 3.13) that setting x = cos θ, the Chebyshev interpolant
of f can be written as

pn(cos θ) =

n∑′′

k=0

ck cos kθ, (6.33)

where

ck =
2

n

n∑′′

j=0

f (cos(jπ/n)) cos(kjπ/n), k = 0, 1, .., n. (6.34)

We would like to approximate the derivative of f at the Chebyshev nodes
xj = cos(jπ/n), j = 0, 1, . . . , n using p′n. Denoting Πn(θ) = pn(cos θ) and
applying the change rule, we have

Π′n(θ) = p′n(x)
dx

dθ
= − sin θ p′n(x) = −

√
1− x2 p′n(x). (6.35)

Thus,

p′n(xj) = −
Π′n(jπ/n)√

1− x2j
, for j = 1, . . . , n− 1. (6.36)

Moreover, from (6.33),

Π′n(jπ/n) = −
n−1∑
k=1

kck sin(kjπ/n), for j = 1, . . . , n− 1. (6.37)

The right hand side can be identified (up to a normalization factor) as
the inverse (type I) discrete sine transform (DST) of the coefficients −kck,
k = 1, . . . , n− 1, which, like the DCT, can be computed in O(n log n) oper-
ations. Therefore, the procedure for Chebyshev spectral differentiation can
be summarized as follows:

a) Compute the coefficients ck, k = 0, 1, . . . , n with the fast DCT.

b) Evaluate (6.37) using the fast (inverse) DST.

c) Evaluate p′n at the interior points using (6.36).

6.5. BIBLIOGRAPHIC NOTES 149

d) Compute p′n(±1) using the formulas

p′n(1) =

n∑′′

k=0

k2ck, (6.38)

p′n(−1) =
n∑′′

k=0

(−1)k+1k2ck, (6.39)

which follow by applying L’Hôpital’s rule to −Π′n(θ)/ sin(θ).

Example 6.8. Consider the smooth function f(x) = e−x sin 2πx in [−1, 1].
Figure 6.3(a) shows a plot of the derivative of f and the Chebyshev spectral
approximation, computed via the fast DCT and DST, at the Chebychev nodes
xj = cos(πj/n), j = 0, 1, . . . , n. The maximum value of the derivative in
[−1, 1], ∥f ′∥∞, is attained at x = −1 and it is large (about 17) so it is
more appropriate to consider the relative error in the approximation. This
is shown in Fig. 6.3(b) for n = 8, 16, 32 (note the logarithmic scale on the
vertical axis). There is a clear fast convergence and with n = 32 it is possible
to achieve a relative error of O(10−14).

6.5 Bibliographic Notes

Section 6.1 . The presentation of finite differences was limited to equi-spaced
points but formulas for arbitrary node distributions could also be obtained.
Fornberg [For96] presents an algorithm for finding finite difference formulas
for arbitrarily spaced grids.

Section 6.2 . The possibility of using Cauchy’s integral formula to approxi-
mate the derivative is mentioned in Gautschi’s book [Gau11]. Our discussion
of the loss of accuracy of finite differences for small h follows Section 3.1 of
that book.

Section 6.3 . As mentioned in the bibliographic notes in Chapter 1, Richard-
son’s extrapolation is named after L. F. Richardson, who employed the pro-
cedure in 1911 [Ric11] for finite differences. Brenzinski [Bre10] and Gustafs-
son [Gus18] point out that the procedure actually goes back to the mid
1600’s and the work of Christiaan Huygens [Huy09] to find approximations
of π. Richardson’s extrapolation is a very useful and general technique in

150 CHAPTER 6. NUMERICAL DIFFERENTIATION

−1 0 1

x

−10

−5

0

5

10

15

(a)

f ′(x)

p′16(xj)

8 16 32

n

10−14

10−10

10−6

10−3

100
(b)

maxj
|f ′(xj)−s′N/2(xj)|

‖f ′‖∞

Figure 6.3: Chebychev spectral approximation of the derivative of f(x) =
e−x sin 2πx at xj = cos(πj/n), j = 0, 1, . . . , n. (a) f ′ and p′16(xj) and (b) the
maximum relative error max

j
|f ′(xj)− s′N/2(xj)|/∥f ′∥∞ for n = 8, 16, 32.

6.5. BIBLIOGRAPHIC NOTES 151

numerical analysis.

Section 6.4 . Spectral differentiation is central in the construction of spectral
methods for differential equations. It is covered in the more specialized texts
on the subject. In particular, spectral differentiation via the FFT is discussed
in detail in [Tre00] and in [For96] Appendix F.

152 CHAPTER 6. NUMERICAL DIFFERENTIATION

Chapter 7

Numerical Integration

We revisit now the problem of numerical integration that we used as an
example to introduce some principles of numerical analysis in Chapter 1.

The problem in question is to find accurate and efficient approximations
of ∫ b

a

f(x)dx.

Numerical formulas to approximate a definite integral are called quadra-
tures or quadrature rules and, as we saw in Chapter 1, they can be elementary
(simple) or composite.

We shall assume henceforth, unless otherwise noted, that the integrand
is sufficiently smooth.

7.1 Elementary Simpson’s Rule

The elementary trapezoidal rule quadrature is derived by replacing the inte-
grand f by its linear interpolating polynomial p1 at a and b. That is,

f(x) = p1(x) +
1

2
f ′′(ξ)(x− a)(x− b), (7.1)

where ξ ∈ (a, b) and so∫ b

a

f(x)dx =

∫ b

a

p1(x)dx+
1

2

∫ b

a

f ′′(ξ)(x− a)(x− b)dx

=
1

2
(b− a)[f(a) + f(b)]− 1

12
f ′′(η)(b− a)3.

(7.2)

153

154 CHAPTER 7. NUMERICAL INTEGRATION

Thus, the approximation∫ b

a

f(x)dx ≈ 1

2
(b− a)[f(a) + f(b)] (7.3)

has an error given by − 1
12
f ′′(η)(b− a)3.

We can add an intermediate point, say the midpoint, and replace f by its
quadratic interpolating polynomial p2 with respect to the nodes a, (a+ b)/2
and b.

For simplicity let’s take [a, b] = [−1, 1]. For a general interval [a, b], we
can use the transformation

x =
1

2
(a+ b) +

1

2
(b− a)t. (7.4)

Then, let p2 be the interpolating polynomial of f at −1, 0, 1. The corre-
sponding divided difference table is:

−1 f(−1)
f(0)− f(−1)

0 f(0) f(1)−2f(0)+f(−1)
2

.
f(1)− f(0)

1 f(1)

Thus,

p2(x) = f(−1) + [f(0)− f(−1)] (x+ 1)

+
1

2
[f(1)− 2f(0) + f(−1)] (x+ 1)x.

(7.5)

Now, employing the interpolation formula with the remainder expressed in
terms of a divided difference (3.64) we have

f(x) = p2(x) + f [−1, 0, 1, x](x+ 1)x(x− 1)

= p2(x) + f [−1, 0, 1, x]x(x2 − 1).
(7.6)

Therefore,∫ 1

−1
f(x)dx =

∫ 1

−1
p2(x)dx+

∫ 1

−1
f [−1, 0, 1, x]x(x2 − 1)dx. (7.7)

7.1. ELEMENTARY SIMPSON’S RULE 155

We can easily evaluate the first integral on the right hand side to obtain the
(elementary) Simpson’s rule:∫ 1

−1
p2(x)dx =

1

3
[f(−1) + 4f(0) + f(1)]. (7.8)

The error by approximating the integral of f with this quadrature is

E[f] =

∫ 1

−1
f [−1, 0, 1, x]x(x2 − 1)dx. (7.9)

Note that x(x2− 1) changes sign in [−1, 1], so we cannot use the mean value
theorem for integrals to estimate the error as we did in the trapezoidal rule
quadrature. However, x(x2 − 1) is an odd function in [−1, 1] and thus if
f [−1, 0, 1, x] were constant, as it is the case for polynomial of degree 3 or
less, the error would be zero. In other words, the quadrature (7.8) is exact
if f ∈ P3. We can take advantage of this fact by introducing another node,
x4, and relating f [−1, 0, 1, x] to the constant divided difference f [−1, 0, 1, x4]
and to the fourth order divided difference f [−1, 0, 1, x4, x]:

f [−1, 0, 1, x] = f [−1, 0, 1, x4] + f [−1, 0, 1, x4, x](x− x4). (7.10)

This identity is just an application of Theorem 3.2. Substituting (7.10) into
(7.9) we get

E[f] =

∫ 1

−1
f [−1, 0, 1, x4, x]x(x2 − 1)(x− x4)dx. (7.11)

We choose now x4 = 0 so that x(x2 − 1)(x − x4) does not change sign in
[−1, 1] and we obtain

E[f] =

∫ 1

−1
f [−1, 0, 0, 1, x]x2(x2 − 1)dx, (7.12)

where we also used that f [−1, 0, 0, 1, x] = f [−1, 0, 1, 0, x]. If f ∈ C4[−1, 1],
there is ξ(x) ∈ (−1, 1) such that [(3.66)]

f [−1, 0, 0, 1, x] = f (4)(ξ(x))

4!
, (7.13)

156 CHAPTER 7. NUMERICAL INTEGRATION

and consequently, by the mean value theorem for integrals, there is η ∈
(−1, 1) such that

E[f] =
f (4)(η)

4!

∫ 1

−1
x2(x2 − 1)dx = − 4

15

f (4)(η)

4!
= − 1

90
f (4)(η). (7.14)

Summarizing, Simpson’s quadrature rule for the interval [−1, 1] is∫ 1

−1
f(x)dx =

1

3
[f(−1) + 4f(0) + f(1)]− 1

90
f (4)(η). (7.15)

Note again that this quadrature gives the exact value of the integral when
f is a polynomial of degree 3 or less (the error is proportional to the fourth
derivative), even though we used a polynomial of degree at most 2 to approxi-
mate the integrand. This extra gain is due to the symmetry of the quadrature
around 0. In fact, we could have derived Simpson’s quadrature by using the
Hermite (third order) interpolating polynomial of f at −1, 0, 0, 1.

For a general interval [a, b] we use the change of variables (7.4)∫ b

a

f(x)dx =
1

2
(b− a)

∫ 1

−1
F (t)dt,

where

F (t) = f

(
1

2
(a+ b) +

1

2
(b− a)t

)
, (7.16)

and noting that F (k)(t) = (b−a
2
)kf (k)(x) we obtain the (elementary) Simpson’s

rule on the interval [a, b]:∫ b

a

f(x)dx =
1

6
(b− a)

[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
− 1

90
f (4)(η)

(
b− a
2

)5

.

(7.17)

7.2 Interpolatory Quadratures

The elementary trapezoidal and Simpson’s rules are examples of interpolatory
quadratures. This class of quadratures is obtained by selecting a set of nodes

7.2. INTERPOLATORY QUADRATURES 157

x0, x1, . . . , xn in the interval of integration and by approximating the integral
by that of the interpolating polynomial pn of the integrand at these nodes. By
construction, such interpolatory quadrature is exact for polynomials of degree
up to n, at least. We just saw that Simpson’s rule is exact for polynomial
up to degree 3 and we used an interpolating polynomial of degree at most 2
in its construction. The “degree gain” is due to the symmetric choice of the
interpolation nodes. This leads us to two important questions:

a) For a given n, how do we choose the nodes x0, x1, . . . , xn so that the
corresponding interpolation quadrature is exact for polynomials of the
highest degree possible?

b) What is that maximal degree?

Because orthogonal polynomials (Section 4.1.2.2) play a central role in
the answer to these questions, we will consider the more general problem of
approximating the integral

I[f] =

∫ b

a

f(x)w(x)dx, (7.18)

where w is an admissible weight function1, w ≡ 1 being a particular case.
The interval of integration [a, b] can be either finite or infinite (e.g. [0,+∞],
[−∞,+∞]).

Definition 7.1. We say that a quadrature Q[f] to approximate I[f] has
degree of precision k if it is exact for all p ∈ Pk but not exact for polynomials
of degree k + 1. Equivalently, a quadrature Q[f] has degree of precision k if
I[xm] = Q[xm], for m = 0, 1, . . . , k but I[xk+1] ̸= Q[xk+1].

Example 7.1. The trapezoidal rule quadrature has degree of precision 1 while
Simpson’s quadrature has degree of precision 3.

For a given set of nodes x0, x1, . . . , xn in [a, b], let pn be the interpolating
polynomial of f at these nodes. In Lagrange form, we can write pn as (see
Section 3.1)

pn(x) =
n∑

j=0

f(xj)lj(x), (7.19)

1w ≥ 0,
∫ b

a
w(x)dx > 0, and

∫ b

a
xkw(x)dx < +∞ for k = 0, 1, . . .

158 CHAPTER 7. NUMERICAL INTEGRATION

where

lj(x) =
n∏

k=0
k ̸=j

(x− xk)
(xj − xk)

, for j = 0, 1, ..., n. (7.20)

are the polynomial cardinal functions. The corresponding interpolatory quadra-
ture Qn[f] to approximate I[f] is then given by

Qn[f] =
n∑

j=0

Ajf(xj),

Aj =

∫ b

a

lj(x)w(x)dx, for j = 0, 1, . . . , n.

(7.21)

Theorem 7.1. Degree of precision of the interpolatory quadrature (7.21) is
less than 2n+ 2

Proof. Suppose the degree of precision k of (7.21) is greater or equal than
2n + 2. Take f(x) = (x − x0)2(x − x1)2 · · · (x − xn)2. This is polynomial of
degree exactly 2n+ 2. Then.∫ b

a

f(x)w(x)dx =
n∑

j=0

Ajf(xj) = 0. (7.22)

On the other hand∫ b

a

f(x)w(x)dx =

∫ b

a

(x− x0)2 · · · (x− xn)2w(x)dx > 0 (7.23)

which is a contradiction. Therefore k < 2n+ 2.

7.3 Gaussian Quadratures

We will now show that there is a choice of nodes x0, x1, ..., xn that yields the
maximal degree of precision, 2n + 1, for an interpolatory quadrature. The
corresponding quadratures are called Gaussian quadratures. To define them,
we recall that ψk is the k-th orthogonal polynomial with respect to the inner
product

< f, g >=

∫ b

a

f(x)g(x)w(x)dx, (7.24)

7.3. GAUSSIAN QUADRATURES 159

if < ψk, q >= 0 for all polynomials q of degree less than k. Recall also that
the zeros of orthogonal polynomials are real, simple, and contained in [a, b]
(Theorem 4.3).

Definition 7.2. Let ψn+1 be the (n + 1)st orthogonal polynomial and let
x0, x1, ..., xn be its n + 1 zeros. Then, the interpolatory quadrature (7.21)
with the nodes so chosen is called a Gaussian quadrature.

Theorem 7.2. The interpolatory quadrature (7.21) has maximal degree of
precision k = 2n+ 1 if and only if it is a Gaussian quadrature.

Proof. Let us suppose that the quadrature is Gaussian and let f be a poly-
nomial of degree ≤ 2n+ 1. Then, we can write

f(x) = q(x)ψn+1(x) + r(x), (7.25)

where q and r are polynomials of degree ≤ n. Now∫ b

a

f(x)w(x)dx =

∫ b

a

q(x)ψn+1(x)w(x)dx+

∫ b

a

r(x)w(x)dx (7.26)

The first integral on the right hand side is zero because of orthogonality. For
the second integral the quadrature is exact (it is interpolatory). Therefore,∫ b

a

f(x)w(x)dx =
n∑

j=0

Ajr(xj). (7.27)

Moreover, r(xj) = f(xj) − q(xj)ψn+1(xj) = f(xj) for all j = 0, 1, . . . , n.
Thus, ∫ b

a

f(x)w(x)dx =
n∑

j=0

Ajf(xj) (7.28)

and consequently, the Gaussian quadrature has degree of precision k = 2n+1.
Now suppose that the interpolatory quadrature (7.21) has maximal degree
of precision 2n+ 1. Take f(x) = p(x)(x− x0)(x− x1) · · · (x− xn) where p is
a polynomial of degree ≤ n. Then, f is a polynomial of degree ≤ 2n+1 and∫ b

a

f(x)w(x)dx =

∫ b

a

p(x)(x− x0) · · · (x− xn)w(x)dx =
n∑

j=0

Ajf(xj) = 0.

Therefore, the polynomial (x − x0)(x − x1) · · · (x − xn) of degree n + 1 is
orthogonal to all polynomials of degree ≤ n. Thus, it is a multiple of ψn+1.

160 CHAPTER 7. NUMERICAL INTEGRATION

Example 7.2. Consider the interval [−1, 1] and the weight function w ≡ 1.
The orthogonal polynomials are the Legendre polynomials 1, x, x2− 1

3
, x3− 3

5
x,

etc. Take n = 1. The roots of ψ2 are x0 = −
√

1
3
and x1 =

√
1
3
. Therefore,

the corresponding Gaussian quadrature is∫ 1

−1
f(x)dx ≈ A0f

(
−
√

1

3

)
+ A1f

(√
1

3

)
, (7.29)

where

A0 =

∫ 1

−1
l0(x)dx, (7.30)

A1 =

∫ 1

−1
l1(x)dx. (7.31)

We can evaluate these integrals directly or employ the method of undeter-
mined coefficients to find A0 and A1. The latter is generally easier and
we illustrate it now. Using that the quadrature is exact for 1 and x we have

2 =

∫ 1

−1
1 dx = A0 + A1, (7.32)

0 =

∫ 1

−1
x dx = −A0

√
1

3
+ A1

√
1

3
. (7.33)

Solving this 2 × 2 linear system we get A0 = A1 = 1. So the Gaussian
quadrature for n = 1 in [−1, 1] is

Q1[f] = f

(
−
√

1

3

)
+ f

(√
1

3

)
. (7.34)

Let us compare this quadrature to the elementary trapezoidal rule. Take
f(x) = x2. The trapezoidal rule, T [f], gives

T [x2] =
2

2
[f(−1) + f(1)] = 2, (7.35)

whereas the Gaussian quadrature Q1[f] yields the exact result:

Q1[x
2] =

(
−
√

1

3

)2

+

(√
1

3

)2

=
2

3
. (7.36)

7.3. GAUSSIAN QUADRATURES 161

Example 7.3. Consider the interval [−1, 1] and w(x) = (1−x2)−1/2. As we
know (see 2.4), ψn+1 = Tn+1, the Chebyshev polynomial of degree n+ 1. Its
zeros are

xj = cos

(
2j + 1

2(n+ 1)
π

)
, for j = 0, . . . , n.

For n = 1, we have

cos
(π
4

)
=

√
1

2
, cos

(
3π

4

)
= −

√
1

2
. (7.37)

We can use again the method of undetermined coefficients to find A0 and A1:

π =

∫ 1

−1
1

1√
1− x2

dx = A0 + A1, (7.38)

0 =

∫ 1

−1
x

1√
1− x2

dx = −A0

√
1

2
+ A1

√
1

2
, (7.39)

which gives A0 = A1 = π
2
. Thus, the corresponding Gaussian quadrature to

approximate ∫ 1

−1
f(x)

1√
1− x2

dx

is

Q1[f] =
π

2

[
f

(
−
√

1

2

)
+ f

(√
1

2

)]
. (7.40)

7.3.1 Convergence of Gaussian Quadratures

Let f be a continuous function on a closed interval [a, b] and consider the
interpolation quadrature (7.21). Can we guarantee that the error converges
to zero as n→∞, i.e.,∫ b

a

f(x)w(x)dx−
n∑

j=0

Ajf(xj)→ 0, as n→∞ ?

The answer is no; recall that the convergence of the interpolating polynomial
to f depends on the smoothness of f and the distribution of the interpolating
nodes. However, if the interpolatory quadrature is Gaussian the answer is
yes. This is a consequence of the following special properties of the weights
A0, A1, . . . , An in the Gaussian quadrature and Weierstrass approximation
theorem.

162 CHAPTER 7. NUMERICAL INTEGRATION

Theorem 7.3. For a Gaussian quadrature all the weights are positive and
sum up to ∥w∥1, i.e.,
(a) Aj > 0 for all j = 0, 1, . . . , n.

(b)
n∑

j=0

Aj =

∫ b

a

w(x)dx.

Proof. (a) Let pk = l2k for k = 0, 1, . . . , n. These are polynomials of degree
2n and pk(xj) = δkj. Thus,

0 <

∫ b

a

l2k(x)w(x)dx =
n∑

j=0

Ajl
2
k(xj) = Ak (7.41)

for k = 0, 1, . . . , n.
(b) Take f(x) ≡ 1 then ∫ b

a

w(x)dx =
n∑

j=0

Aj. (7.42)

as the quadrature is exact for polynomials of degree zero.

We can now use these special properties of the Gaussian quadrature to
prove its convergence for all continuous functions f on a closed bounded
interval [a, b].

Theorem 7.4. Let

Qn[f] =
n∑

j=0

Ajf(xj) (7.43)

be the Gaussian quadrature. Then,

En[f] :=

∫ b

a

f(x)w(x)dx−Qn[f]→ 0, as n→∞ . (7.44)

Proof. Let p∗2n+1 be the best uniform approximation to f (i.e. the best ap-
proximation in the norm ∥f∥∞ = maxx∈[a,b] |f(x)|) by polynomials of degree
≤ 2n+ 1. Then,

En[f − p∗2n+1] = En[f]− En[p
∗
2n+1] = En[f] (7.45)

7.3. GAUSSIAN QUADRATURES 163

and therefore

En[f] = En[f − p∗2n+1]

=

∫ b

a

[f(x)− p∗2n+1(x)]w(x)dx−
n∑

j=0

Aj[f(xj)− p∗2n+1(xj)].
(7.46)

Taking the absolute value, using the triangle inequality, and the fact that
the weights are positive we obtain

|En[f]| ≤
∫ b

a

|f(x)− p∗2n+1(x)|w(x)dx+
n∑

j=0

Aj|f(xj)− p∗2n+1(xj)|

≤ ∥f − p∗2n+1∥∞
∫ b

a

w(x)dx+ ∥f − p∗2n+1∥∞
n∑

j=0

Aj

= 2∥w∥1∥f − p∗2n+1∥∞

From the Weierstrass approximation theorem it follows that

∥f − p∗2n+1∥∞ → 0, as n→∞ (7.47)

and consequently En[f]→ 0 as n→∞.

Moreover, it can be proved that if f ∈ Cm[a, b]

|En[f]| ≤ C(2n)−m∥f (m)∥∞. (7.48)

That is, the rate of convergence is not fixed; it depends on the number of
derivatives the integrand has. In this case, we say that the approximation is
spectral. In particular if f ∈ C∞[a, b] then the error decreases down to zero
faster than any power of 1/(2n).

7.3.2 Computing the Gaussian Nodes and Weights

Gaussian quadratures achieve high accuracy for smooth functions with a
relatively small n. However, we need to compute numerically their nodes
and weights (in most cases). One of the most popular methods to do this, at
least for moderate n, is a method based on an eigenvalue problem, as we show
next. More recent, fast and effective methods use polynomial root-finding in
combination with Taylor series approximations or asymptotic expansions.

164 CHAPTER 7. NUMERICAL INTEGRATION

Orthogonal polynomials satisfy a three-term relation:

ψk+1(x) = (x− αk)ψk(x)− βkψk−1(x), for k = 0, 1, . . . , n, (7.49)

where β0 =
∫ b

a
w(x)dx, ψ0(x) = 1 and ψ−1(x) = 0. For several orthogonal

polynomials the coefficients αk, βk are known. With this information, the
problem of finding the Gaussian nodes and weights can be efficiently solved,
as we show next.

We start by rewriting (7.49) as

xψk(x) = βkψk−1(x) + αkψk(x) + ψk+1(x), for k = 0, 1, . . . , n. (7.50)

If we use the normalized orthogonal polynomials

ψ̃k(x) =
ψk(x)√

< ψk, ψk >
(7.51)

and recalling that

βk =
< ψk, ψk >

< ψk−1, ψk−1 >

then (7.50) can be written as

xψ̃k(x) =
√
βkψ̃k−1(x) + αkψ̃k(x) +

√
βk+1ψ̃k+1(x), (7.52)

for k = 0, 1, . . . , n. Now, evaluating this expression at a root xj of ψn+1 we
get the eigenvalue problem

xjv
(j) = Jn+1v

(j), (7.53)

where

Jn+1 =


α0

√
β1 0 · · · 0√

β1 α1

√
β2 · · · 0

...
. √

βn
0 0 0

√
βn αn

 , v(j) =


ψ̃0(xj)

ψ̃1(xj)
...

ψ̃n−1(xj)
ψ̃n(xj)

 . (7.54)

That is, the Gaussian nodes xj, j = 0, 1, . . . , n are the eigenvalues of the
(n + 1) × (n + 1), symmetric, tridiagonal matrix Jn+1 with corresponding
eigenvectors v(j), j = 0, 1, . . . , n. There are efficient numerical methods (the

7.4. CLENSHAW-CURTIS QUADRATURE 165

QR method described in Section 11.3) to solve the eigenvalue problem for a
symmetric, tridiagonal matrix and this is one of most popular approaches to
compute the Gaussian nodes and weights.

We derive now a formula to obtain the Gaussian weights Aj. Since
⟨ψ̃k, ψ̃0⟩ = 0 for k = 1, . . . , n and the quadrature is exact for polynomial
of degree ≤ 2n+ 1, it follows that

0 =

∫ b

a

ψ̃k(x)w(x)dx =
n∑

j=0

Ajψ̃k(xj), k = 1, . . . , n (7.55)

and together with the relation√
β0 =

∫ b

a

ψ̃0(x)w(x)dx =
n∑

j=0

Ajψ̃0(xj), (7.56)

we obtain the following linear system of equations for the weights

[
v(0) v(1) · · · v(n)

]

A0

A1
...
An

 =


√
β0
0
...
0

 . (7.57)

Left-multiplying this expression by v(j)T and noting that for a symmetric
matrix eigenvectors corresponding to different eigenvalues are orthogonal,
we get

v(j)Tv(j)Aj =
√
β0 v

(j)
0 = 1, (7.58)

where the last equality follows from v
(j)
0 = ψ̃0(xj) = 1/

√
β0. Now, if we use

the normalized eigenvectors u(j) = v(j)/∥v(j)∥ we note that u(j)0 = 1/(∥v(j)∥√β0).
Hence, multiplying (7.58) by

(
u
(j)
0

)2
, we obtain

Aj = β0

(
u
(j)
0

)2
, j = 0, 1, . . . , n. (7.59)

7.4 Clenshaw-Curtis Quadrature

Gaussian quadratures are optimal in terms of the degree of precision and
offer superalgebraic convergence for smooth integrands. However, the com-
putation of Gaussian weights and nodes carries a significant cost, for large

166 CHAPTER 7. NUMERICAL INTEGRATION

n. There is an ingenious interpolatory quadrature that is a close competitor
to the Gaussian quadrature due to its efficient and fast rate of convergence.
This is the Clenshaw-Curtis quadrature, which we derive next.

Suppose f is a smooth function on the interval [−1, 1] and we are inter-
ested in an accurate approximation of the integral∫ 1

−1
f(x)dx.

The idea is to use the Chebyshev nodes xj = cos(jπ/n), j = 0, 1, ..., n as
the nodes of the corresponding interpolatory quadrature. The degree of pre-
cision is only n (or n + 1 if n is even), not 2n + 1. However, as we know,
for smooth functions the approximation by polynomial interpolation using
the Chebyshev nodes converges rapidly. Hence, for smooth integrands this
particular interpolatory quadrature can be expected to converge fast to the
exact value of the integral.

As seen in Section 3.13, the interpolating polynomial pn of f at the Cheby-
shev nodes (the Chebyshev interpolant) can be represented as

pn(x) =
a0
2

+
n−1∑
k=1

akTk(x) +
an
2
Tn(x), (7.60)

where the coefficients are given by

ak =
2

n

n∑′′

j=0

f(cos θj) cos kθj, θj = jπ/n, k = 0, 1, .., n. (7.61)

These coefficients can be computed efficiently in O(n log n) operations with
the fast DCT or with the FFT. With the change of variable x = cos θ,
θ ∈ [0, π], we have

pn(cos θ) =
a0
2

+
n−1∑
k=1

ak cos kθ +
an
2

cosnθ (7.62)

and ∫ 1

−1
f(x)dx =

∫ π

0

f(cos θ) sin θdθ. (7.63)

7.4. CLENSHAW-CURTIS QUADRATURE 167

The quadrature is obtained by replacing f(cos θ) by pn(cos θ)∫ 1

−1
f(x)dx ≈

∫ π

0

pn(cos θ) sin θdθ. (7.64)

Substituting (7.62) for pn(cos θ) we get∫ π

0

pn(cos θ) sin θdθ =
a0
2

∫ π

0

sin θdθ

+
n−1∑
k=1

ak

∫ π

0

cos kθ sin θdθ

+
an
2

∫ π

0

cosnθ sin θdθ.

(7.65)

With the aid of the trigonometric identity

cos kθ sin θ =
1

2
[sin(1 + k)θ + sin(1− k)θ] (7.66)

we can perform the integrals on the right hand side of (7.65) and taking n
even we get the Clenshaw-Curtis quadrature:∫ 1

−1
f(x)dx ≈ a0 +

n−2∑
k=2

k even

2ak
1− k2 +

an
1− n2

. (7.67)

For a general interval [a, b] we simply use the change of variables

x =
a+ b

2
+
b− a
2

cos θ (7.68)

for θ ∈ [0, π] and thus∫ b

a

f(x)dx =
b− a
2

∫ π

0

F (θ) sin θdθ, (7.69)

where F (θ) = f(a+b
2
+ b−a

2
cos θ) and so the formula (7.67) gets an extra factor

of (b− a)/2.
Figure 7.1 shows a comparison of the approximations obtained with the

Clenshaw-Curtis quadrature and the composite Simpson quadrature, which
we discuss next, for the integral of f(x) = ex in [0, 1]. The Clenshaw-Curtis
quadrature converges to the exact value of the integral notably fast. With
just n = 8 nodes, it almost reaches machine precision while the composite
Simpson rule requires more than 512 nodes for comparable accuracy.

168 CHAPTER 7. NUMERICAL INTEGRATION

8 128 256 512
n

10 14

10 11

10 7

10 5

 E
rro

r

Clenshaw-Curtis
Composite Simpson

Figure 7.1: Clenshaw-Curtis quadrature and the composite Simpson rule
for the integral of f(x) = ex in [0, 1]. The Clenshaw-Curtis almost reaches
machine precision with just n = 8 nodes.

7.5. COMPOSITE QUADRATURES 169

7.5 Composite Quadratures

We saw in Section 1.2.2 that one strategy to improve the accuracy of an
elementary (simple) quadrature formula is to divide the interval of integration
[a, b] into small subintervals, use the elementary quadrature in each of them,
and sum up all the contributions.

For simplicity, let us divide uniformly [a, b] into N subintervals of equal
length h = (b − a)/N , [xj, xj+1], where xj = a + jh for j = 0, 1, . . . , N − 1.
If we use the elementary trapezoidal rule in each subinterval (as done in
Section 1.2.2) we arrive at the composite trapezoidal rule:

∫ b

a

f(x)dx = h

[
1

2
f(a) +

N−1∑
j=1

f(xj) +
1

2
f(b)

]
− 1

12
(b− a)h2f ′′(η), (7.70)

where η is some point in (a, b).

To derive a corresponding composite Simpson’s rule we take N even and
split the integral over the N/2 intervals [x0, x2], [x2, x4], . . . [xN−2, xN]:∫ b

a

f(x)dx =

∫ x2

x0

f(x)dx+

∫ x4

x2

f(x)dx+ · · ·+
∫ xN

xN−2

f(x)dx. (7.71)

Since the elementary Simpson’s quadrature applied to [xj, xj+2] is∫ xj+2

xj

f(x)dx =
h

3
[f(xj) + 4f(xj+1) + f(xj+2)]−

1

90
f (4)(ηj)h

5, (7.72)

for some ηj ∈ (xj, xj+2), summing up all the N/2 contributions we get the
composite Simpson’s rule:

∫ b

a

f(x)dx =
h

3

f(a) + 2

N/2−1∑
j=1

f(x2j) + 4

N/2∑
j=1

f(x2j−1) + f(b)


− 1

180
(b− a)h4f (4)(η),

for some η ∈ (a, b).

170 CHAPTER 7. NUMERICAL INTEGRATION

7.6 Modified Trapezoidal Rule

We consider now a modification to the trapezoidal rule that will yield a
quadrature with an error of the same order as that of Simpson’s rule. More-
over, this modified quadrature will give us some insight into the asymptotic
form of error for the trapezoidal rule.

To simplify the derivation let us take the interval [0, 1] and let p3 be the
polynomial interpolating f(0), f ′(0), f(1), f ′(1):

p3(x) = f(0) + f [0, 0]x+ f [0, 0, 1]x2 + f [0, 0, 1, 1]x2(x− 1). (7.73)

Thus, ∫ 1

0

p3(x)dx = f(0) +
1

2
f ′(0) +

1

3
f [0, 0, 1]− 1

12
f [0, 0, 1, 1]. (7.74)

The divided differences are obtained in the tableau:

0 f(0)
f ′(0)

0 f(0) f(1)− f(0)− f ′(0)
f(1)− f(0) f ′(1) + f ′(0) + 2(f(0)− f(1))

1 f(1) f ′(1)− f(1) + f(0)
f ′(1)

1 f(1)

Therefore,∫ 1

0

p3(x)dx = f(0) +
1

2
f ′(0) +

1

3
[f(1)− f(0)− f ′(0)]

− 1

12
[f ′(0) + f ′(1) + 2(f(0)− f(1))]

(7.75)

and simplifying the right hand side we get∫ 1

0

p3(x)dx =
1

2
[f(0) + f(1)]− 1

12
[f ′(1)− f ′(0)]. (7.76)

This is the simple trapezoidal rule plus a correction involving the derivative
of the integrand at the end points. We already obtained this quadrature
in Section 1.2.4 using the error correction technique. We can now be more

7.6. MODIFIED TRAPEZOIDAL RULE 171

precise about the error of this approximation by recalling that, assuming
f ∈ C4[0, 1],

f(x)− p3(x) =
1

4!
f (4)(ξ(x))x2(x− 1)2, ∀x ∈ [0, 1], (7.77)

for some ξ(x) ∈ (0, 1). Since x2(x− 1)2 does not change sign in [0, 1] we can
use the mean value theorem for integrals to get the following expression for
the error

E[f] =

∫ 1

0

[f(x)− p3(x)]dx =
1

4!
f (4)(η)

∫ 1

0

x2(x− 1)2dx

=
1

720
f (4)(η),

(7.78)

for some η ∈ (0, 1).
To obtain the quadrature in a general, finite interval [a, b] we use the

change of variables x = a+ (b− a)t, t ∈ [0, 1]∫ b

a

f(x)dx = (b− a)
∫ 1

0

F (t)dt, (7.79)

where F (t) = f(a+ (b− a)t). Thus,∫ b

a

f(x)dx =
b− a
2

[f(a) + f(b)]− (b− a)2
12

[f ′(b)− f ′(a)]

+
1

720
f (4)(η)(b− a)5,

(7.80)

for some η ∈ (a, b). This is the simple (or elementary) modified trapezoidal
rule. We construct the corresponding composite quadrature by subdividing
[a, b] in N subintervals [x0, x1], . . . , [xN−1, xN] of equal length h = xj+1−xj =
(b − a)/N , applying the simple rule in each subinterval, and adding up all
the contributions:∫ b

a

f(x)dx =
N−1∑
j=0

∫ xj+1

xj

f(x)dx

=
h

2

N−1∑
j=0

[f(xj) + f(xj+1)]−
h2

12

N−1∑
j=0

[f ′(xj+1)− f ′(xj+1)]

+
1

720
h5

N−1∑
j=0

f (4)(ηj).

(7.81)

172 CHAPTER 7. NUMERICAL INTEGRATION

Noticing that f (4) is continuous, there is η ∈ (a, b) such that

f (4)(η) =
1

N

N−1∑
j=0

f (4)(ηj) =
(b− a)
h

N−1∑
j=0

f (4)(ηj) (7.82)

and since the sum with the the first derivative in (7.81) telescopes, we finally
arrive at the composite, modified trapezoidal rule:∫ b

a

f(x)dx = h

[
1

2
f(x0) +

N−1∑
j=1

f(xj) +
1

2
f(xN)

]
− h2

12
[f ′(b)− f ′(a)]

+ (b− a) 1

720
h4f (4)(η).

(7.83)

7.7 The Euler-Maclaurin Formula

Let us consider again the error in the composite, modified trapezoidal rule
as it appears in (7.81). We have asymptotically

1

720
h5

N−1∑
j=0

f (4)(ηj) =
1

720
h4

(
h

N−1∑
j=0

f (4)(ηj)

)

=
1

720
h4
∫ b

a

f (4)(x)dx+ o(h4)

=
1

720
h4[f ′′′(b)− f ′′′(a)] + o(h4).

(7.84)

This expression for the error together with (7.83) suggest a formula of the
type ∫ b

a

f(x)dx = h

[
1

2
f(x0) +

N−1∑
j=1

f(xj) +
1

2
f(xN)

]

+
m∑
k=1

C2kh
2k[f 2k−1(b)− f 2k−1(a)]

+ (b− a)C2m+2h
2m+2f (2m+2)(η)

(7.85)

for each positive integerm and some coefficients C2k, k = 1, . . .m+1. Indeed,
that is the case. We will derive next this formula and find explicitly the

7.7. THE EULER-MACLAURIN FORMULA 173

coefficients. The resulting expression is called the Euler-Maclaurin formula.
The idea behind the derivation is to use integration by parts with the aid of
suitable polynomials.

Let us consider again the interval [0, 1] and define B0(x) = 1 and B1(x) =
x− 1

2
. Then,∫ 1

0

f(x)dx =

∫ 1

0

f(x)B0(x)dx =

∫ 1

0

f(x)B′1(x)dx

= f(x) B1(x)|10 −
∫ 1

0

f ′(x)B1(x)dx

=
1

2
[f(0) + f(1)]−

∫ 1

0

f ′(x)B1(x)dx.

(7.86)

We can continue the integration by parts using the polynomials Bk, called
Bernoulli Polynomials, which satisfy the recursion formula

B′k+1(x) = (k + 1)Bk(x), k = 1, 2, . . . (7.87)

Since we start with B1(x) = x − 1
2
it is clear that Bk is a polynomial of

degree exactly k with leading order coefficient 1, i.e. it is monic polynomial.
These polynomials are determined by the recurrence relation (7.87) up to a
constant. The constant is fixed by requiring that

Bk(0) = Bk(1) = 0, k = 3, 5, 7, . . . (7.88)

Indeed,

B′′k+1(x) = (k + 1)B′k(x) = (k + 1)kBk−1(x) (7.89)

and Bk−1(x) has the form

Bk−1(x) = xk−1 + ak−2x
k−2 + . . . a1x+ a0. (7.90)

Integrating (7.89) twice we get

Bk+1(x) = k(k + 1)

[
1

k(k + 1)
xk+1 +

ak−2
(k − 1)k

xk + . . .+
1

2
a0x

2 + bx+ c

]
For k+1 odd, the two constants of integration b and c are determined by the
condition (7.88). The Bk for k even are then given by Bk = B′k+1/(k + 1).

174 CHAPTER 7. NUMERICAL INTEGRATION

We are going to need a few properties of the Bernoulli polynomials. By
construction, Bk is an even (odd) polynomial in x − 1

2
if k is even (odd).

Equivalently, they satisfy the identity

(−1)kBk(1− x) = Bk(x). (7.91)

This follows because the polynomials Ak(x) = (−1)kBk(1 − x) satisfy the
same conditions that define the Bernoulli polynomials, i.e. A′k+1(x) = (k +
1)Ak(x) and Ak(0) = Ak(1) = 0, for k = 3, 5, 7, . . . and since A1(x) = B1(x)
they are the same. From (7.91) and (7.88) we get that

Bk(0) = Bk(1), k = 2, 3, , . . . (7.92)

We define the Bernoulli numbers as

Bk := Bk(0) = Bk(1), for k = 2, 4, 6, (7.93)

This together with the recurrence relation (7.87) implies that

∫ 1

0

Bk(x)dx =
1

k + 1

∫ 1

0

B′k+1(x)dx =
1

k + 1
[Bk+1(1)−Bk+1(0)] = 0

(7.94)

for k = 1, 2,

Lemma 7.7.1. The polynomials B̃2m(x) = B2m(x) − B2m, m = 1, 2, . . . do
not change sign in [0, 1].

Proof. We will prove it by contradiction. Let us suppose that B̃2m(x) changes
sign. Then, it has at least 3 zeros [B2m(0) = B2m(1) = 0] and, by Rolle’s
theorem, B̃′2m(x) = B′2m(x) has at least 2 zeros in (0, 1). This implies that
B2m−1(x) has 2 zeros in (0, 1). Since B2m−1(0) = B2m−1(1) = 0, again by
Rolle’s theorem, B′2m−1(x) has 3 zeros in (0, 1), which implies that B2m−2(x)
has 3 zeros, ...,etc. Then, we conclude that B2l−1(x) has 2 zeros in (0, 1) plus
the two at the end points, B2l−1(0) = B2l−1(1) for all l = 1, 2, . . ., which is a
contradiction (for l = 1, 2).

7.7. THE EULER-MACLAURIN FORMULA 175

Here are the first few Bernoulli polynomials

B0(x) = 1, (7.95)

B1(x) = x− 1

2
, (7.96)

B2(x) =

(
x− 1

2

)2

− 1

12
= x2 − x+ 1

6
, (7.97)

B3(x) =

(
x− 1

2

)3

− 1

4

(
x− 1

2

)
= x3 − 3

2
x2 +

1

2
x, (7.98)

B4(x) =

(
x− 1

2

)4

− 1

2

(
x− 1

2

)2

+
7

5 · 48 = x4 − 2x3 + x2 − 1

30
, (7.99)

B5(x) =

(
x− 1

2

)5

− 5

6

(
x− 1

2

)3

+
7

48

(
x− 1

2

)3

. (7.100)

Let us retake the idea of integration by parts that we started in (7.86):∫ 1

0

f(x)dx =
1

2
[f(0) + f(1)]−

∫ 1

0

f ′(x)B1(x)dx. (7.101)

Now,

−
∫ 1

0

f ′(x)B1(x)dx = −1

2

∫ 1

0

f ′(x)B′2(x)dx

= −1

2
B2[f

′(1)− f ′(0)] + 1

2

∫ 1

0

f ′′(x)B2(x)dx

(7.102)

and

1

2

∫ 1

0

f ′′(x)B2(x)dx =
1

2 · 3

∫ 1

0

f ′′(x)B′3(x)dx

=
1

2 · 3

[
f ′′(x)B3(x)

∣∣∣1
0
−
∫ 1

0

f ′′′(x)B3(x)dx

]
= − 1

2 · 3

∫ 1

0

f ′′′(x)B3(x)dx

= − 1

2 · 3 · 4

∫ 1

0

f ′′′(x)B′4(x)dx

= −B4

4!
[f ′′′(1)− f ′′′(0)] + 1

4!

∫ 1

0

f (4)(x)B4(x)dx.

(7.103)

176 CHAPTER 7. NUMERICAL INTEGRATION

Continuing this way and combining (7.101), (7.102), (7.103), etc., we arrive
at the Euler-Maclaurin formula for the simple trapezoidal rule in [0, 1]:

Theorem 7.5.∫ 1

0

f(x)dx =
1

2
[f(0) + f(1)]−

m∑
k=1

B2k

(2k)!
[f (2k−1)(1)− f (2k−1)(0)] +Rm

(7.104)

where

Rm =
1

(2m+ 2)!

∫ 1

0

f (2m+2)(x)[B2m+2(x)−B2m+2]dx. (7.105)

Note that using (7.94), the mean value theorem for integrals, and Lemma
7.7.1, the remainder can be written as

Rm = − B2m+2

(2m+ 2)!
f (2m+2)(η) (7.106)

for some η ∈ (0, 1).
It is now straight forward to obtain the Euler Maclaurin formula for the

composite trapezoidal rule with equally spaced points:

Theorem 7.6. (The Euler-Maclaurin Formula)
Let m be a positive integer and f ∈ C(2m+2)[a, b], h = b−a

N
then

∫ b

a

f(x)dx = h

[
1

2
f(a) +

1

2
f(b) +

N−1∑
j=1

f(a+ jh)

]

−
m∑
k=1

B2k

(2k)!
h2k[f 2k−1(b)− f 2k−1(a)]

− B2m+2

(2m+ 2)!
(b− a)h2m+2f (2m+2)(η). η ∈ (a, b)

(7.107)

Remarks: The error is in even powers of h. The formula gives m corrections
to the composite trapezoidal rule. For a smooth periodic function and if b−a
is a multiple of its period, then the error of the composite trapezoidal rule,
with equally spaced points, decreases faster than any power of h as h→ 0.

7.8. ROMBERG INTEGRATION 177

7.8 Romberg Integration

We know from the Euler-Maclaurin formula (7.107) that the trapezoidal rule
Th[f] for a smooth integrand f has an asymptotic error of the form∫ b

a

f(x)dx− Th[f] = c2h
2 + c4h

4 + · · · (7.108)

for some constants c2, c4, etc., and h = (b − a)/N . We are now going
to apply successively Richardson’s Extrapolation to the trapezoidal rule to
exploit that the error only contains even power of h so that after a few
extrapolations we end up with a highly accurate approximation. For short,
we will write the composite trapezoidal rule as

Th[f] := h

N∑′′

j=0

f(a+ jh), (7.109)

where
∑′′ means that the first and the last terms have a 1

2
factor.

We can perform one extrapolation to obtain a quadrature with a leading
order error O(h4). If we have computed T2h[f] and Th[f] we combine them
so as to eliminate the leading term in the error by noting that∫ b

a

f(x)dx = T2h[f] + c2(2h)
2 + c4(2h)

4 + · · · (7.110)

so that ∫ b

a

f(x)dx =
4Th[f]− T2h[f]

3
+ c̃4h

4 + c̃6h
6 + · · · , (7.111)

for some constants c̃4, c̃4, etc. We can continue the Richardson’s extrap-
olation process but it is more efficient to reuse the work we have done to
compute T2h[f] to evaluate Th[f]. To this end, we note that

Th[f]−
1

2
T2h[f] = h

N∑′′

j=0

f(a+ jh)− h
N
2∑′′

j=0

f(a+ 2jh)

= h

N
2∑

j=1

f(a+ (2j − 1)h).

(7.112)

178 CHAPTER 7. NUMERICAL INTEGRATION

Then, setting hk = (b− a)/2k for any nonnegative integer k, we have

Thk
[f] =

1

2
Thk−1

[f] + hk

2k−1∑
j=1

f(a+ (2j − 1)hk). (7.113)

Beginning with the simple trapezoidal rule (two points):

T (0, 0) := Th0 [f] =
b− a
2

[f(a) + f(b)] (7.114)

we can successively double the number of points in the quadrature by using
(7.113). For k = 1, 2, ...,M

T (k, 0) :=
1

2
T (k − 1, 0) + hk

2k−1∑
j=1

f(a+ 2j − 1)hk) (7.115)

and immediately extrapolate as follows. From T (0, 0) and T (1, 0) we extrap-
olate to obtain

T (1, 1) := T (1, 0) +
1

4− 1
[T (1, 0)− T (0, 0)], (7.116)

From T (1, 0) and T (2, 0) we get

T (2, 1) := T (2, 0) +
1

4− 1
[T (2, 0)− T (1, 0)], (7.117)

from T (1, 1) and T (2, 1) we compute T (2, 2), etc. For example, for M = 4
we generate a table of approximations like the following one:

T (0, 0)
T (1, 0) T (1, 1)
T (2, 0) T (2, 1) T (2, 2)
T (3, 0) T (3, 1) T (3, 2) T (3, 3)
T (4, 0) T (4, 1) T (4, 2) T (4, 3) T (4, 4)

(7.118)

We can proceed row by row, where each of the T (k,m) for m ≥ 1 is obtained
by extrapolation

T (k,m) = T (k,m− 1) +
1

4m − 1
[T (k,m− 1)− T (k − 1,m− 1)]. (7.119)

This is Romberg’s method and is listed in pseudo-code in Algorithm 7.1.
T (M,M) contains the most accurate approximation (neglecting round-off
errors) to the integral.

7.9. BIBLIOGRAPHIC NOTES 179

Algorithm 7.1 Romberg Integration

1: h← b− a;
2: T (0, 0)← 1

2
(b− a)[f(a) + f(b)];

3: for k = 1, . . . ,M do
4: h← h/2;

5: T (k, 0)← 1
2
T (k − 1, 0) + h

2k−1∑
j=1

f(a+ (2j − 1)h);

6: for m = 1, . . . , k do

7: T (k,m)← T (k,m− 1) +
1

4m − 1
[T (k,m− 1)− T (k − 1,m− 1)];

8: end for
9: end for

Example 7.4. We use Romberg’s method to approximate the integral of
f(x) = 3x2ex

3
/(e − 1) in [0, 1], whose value is 1. Table 7.1 shows the ta-

ble of approximations corresponding to (7.118). With M = 4, an accuracy of
about 6 digits is obtained.

Table 7.1: Romberg integration for f(x) = 3x2ex
3
/(e− 1) in [0, 1]. M=4.

2.37296506
1.43378228 1.12072136
1.11897636 1.01404106 1.00692904
1.03059109 1.00112933 1.00026855 1.00016283
1.00770499 1.00007629 1.00000609 1.00000193 1.00000129

7.9 Bibliographic Notes

Section 7.1 . We limited the discussion to the two most used basic quadra-
tures: the trapezoidal rule and Simpson’s rule. They are two examples of
Newton-Cotes formulas, which are the interpolatory quadratures with equi-
spaced nodes and for w(x) ≡ 1. Krylov [Kry12] discusses Newton-Cotes
formulas extensively and presents a table for the weights for n = 1, . . . , 10.
The use of the divided differences identity (7.10) for the error, in the case
when the integral of (x − x0) . . . (x − xn) vanishes, appears in the book by

180 CHAPTER 7. NUMERICAL INTEGRATION

Conte and de Boor (Section 5.2) [CdB72]. General references for numerical
integration are the classical texts by Krylov [Kry12] and by Davis and Ra-
binowitz [DR84]. The latter has also a chapter (Chap. 8) on integration in
two or more dimensions.

Section 7.2 . Interpolatory quadratures are discussed in more detail in [Kry12,
DR84]. For example, a general formula for the error can be derived using the
interpolation (Cauchy’s) remainder [Kry12].

Section 7.3 . Gauss derived the quadrature formula for w(x) = 1 using con-
tinued fractions [Gau16]. Gautschi [Gau81] provides an excellent historical
account of the Gaussian quadrature. For the properties of this quadrature
and its convergence for a bounded closed interval we followed Gautschi’s text
(Section 3.2.3) [Gau11]. A discussion of convergence when the interval is in-
finite (if |f(x)| ≤ A + Bx2m for some m ∈ N) is presented in Freud’s book
(Section III.1) [Fre71]. The Radau quadrature and the Lobatto quadrature,
which are the special cases when one or both of the end points of the interval
of integration are nodes, respectively, are discussed in Gautschi’s text [Gau11]
and in Hildebrand’s book [Hil13] (Chapter 8), where the particular cases of
the Legendre, Laguerre, Hermite, Jacobi, and Chebyshev quadratures are
all presented. The method based on the eigenvalue problem to obtain the
Gaussian nodes and weights is due to Golub and Welsch [GW69]. Glasier,
Liu, and Rohklin [GLR07] proposed a fast algorithm to compute all the nodes
and weights in O(n) operations using Newton’s root finding and Taylor series
approximations. Hale and Townsend [HT13] designed an efficient, alterna-
tive method to compute Gaussian weights and nodes based also on Newton’s
root-finding method but with initial guesses obtained via asymptotic for-
mulas. Their method allows for the computation of the n-point Gaussian
quadrature in O(n) operations to an accuracy close to double double preci-
sion for any n ≥ 100.

Section 7.4 . Clenshaw and Curtis proposed their quadrature, which they
called “Chebyshev formula”, in 1960 [CC60]. Glentleman [Gen72], 12 years
later, made the connection with the DCT for a fast computation of the
quadrature. Trefethen [Tre08] has presented a compelling study that shows
the Clenshaw-Curtis formula is a clear competitor of the Gaussian quadra-
ture because in most cases the two quadratures achieve comparable accuracy
for the same number of nodes.

7.9. BIBLIOGRAPHIC NOTES 181

Section 7.5 . The book by Davis and Rabinowitz [DR84] covers in detail
composite quadratures, therein called “compound quadratures”. Simpson’s
rule has a long history, going back to B. Cavalieri in 1639, who had found
the formula in geometric form [Gol77]. It is named after T. Simpson who
rediscovered the quadrature rule in 1743 [Sim43](pp. 109-110).

Section 7.83 . The derivation using Hermite interpolation follows that in
[SB02].

Section 7.7 . The formula was obtained independently by Euler and Maclau-
rin. For a historical account see [Gol77], Section 2.6. The derivation using
Bernoulli polynomials follows that in [SB02].

Section 7.8 . Romberg proposed his efficient, repeated extrapolation method
for the trapezoidal rule in 1955 [Rom55]. A historical account has been
provided by Brezinski [Bre10]

182 CHAPTER 7. NUMERICAL INTEGRATION

Chapter 8

Linear Algebra

In this chapter we review some important concepts of linear algebra in prepa-
ration for the presentation of numerical methods for linear systems of equa-
tions and eigenvalue problems.

8.1 Numerical Linear Algebra

There are two main problems in numerical linear algebra: solving large lin-
ear systems of equations and finding eigenvalues and eigenvectors. Related
to the latter, there is also the problem of computing the singular value de-
composition (SVD) of a large matrix. We describe these problems next.

8.1.1 Linear Systems

Linear systems of equations appear in a wide variety of applications and are
an indispensable tool in scientific computing. Given a nonsingular, n × n
matrix A and a vector b ∈ Rn, where n could be a very large positive integer,
we would like to find the unique solution x, satisfying

Ax = b (8.1)

or an accurate approximation x̃ of x. Henceforth, we will assume, unless
otherwise stated, that the matrix A is real.

We will study direct methods (for example Gaussian elimination), which
compute the solution (up to roundoff errors) in a finite number of steps and

183

184 CHAPTER 8. LINEAR ALGEBRA

iterative methods, which starting from an initial approximation x(0) of the
solution produce subsequent approximations x(1), x(2), . . . from a given recipe

x(k+1) = G(x(k), A, b), k = 0, 1, . . . (8.2)

where G is a continuous function of the first variable. Consequently, if the
iterations converge as k →∞ to the solution x of the linear system Ax = b,
then

x = G(x,A, b). (8.3)

That is, x is a fixed point of G.
One of the main strategies in the design of efficient numerical methods

for linear systems is to transform the problem to one which is much easier
to solve. Both direct and iterative methods use this strategy.

8.1.2 Eigenvalue Problems

The eigenvalue problem for an n × n matrix A consists of finding each or
some of the scalars (eigenvalues) λ and the corresponding eigenvectors v ̸= 0
such that

Av = λv. (8.4)

Equivalently, (A − λI)v = 0 and so the eigenvalues are the roots of the
characteristic polynomial of A

p(λ) = det(A− λI). (8.5)

Clearly, we cannot solve this problem with a finite number of elementary
operations (for n ≥ 5 it would be a contradiction to Abel’s theorem) so
iterative methods have to be employed. Also, λ and v could be complex even
if A is real.

The maximum of the absolute value (modulus) of the eigenvalues of a
matrix is a useful concept in numerical linear algebra.

Definition 8.1. Let A be an n × n matrix. The spectral radius ρ of A is
defined as

ρ(A) = max{|λ1|, . . . , |λn|}, (8.6)

where λi, i = 1, . . . , n are the eigenvalues (not necessarily distinct) of A.

8.2. NOTATION 185

Large eigenvalue-eigenvector problems arise for example in the study of
steady state behavior of time-discrete Markov processes which are often used
in a wide range of applications, such as finance, population dynamics, and
data mining. The problem is to find an eigenvector v associated with the
eigenvalue 1, i.e. v = Av. Such v is a probability vector so all its entries are
positive, add up to 1, and represent the probabilities of the system (described
by the Markov process) to be in a given state, in the limit as time goes to in-
finity. This eigenvector v is in effect a fixed point of the linear transformation
represented by the Markov matrix A.

8.1.3 Singular Value Decomposition

The singular value decomposition (SVD) of a matrix is related to the eigen-
value problem and finds applications in image compression, model reduction
techniques, data analysis, and many other fields. Given an m × n matrix
A, the idea is to consider the eigenvalues and eigenvectors of the square,
n× n matrix ATA, where AT is the transpose of A (or A∗A, where A∗ is the
conjugate transpose of A as defined below, if A is complex). As we will see,
the eigenvalues are all real and nonnegative and ATA has a complete set of
orthogonal eigenvectors. The singular values of a matrix A are the positive
square roots of the eigenvalues of ATA. Using this, it follows that any real
m× n matrix A has the singular value decomposition (SVD)

UTAV = Σ, (8.7)

where U is an orthogonal m×m matrix (i.e. UTU = I), V is an orthogonal
n× n matrix, and Σ is a “diagonal” matrix of the form

Σ =

[
D 0
0 0

]
, D = diag(σ1, σ2, . . . , σr), (8.8)

where σ1 ≥ σ2 ≥ . . . σr > 0 are the nonzero singular values of A. Here,
diag(σ1, σ2, . . . , σr) stands for the diagonal matrix with entries σ1, σ2, . . . , σr
on its diagonal.

8.2 Notation

A matrix A with elements aij will be denoted A = (aij), this could be a
square n×n matrix or an m×n matrix. AT denotes the transpose of A, i.e.
AT = (aji).

186 CHAPTER 8. LINEAR ALGEBRA

A vector in x ∈ Rn will be represented as the n-tuple

x =


x1
x2
...
xn

 . (8.9)

The canonical vectors, corresponding to the standard basis in Rn, will be
denoted by e1, e2, . . . , en, where ek is the n-vector with all entries equal to
zero except the k-th one, which is equal to one.

The inner product of two real vectors x and y in Rn is

⟨x, y⟩ =
n∑

i=1

xiyi = xTy. (8.10)

If the vectors are complex, i.e. x and y in Cn we define their inner product
as

⟨x, y⟩ =
n∑

i=1

x̄iyi, (8.11)

where x̄i denotes the complex conjugate of xi.
With the inner product (8.10) in the real case or (8.11) in the complex

case, we can define the Euclidean norm

∥x∥2 =
√
⟨x, x⟩. (8.12)

Note that if A is an n× n real matrix and x, y ∈ Rn then

⟨x,Ay⟩ =
n∑

i=1

xi

(
n∑

k=1

aikyk

)
=

n∑
i=1

n∑
k=1

aikxiyk

=
n∑

k=1

(
n∑

i=1

aikxi

)
yk =

n∑
k=1

(
n∑

i=1

aTkixi

)
yk,

(8.13)

that is

⟨x,Ay⟩ = ⟨ATx, y⟩. (8.14)

Similarly in the complex case we have

⟨x,Ay⟩ = ⟨A∗x, y⟩, (8.15)

where A∗ is the conjugate transpose of A, i.e. A∗ = (aji).

8.3. SOME IMPORTANT TYPES OF MATRICES 187

8.3 Some Important Types of Matrices

One useful type of linear transformations consists of those that preserve the
Euclidean norm. That is, if y = Ax, then ∥y∥2 = ∥x∥2 but this implies

⟨Ax,Ax⟩ = ⟨ATAx, x⟩ = ⟨x, x⟩ (8.16)

and consequently ATA = I.

Definition 8.2. An n×n real (complex) matrix A is called orthogonal (uni-
tary) if ATA = I (A∗A = I).

Two of the most important types of matrices in applications are symmet-
ric (Hermitian) and positive definite matrices.

Definition 8.3. An n × n real matrix A is called symmetric if AT = A. If
the matrix A is complex it is called Hermitian if A∗ = A.

Symmetric (Hermitian) matrices have real eigenvalues, for if v is an eigen-
vector associated to an eigenvalue λ of A, we can assumed it has been nor-
malized so that ⟨v, v⟩ = 1, and

⟨v,Av⟩ = ⟨v, λv⟩ = λ⟨v, v⟩ = λ. (8.17)

But if AT = A then

λ = ⟨v, Av⟩ = ⟨Av, v⟩ = ⟨λv, v⟩ = λ⟨v, v⟩ = λ, (8.18)

and λ = λ if and only if λ ∈ R.

Definition 8.4. An n×n matrix A is called positive definite if it is symmetric
(Hermitian) and ⟨x,Ax⟩ > 0 for all x ∈ Rn, x ̸= 0.

By the preceding argument the eigenvalues of a positive definite matrix
A are real because AT = A. Moreover, if Av = λv with ∥v∥2 = 1 then
0 < ⟨v,Av⟩ = λ. Therefore, positive definite matrices have real, positive
eigenvalues. Conversely, if all the eigenvalues of a symmetric matrix A are
positive, then A is positive definite. This follows from the fact that symmetric
matrices are diagonalizable by an orthogonal matrix S, i.e. A = SDST ,

188 CHAPTER 8. LINEAR ALGEBRA

where D is a diagonal matrix with the eigenvalues λ1, . . . , λn (not necessarily
distinct) of A. Then

⟨x,Ax⟩ =
n∑

i=1

λiy
2
i , (8.19)

where y = STx. Thus a symmetric (Hermitian) matrix A is positive definite
if and only if all its eigenvalues are positive. Moreover, since the determinant
is the product of the eigenvalues, positive definite matrices have a positive
determinant.

We now review another useful consequence of positive definiteness.

Definition 8.5. Let A = (aij) be an n × n matrix. Its leading principal
submatrices are the square matrices

Ak =

a11 · · · a1k
...
ak1 · · · akk

 , k = 1, . . . , n. (8.20)

Theorem 8.1. All the leading principal submatrices of a positive definite
matrix are positive definite.

Proof. Suppose A is an n× n positive definite matrix. Then, all its leading
principal submatrices are symmetric (Hermitian). Moreover, if we take a
vector x ∈ Rn of the form

x =



y1
...
yk
0
...
0


, (8.21)

where y = [y1, . . . , yk]
T ∈ Rk is an arbitrary nonzero vector then

0 < ⟨x,Ax⟩ = ⟨y, Aky⟩,

which shows that Ak for k = 1, . . . , n is positive definite.

8.4. SCHUR THEOREM 189

The converse of Theorem 8.1 is also true but the proof is much more
technical: A is positive definite if and only if det(Ak) > 0 for k = 1, . . . , n.

Note also that if A is positive definite then all its diagonal elements are
positive because 0 < ⟨ej, Aej⟩ = ajj, for j = 1, . . . , n.

8.4 Schur Theorem

Theorem 8.2. (Schur) Let A be an n×n matrix, then there exists a unitary
matrix T (T ∗T = I) such that

T ∗AT =


λ1 b12 b13 · · · b1n

λ2 b23 · · · b2n
. . .

...
bn−1,n
λn

 , (8.22)

where λ1, . . . , λn are the eigenvalues of A and all the elements below the
diagonal are zero.

Proof. We will do a proof by induction. Let A be a 2 × 2 matrix with
eigenvalues λ1 and λ2. Let u be a normalized, eigenvector u (u∗u = 1)
corresponding to λ1. Then we can take T as the matrix whose first column
is u and its second column is a unit vector v orthogonal to u (u∗v = 0). We
have

T ∗AT =

[
u∗

v∗

] [
λ1u Av

]
=

[
λ1 u∗Av
0 v∗Av

]
. (8.23)

The scalar v∗Av has to be equal to λ2, as similar matrices have the same
eigenvalues. We now assume the result is true for all k × k (k ≥ 2) matrices
and will show that it is also true for all (k + 1) × (k + 1) matrices. Let
A be a (k + 1) × (k + 1) matrix and let u1 be a normalized eigenvector
associated with eigenvalue λ1. Choose k unit vectors t1, . . . , tk so that the
matrix T1 = [u1 t1 . . . tk] is unitary. Then,

T ∗1AT1 =


λ1 c12 c13 · · · c1,k+1

0
... Ak

0

 , (8.24)

190 CHAPTER 8. LINEAR ALGEBRA

where Ak is a k × k matrix. Now, the eigenvalues of the matrix on the
right hand side of (8.24) are the roots of (λ1 − λ) det(Ak − λI) and since
this matrix is similar to A, it follows that the eigenvalues of Ak are the
remaining eigenvalues of A, λ2, . . . , λk+1. By the induction hypothesis there is
a unitary matrix Tk such that T ∗kAkTk is upper triangular with the eigenvalues
λ2, . . . , λk+1 sitting on the diagonal. We can now use Tk to construct the
(k + 1)× (k + 1) unitary matrix as

Tk+1 =


1 0 0 · · · 0
0
... Tk

0

 (8.25)

and define T = T1Tk+1. Then

T ∗AT = T ∗k+1T
∗
1AT1Tk+1 = T ∗k+1(T

∗
1AT1)Tk+1 (8.26)

and using (8.24) and (8.25) we get

T ∗AT =


1 0 0 · · · 0
0
... T ∗k

0




λ1 c12 c13 · · · c1,k+1

0
... Ak

0




1 0 0 · · · 0
0
... Tk

0



=


λ1 b12 b13 · · · b1,k+1

λ2 b23 · · · b2,k+1

. . .
...

bk,k+1

λk+1

 .

8.5 QR Factorization

Consider anm×nmatrix A with columns a1, . . . , an and suppose these form a
linearly independent set, i.e. A is full rank. If we employ the Gram-Schmidt

8.5. QR FACTORIZATION 191

procedure to orthonormalize {a1, . . . , an} we get (cf. Section 4.1.2.1) the
orthonormal set {q1, . . . , qn} given by

b1 = a1,

r11 = ∥b1∥,
q1 = a1/r11,

For k = 2, . . . , n

bk = ak −
k−1∑
j=1

rjkqj, rjk = ⟨qj, ak⟩,

rkk = ∥bk∥,
qk = bk/rkk.

(8.27)

Note that (8.27) implies that ak is a linear combination of q1, . . . , qk and since
bk = rkkqk we have

ak =
k∑

j=1

rjkqj, k = 1, . . . n (8.28)

or in matrix form

A = Q̃R̃, Q̃ =

q1 . . . qn

 , R̃ =


r11 r12 · · · r1n

r22 · · · r2n
. . .

...
rnn

 . (8.29)

The m × n matrix Q̃ has columns q1, . . . , qn that are orthonormal. This
is called a reduced QR factorization of A. A full QR factorization of A,
where Q is an m×m orthogonal matrix and R is an m× n upper triangular
matrix (in the sense shown below), can be obtained by appending Q̃ with
m− n orthonormal columns to complete an orthonormal basis of Rm and a
corresponding block of m− n rows of zeros to R̃ as follows:

A = QR, Q =


∗ · · · ∗
... · · · ...

Q̃
...

...
∗ · · · ∗

 , R =


R̃

0 · · · 0
...

...
0 · · · 0

 , (8.30)

192 CHAPTER 8. LINEAR ALGEBRA

where the m× (m− n) block marked with ∗’s represents the added columns
so that QTQ = QQT = I. Note that orthonormality is defined up to a
sign. Since we are taking rkk = ∥bk∥ it follows that there is a unique QR
factorization of the full rank matrix A such that rkk > 0, for all k = 1, . . . , n.

The Gram-Schmidt procedure is not numerically stable; round-off error
can destroy orthogonality when there are columns almost linearly dependent.
We will see in Section 11.2 a stable method to obtain QR by using a sequence
of hyperplane reflections.

8.6 Matrix Norms

We reviewed the concept of a norm on a vector space in Section 2.1. In
numerical linear algebra, we need to work with norms defined on matrices.
Let A be an n× n matrix. We can view A as a vector in Rn×n and define its
corresponding Euclidean norm

∥A∥ =

√√√√ n∑
i=1

n∑
j=1

|aij|2. (8.31)

This is called the Frobenius norm for matrices. A different matrix norm can
be obtained by using a given vector norm and matrix-vector multiplication.
Given a vector norm ∥ · ∥ in Rn (or in Cn), it is easy to show that

∥A∥ = max
x̸=0

∥Ax∥
∥x∥ , (8.32)

satisfies the properties (i), (ii), (iii) of a norm for all n×n matrices A . That
is, the vector norm induces a matrix norm.

Definition 8.6. The matrix norm defined by (8.32) is called the subordinate
or natural norm induced by the vector norm ∥ · ∥.
Example 8.1.

∥A∥1 = max
x ̸=0

∥Ax∥1
∥x∥1

, (8.33)

∥A∥∞ = max
x ̸=0

∥Ax∥∞
∥x∥∞

, (8.34)

∥A∥2 = max
x̸=0

∥Ax∥2
∥x∥2

. (8.35)

8.6. MATRIX NORMS 193

Theorem 8.3. Let ∥ · ∥ be an induced matrix norm. Then,

(a) ∥Ax∥ ≤ ∥A∥∥x∥,

(b) ∥AB∥ ≤ ∥A∥∥B∥.

Proof. (a) if x = 0 the result holds trivially. Take x ̸= 0, then the definition
(8.32) implies

∥Ax∥
∥x∥ ≤ ∥A∥ (8.36)

that is ∥Ax∥ ≤ ∥A∥∥x∥.
(b) Take x ̸= 0. By (a) ∥ABx∥ ≤ ∥A∥∥Bx∥ ≤ ∥A∥∥B∥∥x∥ and thus

∥ABx∥
∥x∥ ≤ ∥A∥∥B∥. (8.37)

Taking the max we get that ∥AB∥ ≤ ∥A∥∥B∥.

The following theorem offers a more concrete way to compute the matrix
norms (8.33)-(8.35).

Theorem 8.4. Let A = (aij) be an n× n matrix then

(a) ∥A∥1 = max
j

n∑
i=1

|aij|.

(b) ∥A∥∞ = max
i

n∑
j=1

|aij|.

(c) ∥A∥2 =
√
ρ(ATA),

where ρ(ATA) is the spectral radius of ATA, as defined in (8.6).

Proof. (a)

∥Ax∥1 =
n∑

i=1

∣∣∣∣∣
n∑

j=1

aijxj

∣∣∣∣∣ ≤
n∑

j=1

|xj|
(

n∑
i=1

|aij|
)
≤
(
max

j

n∑
i=1

|aij|
)
∥x∥1.

194 CHAPTER 8. LINEAR ALGEBRA

Thus, ∥A∥1 ≤ max
j

n∑
i=1

|aij|. We just need to show there is a vector x for

which the equality holds. Let j∗ be the index such that

n∑
i=1

|aij∗| = max
j

n∑
i=1

|aij| (8.38)

and take x to be given by xi = 0 for i ̸= j∗ and xj∗ = 1. Then, ∥x∥1 = 1 and

∥Ax∥1 =
n∑

i=1

∣∣∣∣∣
n∑

j=1

aijxj

∣∣∣∣∣ =
n∑

i=1

|aij∗| = max
j

n∑
i=1

|aij|. (8.39)

(b) Analogously to (a) we have

∥Ax∥∞ = max
i

∣∣∣∣∣
n∑

j=1

aijxj

∣∣∣∣∣ ≤
(
max

i

n∑
j=1

|aij|
)
∥x∥∞. (8.40)

Let i∗ be the index such that

n∑
j=1

|ai∗j| = max
i

n∑
j=1

|aij| (8.41)

and take x given by

xj =

{
ai∗j
|ai∗j | if ai∗j ̸= 0,

1 if ai∗j = 0.
(8.42)

Then, |xj| = 1 for all j and ∥x∥∞ = 1. Hence

∥Ax∥∞ = max
i

∣∣∣∣∣
n∑

j=1

aijxj

∣∣∣∣∣ =
n∑

j=1

|ai∗j| = max
i

n∑
i=1

|aij|. (8.43)

(c) By definition

∥A∥22 = max
x ̸=0

∥Ax∥22
∥x∥22

= max
x ̸=0

xTATAx

xTx
(8.44)

Note that the matrix ATA is symmetric and all its eigenvalues are nonnega-
tive. Let us label them in increasing order, 0 ≤ λ1 ≤ λ1 ≤ · · · ≤ λn. Then,

8.6. MATRIX NORMS 195

λn = ρ(ATA). Now, since ATA is symmetric, there is an orthogonal matrix Q
such that QTATAQ = D = diag(λ1, . . . , λn). Therefore, changing variables,
x = Qy, we have

xTATAx

xTx
=
yTDy

yTy
=
λ1y

2
1 + · · ·+ λny

2
n

y21 + · · ·+ y2n
≤ λn. (8.45)

Now take the vector y such that yj = 0 for j ̸= n and yn = 1 and the equality
holds. Thus,

∥A∥2 =
√

max
x̸=0

∥Ax∥22
∥x∥22

=
√
λn =

√
ρ(ATA). (8.46)

Note that if AT = A then

∥A∥2 =
√
ρ(ATA) =

√
ρ(A2) = ρ(A). (8.47)

Let λ be an eigenvalue of the matrix A with eigenvector x, normalized so
that ∥x∥ = 1. Then,

|λ| = |λ|∥x∥ = ∥λx∥ = ∥Ax∥ ≤ ∥A∥∥x∥ = ∥A∥ (8.48)

for any matrix norm with the property ∥Ax∥ ≤ ∥A∥∥x∥. Thus,
ρ(A) ≤ ∥A∥ (8.49)

for any induced norm. However, given an n× n matrix A and ϵ > 0 there is
at least one induced matrix norm such that ∥A∥ is within ϵ of the spectral
radius of A.

Theorem 8.5. Let A be an n× n matrix. Given ϵ > 0, there is at least one
induced matrix norm ∥ · ∥ such that

ρ(A) ≤ ∥A∥ ≤ ρ(A) + ϵ. (8.50)

Proof. By Schur’s Theorem, there is a unitary matrix T such that

T ∗AT =


λ1 b12 b13 · · · b1n

λ2 b23 · · · b2n
. . .

...
bn−1,n
λn

 = U, (8.51)

196 CHAPTER 8. LINEAR ALGEBRA

where λj, j = 1, . . . , n are the eigenvalues of A. Take 0 < δ < 1 and define
the diagonal matrix Dδ = diag(δ, δ2, . . . , δn). Then

D−1δ UDδ =


λ1 δb12 δ2b13 · · · δn−1b1n

λ2 δb23 · · · δn−2b2n
. . .

...
δbn−1,n
λn

 . (8.52)

Given ϵ > 0, we can find δ sufficiently small so that D−1δ UDδ is “within ϵ”
of a diagonal matrix, in the sense that the sum of the absolute values of the
off diagonal entries is less than ϵ for each row:

n∑
j=i+1

∣∣δj−ibij∣∣ ≤ ϵ for i = 1, . . . , n. (8.53)

Now,

D−1δ UDδ = D−1δ T ∗ATDδ = (TDδ)
−1A(TDδ) (8.54)

Given a nonsingular matrix S and a matrix norm ∥ · ∥ then

∥A∥′ = ∥S−1AS∥ (8.55)

is also a norm. Taking S = TDδ and using the infinity norm we get

∥A∥′ = ∥(TDδ)
−1A(TDδ)∥∞

≤

∥∥∥∥∥∥∥∥∥∥∥


λ1

λ2
. . .

λn



∥∥∥∥∥∥∥∥∥∥∥
∞

+

∥∥∥∥∥∥∥∥∥∥∥


0 δb12 δ2b13 · · · δn−1b1n

0 δb23 · · · δn−2b2n
. . .

...
δbn−1,n

0



∥∥∥∥∥∥∥∥∥∥∥
∞

≤ ρ(A) + ϵ.

8.7. CONDITION NUMBER OF A MATRIX 197

8.7 Condition Number of a Matrix

Consider the 5× 5 Hilbert matrix

H5 =



1

1

1

2

1

3

1

4

1

5

1

2

1

3

1

4

1

5

1

6

1

3

1

4

1

5

1

6

1

7

1

4

1

5

1

6

1

7

1

8

1

5

1

6

1

7

1

8

1

9



(8.56)

and the linear system H5x = b where

b =


137/60
87/60
153/140
743/840
1879/2520

 . (8.57)

The exact solution of this linear system is x = [1, 1, 1, 1, 1]T . Note that
b ≈ [2.28, 1.45, 1.09, 0.88, 0.74]T . Let us perturb b slightly (about % 1)

b+ δb =


2.28
1.46
1.10
0.89
0.75

 (8.58)

The solution of the perturbed system (up to rounding at 12 digits of accuracy)
is

x+ δx =


0.5
7.2
−21.0
30.8
−12.6

 . (8.59)

198 CHAPTER 8. LINEAR ALGEBRA

A relative perturbation of ∥δb∥2/∥b∥2 = 0.0046 in the data produces a change
in the solution equal to ∥δx∥2 ≈ 40. The perturbations gets amplified nearly
four orders of magnitude!

This high sensitivity of the solution to small perturbations is inherent to
the matrix of the linear system, H5 in this example.

Consider the linear system Ax = b and the perturbed one A(x + δx) =
b+ δb. Then, Ax+ Aδx = b+ δb implies δx = A−1δb and so

∥δx∥ ≤ ∥A−1∥∥δb∥ (8.60)

for any induced norm. But also ∥b∥ = ∥Ax∥ ≤ ∥A∥∥x∥ or
1

∥x∥ ≤ ∥A∥
1

∥b∥ . (8.61)

Combining (8.60) and (8.61) we obtain

∥δx∥
∥x∥ ≤ ∥A∥∥A

−1∥∥δb∥∥b∥ . (8.62)

The right hand side of this inequality is actually a least upper bound, there
are b and δb for which the equality holds.

Definition 8.7. Given a matrix norm ∥ · ∥, the condition number of a
matrix A, denoted by κ(A) is defined by

κ(A) = ∥A∥∥A−1∥. (8.63)

Example 8.2. The condition number of the 5× 5 Hilbert matrix H5, (8.56),
in the 2 norm is approximately 4.7661× 105. For the particular b and δb we
chose we actually got a variation in the solution of O(104) times the relative
perturbation but now we know that the amplification factor could be as bad
as κ(A).

Similarly, if we perturbed the entries of a matrix A for a linear system
Ax = b so that we have (A+ δA)(x+ δx) = b we get

Ax+ Aδx+ δA(x+ δx) = b (8.64)

that is, Aδx = −δA(x+ δx), which implies that

∥δx∥ ≤ ∥A−1∥∥δA∥∥x+ δx∥ (8.65)

8.8. BIBLIOGRAPHIC NOTES 199

for any induced matrix norm and consequently

∥δx∥
∥x+ δx∥ ≤ ∥A

−1∥∥A∥∥δA∥∥A∥ = κ(A)
∥δA∥
∥A∥ . (8.66)

Because, for any induced norm, 1 = ∥I∥ = ∥A−1A∥ ≤ ∥A−1∥∥A∥, we get
that κ(A) ≥ 1. We say that A is ill-conditioned if κ(A) is very large.

Example 8.3. The Hilbert matrix is ill-conditioned. We already saw that
in the 2 norm κ(H5) = 4.7661 × 105. The condition number increases very
rapidly as the size of the Hilbert matrix increases, for example κ(H6) =
1.4951× 107, κ(H10) = 1.6025× 1013.

8.7.1 What to Do When A is Ill-conditioned?

There are two ways to deal with a linear system with an ill-conditioned matrix
A. One approach is to work with extended precision (using as many digits
as required to obtain the solution up to a given accuracy). Unfortunately,
computations using extended precision can be computationally expensive,
several times the cost of regular double precision operations.

A more practical approach is often to replace the ill-conditioned linear
system Ax = b by an equivalent linear system with a much smaller condition
number. This can be done for example by premultiplying by a nonsingular
matrix C−1 so that the system Ax = b gets transformed to C−1Ax = C−1b,
which can be written as

C−1AC−T (CTx) = C−1b. (8.67)

C is selected so that C−1AC−T has a much smaller condition number than
that of A. This very useful technique, also employed to accelerate the con-
vergence of some iterative methods, is called preconditioning.

8.8 Bibliographic Notes

Section 8.1 . There are several good texts on numerical linear algebra. The
book by Golub and Van Loan [GVL13] has been a standard reference in
this area of numerical analysis. Another good reference is the text by Dem-
mel [Dem97]. The book by Trefethen and Bau [TB97], presented in the
form of lectures at the undergraduate level, covers a selection of numerical

200 CHAPTER 8. LINEAR ALGEBRA

linear algebra topics with great eloquence and clarity. For the graduate or
advanced undergraduate level Ciarlet’s book [Cia89] is a superb reference.
Abel’s insolvability theorem is beautifully presented in the monograph by
Alekseev [Ale04].

Sections 8.2-8.6 . These sections review some basic concepts of matrix anal-
ysis. An excellent reference in this general area are the two volumes of Horn
and Johnson [HJ13, HJ94]. Schur’s triangularization theorem can be found
in [HJ13, Cia89]. Also, the classical book by Bellman [Bel97] on matrix
analysis is an insightful text full of applications.

Section 8.7 . Demmel [Dem97] relates ill-conditioning of a matrix A to the
distance of the nearest singular matrix, and such distance is equal to 1/κ(A).
Thus, A is ill-conditioned if a small perturbation of it renders it singular.
Ciarlet [Cia89][Section 2.2] provides an excellent example of an ill-conditioned
matrix with integer entries. A detailed discussion of preconditioners can be
found in [BBC+94][Chapter 3].

Chapter 9

Linear Systems of Equations I

In this chapter we focus on a problem that is central to many applications,
namely, to find the solution to a large linear system of n linear equations in
n unknowns x1, x2, . . . , xn:

a11x1 + a12x2 + . . .+ a1nxn = b1,

a21x1 + a22x2 + . . .+ a2nxn = b2,

...

an1x1 + an2x2 + . . .+ annxn = bn.

(9.1)

Or written in matrix form

Ax = b, (9.2)

where A is the n× n matrix of coefficients

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

 , (9.3)

x is a column vector whose components are the unknowns, and b is the given
right hand side of the linear system

x =


x1
x2
...
xn

 , b =


b1
b2
...
bn

 . (9.4)

201

202 CHAPTER 9. LINEAR SYSTEMS OF EQUATIONS I

We will assume, unless stated otherwise, that A is a nonsingular, real matrix.
That is, the linear system (9.2) has a unique solution for each b. Equivalently,
the determinant of A, det(A), is non-zero and A has an inverse.

While mathematically we can write the solution as x = A−1b, this is not
computationally efficient. Finding A−1 is several (about four) times more
costly than solving Ax = b for a given b.

In many applications n can be on the order of millions or much larger.

9.1 Easy to Solve Systems

When A is diagonal, i.e.

A =


a11

a22
. . .

ann

 (9.5)

(all the entries outside the diagonal are zero and since A is assumed non-
singular aii ̸= 0 for all i), then each equation can be solved with just one
division:

xi = bi/aii, for i = 1, 2, . . . , n. (9.6)

If A is lower triangular and nonsingular,

A =


a11
a21 a22
...

...
. . .

an1 an2 · · · ann

 (9.7)

9.1. EASY TO SOLVE SYSTEMS 203

the solution can also be obtained easily by the process of forward substitution:

x1 =
b1
a11

,

x2 =
b2 − a21x1

a22
,

x3 =
b3 − [a31x1 + a32x2]

a33
,

...

xn =
bn − [an1x1 + an2x2 + . . .+ an,n−1xn−1]

ann
.

(9.8)

The procedure in pseudo-code is listed in Algorithm 9.1.

Algorithm 9.1 Forward Subsitution

1: for i = 1, . . . , n do

2: xi ←
(
bi −

i−1∑
j=1

aijxj

)
/aii

3: end for

The assumption that A is nonsingular implies aii ̸= 0 for all i = 1, 2, . . . , n
since det(A) = a11a22 · · · ann. Also observe that (9.8) shows xi is a linear
combination of bi, bi−1, . . . , b1 and since x = A−1b it follows that A−1 is also
lower triangular.

To compute xi we perform i−1 multiplications, i−1 additions/subtractions,
and one division, so the total amount of computational work W (n) for for-
ward substitution is

W (n) = 2
n∑

i=1

(i− 1) + n = n2, (9.9)

where we have used that

n∑
i=1

i =
n(n+ 1)

2
. (9.10)

That is, W (n) = O(n2) to solve a lower triangular linear system.

204 CHAPTER 9. LINEAR SYSTEMS OF EQUATIONS I

If A is nonsingular and upper triangular

A =


a11 a12 · · · a1n
0 a22 · · · a2n
...

...
. . .

...
0 0 · · · ann

 , (9.11)

we solve the linear system Ax = b starting from xn, then we solve for xn−1,
etc. This is called backward substitution

xn =
bn
ann

,

xn−1 =
bn−1 − an−1,nxn

an−1,n−1
,

xn−2 =
bn−2 − [an−2,n−1xn−1 + an−2,nxn]

an−2,n−2
,

...

x1 =
b1 − [a12x2 + a13x3 + · · · a1nxn]

a11
.

(9.12)

From these equations we deduce that xi is a linear combination of bi.., bi+1, ...bn
and so A−1 is an upper triangular matrix. Algorithm 9.2 shows the backward
substitution procedure in pseudo-code.

Algorithm 9.2 Backward Subsitution

1: for i = n, n− 1, . . . , 1 do

2: xi ←
(
bi −

n∑
j=i+1

aijxj

)
/aii

3: end for

The operation count is the same as for forward substitution, W (n) =
O(n2).

9.2 Gaussian Elimination

The central idea of Gaussian elimination is to reduce the linear system Ax = b
to an equivalent upper triangular system that has the same solution and can

9.2. GAUSSIAN ELIMINATION 205

readily be solved with backward substitution. Such reduction is done with
an elimination process employing linear combinations of rows. We illustrate
first the method with a concrete example:

x1 + 2x2 − x3 + x4 = 0,

2x1 + 4x2 − x4 = −3,
3x1 + x2 − x3 + x4 = 3,

x1 − x2 + 2x3 + x4 = 3.

(9.13)

To do the elimination we form an augmented matrix Ab by appending one
more column to the matrix of coefficients A, consisting of the right hand side
b:

Ab =


1 2 −1 1 0
2 4 0 −1 −3
3 1 −1 1 3
1 −1 2 1 3

 . (9.14)

The first step is to eliminate the first unknown in the second to last equations,
i.e., to produce a zero in the first column of Ab for rows 2, 3, and 4:

1 2 −1 1 0
2 4 0 −1 −3
3 1 −1 1 3
1 −1 2 1 3

 −−−−−−→R2←R2−2R1
R3←R3−3R1
R4←R4−1R1


1 2 −1 1 0
0 0 2 −3 −3
0 −5 2 −2 3
0 −3 3 0 3

 , (9.15)

where R2 ← R2 − 2R1 means that the second row has been replaced by
the second row minus two times the first row, etc. Since the coefficient of
x1 in the first equation is 1 it is easy to figure out the number we need to
multiply rows 2, 3, and 4 to achieve the elimination of the first variable for
each row, namely 2, 3, and 1. These numbers are called multipliers. In
general, to obtain the multipliers we divide the coefficient of x1 in the rows
below the first one by the nonzero coefficient a11 (2/1=2, 3/1=3, 1/1=1).
The coefficient we need to divide by to obtain the multipliers is called a pivot
(1 in this case).

Note that the (2, 2) element of the last matrix in (9.15) is 0 so we cannot
use it as a pivot for the second round of elimination. Instead, we proceed by

206 CHAPTER 9. LINEAR SYSTEMS OF EQUATIONS I

exchanging the second and the third rows
1 2 −1 1 0
0 0 2 −3 −3
0 −5 2 −2 3
0 −3 3 0 3

 −−−−−−→R2↔R3


1 2 −1 1 0
0 −5 2 −2 3
0 0 2 −3 −3
0 −3 3 0 3

 . (9.16)

We can now use -5 as a pivot and do the second round of elimination:
1 2 −1 1 0
0 −5 2 −2 3
0 0 2 −3 −3
0 −3 3 0 3

 −−−−−−→R3←R3−0R2

R4←R4− 3
5
R2


1 2 −1 1 0
0 −5 2 −2 3
0 0 2 −3 −3
0 0 9

5
6
5

6
5

 . (9.17)

Clearly, the elimination step R3 ← R3−0R2 is unnecessary as the coefficient
to be eliminated is already zero but we include it to illustrate the general
procedure. The last round of the elimination is

1 2 −1 1 0
0 −5 2 −2 3
0 0 2 −3 −3
0 0 9

5
6
5

6
5

 −−−−−−→
R4←R4− 9

10
R3


1 2 −1 1 0
0 −5 2 −2 3
0 0 2 −3 −3
0 0 0 39

10
39
10

 , (9.18)

The last matrix, let us call it Ub, corresponds to the upper triangular system
1 2 −1 1
0 −5 2 −2
0 0 2 −3
0 0 0 39

10



x1
x2
x3
x4

 =


0
3
−3
39
10

 , (9.19)

which we can solve with backward substitution to obtain the solution

x =


x1
x2
x3
x4

 =


1
−1
0
1

 . (9.20)

Each of the steps in the Gaussian elimination process are linear trans-
formations and hence we can represent them with matrices. Note, however,
that these matrices are not constructed in practice, we only implement their

9.2. GAUSSIAN ELIMINATION 207

effect (row exchange or elimination). The first round of elimination (9.15) is
equivalent to multiplying (from the left) Ab by the lower triangular matrix

E1 =


1 0 0 0
−2 1 0 0
−3 0 1 0
−1 0 0 1

 , (9.21)

that is

E1Ab =


1 2 −1 1 0
0 0 2 −3 −3
0 −5 2 −2 3
0 −3 3 0 3

 . (9.22)

The matrix E1 is formed by taking the 4 × 4 identity matrix and replac-
ing the elements in the first column below 1 by negative the multiplier, i.e.
−2,−3,−1. We can exchange rows 2 and 3 with the permutation matrix

P =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 , (9.23)

that is obtained by exchanging the second and third rows in the 4×4 identity
matrix,

PE1Ab =


1 2 −1 1 0
0 −5 2 −2 3
0 0 2 −3 −3
0 −3 3 0 3

 . (9.24)

To construct the matrix associated with the second round of elimination we
take the 4×4 identity matrix and replace the elements in the second column
below the diagonal by negative the multipliers we got with the pivot equal
to -5:

E2 =


1 0 0 0
0 1 0 0
0 0 1 0
0 −3

5
0 1

 , (9.25)

208 CHAPTER 9. LINEAR SYSTEMS OF EQUATIONS I

and we get

E2PE1Ab =


1 2 −1 1 0
0 −5 2 −2 3
0 0 2 −3 −3
0 0 9

5
6
5

6
5

 . (9.26)

Finally, for the last elimination we have

E3 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 − 9

10
1

 , (9.27)

and E3E2PE1Ab = Ub.
Observe that PE1Ab = E ′1PAb, where

E ′1 =


1 0 0 0
−3 1 0 0
−2 0 1 0
−1 0 0 1

 , (9.28)

i.e., we exchange rows in advance and then reorder the multipliers accord-
ingly. If we focus on the matrix A, the first four columns of Ab, we have the
matrix factorization

E3E2E
′
1PA = U, (9.29)

where U is the upper triangular matrix

U =


1 2 −1 1
0 −5 2 −2
0 0 2 −3
0 0 0 39

10

 . (9.30)

Moreover, the product of upper (lower) triangular matrices is also an upper
(lower) triangular matrix and so is the inverse. Hence, we obtain the so-called
LU factorization

PA = LU, (9.31)

9.2. GAUSSIAN ELIMINATION 209

where L = (E3E2E
′
1)
−1 = E ′−11 E−12 E−13 is a lower triangular matrix. Now,

recall that the matrices E ′1, E2, E3 perform the transformation of subtracting
the row of the pivot times the multiplier to the rows below. Therefore, the
inverse operation is to add the subtracted row back, i.e., we simply remove
the negative sign in front of the multipliers,

E ′−11 =


1 0 0 0
3 1 0 0
2 0 1 0
1 0 0 1

 , E−12 =


1 0 0 0
0 1 0 0
0 0 1 0
0 3

5
0 1

 , E−13 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 9

10
1

 .
It then follows that

L =


1 0 0 0
3 1 0 0
2 0 1 0
1 3

5
9
10

1

 . (9.32)

Note that L has all the multipliers below its diagonal and U has all the
pivots on its diagonal. We will see that a factorization of the form PA = LU
is always possible for any nonsingular n×n matrix A and can be very useful.

We consider now the general linear system (9.1). The matrix of coeffi-
cients and the right hand size are

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

 , b =


b1
b2
...
bn

 , (9.33)

respectively. We form the augmented matrix Ab by appending b to A as the
last column:

Ab =


a11 a12 · · · a1n b1
a21 a22 · · · a2n b2
...

...
. . .

...
...

an1 an2 · · · ann bn

 . (9.34)

In principle, if a11 ̸= 0 we can start the elimination. However, if |a11| is
too small, dividing by it to compute the multipliers might lead to inaccurate

210 CHAPTER 9. LINEAR SYSTEMS OF EQUATIONS I

results in the computer, i.e. using finite precision arithmetic. It is generally
better to look for the coefficient of largest absolute value in the first column,
to exchange rows, and then do the elimination. This is called partial pivoting.
It is also possible after this to search for the element of largest absolute value
in the first row and switch columns accordingly. This is called complete
pivoting and works well provided the matrix is properly scaled. Henceforth,
we will consider Gaussian elimination only with partial pivoting, which is
less costly to apply.

To perform the first round of Gaussian elimination we do three steps:

a) Find the max
i
|ai1|, let us say this corresponds to the m-th row, i.e.

|am1| = max
i
|ai1|. If |am1| = 0, the matrix is singular. Stop.

b) Exchange rows 1 and m.

c) Compute the multipliers and perform the elimination.

After these three steps, we have transformed Ab into

A
(1)
b =


a
(1)
11 a

(1)
12 · · · a

(1)
1n b

(1)
1

0 a
(1)
22 · · · a

(1)
2n b

(1)
2

...
...

. . .
...

...

0 a
(1)
n2 · · · a

(1)
nn b

(1)
n

 . (9.35)

This corresponds to A
(1)
b = E1P1Ab, where P1 is the permutation matrix

that exchanges rows 1 and m (P1 = I if no exchange is made) and E1 is
the matrix representing the elimination of the entries below the first element
in the first column. The same three steps above can be applied now to the
smaller (n− 1)× n matrix

Ã
(1)
b =

a
(1)
22 · · · a

(1)
2n b

(1)
2

...
...

. . .
...

a
(1)
n2 · · · a

(1)
nn b

(1)
n

 , (9.36)

and so on. Performing this process (n − 1) times, we obtain the reduced,
upper triangular system, which can be solved with backward substitution.

In matrix terms, the linear transformations in the Gaussian elimination
process with partial pivoting correspond to

A
(k)
b = EkPkA

(k−1)
b , k = 1, 2, . . . , n− 1, (9.37)

9.2. GAUSSIAN ELIMINATION 211

with A
(0)
b = Ab and where Pk and Ek are permutation and elimination ma-

trices, respectively. Pk = I if no row exchange is made prior to the k-th
elimination round (but recall that we do not construct the matrices Ek and
Pk in practice). Hence, the Gaussian elimination process for a nonsingular
linear system produces the matrix factorization

Ub = A
(n−1)
b = En−1Pn−1En−2Pn−2 · · ·E1P1Ab. (9.38)

Arguing as in the introductory example we can rearrange the rows of Ab, with
the permutation matrix P = Pn−1 · · ·P1 and the corresponding multipliers,
as if we knew in advance the row exchanges that would be needed to get

Ub ≡ A
(n−1)
b = E ′n−1E

′
n−2 · · ·E ′1PAb. (9.39)

Since the inverse of E ′n−1E
′
n−2 · · ·E ′1 is the lower triangular matrix

L =


1 0 · · · · · · 0
l21 1 0 · · · 0
l31 l32 1 · · · 0
...

...
.

...
ln1 ln2 · · · ln,n−1 1

 , (9.40)

where the lij, j = 1, . . . , n − 1, i = j + 1, . . . , n are the multipliers (com-
puted after all the rows have been rearranged), we arrive at the anticipated
factorization PA = LU . Incidentally, up to sign, Gaussian elimination also
produces the determinant of A because

det(PA) = ± det(A) = det(LU) = det(U) = a
(1)
11 a

(2)
22 · · · a(n)nn (9.41)

and so± det(A) equals the product of all the pivots in the elimination process.
In the implementation of Gaussian elimination the array storing the aug-

mented matrix Ab is overwritten to save memory. The pseudo-code of Gaus-
sian elimination with partial pivoting (assuming ai,n+1 = bi, i = 1, . . . , n) is
presented in Algorithm 9.3.

9.2.1 The Cost of Gaussian Elimination

We do now an operation count of Gaussian elimination to solve an n × n
linear system Ax = b.

212 CHAPTER 9. LINEAR SYSTEMS OF EQUATIONS I

Algorithm 9.3 Gaussian Elimination with Partial Pivoting

1: for j = 1, . . . , n− 1 do
2: Find m such that |amj| = max

j≤i≤n
|aij|

3: if |amj| = 0 then
4: stop ▷ Matrix is singular
5: end if
6: ajk ↔ amk, k = j, . . . , n+ 1 ▷ Exchange rows
7: for i = j + 1, . . . , n do
8: m← aij/ajj ▷ Compute multiplier
9: aik ← aik −m ∗ ajk, k = j + 1, . . . , n+ 1 ▷ Elimination

10: aij ← m ▷ Store multiplier
11: end for
12: end for
13: for i = n, n− 1, . . . , 1 do ▷ Backward Substitution

14: xi ←
(
ai,n+1 −

n∑
j=i+1

aijxj

)
/aii

15: end for

We focus on the elimination as we already know the work for backward
substitution is O(n2). For each round of elimination, j = 1, . . . , n − 1, we
need one division to compute each of the n− j multipliers, and (n− j)(n−
j+1) multiplications and (n− j)(n− j+1) sums (subtracts) to perform the
eliminations. Thus, the total number of operations is

W (n) =
n−1∑
j=1

[2(n− j)(n− j + 1) + (n− j)]

=
n−1∑
j=1

[
2(n− j)2 + 3(n− j)

] (9.42)

and using (9.10) and
m∑
i=1

i2 =
m(m+ 1)(2m+ 1)

6
, (9.43)

we get

W (n) =
2

3
n3 +O(n2). (9.44)

9.3. LU AND CHOLESKI FACTORIZATIONS 213

Thus, Gaussian elimination is computationally expensive for large systems
of equations.

9.3 LU and Choleski Factorizations

If Gaussian elimination can be performed without row interchanges, then we
obtain A = LU . This factorization can be advantageous when solving many
linear systems with the same n×n matrix A but different right hand sides b
because we can turn the problem Ax = b into two triangular linear systems,
which can be solved much more economically in O(n2) operations. Indeed,
from LUx = b and setting y = Ux we have

Ly = b, (9.45)

Ux = y. (9.46)

Given b, we can solve the first system for y with forward substitution and
then we solve the second system for x with backward substitution. Thus,
while the LU factorization of A has an O(n3) cost, subsequent solutions to
the linear system with the same matrix A but different b can be done in
O(n2) operations.

When is it possible to get the factorization A = LU? the following result
provides a useful sufficient condition.

Theorem 9.1. Let A be an n×n matrix whose leading principal submatrices
A1, . . . , An are all nonsingular. Then, there exist an n × n lower triangular
matrix L, with ones on its diagonal, and an n × n upper triangular matrix
U such that A = LU and this factorization is unique.

Proof. Since A1 is nonsingular, then a11 ̸= 0 and P1 = I. Suppose now
that we do not need to exchange rows in steps 2, . . . , k so that A(k) =
Ek · · ·E2E1A, that is

a11 · · · a1k · · · a1n
. . . · · ·

· · ·
a
(k)
kk · · · a

(k)
kn

...
...

a
(k)
nk · · · a

(k)
nn


=



1

−m21
. . .

...
−mk1 1

...
−mn1 · · · 1





a11 · · · a1k · · · a1n
...

. . . · · · ...
· · ·

ak1 akk · · · akn
...

...
...

an1 · · · ank · · · ann


.

214 CHAPTER 9. LINEAR SYSTEMS OF EQUATIONS I

The determinant of the boxed k × k leading principal submatrix on the left
is a11a

(2)
22 · · · a(k)kk and this is equal to the determinant of the product of boxed

blocks on the right hand side. Since the determinant of the first such block
is one (it is a lower triangular matrix with ones on the diagonal), it follows
that

a11a
(2)
22 · · · a(k)kk = det(Ak) ̸= 0, (9.47)

which implies that a
(k)
kk ̸= 0 and so Pk+1 = I. We conclude that U =

En−1 · · ·E1A and therefore A = LU .
Let us now show that this decomposition is unique. Suppose A = L1U1 =

L2U2 then

L−12 L1 = U2U
−1
1 . (9.48)

But the matrix on the left hand side is lower triangular (with ones in its diag-
onal) whereas the one on the right hand side is upper triangular. Therefore
L−12 L1 = I = U2U

−1
1 , which implies that L2 = L1 and U2 = U1.

An immediate consequence of this result is that Gaussian elimination
can be performed without row interchange for a strictly diagonally dominant
(SDD) matrix, as each of its leading principal submatrices is itself SDD, and
for a positive definite matrix, as each of its leading principal submatrices is
itself positive definite, and hence nonsingular in both cases.

Corollary 9.3.1. Let A be an n× n matrix. Then, A = LU , where L is an
n× n lower triangular matrix , with ones on its diagonal, and U is an n× n
upper triangular matrix if either

(a) A is SDD or

(b) A is symmetric, positive definite.

In the case of a positive definite matrix the number number of operations
can be cut down in approximately half by exploiting symmetry. The idea
is to obtain a factorization A = BBT , where B is a lower triangular matrix
with positive entries in its diagonal. This representation is called Choleski
factorization of a symmetric, positive definite matrix A.

Theorem 9.2. Let A be a symmetric, positive definite matrix. Then, there
is a unique lower triangular matrix B with positive entries in its diagonal
such that A = BBT .

9.3. LU AND CHOLESKI FACTORIZATIONS 215

Proof. By Corollary 9.3.1 A has an LU factorization. Moreover, from (9.47)
it follows that all the pivots are positive and thus uii > 0 for all i = 1, . . . , n.
We can split the pivots evenly in L and U by letting

D = diag(
√
u11, . . . ,

√
unn) (9.49)

and writing A = LDD−1U = (LD)(D−1U). Let B = LD and C = D−1U .
Both matrices have diagonal elements

√
u11, . . . ,

√
unn but B is lower trian-

gular while C is upper triangular. Moreover, A = BC and because AT = A
we have that CTBT = BC, which implies

B−1CT = C(BT)−1. (9.50)

The matrix on the left hand side is lower triangular with ones in its diagonal
while the matrix on the right hand side is upper triangular also with ones
in its diagonal. Therefore, B−1CT = I = C(BT)−1 and thus, C = BT and
A = BBT .

To prove that this symmetric factorization is unique we go back to the
LU factorization, which we know is unique, if we choose L to have ones in
its diagonal. Given A = BBT , where B is lower triangular with positive
diagonal elements b11, . . . , bnn, we can write

A = BD−1B DBB
T , (9.51)

where DB = diag(b11, . . . , bnn). Then, L = BD−1B and U = DBB
T yield

the unique LU factorization of A. Now, suppose there is another Choleski
factorization A = CCT . Then, by the uniqueness of the LU factorization,
we have

L = BD−1B = CD−1C , (9.52)

U = DBB
T = DCC

T , (9.53)

where DC = diag(c11, . . . , cnn). Equation (9.53) implies that b2ii = c2ii for
i = 1, . . . , n and since bii > 0 and cii > 0 for all i, then DC = DB and
consequently C = B.

The Choleski factorization is usually written as A = LLT and is obtained
by exploiting the lower triangular structure of L and symmetry as follows.
First, L = (lij) is lower triangular then lij = 0 for 1 ≤ i < j ≤ n and thus

aij =
n∑

k=1

likljk =

min(i,j)∑
k=1

likljk. (9.54)

216 CHAPTER 9. LINEAR SYSTEMS OF EQUATIONS I

Now, because AT = A we only need aij for i ≤ j, that is

aij =
i∑

k=1

likljk 1 ≤ i ≤ j ≤ n. (9.55)

We can solve equations (9.55) to determine L, one column at a time. If we
set i = 1 we get

a11 = l211, → l11 =
√
a11,

a12 = l11l21,

...

a1n = l11ln1

and this allows us to get the first column of L. The second column is now
found by using (9.55) for i = 2

a22 = l221 + l222, → l22 =
√
a22 − l221,

a23 = l21l31 + l22l32,

...

a2n = l21ln1 + l22ln2,

etc. Algorithm 9.4 gives the pseudo code for the Choleski factorization.

Algorithm 9.4 Choleski factorization

1: for i = 1, . . . , n do ▷ Compute column i of L for i = 1, . . . , n

2: lii ←

√√√√(aii − i−1∑
k=1

l2ik

)
3: for j = i+ 1, . . . , n do

4: lji ← (aij −
i−1∑
k=1

likljk)/lii

5: end for
6: end for

9.4. TRIDIAGONAL LINEAR SYSTEMS 217

9.4 Tridiagonal Linear Systems

If the matrix of coefficients A has a tridiagonal structure

A =


a1 b1
c1 a2 b2

.

bn−1
cn−1 an

 (9.56)

its LU factorization can be computed at an O(n) cost and the corresponding
linear system can thus be solved efficiently.

Theorem 9.3. If A is triadiagonal and all of its leading principal submatrices
are nonsingular then

a1 b1
c1 a2 b2

.

bn−1
cn−1 an

 =


1
l1 1

.

ln−1 1




m1 b1

m2 b2
.

bn−1
mn

 ,
(9.57)

where

m1 = a1, (9.58)

lj = cj/mj, mj+1 = aj+1 − ljbj, for j = 1, . . . , n− 1, (9.59)

and this factorization is unique.

Proof. By Theorem 9.1 we know that A has a unique LU factorization, where
L is unit lower triangular and U is upper triangular. We will show that we can
solve uniquely for l1, . . . , ln−1 and m1, . . . ,mn so that (9.57) holds. Equating

218 CHAPTER 9. LINEAR SYSTEMS OF EQUATIONS I

the matrix product on the right hand side of (9.57), row by row, we get

1st row: a1 = m1, b1 = b1,

2nd row: c1 = m1l1, a2 = l1b1 +m2, b2 = b2,

...

(n− 1)-st row: cn−2 = mn−2ln−2, an−1 = ln−2bn−2 +mn−1, bn−1 = bn−1,

n-th row: cn−1 = mn−1ln−1, an = ln−1bn−1 +mn

from which (9.58)-(9.59) follows. Of course, we need the mj’s to be nonzero
to use (9.59). We now prove this is the case.

Note that mj+1 = aj+1 − ljbj = aj+1 − cj
mj
bj. Therefore

mjmj+1 = aj+1mj − bjcj, for j = 1, . . . , n− 1. (9.60)

Thus,

det(A1) = a1 = m1, (9.61)

det(A2) = a2a1 − c1b1 = a2m1 − b1c1 = m1m2. (9.62)

We now do induction to show that det(Ak) = m1m2 · · ·mk. Suppose det(Aj) =
m1m2 · · ·mj for j = 1, . . . , k − 1. Expanding by the last row we get

det(Ak) = ak det(Ak−1)− bk−1ck−1 det(Ak−2) (9.63)

and using the induction hypothesis and (9.60) it follows that

det(Ak) = m1m2 · · ·mk−2 [akmk−1 − bk−1ck−1] = m1 · · ·mk, (9.64)

for k = 1, . . . , n. Since det(Ak) ̸= 0 for k = 1, . . . , n then m1,m2, . . . ,mn are
all nonzero.

9.5 A 1D BVP: Deformation of an Elastic

Beam

We saw in Section 4.3 an example of a very large system of equations in
connection with the least squares problem for fitting high dimensional data.

9.5. A 1D BVP: DEFORMATION OF AN ELASTIC BEAM 219

Algorithm 9.5 Tridiagonal solver

1: m1 ← a1
2: for j = 1, . . . , n− 1 do ▷ Compute column L and U
3: lj ← cj/mj

4: mj+1 ← aj+1 − li ∗ bj
5: end for
6: y1 ← d1 ▷ Forward substitution on Ly = d
7: for j = 2, . . . , n do
8: yj ← dj − lj−1 ∗ yj−1
9: end for
10: xn ← yn/mn ▷ Backward substitution on Ux = y
11: for j = n− 1, n− 2 . . . , 1 do
12: xj ← (yj − bj ∗ xj+1)/mj

13: end for

We now consider another example that leads to a large linear system of
equations.

Suppose we have a thin beam of unit length, stretched horizontally and
occupying the interval [0, 1]. The beam is subjected to a load density f(x)
at each point x ∈ [0, 1], and pinned at end points. Let u(x) be the beam
deformation from the horizontal position. Assuming that the deformations
are small (linear elasticity regime), u satisfies

−u′′(x) + c(x)u(x) = f(x), 0 < x < 1, (9.65)

where c(x) ≥ 0 is related to the elastic, material properties of the beam. Be-
cause the beam is pinned at the end points we have the boundary conditions

u(0) = u(1) = 0. (9.66)

The system (9.65)-(9.66) is called a boundary value problem (BVP). That is,
we need to find a function u that satisfies the ordinary differential equation
(9.65) and the boundary conditions (9.66) for any given, continuous f and c.
The condition c(x) ≥ 0 guarantees existence and uniqueness of the solution
to this problem.

We will construct a discrete model whose solution gives an accurate ap-
proximation to the exact solution at a finite collection of selected points
(called nodes) in [0, 1]. We take the nodes to be equally spaced and to in-
clude the interval’s end points (boundary). Thus, we choose a positive integer

220 CHAPTER 9. LINEAR SYSTEMS OF EQUATIONS I

N and define the nodes or grid points

x0 = 0, x1 = h, x2 = 2h, . . . , xN = Nh, xN+1 = 1, (9.67)

where h = 1/(N + 1) is the grid size or node spacing. The nodes x1, . . . , xN
are called interior nodes, because they lie inside the interval [0, 1], and the
nodes x0 and xN+1 are called boundary nodes.

We now construct a discrete approximation to the ordinary differential
equation by replacing the second derivative with a second order finite differ-
ence approximation. As we know, for sufficiently smooth u,

u′′(xj) =
u(xj+1)− 2u(xj) + u(xj−1)

h2
+O(h2). (9.68)

Neglecting the O(h2) error and denoting the approximation of u(xj) by uj
(i.e. uj ≈ u(xj)) we get

−uj−1 − 2uj + uj+1

h2
+ cjuj = fj, j = 1, 2, . . . , N, (9.69)

where fj = f(xj) and cj = c(xj). The boundary condition (9.66) translates
into

v0 = vN+1 = 0. (9.70)

Thus, (9.69) is a linear system of N equations in N unknowns u1, . . . , uN ,
which we can write in matrix form as

1

h2



2 + c1h
2 −1 0 · · · · · · 0

−1 2 + c2h
2 −1 . . .

...

0
.

...
.

. 0
. −1

0 · · · 0 −1 2 + cNh
2





u1
u2
...
...
...
...
uN


=



f1
f2
...
...
...
...
fN


.

(9.71)

The matrix, let us call it A, of this system is tridiagonal and symmetric.
A direct computation shows that for an arbitrary, nonzero, column vector

9.6. A 2D BVP: DIRICHLET PROBLEM FOR THE POISSON’S EQUATION221

v = [v1, . . . , vN]
T

vTAv =
N∑
j=1

[(
vj + cjvj

h

)2

+ cjv
2
j

]
> 0, ∀ v ̸= 0 (9.72)

and therefore, since cj ≥ 0 for all j, A is positive definite. Thus, there
is a unique solution to (9.71) and this can be efficiently found with our
tridiagonal solver, Algorithm 9.5. Since the expected numerical error is
O(h2) = O(1/(N+1)2), even a modest accuracy ofO(10−4) requiresN ≈ 100.

9.6 A 2D BVP: Dirichlet Problem for the

Poisson’s Equation

We now look at a simple 2D BVP for an equation that is central to many
applications, namely Poisson’s equation. For concreteness here, we can think
of the equation as a model for small deformations u of a stretched, square
membrane fixed to a wire at its boundary and subject to a force density
f . Denoting by Ω, and ∂Ω, the unit square [0, 1] × [0, 1] and its boundary,
respectively, the BVP is to find u such that

−∆u(x, y) = f(x, y), for (x, y) ∈ Ω (9.73)

and

u(x, y) = 0. for (x, y) ∈ ∂Ω. (9.74)

In (9.73), ∆u is the Laplacian of u, also denoted as ∇2u, and is given by

∆u = ∇2u = uxx + uyy =
∂2u

∂x2
+
∂2u

∂y2
. (9.75)

Equation (9.73) is Poisson’s equation (in 2D) and together with (9.74) specify
a (homogeneous) Dirichlet problem because the value of u is given at the
boundary.

To construct a numerical approximation to (9.73)-(9.74), we proceed as
in the previous 1D BVP example by discretizing the domain. For simplicity,
we will use uniformly spaced grid points. We choose a positive integer N and
define the grid points of our domain Ω = [0, 1]× [0, 1] as

(xj, ym) = (jh,mh), for j,m = 0, . . . , N + 1, (9.76)

222 CHAPTER 9. LINEAR SYSTEMS OF EQUATIONS I

where h = 1/(N+1). The interior nodes correspond to 1 ≤ j,m ≤ N and the
boundary nodes are those corresponding to the remaining values of indices j
and m (j or m equal 0 and j or m equal N + 1).

At each of the interior nodes we replace the Laplacian by its second order
order finite difference approximation, called the five-point discrete Laplacian

∇2u(xj, ym) =

u(xj−1, ym) + u(xj+1, ym) + u(xj, ym−1) + u(xj, ym+1)− 4u(xj, ym)

h2

+O(h2).

(9.77)

Neglecting the O(h2) discretization error and denoting by ujm the approxi-
mation to u(xj, ym) we get:

−uj−1,m + uj+1,m + uj,m−1 + uj,m+1 − 4ujm
h2

= fjm, for 1 ≤ j,m ≤ N.

(9.78)

This is a linear system of N2 equations for the N2 unknowns, ujm, 1 ≤ j,m ≤
N . We have freedom to order or label the unknowns any way we wish and
that will affect the structure of the matrix of coefficients of the linear system
but remarkably the matrix will be symmetric positive definite regardless of
the ordering of the unknowns!.

The most common labeling is the so-called lexicographical order, which
proceeds from the bottom row to the top one, left to right, u11, u12, . . . , u1N ,
u21, . . ., etc. Denoting by u1 = [u11, u12, . . . , u1N]

T , u2 = [u21, u22, . . . , u2N]
T ,

etc., and similarly for the right hand side f , the linear system (9.78) can be
written in matrix form as

T −I 0 0

−I T −I . . .

0
.
.

. 0
. −I

0 0 −I T





u1
u2
...
...
...
...
uN


= h2



f1
f2
...
...
...
...
fN


. (9.79)

9.7. LINEAR ITERATIVE METHODS FOR Ax = b 223

Here, I is the N ×N identity matrix and T is the N ×N tridiagonal matrix

T =



4 −1 0 0

−1 4 −1 . . .

0
.
.

. 0
. −1

0 0 −1 4


. (9.80)

Thus, the matrix of coefficients in (9.79), is sparse, i.e. the vast majority of
its entries are zeros. For example, for N = 3 this matrix is

4 −1 0 −1 0 0 0 0 0
−1 4 −1 0 −1 0 0 0 0
0 −1 4 0 0 −1 0 0 0
−1 0 0 4 −1 0 −1 0 0
0 −1 0 −1 4 −1 0 −1 0
0 0 −1 0 −1 4 0 0 −1
0 0 0 −1 0 0 4 −1 0
0 0 0 0 −1 0 −1 4 −1
0 0 0 0 0 −1 0 −1 4


.

Gaussian elimination is hugely inefficient for a large system with a sparse
matrix, as in this example. This is because the intermediate matrices in
the elimination would be generally dense due to fill-in introduced by the
elimination process. To illustrate the high cost of Gaussian elimination, if
we merely use N = 100 (this corresponds to a modest discretization error of
O(10−4)), we end up with n = N2 = 104 unknowns and the cost of Gaussian
elimination would be O(1012) operations.

9.7 Linear Iterative Methods for Ax = b

As we have seen, Gaussian elimination is an expensive procedure for large
linear systems of equations. An alternative is to seek not an exact (up to
roundoff error) solution in a finite number of steps but an approximation to

224 CHAPTER 9. LINEAR SYSTEMS OF EQUATIONS I

the solution that can be obtained from an iterative procedure applied to an
initial guess x(0).

We are going to consider first a class of iterative methods where the
central idea is to write the matrix A as the sum of a nonsingular matrix M ,
whose corresponding system is easy to solve, and a remainder −N = A−M ,
so that the system Ax = b is transformed into the equivalent system

Mx = Nx+ b. (9.81)

Starting with an initial guess x(0), (9.81) defines a sequence of approximations
generated by

Mx(k+1) = Nx(k) + b, k = 0, 1, . . . (9.82)

The main questions are

a) When does this iteration converge?

b) What determines its rate of convergence?

c) What is the computational cost?

But first we look at three concrete iterative methods of the form (9.82).
Unless otherwise stated, A is assumed to be a non-singular, n×n matrix and
b a given n-column vector.

9.7.1 Jacobi, Gauss-Seidel, and SOR.

If the all the diagonal elements of A are nonzero we can take M = diag(A)
and then at each iteration (i.e. for each k) the linear system (9.82) can be
easily solved to obtain the next iterate x(k+1). Note that we do not need
to compute M−1 neither do we need to perform the matrix product M−1N
(and due to its cost it should be avoided). We just need to solve the linear
system with the matrix M , which in this case is trivial to do. We simply
solve the first equation for the first unknown, the second equation for the
second unknown, etc. This is called Jacobi’s iterative method:

for k = 0, 1, . . .

x
(k+1)
i =

−
n∑

j=1
j ̸=i

aijx
(k)
j + bi

aii
, i = 1, 2, ..., n. (9.83)

9.7. LINEAR ITERATIVE METHODS FOR Ax = b 225

The iteration could be stopped when

∥x(k+1) − x(k)∥∞
∥x(k+1)∥∞

≤ tolerance. (9.84)

Example 9.1. Consider the 4× 4 linear system

10x1 − x2 + 2x3 = 6,

−x1 + 11x2 − x3 + 3x4 = 25,

2x1 − x2 + 10x3 − x4 = −11,
3x2 − x3 + 8x4 = 15.

(9.85)

It has the unique solution (1,2,-1,1). Jacobi’s iteration for this system, for
k = 0, 1, . . ., is

x
(k+1)
1 =

1

10
x
(k)
2 −

1

5
x
(k)
3 +

3

5
,

x
(k+1)
2 =

1

11
x
(k)
1 +

1

11
x
(k)
3 −

3

11
x
(k)
4 +

25

11
,

x
(k+1)
3 = −1

5
x
(k)
1 +

1

10
x
(k)
2 +

1

10
x
(k)
4 −

11

10
,

x
(k+1)
4 = −3

8
x
(k)
2 +

1

8
x
(k)
3 +

15

8
.

(9.86)

Starting with x(0) = [0, 0, 0, 0]T we obtain

x(1) =


0.60000000
2.27272727
−1.10000000
1.87500000

 , x(2) =


1.04727273
1.71590909
−0.80522727
0.88522727

 , x(3) =


0.93263636
2.05330579
−1.04934091
1.13088068

 .
(9.87)

In Jacobi’s iteration, when we evaluate x
(k+1)
2 we have already x

(k+1)
1 avail-

able. When we evaluate x
(k+1)
3 we have already x

(k+1)
1 and x

(k+1)
2 available and

so on. If we update Jacobi’s iteration with the already computed components
of x(k+1) we obtain the so-called Gauss-Seidel’s iteration:

for k = 0, 1, . . .

x
(k+1)
i =

−
i−1∑
j=1

aijx
(k+1)
j −

n∑
j=i+1

aijx
(k)
j + bi

aii
, i = 1, 2, ..., n. (9.88)

226 CHAPTER 9. LINEAR SYSTEMS OF EQUATIONS I

Gauss-Seidel’s iteration is equivalent to that obtained by taking M as the
lower triangular part of the matrix A, including its diagonal.

Example 9.2. For the system (9.85), starting again with the initial guess
[0, 0, 0, 0]T , Gauss-Seidel’s iteration produces the following approximations:

x(1) =


0.60000000
2.32727273
−0.98727273
0.87886364

 , x(2) =


1.03018182
2.03693802
−1.0144562
0.98434122

 , x(3) =


1.00658504
2.00355502
−1.00252738
0.99835095

 .
(9.89)

We could also put some weight in the diagonal part of A and split this
into the matricesM and N of the iterative method (9.82) to try to accelerate
convergence. Specifically, for some ω > 0 we can write

diag(A) =
1

ω
diag(A)− 1− ω

ω
diag(A), (9.90)

where the first term and the second term of the right hand side go intoM and
N parts of A for the Gauss-Seidel iteration. This weighted iterative method
can be written as

for k = 0, 1, . . .

x
(k+1)
i =

aiix
(k)
i − ω

[
i−1∑
j=1

aijx
(k+1)
j +

n∑
j=i

aijx
(k)
j − bi

]
aii

, i = 1, 2, ..., n.

(9.91)

Note that ω = 1 corresponds to Gauss-Seidel’s method. Iteration (9.91) is
generically called SOR (successive over-relaxation), even though we refer to
over-relaxation only when ω > 1 and under-relaxation when ω < 1. We will
see (Theorem 9.8) that a necessary condition for convergence of the SOR
method is that 0 < ω < 2.

9.7.2 Convergence of Linear Iterative Methods

To study convergence of iterative methods of the form

Mx(k+1) = Nx(k) + b, k = 0, 1, . . .

9.7. LINEAR ITERATIVE METHODS FOR Ax = b 227

we use the equivalent iteration

x(k+1) = Tx(k) + c, k = 0, 1, . . . (9.92)

where

T =M−1N = I −M−1A (9.93)

is called the iteration matrix and c =M−1b.
The issue of convergence is that of existence of a fixed point for the map

F (x) = Tx + c defined for all x ∈ Rn. That is, whether or not there is an
x ∈ Rn such that F (x) = x. For if the sequence defined in (9.92) converges
to a vector x then, by continuity of F , we would have x = Tx + c = F (x).
For any x, y ∈ Rn and for any induced matrix norm we have

∥F (x)− F (y)∥ = ∥Tx− Ty∥ ≤ ∥T∥ ∥x− y∥. (9.94)

If for some induced norm ∥T∥ < 1, F is a contracting map or contraction
and we will show that this guarantees the existence of a unique fixed point.
We will also show that the rate of convergence of the sequence generated
by iterative methods of the form (9.92) is given by the spectral radius ρ(T)
of the iteration matrix T . These conclusions will follow from the following
result.

Theorem 9.4. Let T be an n×n matrix. Then the following statements are
equivalent:

(a) lim
k→∞

T k = 0.

(b) lim
k→∞

T kx = 0 for all x ∈ Rn.

(c) ρ(T) < 1.

(d) ∥T∥ < 1 for at least one induced norm.

Proof. (a) ⇒ (b): For any induced norm we have that

∥T kx∥ ≤ ∥T k∥ ∥x∥ (9.95)

and so if T k → 0 as k → ∞ then ∥T k∥ → 0 as k → ∞ and consequently
∥T kx∥ → 0. That is, T kx→ 0 for all x ∈ Rn.

228 CHAPTER 9. LINEAR SYSTEMS OF EQUATIONS I

(b) ⇒ (c): Let us suppose that lim
k→∞

T kx = 0 for all x ∈ Rn but that

ρ(T) ≥ 1. Then, there is a eigenvector v such that Tv = λv with |λ| ≥ 1 and
the sequence T kv = λkv does not converge, which is a contradiction.

(c) ⇒ (d): By Theorem 8.5, for each ϵ > 0, there is at least one induced
norm ∥ · ∥ such that ∥T∥ ≤ ρ(T) + ϵ from which the statement follows.

(d) ⇒ (a): This follows immediately from ∥T k∥ ≤ ∥T∥k.

Theorem 9.5. The iterative method (9.92) is convergent for any initial guess
x(0) if and only if ρ(T) < 1 or equivalently if and only if ∥T∥ < 1 for at least
one induced norm.

Proof. Let x be the exact solution of Ax = b. Then

x− x(1) = Tx+ c− (Tx(0) + c) = T (x− x(0)),
x− x(2) = Tx+ c− (Tx(1) + c) = T (x− x(1)) = T 2(x− x(0)),

...

x− x(k) = Tx+ c− (Tx(k−1) + c) = T (x− x(k−1)) = . . . = T k(x− x(0)).

That is, the error of the k iterate, ek = x− x(k), satisfies

ek = T ke0, (9.96)

for k = 1, 2, Here, e0 = x − x(0) is the error of the initial guess. The
conclusion now follows immediately from Theorem 9.4.

The spectral radius ρ(T) of the iteration matrix T measures the rate of
convergence of the method. For if T is normal, then ∥T∥2 = ρ(T) and from
(9.96) we get

∥ek∥2 ≤ ρ(T)k∥e0∥2. (9.97)

But for each k we can find a vector e0 for which the equality holds so
ρ(T)k∥e0∥2 is a least upper bound for the error ∥ek∥2. If T is not normal,
the following result shows that, asymptotically ∥T k∥ ≈ ρ(T)k, for any matrix
norm.

9.7. LINEAR ITERATIVE METHODS FOR Ax = b 229

Theorem 9.6. Let T be any n× n matrix. Then, for any matrix norm ∥ · ∥

lim
k→∞
∥T k∥1/k = ρ(T). (9.98)

Proof. We know that ρ(T k) = ρ(T)k and that ρ(T) ≤ ∥T∥. Therefore

ρ(T) ≤ ∥T k∥1/k. (9.99)

We will now show that for any given ϵ > 0, ∥T k∥1/k ≤ ρ(T) + ϵ for all
k sufficiently large, and together with (9.99) the conclusion of the theorem
follows. To this effect, for any ϵ > 0 we construct the auxiliary matrix
Tϵ = T/(ρ(T) + ϵ). Then, limk→∞ T k

ϵ = 0 as ρ(Tϵ) < 1. Since ∥T k
ϵ ∥ → 0 as

k →∞, there is an integer Kϵ such that

∥T k
ϵ ∥ =

∥T k∥
(ρ(T) + ϵ)k

≤ 1, for all k ≥ Kϵ. (9.100)

Thus, for all k ≥ Kϵ we have

ρ(T) ≤ ∥T k∥1/k ≤ ρ(T) + ϵ. (9.101)

Theorem 9.7. Let A be an n×n strictly diagonally dominant matrix. Then,
for any initial guess x(0) ∈ Rn

(a) The Jacobi iteration converges to the exact solution of Ax = b.

(b) The Gauss-Seidel iteration converges to the exact solution of Ax = b.

Proof. (a) The Jacobi iteration matrix T has entries Tii = 0 and Tij =
−aij/aii for i ̸= j. Therefore,

∥T∥∞ = max
1≤i≤n

n∑
j=1
j ̸=i

∣∣∣∣aijaii
∣∣∣∣ = max

1≤i≤n
1

|aii|
n∑

j=1
j ̸=i

|aij| < 1. (9.102)

(b) We will proof that ρ(T) < 1 for the Gauss-Seidel iteration. Let x be an
eigenvector of T with eigenvalue λ, normalized to have ∥x∥∞ = 1. Recall

230 CHAPTER 9. LINEAR SYSTEMS OF EQUATIONS I

that T = I − M−1A, that is MT = M − A. Then, Tx = λx implies
Mx− Ax = λMx from which we get

−
n∑

j=i+1

aijxj = λ

i∑
j=1

aijxj = λaiixi + λ

i−1∑
j=1

aijxj. (9.103)

Now choose i such that ∥x∥∞ = |xi| = 1. Then,

|λ| |aii| ≤ |λ|
i−1∑
j=1

|aij|+
n∑

j=i+1

|aij|

|λ| ≤

n∑
j=i+1

|aij|

|aii| −
i−1∑
j=1

|aij|
<

n∑
j=i+1

|aij|

n∑
j=i+1

|aij|
= 1,

where the last inequality was obtained by using that A is SDD. Thus, |λ| < 1
and so ρ(T) < 1.

Theorem 9.8. A necessary condition for convergence of the SOR iteration
is 0 < ω < 2.

Proof. We will show that det(T) = (1−ω)n and because det(T) is equal, up to
a sign, to the product of the eigenvalues of T we have that | det(T)| ≤ ρn(T)
and this implies that

|1− ω| ≤ ρ(T). (9.104)

Since ρ(T) < 1 is required for convergence, the conclusion follows. Now,
T =M−1N and det(T) = det(M−1) det(N). From the definition of the SOR
iteration (9.91) we get that

aii
ω
x
(k+1)
i +

i−1∑
j=1

aijx
(k+1)
j =

aii
ω
x
(k)
i −

n∑
j=i

aijx
(k)
j + bi. (9.105)

Therefore, M is lower triangular with diag(M) = 1
ω
diag(A). Consequently,

det(M−1) = det(ω diag(A)−1). Similarly, det(N) = det((1/ω − 1)diag(A)).

9.8. BIBLIOGRAPHIC NOTES 231

Thus,

det(T) = det(M−1) det(N)

= det(ω diag(A)−1) det((1/ω − 1)diag(A))

= det(diag(A)−1(1− ω)diag(A))
= det((1− ω)I) = (1− ω)n.

(9.106)

If A is positive definite SOR converges for any initial guess. However,
as we will see, there are more efficient iterative methods for positive definite
linear systems.

9.8 Bibliographic Notes

The solution of large linear systems of equations is a central and classical
topic in numerical linear algebra. The main reference for this chapter has
been the textbook by Ciarlet [Cia89].

Section 9.1 . The solution of triangular systems and its algorithmic imple-
mentation is covered in detail in [GVL13][Section 3.1].

Section 9.2 . The complex and ancient history of Gaussian elimination and
the evolution of this important numerical method are beautifully recounted
by Grcar [Grc11].

Section 9.3 . The LU and the Cholesky factorizations are discussed in any
numerical methods text covering linear systems. André-Louis Cholesky, a
French army officer, described his method in a manuscript [Cho05] that was
only found in 2003 [BT14]. However, Choleski’s work was known by his army
colleague Ernest Benoit, who published it in 1924 [Ben24].

Section 9.4 . This material was adapted from [Sch89][Subsection 1.3.3] and
[Cia89][Theorem 4.3.2]. A variant of the tridiagonal solver Algorithm 9.5
is the so-called Thomas method, which is a direct modification of Gaussian
elimination for a tridiagonal linear system.

232 CHAPTER 9. LINEAR SYSTEMS OF EQUATIONS I

Section 9.5-Section 9.6 . The idea to present these examples of large linear
systems is from Ciarlet’s book [Cia89].

Section 9.7 . The presentation of general iterative methods was motivated by
that in [Hac94]. The results on convergence are a selection of those in [Cia89,
SB02]. There are several specialized books on iterative methods for linear
systems, for example [Hac94, Saa03, Gre97]

Chapter 10

Linear Systems of Equations II

In this chapter we consider the special case of Ax = b when A is a symmetric,
positive definite matrix. We will show first that this problem is equivalent to
an optimization problem for a quadratic function, whose gradient is Ax− b,
and will look at two gradient-based methods to solve it that are preferable
to direct methods when A is sparse.

10.1 Positive Definite Linear Systems as an

Optimization Problem

Suppose that A is an n × n symmetric, positive definite matrix and we are
interested in solving the linear system Ax = b, given b ∈ Rn. Henceforth, we
are going to assume that the eigenvalues of A are ordered from smallest to
largest

0 < λ1 ≤ λ2 ≤ . . . λn.

Let x∗ be the unique, exact solution of Ax = b. Since A is positive
definite, we can define the norm

∥x∥A =
√
xTAx =

√
⟨x,Ax⟩, (10.1)

where we used the inner product notation ⟨x, y⟩ = xTy in the last equality.
We are now going to consider the following quadratic function of x ∈ Rn

J(x) =
1

2
∥x− x∗∥2A. (10.2)

233

234 CHAPTER 10. LINEAR SYSTEMS OF EQUATIONS II

x2

x1
x∗

Figure 10.1: Levels set of J in 2 dimensions.

Note that J(x) ≥ 0 and J(x) = 0 if and only if x = x∗ because A is positive
definite. Therefore, x minimizes J if and only if x = x∗. If A is a multiple
of the identity, then the level sets of J are circles centered at x∗. Otherwise,
the level sets of J are n-dimensional ellipsoids with center at x∗ and with
axes aligned with the orthogonal eigenvectors u1, u2, . . . , un of A, as shown
in Fig. 10.1 for the two dimensional case. The axis corresponding to the uj
eigenvector has a semi-length equal to 1/

√
λj.

In optimization, the function to be minimized (maximized), J in our case,
is called the objective function. For several optimization methods it is useful
to consider the one-dimensional problem of minimizing the objective function
along a fixed direction. For given x and a direction v ̸= 0, both in Rn, we
consider the line minimization problem consisting in minimizing J along the
line that passes through x and is in the direction of v, i.e.

min
t∈R

J(x+ tv). (10.3)

10.2. LINE SEARCH METHODS 235

Denoting g(t) = J(x+ tv) and using the definition (10.2) of J we get

g(t) =
1

2
⟨x− x∗ + tv, A(x− x∗ + tv)⟩

= J(x) + ⟨x− x∗, Av⟩ t+ 1

2
⟨v, Av⟩ t2

= J(x) + ⟨Ax− b, v⟩ t+ 1

2
⟨v,Av⟩ t2.

(10.4)

This is a parabola opening upward because ⟨v, Av⟩ > 0 for all v ̸= 0. Thus,
its minimum is given by the critical point

0 = g′(t∗) = −⟨v, b− Ax⟩+ t∗⟨v, Av⟩, (10.5)

that is

t∗ =
⟨v, b− Ax⟩
⟨v, Av⟩ . (10.6)

Plugging this value in (10.4) we obtain that the minimum of J along the line
x+ tv, t ∈ R is

g(t∗) = J(x)− 1

2

⟨v, b− Ax⟩2
⟨v, Av⟩ . (10.7)

Thus, the value of J(x) is decreased unless b−Ax = 0, i.e. x minimizes J if
and only if x = x∗.

Finally, we note that, using the definition of ∥ · ∥A and Ax∗ = b, we have

J(x) =
1

2
∥x− x∗∥2A =

1

2
xTAx− bTx+ 1

2
∥x∗∥2A (10.8)

and so it follows that

∇J(x) = Ax− b. (10.9)

10.2 Line Search Methods

We just saw in the previous section that the problem of solving Ax = b,
when A is a symmetric positive definite matrix is equivalent to a convex,
minimization problem of a quadratic objective function J(x) = 1

2
∥x− x∗∥2A.

236 CHAPTER 10. LINEAR SYSTEMS OF EQUATIONS II

An important class of methods for this type of optimization problems is called
line search methods.

Line search methods produce a sequence of approximations to the mini-
mizer x∗ in the form

x(k+1) = x(k) + tkv
(k), k = 0, 1, . . . , (10.10)

where the vector v(k) and the scalar tk are called the search direction and the
step length at the k-th iteration, respectively. Then, the central question is
how to select the search directions and the step lengths to converge effectively
to the minimizer. Most line search methods are of descent type because they
require that the value of J is decreased with each iteration. Going back to
(10.4) this means that descent line search methods must satisfy the condition

⟨∇J(x(k)), v(k)⟩ < 0, (10.11)

which guarantees a decrease of J for sufficiently small step length tk.
Starting with an initial guess x(0), line search methods generate

x(1) = x(0) + t0v
(0), (10.12)

x(2) = x(1) + t1v
(1) = x(0) + t0v

(0) + t1v
(1), (10.13)

etc., so that the k-th element of the sequence is x(0) plus a linear combination
of v(0), v(1), . . . , v(k−1) :

x(k) = x(0) + t0v
(0) + t1v

(0) + · · ·+ tk−1v
(k−1). (10.14)

That is,

x(k) ∈ x(0) + span{v(0), v(1), . . . , v(k−1)}. (10.15)

Unless otherwise noted, we will take the step length tk to be given by the
one-dimensional minimizer (10.6) evaluated at the k-step, i.e.

tk =
⟨v(k), r(k)⟩
⟨v(k), Av(k)⟩ , (10.16)

where

r(k) = b− Ax(k) (10.17)

is the residual of the linear equation Ax = b associated with the approxima-
tion x(k).

10.2. LINE SEARCH METHODS 237

10.2.1 Steepest Descent

One way to satisfy the descent condition (10.11) is to choose v(k) = −∇J(x(k)),
which is locally the fastest rate of decrease of J . Recalling that ∇J(x(k)) =
−r(k), we take v(k) = r(k). The optimal step length is selected according to
(10.16) so that we choose the line minimizer (in the direction of −∇J(x(k)))
of J . The resulting method is called steepest descent and, starting from an
initial guess x(0), it can be written as follows

for k = 0,1, . . .

tk =
⟨r(k), r(k)⟩
⟨r(k), Ar(k)⟩ , (10.18)

x(k+1) = x(k) + tkr
(k), (10.19)

r(k+1) = r(k) − tkAr(k). (10.20)

Formula (10.20), which comes from subtracting A times (10.19) to b, is prefer-
able to using the definition of the residual, i.e. r(k+1) = b − Ax(k), due to
round-off errors. The iteration can be stopped when ∥r(k)∥ is smaller than a
prescribed tolerance.

Note that the method only employs the product of the matrix A and
a (residual) vector r. If the matrix A is sparse, the computation of Ar at
every iteration is economical (by avoiding the zero entries of A, which are
the majority). Thus, rather than inputing the matrix A in the steepest
descent algorithm, a procedure should be implemented for computing Ar
efficiently when A is sparse. For example, for the linear system (9.79) to
find an approximation of Poisson’s equation, it only takes 5n operations to
compute Ar for any r ∈ Rn, instead of the O(n2) operation needed when A
is a full, dense matrix.

Let us go back to the line minimization problem. Consider the function
g(t) = J(x(k) + tr(k), for t ∈ R. Then, by the Chain Rule

g′(t) = ⟨∇J(x(k) + tr(k)), r(k)⟩. (10.21)

But g′(tk) = 0 and consequently

0 = ⟨∇J(x(k+1)), r(k)⟩ = −⟨r(k+1), r(k)⟩. (10.22)

That is, consecutive residuals (gradients) are orthogonal.

238 CHAPTER 10. LINEAR SYSTEMS OF EQUATIONS II

Now, J(xk+1) = J(x(k) + tkr
(k)) and from (10.7) it follows that

J(xk+1) = J(x(k))− 1

2

⟨r(k), r(k)⟩2
⟨r(k), Ar(k)⟩ . (10.23)

Note that r(k) = b− Ax(k) = A(x∗ − x(k)) so that x(k) − x∗ = −A−1r(k) and
consequently

∥x(k) − x∗∥2A = ⟨r(k), A−1r(k)⟩. (10.24)

Therefore, we can rewrite (10.23) as

J(xk+1) =

[
1− ⟨r(k), r(k)⟩2
⟨r(k), Ar(k)⟩⟨r(k), A−1r(k)⟩

]
J(x(k)). (10.25)

Clearly, if we can get a bound for the term in brackets by a number less than
one, convergence will follow. The next lemma will give us that bound.

Lemma 10.2.1 (Kantorovich Inequality). Let A be a symmetric, positive
definite matrix. Then, for any unit vector x,

⟨x,Ax⟩⟨x,A−1x⟩ ≤ 1

4

(λ1 + λn)
2

λ1λn
, (10.26)

where λ1 and λn are the smallest and largest eigenvalues of A, respectively.

Proof. Since A is symmetric, positive definite A = QDQT , where Q is an
orthogonal matrix and D is a diagonal matrix. Set y = QTx. Note that y is
also a unit vector and

⟨x,Ax⟩⟨x,A−1x⟩ =
(

n∑
j=1

λjy
2
j

)(
n∑

j=1

λ−1j y2j .

)
. (10.27)

We are going to assume λ1 < λn (otherwise all the eigenvalues are equal and
the inequality holds trivially as an equality). The estimate (10.26) can be
done directly by noting that it is possible to write

λj = ujλ1 + vjλn, (10.28)

λ−1j = ujλ
−1
1 + vjλ

−1
n (10.29)

10.2. LINE SEARCH METHODS 239

for unique uj ≥ 0 and vj ≥ 0, for all j = 1, . . . , n. Therefore,

1 = λjλ
−1
j = (uj + vj)

2 +
(λ1 − λn)2
λ1λn

ujvj, (10.30)

which implies that uj + vj ≤ 1. Now, set u =
n∑

j=1

ujy
2
j , v =

n∑
j=1

vjy
2
j , then

u+ v =
n∑

j=1

(uj + vj)y
2
j ≤

n∑
j=1

y2j = 1. (10.31)

On the other hand,(
n∑

j=1

λjy
2
j

)(
n∑

j=1

λ−1j y2j

)
= (λ1u+ λnv)(λ

−1
1 u+ λ−1n v)

= (u+ v)2 +
(λ1 − λn)2
λ1λn

uv.

(10.32)

But

(u+ v)2 +
(λ1 − λn)2
λ1λn

uv = (u+ v)2
[
1 +

(λ1 − λn)2
λ1λn

uv

(u+ v)2
,

]
(10.33)

and

uv

(u+ v)2
≤ 1

4
. (10.34)

Therefore, using that u+ v ≤ 1 we obtain(
n∑

j=1

λjy
2
j

)(
n∑

j=1

λ−1j y2j

)
≤ 1 +

1

4

(λ1 − λn)2
λ1λn

=
1

4

(λ1 + λn)
2

λ1λn

(10.35)

Going back to equation (10.25) for the decrease of J and using (10.35)
we have

J(xk+1)

J(x(k))
≤ 1− 4λ1λn

(λ1 + λn)2
=

(
λn − λ1
λn + λ1

)2

=

(
κ2(A)− 1

κ2(A) + 1

)2

, (10.36)

240 CHAPTER 10. LINEAR SYSTEMS OF EQUATIONS II

where κ2(A) is the 2-norm condition number of A. Thus, we obtain the
following bound for consecutive errors in the steepest descent method

∥x(k+1) − x∗∥A ≤
(
κ2(A)− 1

κ2(A) + 1

)
∥x(k) − x∗∥A (10.37)

and therefore

∥x(k) − x∗∥A ≤
(
κ2(A)− 1

κ2(A) + 1

)k

∥x(0) − x∗∥A, (10.38)

which implies that the method converges to the exact solution x∗ if A is
a symmetric, positive definite matrix. If A is a multiple of the identity,
κ2(A) = 1, the method converges in just one iteration. However, in general,
convergence can be very slow and the bound (10.38) gives an appropriate
estimate of the rate of convergence in the unfavorable case κ2(A) >> 1
and A non-diagonal. Of course, the actual rate also depends on x(0). The
following simple example shows that even for a diagonal matrix, the steepest
descent method might not converge to the exact solution in a finite number
of steps.

Example 10.1. Let

A =

[
1 0
0 2

]
, b =

[
0
0

]
. (10.39)

Then, x∗ = [0, 0]T and J(x) = 1
2
(x21 + 2x22). Directly evaluating x(k+1) =

x(k) + tkr
(k) we get

x
(k+1)
1 =

4(x
(k)
2)2

(x
(k)
1)2 + 8(x

(k)
2)2

x
(k)
1 , (10.40)

x
(k+1)
2 =

−(x(k)1)2

(x
(k)
1)2 + 8(x

(k)
2)2

x
(k)
2 . (10.41)

Therefore, if x
(0)
1 ̸= 0 and x

(0)
2 ̸= 0 then x

(k)
1 ̸= 0 and x

(k)
2 ̸= 0 for all k ≥ 1 and

the method cannot converge to x∗ = [0, 0]T in a finite number of iterations.
The approximation will zig-zag in orthogonal directions due to (10.22). On

the other hand if either x
(0)
1 or x

(0)
2 is equal to zero the method converges in

one iteration.

10.3. THE CONJUGATE GRADIENT METHOD 241

10.3 The Conjugate Gradient Method

The steepest descent method uses an optimal search direction locally but not
globally. As a result, it may converge very slowly to the minimizer.

A key strategy to accelerate convergence in line search methods is to
widen the search space by considering previous search directions and not
just the current one.

Recall that
(
x(k) − x(0)

)
∈ span{v(0), v(1), . . . , v(k−1)}. We are going to

denote

Vk = span{v(0), v(1), . . . , v(k−1)} (10.42)

and write x ∈ x(0) + Vk to mean that x = x(0) + v with v ∈ Vk.
The key idea is to select the search directions v(0), v(1), . . . , v(k−1), i.e. Vk,

such that

x(k) = min
x∈x(0)+Vk

J(x). (10.43)

If the search directions are linearly independent, as k increases the search
space expands and thus the minimizer x∗, the solution of Ax = b, will be
found in at most n steps, when Vn = Rn.

Let us derive a condition for the minimizer of J(x) = 1
2
∥x − x∗∥2A over

x(0) + Vk. Suppose x(k) ∈ x(0) + Vk. Then, there are scalars c0, c1, . . . , ck−1
such that

x(k) = x(0) + c0v
(0) + c1v

(1) + · · ·+ ck−1v
(k−1). (10.44)

For fixed v(0), v(1), . . . , v(k−1), define the following function of c0, c1, . . . , ck−1

G(c0, c1, ..., ck−1) := J
(
x(0) + c0v

(0) + c1v
(1) + · · ·+ ck−1v

(k−1)) . (10.45)

Because J is a quadratic function, the minimizer of G is the critical point
c∗0, c

∗
1, ..., c

∗
k−1

∂G

∂cj
(c∗0, c

∗
1, ..., c

∗
k−1) = 0, j = 0, . . . , k − 1. (10.46)

But by the Chain Rule

0 =
∂G

∂cj
= ∇J(x(k)) · v(j) = −⟨r(k), v(j)⟩, j = 0, 1, . . . , k − 1. (10.47)

We have proved the following theorem.

242 CHAPTER 10. LINEAR SYSTEMS OF EQUATIONS II

Theorem 10.1. The vector x(k) ∈ x(0) + V k minimizes J(x) = 1
2
∥x − x∗∥2A

over x(0) + Vk, for k = 0, 1, . . . if and only if

⟨r(k), v(j)⟩ = 0, j = 0, 1, . . . , k − 1. (10.48)

That is, the residual r(k) = b− Ax(k) is orthogonal to all the previous search
directions v(0), . . . , v(k−1).

Let us go back to one step of a line search method, x(k+1) = x(k) + tkv
(k),

where tk is given by the one-dimensional minimizer (10.16). As noted in the
steepest descent method, the corresponding residual satisfies

r(k+1) = r(k) − tkAv(k).

Starting with an initial guess x(0), we compute r(0) = b− Ax(0) and take
v(0) = r(0). Then,

x(1) = x(0) + t0v
(0), (10.49)

r(1) = r(0) − t0Av(0) (10.50)

and

⟨r(1), v(0)⟩ = ⟨r(0), v(0)⟩ − t0⟨v(0), Av(0)⟩ = 0, (10.51)

where the last equality follows from the definition (10.16) of t0. Now,

r(2) = r(1) − t1Av(1) (10.52)

and consequently

⟨r(2), v(0)⟩ = ⟨r(1), v(0)⟩ − t1⟨v(0), Av(1)⟩ = −t1⟨v(0), Av(1)⟩. (10.53)

Thus if

⟨v(0), Av(1)⟩ = 0 (10.54)

then ⟨r(2), v(0)⟩ = 0. Moreover, r(2) = r(1)−t1Av(1) from which it follows that

⟨r(2), v(1)⟩ = ⟨r(1), v(1)⟩ − t1⟨v(1), Av(1)⟩ = 0, (10.55)

where in the last equality we have used again (10.16) for t1. Thus, if condition
(10.54) holds we can guarantee that ⟨r(1), v(0)⟩ = 0 and ⟨r(2), v(j)⟩ = 0 for
j = 0, 1, i.e. we satisfy the conditions of Theorem 10.1 for k = 1, 2. This
observation motivates the following definition.

10.3. THE CONJUGATE GRADIENT METHOD 243

Definition 10.1. Let A be an n×n matrix. We say that two vectors x, y ∈ Rn

are conjugate with respect to A if

⟨x,Ay⟩ = 0. (10.56)

We can now proceed by induction to prove the following theorem.

Theorem 10.2. Suppose v(0), ..., v(k−1) are conjugate with respect to A, then
for k = 1, 2, . . .

⟨r(k), v(j)⟩ = 0, j = 0, 1, . . . , k − 1. (10.57)

Proof. Let us do induction in k. We know the statement is true for k = 1.
Suppose

⟨r(k−1), v(j)⟩ = 0, j = 0, 1,, k − 2. (10.58)

Recall r(k) = r(k−1) − tk−1Av(k−1), then for j = 0, 1, . . . , k − 2

⟨r(k), v(j)⟩ = ⟨r(k−1), v(j)⟩ − tk−1⟨v(j), Av(k−1)⟩ = 0, (10.59)

where the first term is zero because of the induction hypothesis and the
second term is zero because the search directions are conjugate. Moreover,

⟨r(k), v(k−1)⟩ = ⟨r(k−1), v(k−1)⟩ − tk−1⟨v(k−1), Av(k−1)⟩ = 0 (10.60)

because of the choice (10.16) of tk−1. Therefore,

⟨r(k), v(j)⟩ = 0, j = 0, 1, . . . , k − 1.

Combining Theorems 10.1 and 10.2 we get the following important con-
clusion.

Theorem 10.3. If the search directions, v(0), v(1), . . . , v(k−1) are conjugate
with respect to A then x(k) = x(k−1) + tk−1v(k−1) is the minimizer of J(x) =
1
2
∥x− x∗∥2A over x(0) + Vk.

244 CHAPTER 10. LINEAR SYSTEMS OF EQUATIONS II

10.3.1 Generating the Conjugate Search Directions

The conjugate gradient method1, due to Hestenes and Stiefel, is an ingenious
approach for generating efficiently the set of conjugate search directions. The
crucial step is to modify the negative gradient direction, r(k), by adding
information about the previous search direction, v(k−1). Specifically, we start
with

v(k) = r(k) + skv
(k−1), (10.61)

where the scalar sk is chosen so that v(k) is conjugate to v(k−1) with respect
to A, i.e.

0 = ⟨v(k), Av(k−1)⟩ = ⟨r(k), Av(k−1)⟩+ sk⟨v(k−1), Avk−1)⟩ (10.62)

which gives

sk = −
⟨r(k), Av(k−1)⟩
⟨v(k−1), Av(k−1)⟩ . (10.63)

Surprisingly, this simple construction renders all the search directions conju-
gate and the residuals orthogonal!

Theorem 10.4.

a) ⟨r(i), r(j)⟩ = 0, i ̸= j,

b) ⟨v(i), Av(j)⟩ = 0, i ̸= j.

Proof. By the choice of tk and sk it follows that for k = 0, 1, . . .

⟨r(k+1), r(k)⟩ = 0, (10.64)

⟨v(k+1), Av(k)⟩ = 0. (10.65)

Let us now proceed by induction. We know from (10.64) and (10.65) that
⟨r(1), r(0)⟩ = 0 and ⟨v(1), Av(0)⟩ = 0. Suppose ⟨r(i), r(j)⟩ = 0 and ⟨v(i), Av(j)⟩ =

1Perhaps a more appropriate name would be “the conjugate directions method”.

10.3. THE CONJUGATE GRADIENT METHOD 245

0 holds for 0 ≤ j < i ≤ k. We need to prove that this holds also for
0 ≤ j < i ≤ k+1. In view of (10.64) and (10.65) we can assume j < k. Now,

⟨r(k+1), r(j)⟩ = ⟨r(k) − tkAv(k), r(j)⟩
= ⟨r(k), r(j)⟩ − tk⟨r(j), Av(k)⟩
= −tk⟨r(j), Av(k)⟩,

(10.66)

where we have used the induction hypothesis on the orthogonality of the
residuals for the last equality. But v(j) = r(j) + sjv

(j−1) and so r(j) = v(j) −
sjv

(j−1). Thus,

⟨r(k+1), r(j)⟩ = −tk⟨v(j) − sjv(j−1), Av(k)⟩
= −tk⟨v(j), Av(k)⟩+ tksj⟨v(j−1), Av(k)⟩ = 0

(10.67)

by the induction hypothesis. Also for j < k

⟨v(k+1), Av(j)⟩ = ⟨r(k+1) + sk+1v
(k), Av(j)⟩

= ⟨r(k+1), Av(j)⟩+ sk+1⟨v(k), Av(j)⟩

= ⟨r(k+1),
1

tj
(r(j) − r(j+1))⟩

=
1

tj
⟨r(k+1), r(j)⟩ − 1

tj
⟨r(k+1), r(j+1)⟩ = 0.

(10.68)

The conjugate gradient method is completely specified by (10.10), (10.16),
(10.61), (10.63). We are now going to do some algebra to get computationally
better formulas for tk and sk.

Recall that

tk =
⟨v(k), r(k)⟩
⟨v(k), Av(k)⟩ .

Now,

⟨v(k), r(k)⟩ = ⟨r(k) + skv
(k−1), r(k)⟩

= ⟨r(k), r(k)⟩+ sk⟨v(k−1), r(k)⟩ = ⟨r(k), r(k)⟩,
(10.69)

where we have used (10.57). Therefore,

tk =
⟨r(k), r(k)⟩
⟨r(k), Ar(k)⟩ . (10.70)

246 CHAPTER 10. LINEAR SYSTEMS OF EQUATIONS II

Let us now work on the numerator of sk+1, the inner product ⟨r(k+1), Av(k)⟩.
First, since r(k+1) = r(k) − tkAv(k) then tkAv(k) = r(k) − r(k+1). Thus,

−⟨r(k+1), Av(k)⟩ = 1

tk
⟨r(k+1), r(k+1) − r(k)⟩ = 1

tk
⟨r(k+1), r(k+1)⟩. (10.71)

And for the denominator, we have

⟨v(k), Av(k)⟩ = 1

tk
⟨v(k), r(k) − r(k+1)⟩

=
1

tk
⟨v(k), r(k)⟩ − 1

tk
⟨v(k), r(k+1)⟩

=
1

tk
⟨r(k) + skv

(k−1), r(k)⟩

=
1

tk
⟨r(k), r(k)⟩+ sk

tk
⟨v(k−1), r(k)⟩ = 1

tk
⟨r(k), r(k)⟩.

(10.72)

Therefore, we can write

sk+1 =
⟨r(k+1), r(k+1)⟩
⟨r(k), r(k)⟩ . (10.73)

A pseudo-code for the conjugate gradient method is given in Algorithm 10.1.
The main cost per iteration of the conjugate gradient method is the evalua-
tion of Av(k). As noted for the steepest descent method, the product Av(k)

can be evaluated cheaply is A is sparse.

Theorem 10.5. Let A be an n×n symmetric, positive definite matrix. Then,
the conjugate gradient method converges to the exact solution (assuming no
round-off errors) of Ax = b in at most n steps.

Proof. By Theorem 10.4, the residuals are orthogonal hence linearly inde-
pendent. After n steps, r(n) is orthogonal to r(0), r(1), . . . , r(n−1). Since the
dimension of the space is n, r(n) has to be the zero vector.

10.3.2 Krylov Subspaces

In the conjugate gradient method we start with an initial guess x(0), compute
the residual r(0) = b−Ax(0) and set v(0) = r(0). We then get x(1) = x(0)+t0r

(0)

10.3. THE CONJUGATE GRADIENT METHOD 247

Algorithm 10.1 The conjugate gradient method

1: Given x(0),TOL, and kmax, set r(0) = b− Ax(0), v(0) = r(0), and k = 0.
2: while ∥r(k)∥2 > TOL and k ≤ kmax do
3:

tk ←
⟨r(k), r(k)⟩
⟨v(k), Av(k)⟩

4:

x(k+1) ← x(k) + tkv
(k)

5:

r(k+1) ← r(k) − tkAv(k)

6:

sk+1 ←
⟨r(k+1), r(k+1)⟩
⟨r(k), r(k)⟩

7:

v(k+1) ← r(k+1) + sk+1v
(k)

8:

k ← k + 1

9: end while

248 CHAPTER 10. LINEAR SYSTEMS OF EQUATIONS II

and evaluate the residual r(1), etc. Using the definition of the residual we
have

r(1) = b− Ax(1) = b− Ax(0) − t0Ar(0) = r(0) − t0Ar(0) (10.74)

so that r(1) is a linear combination of r(0) and Ar(0). Similarly,

x(2) = x(1) + t1v
(1)

= x(0) + t0r
(0) + t1r

(1) + t1s0r
(0)

= x(0) + (t0 + t1s0)r
(0) + t1r

(1)

(10.75)

and using (10.74) we get x(2) = x(0)+c0r
(0)+c1Ar

(0), where c0 = t0+t1+s0t1
and c1 = −t0t1 so that r(2) = b−Ax(2) is a linear combination of r(0), Ar(0),
and A2r(0). Likewise, r(3) is a linear combination of r(0), Ar(0), A2r(0), and
A3r(0) and so on.

Definition 10.2. The set Kk(A, r) = span{r, Ar, ..., Ak−1r} is called the
Krylov subspace of degree (or order) k generated by the matrix A and the
vector r.

Krylov subspaces are central to an important class of numerical methods
that rely on getting approximations through matrix-vector multiplication,
like the conjugate gradient method.

The following theorem provides a reinterpretation of the conjugate gradi-
ent method. The approximation x(k) is the minimizer of J(x) = 1

2
∥x− x∗∥2A

over x(0) +Kk(A, r
(0)).

Theorem 10.6. Kk(A, r
(0)) = span{r(0), ..., r(k−1)} = span{v(0), ..., v(k−1)}.

Proof. We will prove it by induction. The case k = 1 holds by construction.
Let us now assume that it holds for k and we will prove that it also holds for
k + 1.

By the induction hypothesis r(k−1), v(k−1) ∈ Kk(A, r
(0)) then

Av(k−1) ∈ span{Ar(0), ..., Akr(0)}

but r(k) = r(k−1) − tk−1Av(k−1) and so

r(k) ∈ Kk+1(A, r
(0)).

10.3. THE CONJUGATE GRADIENT METHOD 249

Consequently,

span{r(0), ..., r(k)} ⊆ Kk+1(A, r
(0)). (10.76)

We now prove the reverse inclusion, span{r(0), ..., r(k)} ⊇ Kk+1(A, r
(0)).

Note that Akr(0) = A(Ak−1r(0)) and by the induction hypothesis

span{r(0), Ar(0), ..., Ak−1r(0)} = span{v(0), ..., v(k−1)}

we have that

Akr(0) = A(Ak−1r(0)) ∈ span{Av(0), ..., Av(k−1)}.

Moreover, since

Av(j) =
1

tj
(r(j) − r(j+1))

it follows that Akr(0) ∈ span{r(0), r(1), ..., r(k)} and therefore

span{r(0), ..., r(k)} ⊇ Kk+1(A, r
(0)). (10.77)

Thus,

span{r(0), ..., r(k)} = Kk+1(A, r
(0)). (10.78)

Finally, we observe that span{v(0), ..., v(k)} = span({v(0), ..., v(k−1), r(k)}
because v(k) = r(k) + skv

(k−1) and by the induction hypothesis

span{v(0), ..., v(k), r(k)} = span{r(0), Ar(0), ..., Akr(0), r(k)}
= span{r(0), r(1), ..., r(k), r(k)}
= Kk+1(A, r

(0)).

(10.79)

10.3.3 Convergence of the Conjugate Gradient Method

Let us define the initial error as e(0) = x(0) − x∗. Then Ae(0) = Ax(0) − Ax∗
implies that

r(0) = −Ae(0). (10.80)

250 CHAPTER 10. LINEAR SYSTEMS OF EQUATIONS II

For the conjugate gradient method x(k) ∈ x(0) +Kk(A, r
(0)), i.e.

x(k) = x(0) + c1r
(0) + c2Ar

(0) + · · ·+ ckA
k−1r(0) (10.81)

for some real constants c1, . . . , ck. Therefore, using (10.80) we have that

x(k) − x∗ = e(0) − c1Ae(0) − c2A2e(0) − · · · − ckAke(0). (10.82)

In fact,

∥x(k) − x∗∥A = min
p∈P̃k

∥p(A)e(0)∥A, (10.83)

where P̃k is the set of all polynomials of degree ≤ k that are equal to one at 0.
Since A is symmetric, positive definite all its eigenvalues are real and positive.
Let us order them as 0 < λ1 ≤ λ2 ≤ . . . ≤ λn, with associated orthonormal
eigenvectors v1, v2, . . . vn. Then, we can write e(0) = α1v1 + . . . αnvn for some
scalars α0, . . . , αn and

p(A)e(0) =
n∑

j=1

p(λj)αjvj. (10.84)

Therefore,

∥p(A)e(0)∥2A = ⟨p(A)e(0), Ap(A)e(0)⟩ =
n∑

j=1

p2(λj)λjα
2
j

≤
(
max

j
p2(λj)

) n∑
j=1

λjα
2
j

(10.85)

and since

∥e(0)∥2A =
n∑

j=1

λjα
2
j (10.86)

we get

∥x(k) − x∗∥A ≤ min
p∈P̃k

max
j
|p(λj)| ∥e(0)∥A. (10.87)

If, for example, A has only m < n distinct eigenvalues, then we can construct
a polynomial p ∈ P̃m that vanishes at those eigenvalues. From (10.87), it

10.3. THE CONJUGATE GRADIENT METHOD 251

then follows that ∥x(m)−x∗∥A = 0 and the conjugate gradient method would
converge in at most m steps instead of n steps.

The min max term can be estimated using the Chebyshev polynomial Tk
with the change of variables

f(λ) =
2λ− λ1 − λn
λn − λ1

(10.88)

to map [λ1, λn] to [−1, 1]. The polynomial

p(λ) =
1

Tk(f(0))
Tk(f(λ)) (10.89)

is in P̃k and since |Tk(f(λ))| ≤ 1

max
j
|p(λj)| =

1

|Tk(f(0))|
. (10.90)

Now

|Tk(f(0))| =
∣∣∣∣Tk (λ1 + λn

λn − λ1

)∣∣∣∣ = ∣∣∣∣Tk (λn/λ1 + 1

λn/λ1 − 1

)∣∣∣∣
=

∣∣∣∣Tk (κ2(A) + 1

κ2(A)− 1

)∣∣∣∣ (10.91)

because κ2(A) = λn/λ1 is the condition number of A in the 2-norm. We use
now an identity of Chebyshev polynomials, namely if x = (z + 1/z)/2 then
Tk(x) = (zk + 1/zk)/2. Noting that

κ2(A) + 1

κ2(A)− 1
=

1

2
(z + 1/z) (10.92)

for

z = (
√
κ2(A) + 1)/(

√
κ2(A)− 1) (10.93)

we obtain ∣∣∣∣Tk (κ2(A) + 1

κ2(A)− 1

)∣∣∣∣−1 ≤ 2

(√
κ2(A)− 1√
κ2(A) + 1

)k

, (10.94)

252 CHAPTER 10. LINEAR SYSTEMS OF EQUATIONS II

from which it follows that the error in the conjugate gradient method has
the bound

∥x(k) − x∗∥A ≤ 2

(√
κ2(A)− 1√
κ2(A) + 1

)k

∥x(0) − x∗∥A. (10.95)

This is a similar error bound as (10.38) for the steepest descent method,
except that for the conjugate gradient method the convergence rate depends
on
√
κ2(A) instead of κ2(A).

10.3.4 Preconditioned Conjugate Gradient

The error bound (10.95) suggests that convergence of the conjugate gradient
method can be accelerated by transforming the original linear system Ax = b
to one with a reduced condition number

C−1AC−T (CTx) = C−1b, (10.96)

as mentioned in Section 8.7.1. This is called preconditioning. Note that
C−1AC−T is symmetric, positive definite, assuming A is so. We would like
the matrix Ã = C−1AC−T to have a much smaller condition number than
A. Since A is symmetric, positive definite A = LLT , where L is the (lower
triangular) Choleski factor, and hence if C ≈ L the condition number of
Ã would be close to one. If we apply the conjugate gradient method to
the preconditioned linear system (10.96), we will see that only the matrix
M = CCT arises in the algorithm and not C per se. The preconditioned
conjugate gradient method in pseudo-code is shown in Algorithm 10.2. Note
that in Step 6 of the algorithm one needs to solve a linear system of the form
Mw = r. Thus, for the method to be effective, solving Mw = r must be
significantly cheaper than solving the original system Ax = b.

Again, since A = LLT (A symmetric, positive definite) the idea is to
take M = CCT , where C is an approximation, in some sense, of the lower
triangular factor L of A. The simplest choice is M = D = diag(A), which
corresponds to one iteration of Jacobi’s method. However, this is rarely an
effective preconditioner. We can employ SOR but because the SOR matrix
is not symmetric, we need to use a symmetrized version. Writing A = D −
L−LT (now L stands for minus the lower triangular part of A with zeros on

10.3. THE CONJUGATE GRADIENT METHOD 253

the diagonal), the symmetric SOR preconditioner corresponds to

M =
1

2− ω

(
1

ω
D − L

)(
1

ω
D

)−1(
1

ω
D − LT

)
, (10.97)

for some appropriate ω ∈ (0, 2). Note that the corresponding linear system
Mw = r is easy to solve because is M is the product of a lower and an upper
triangular matrix.

A more general and often effective preconditioner is the incomplete Choleski
factorization, in which C ≈ L (L being the Choleski factor) but such that C
has some structured sparsity (e.g. the same sparsity as L). One way is to
achieve this is to follow the Choleski procedure (Algorithm 9.4) and set to
zero lij if the corresponding aij = 0.

Algorithm 10.2 The preconditioned conjugate gradient method

1: Given x(0), a preconditioner M , TOL, and kmax, set r(0) = b − Ax(0),
v(0) = r(0), k = 0, and solve Mw(0) = r(0).

2: while ∥r(k)∥2 > TOL and k ≤ kmax do
3:

tk ←
⟨r(k), w(k)⟩
⟨v(k), Av(k)⟩

4:

x(k+1) ← x(k) + tkv
(k)

5:

r(k+1) ← r(k) − tkAv(k)

6:

Mw(k+1) ← r(k+1)

7:

sk+1 ←
⟨r(k+1), w(k+1)⟩
⟨r(k), w(k)⟩

8:

v(k+1) ← w(k+1) + sk+1v
(k)

9:

k ← k + 1

10: end while

254 CHAPTER 10. LINEAR SYSTEMS OF EQUATIONS II

10.4 Bibliographic Notes

Section 10.1 . The equivalence of Ax = b to an optimization problem,
min J(x), when A is a symmetric, positive definite matrix appears in most
textbooks on numerical linear algebra and optimization (e.g. [NW06, LY08,
Cia89]). But typically J(x) is taken to be 1

2
⟨x,Ax⟩ − ⟨b, x⟩. We find it more

natural to use instead the square A-norm of the error, J(x) = 1
2
∥x − x∗∥2A,

which differs from the usual J by a just constant [see (10.8)].

Section 10.2 . The presentation of line search methods and in particular of
steepest descent follows that in Nocedal and Wright’s book [NW06]. There
are many proofs (and versions) of Kantarovich inequality. The one presented
here is due to Henrici [Hen61]. The estimate of the bound for the error of
the steepest descent follows the derivation in the excellent optimization book
by Luenberger and Ye [LY08]. Example 10.1 is a special case of one in [Cia89].

Section 10.3 . Hestenes and Stiefel proposed the conjugate gradient method
in 1952 [HS52]. The presentation and motivation of the method as a subspace
expanding minimization given here were inspired by Section 5.1 in [NW06].
The proof of the error bound and the discussion of preconditioning follows
that in [SB02]. The topic of preconditioning is a vast one (see for exam-
ple [BBC+94]). Here, we simply presented the main idea in the context of
the conjugate gradient method. More details of incomplete Choleski factor-
izations can be found in [GVL13].

Chapter 11

Eigenvalue Problems

In this chapter we take a brief look at two numerical methods for the stan-
dard eigenvalue problem, i.e. given a square matrix A find scalars λ (eigen-
values) and non-zero vectors v (eigenvectors) such that Av = λv. Eigenvalue
problems appear in many applications areas, for example in stability analy-
sis of differential equations, quantum mechanics, pattern recognition, search
engines, and data analysis. One method is a simple iteration for finding a
dominant eigenvalue of a matrix (the power method) and the other is a much
more expensive iteration for finding all the eigenvalues of a general matrix
(the QR method). Both iterations can be accelerated by doing a suitable
(inverse) shift. Special orthogonal transformations, known as Householder
reflections play an important role in several of the most commonly used
eigenvalue and SVD methods. Thus, we devote a section to them and their
use to obtain the QR factorization and in the QR method for eigenvalues
itself.

11.1 The Power Method

Suppose that A has a dominant eigenvalue:

|λ1| > |λ2| ≥ · · · ≥ |λn| (11.1)

and a complete set of eigenvectors v1, . . . , vn associated to λ1, . . . , λn, respec-
tively (i.e. A is diagonalizable). Then, any vector u0 ∈ Rn can be written in
terms of the eigenvectors as

u0 = c1v1 + · · ·+ cnvn (11.2)

255

256 CHAPTER 11. EIGENVALUE PROBLEMS

and

Aku0 = c1λ
k
1v1 + · · ·+ cnλ

k
1vn = c1λ

k
1

[
v1 +

n∑
j=2

cj
c1

(
λj
λ1

)k

vj

]
. (11.3)

Assuming c1 ̸= 0, it follows that Aku0/c1λ
k
1 → v1 and we get a method to

approximate the eigenpair λ1, v1 that is equivalent to the iteration

uk = Auk−1, k = 1, 2, . . . (11.4)

To avoid overflow, we normalize the approximating vector at each iteration as
Algorithm 11.1 shows. The dominant eigenvalue λ1 is then approximated by
uTAu, where u is the normalized approximation to v1 at the k-th iteration.

Algorithm 11.1 The Power Method

1: Set k = 0, ∥r∥2 >> 1.
2: while ∥r∥2 > TOL do
3: u← Au
4: u← u/∥u∥2
5: λ← uTAu
6: r = Au− λu
7: k ← k + 1
8: end while

The rate of convergence of the power method is determined by the ratio
λ2/λ1. From (11.3), it follows that

|λ(k) − λ1| = O(|λ2/λ1|k), (11.5)

where λ(k) is the approximation to λ1 at the k-th iteration.

Example 11.1. Let us apply the power method to the matrix

A =


196 −24 −30 −12
72 112 −60 −24
48 48 10 −36
24 24 0 −8

 . (11.6)

The eigenvalues of this matrix are 160, 100, 40, 10. Table 11.1 shows the
approximation to the dominant eigenvalue, λ1 = 160, for a few iterations

11.1. THE POWER METHOD 257

starting from u0 = [1, 0, 0, 0]T . The corresponding relative error of the k-
th approximation λ(k) and the decrease factor |λ(k+1) − λ1|/|λ(k) − λ1| are
also shown. Note the slow convergence of the method. The decrease factor
is asymptotically approaching λ2/λ1 = 100/160 = 0.625 in accordance to
(11.5). The approximate eigenvector after 10 iterations is

u(10) = [0.73224283, 0.5460497, 0.36403314, 0.18201657]T .

The exact, normalized eigenvector is v1 = 1√
30
[4, 3, 2, 1]T and thus the error

measured in the 2-norm is ∥v1 − u(10)∥2 ≈ 0.0029.

Table 11.1: The power method for the matrix A in (11.6) and with initial
vector u0 = [1, 0, 0, 0]T .

k λ(k) |λ(k)−λ1|
λ1

|λ(k+1)−λ1|
|λ(k)−λ1|

1 192.530120 0.203313
2 178.984591 0.118654 0.583600
3 171.076488 0.069228 0.583446
4 166.607851 0.041299 0.596566
5 164.009151 0.025057 0.606725
6 162.459449 0.015372 0.613459
7 161.519338 0.009496 0.617755
8 160.942693 0.005892 0.620463
9 160.586507 0.003666 0.622161
10 160.365526 0.002285 0.623225

As in all iterative methods, convergence is also dependent on the initial
guess. Let us take now u0 = [1, 1, 1, 1]T . Table 11.2 shows the much faster
convergence of the power method starting with this u0. More than 12 digits
of accuracy are obtained for the approximation of λ1 in just 10 iterations; the
decrease factor is 10 times smaller than λ2/λ1. How can this be explained?
A calculation reveals that the eigenvectors associated to the eigenvalues 160,
100, 40, and 10 of (11.6) are, without normalization, v1 = [4, 3, 2, 1]T , v2 =
[3/2, 3, 2, 1]T , v3 = [1, 2, 3, 3/2]T , v4 = [1, 2, 3, 4]T , respectively. Thus, u0 =
1
5
v1 +

1
5
v4, i.e. c2 = c3 = 0 in (11.3) and hence the power method iteration

converges at a rate λ4/λ1 = 0.0625 instead of at the typical rate λ2/λ1.

The power method is useful and efficient for computing the dominant
eigenpair λ1, v1 when A is sparse, so that the evaluation of Av is economical,

258 CHAPTER 11. EIGENVALUE PROBLEMS

Table 11.2: The power method for the matrix A in (11.6) and with initial
vector u0 = [1, 1, 1, 1]T .

k λ(k) |λ(k)−λ1|
λ1

|λ(k+1)−λ1|
|λ(k)−λ1|

1 153.7125748503 0.039296
2 159.6091279379 0.002443 0.06216727
3 159.9755849459 0.000153 0.06246303
4 159.9984741172 9.536767× 10−6 0.06249762
5 159.9999046326 5.960465× 10−7 0.06249985
6 159.9999940395 3.725290× 10−8 0.06249999
7 159.9999996275 2.328306× 10−9 0.06250000
8 159.9999999767 1.455192× 10−10 0.06250000

and when |λ2/λ1| << 1. To present the method we have assumed that λ1 is
a simple eigenvalue and that A is diagonalizable so that (11.3) is valid. How-
ever, a similar argument can be given when λ1 has multiplicity greater than
one. Moreover, the method can also be applied when A is not diagonalizable
but has a dominant eigenvalue.

We have also assumed that u0 is chosen such that c1 ̸= 0 in (11.3). In
theory, if c1 = 0 the method would converge to another eigenvalue (e.g. λ2
if c2 ̸= 0) and not to λ1. However, due to roundoff errors c1 = O(eps) and so
the method will eventually converge toward the dominant eigenpair λ1, v1.

We can use shifts in the matrix A to decrease |λ2/λ1| and improve con-
vergence. We apply the power method with the shifted matrix A−sI, where
the shift s is chosen to accelerate convergence. For example, for the matrix
A in (11.6), with eigenvalues 160, 100, 40, 10, the matrix A − 50I has eigen-
values 110, 50,−10,−40 and the power method would converge at a rate of
50/110 = 0.4545... instead of at the rate 100/160 = 0.625.

A variant of the shift power method is the inverse power method, which
applies the iteration to the matrix (A− λ̃I)−1, where λ̃ is an approximation
to one of the eigenvalues of A. Let us suppose λ̃ ≈ λi in the sense that

0 < |λi − λ̃| << |λj − λ̃|, for all j ̸= i. (11.7)

Then, (A − λ̃I)−1, whose eigenvalues are 1/(λj − λ̃), j = 1, . . . , n has a

11.2. HOUSEHOLDER QR FACTORIZATION 259

dominant eigenvalue:∣∣∣∣ 1

λi − λ̃

∣∣∣∣ >>
∣∣∣∣∣ 1

λj − λ̃

∣∣∣∣∣ for all j ̸= i. (11.8)

Assuming A has a complete set of eigenvectors v1, . . . , vn, we can write as
before u0 = c1v1 + . . .+ cnvn and iterate

uk = (A− λ̃I)−1uk−1, k = 1, 2, . . . (11.9)

Thus,

uk = [(A− λ̃I)−1]ku0 =
1

(λi − λ̃)k

civi + n∑
j=1
j ̸=i

(
λi − λ̃
λj − λ̃

)k

cjvj

 . (11.10)

Consequently, (λi − λ̃)kuk/ci → vi at a rate given by max
j ̸=i

∣∣∣∣∣λi − λ̃λj − λ̃

∣∣∣∣∣.
Unless A is of small size, the inverse matrix is not actually computed.

Instead, the linear system

(A− λ̃I)u(k) = u(k−1) (11.11)

is solved at every iteration. The method will converge to the eigenvalue λi
for which λ̃ is a good approximation.

Example 11.2. Considering again the matrix A in (11.6), we let λ̃ = 37
and apply the inverse power method with initial vector u0 = [1,−1,−1, 1].
We obtain the approximations shown in Table 11.3. The method converges
to the eigenpair λ3, v3 at a rate that is approaching |λ3− λ̃|/|λ4− λ̃| ≈ 0.11.

11.2 Householder QR Factorization

One of the most general methods for finding eigenvalues is the QR method,
which makes repeated use of QR factorizations (see Section 8.5). Hence,
we begin by presenting first a numerically stable method to obtain the QR
factorization of anm×n matrix A. This is the method of Householder, which
is based on the observation that one can reduce A to an upper triangular form
by applying a sequence of elementary, orthogonal transformations of the type
made precise in the following definition.

260 CHAPTER 11. EIGENVALUE PROBLEMS

Table 11.3: The inverse power method for the matrix A in (11.6) with initial
vector u0 = [1,−1,−1, 1]T and λ̃ = 37 (λi = 40).

k λ(k) |λ(k)−λi|
λi

|λ(k+1)−λi|
|λ(k)−λi|

1 39.7434832246 0.006413
2 40.0062323469 0.000156 0.024296
3 39.9982970629 4.257343× 10−5 0.273241
4 40.0001424865 3.562162× 10−6 0.083671
5 39.9999819781 4.505464× 10−7 0.126481
6 40.0000018990 4.747521× 10−8 0.105373
7 39.9999997841 5.397610× 10−9 0.113693
8 40.0000000238 5.939102× 10−10 0.110032

Definition 11.1. Let v ∈ Rn, v ̸= 0, a Householder reflection is an n × n
matrix of the form

P = I − 2
vvT

⟨v, v⟩ . (11.12)

Note that P is a symmetric and orthogonal matrix, i.e. P T = P and
P TP = I. Orthogonal matrices preserve the 2-norm:

⟨Pu, Pu⟩ = ⟨P TPu, u⟩ = ⟨u, u⟩. (11.13)

Thus,

∥Pu∥ = ∥u∥. (11.14)

Moreover, Pv = −v and Pu = u for all u orthogonal to v. Therefore, Pu
may be interpreted as the reflection of u across the hyperplane with normal v,
i.e. the span{v}⊥ = {w ∈ Rn : ⟨v, w⟩ = 0}. Since the eigenvalues of P are 1
(with eigenvectors in span{v}, with multiplicity -1) and 1 (with eigenvectors
in span{v}⊥, with multiplicity n− 1) the determinant of P is -1.

The central idea is to find a Householder reflection than turns a given,
nonzero vector a ∈ Rn into a multiple of e1 = [1, 0, . . . , 0] ∈ Rn. That is, we
want v such that Pa = γe1, for some γ ∈ R, which implies v ∈ span{e1, a}.
Writing v = a+ αe1 we have

Pa = a− 2
⟨v, a⟩
⟨v, v⟩v =

[
1− 2

⟨v, a⟩
⟨v, v⟩

]
a− 2α

⟨v, a⟩
⟨v, v⟩e1. (11.15)

11.2. HOUSEHOLDER QR FACTORIZATION 261

Thus, we need

2
⟨v, a⟩
⟨v, v⟩ = 1. (11.16)

But

⟨v, a⟩ = ⟨a, a⟩+ αa1, (11.17)

⟨v, v⟩ = ⟨a, a⟩+ 2αa1 + α2, (11.18)

where a1 is the first component of a. Consequently, (11.16) implies

2 [⟨a, a⟩+ αa1] = ⟨a, a⟩+ 2αa1 + α2. (11.19)

from which it follows that α2 = ⟨a, a⟩. Therefore, α = ±∥a∥ and

v = a± ∥a∥e1, (11.20)

Pa = ∓∥a∥e1. (11.21)

Note that we have a choice of a sign for v. To avoid dividing by a possibly
small ⟨v, v⟩ when applying P , we select the sign in front of the ∥a∥e1 term
in v as follows

v =

{
a+ ∥a∥e1 if a1 ≥ 0,

a− ∥a∥e1 if a1 < 0.
(11.22)

Example 11.3. Let a = [−2, 2, 1, 4]T . Then, ∥a∥ = 5 and

v = a− ∥a∥e1 = [−7, 2, 1, 4]T . (11.23)

(11.24)

Let us verify that Pa = ∥a∥e1 = 5e1:

Pa =


−2
2
1
4

− 2

(
35

70

)
−7
2
1
4

 =


5
0
0
0

 . (11.25)

We now describe the Householder procedure, which is very similar to
Gaussian elimination. Let A be an m × n matrix. We assume here m ≥ n

262 CHAPTER 11. EIGENVALUE PROBLEMS

and A full rank (dimension of column space equal to n). First, we transform
the matrix A so that its first column a1 becomes a multiple of e1 by using
the Householder reflection P1 = I − 2v1v

T
1 /⟨v1, v1⟩, where

v1 = a1 + sign(a11)∥a1∥e1. (11.26)

That is,

P1A =



∗ ∗ · · · ∗
0 x · · · x

...
...

...
...

0 x · · · x


(11.27)

Now, we repeat the process for the (m− 1)× (n− 1) block marked with x’s,
etc. After n steps, we obtain the m× n upper triangular matrix

R =



r11 · · · r12

0
. . .

...
... rnn
0 · · · 0
...

...
0 · · · 0


. (11.28)

If we let A(0) = A, we can view mathematically the j-th step of this process
as

A(j) = PjA
(j−1), (11.29)

where Pj is the m×m orthogonal matrix

Pj =


Ij−1 0

0 P̃j

 . (11.30)

11.2. HOUSEHOLDER QR FACTORIZATION 263

Here Ij−1 is the identity matrix of size (j − 1)× (j − 1), the zeros stand for
zero blocks, and P̃j is the (m − j + 1) × (m − j + 1) Householder matrix
needed at this step. Thus,

Pn · · ·P1A = R. (11.31)

Noting that Pn · · ·P1 is orthogonal and setting Q = P1 · · ·Pn we get A = QR.
We discuss now implementation. In actual computations, the House-

holder matrices are never formed. We instead compute their effect taking
into account that they are a rank-one modification to the identity matrix.
For example, to evaluate Pu for u ∈ Rn, we first compute

β =
2

⟨v, v⟩ =
(
∥a∥2 + ∥a∥ |a1|

)−1
, (11.32)

the inner product ⟨u, v⟩, and set

Pu = u− β⟨u, v⟩v. (11.33)

Similarly, when we need to apply a Householder transformation to a matrix
A we do

β =
2

⟨v, v⟩ , (11.34)

w = βATv, (11.35)

PA = A− vwT , (11.36)

i.e. first we compute the vector w and then we modify A with the outer
product −vwT . Note that the latter is simply the matrix with entries −viwj.
Thus, this is much more economical than computing the full matrix product.

During the Householder QR procedure, if memory is an issue, the lower
triangular part of A could be overwritten to store the vectors vj’s which
define each of the employed Householder transformations. However, there is
not enough space to store all the components because for vj we needm−j+1
array entries and we only have m − j available. One approach to overcome
this is to store the diagonal elements of A(j) in a separate one-dimensional
array to free up the needed space to store the vj’s. The Householder QR
method is presented in pseudocode in Algorithm 11.2.

In applications, very often QTf or Qf , for f ∈ Rn, is needed instead of
the full orthogonal matrix Q. Again, these products should be computed

264 CHAPTER 11. EIGENVALUE PROBLEMS

Algorithm 11.2 Householder QR

function HV(a) ▷ Computes the Householder vector v
Compute ∥a∥ and set v ← a
if ∥a∥ ≠ 0 then

v[1]← a[1] + sign(a[1])∥a∥
end if

end function
function HPA(A, v) ▷ Performs PA

β ← 2/⟨v, v⟩
w ← βATv
A← A− wvT

end function
function HQR(A) ▷ Householder’s QR factorization, m ≥ n

for j = 1, . . . , n do
v[j : m]← HV(A[j : m, j])
A[j : m, j : n]← HPA(A[j : m, j : n], v[j : m])
r[j]← A[j, j] ▷ Store the diagonal to free up space for vj
A[j : m, j]← v[j : m] ▷ Store vj in the lower triangular part of A

end for
end function

11.3. THE QR METHOD FOR EIGENVALUES 265

exploiting the simple structure of a Householder matrix. For example to
compute QTf = Pn · · ·P1f we apply (11.33) repeatedly:

for j = 1, . . . , n,

f ← Pjf.
(11.37)

If needed, Q = P1 · · ·Pn can be computed similarly using repeatedly (11.34)-
(11.36).

11.3 The QR Method for Eigenvalues

The most successful numerical method for the eigenvalue problem of a general
square matrix A is the QR method. It is based on the QR factorization. Here
Q is an orthogonal matrix and R is upper triangular.

Given an n×n matrix A, we set A1 = A and obtain its QR factorization
using the Householder procedure

A1 = Q1R1. (11.38)

Define A2 = R1Q1 so that

A2 = R1Q1 = QT
1AQ1. (11.39)

Now get the QR factorization of A2, Q2R2, and set A3 = R2Q2, etc.
The k + 1-st similar matrix is generated by

Ak+1 = RkQk = QT
kAkQk = (Q1 · · ·Qk)

TA(Q1 · · ·Qk). (11.40)

It can be proved that if A is diagonalizable and with distinct eigenvalues
in modulus then the sequence of matrices Ak, k = 1, 2, . . . produced by the
QR method will converge to a diagonal matrix with the eigenvalues of A on
the diagonal. There is no convergence proof for a general matrix A but the
method is remarkably robust and fast to converge.

Example 11.4. Consider the 5× 5 matrix

A =


12 13 10 7 7
13 18 9 8 15
10 9 10 4 12
7 8 4 4 6
7 15 12 6 18

 (11.41)

266 CHAPTER 11. EIGENVALUE PROBLEMS

the A20 = R19Q19 produced by the QR method gives the eigenvalues of A
within 4 digits of accuracy

A20 =


51.7281 0.0000 0.0000 0.0000 0.0000
0.0000 8.2771 0.0000 0.0000 0.0000
0.0000 0.0000 4.6405 0.0000 0.0000
0.0000 0.0000 0.0000 −2.8486 0.0000
0.0000 0.0000 0.0000 0.0000 0.2028

 . (11.42)

11.4 Reductions Prior to Applying the QR

Method.

The QR method has remarkable applicability to general square matrices but
it is computationally expensive in the form we presented it. Each step in
the iteration requires O(n3) flops for an n × n matrix due to cost of the
QR factorization. To decrease this high cost, in practice the QR method is
applied to matrices that has been already suitably reduced. The idea is to
reduce A to a similar matrix B, with the simplest form that can be achieved
by using orthogonal transformations, i.e. B = P TAP , where P is the product
of orthogonal matrices. For a general matrix A, the simplest form that B
can have is 

b11 b12 · · · · · · b1n
b21 b22 · · · · · · b2n
0 b32 b33 · · · b3n
...

.
...

0 · · · 0 bn,n−1 bnn

 , (11.43)

This is called an upper Hessenberg matrix. If A is symmetric then B
would be tridiagonal. This pre-processing reduction makes sense because the
matrices Ak (11.40) in each iteration of the QR eigenvalue algorithm preserve
the Hessenberg form and the cost of the QR factorization can be cut down to
O(n2) flops for a Hessenberg matrix and to O(n) flops a tridiagonal matrix.

Next, we go over the procedure to reduce a symmetric matrix to a tridi-
agonal one. The reduction of a general square matrix to Hessenberg form is
similar.

Given a symmetric, n × n matrix A we first consider the vector a1 :=
[a21, . . . , an1]

T and find a Householder transformation P̃1 (from Rn−1 to Rn−1

11.4. REDUCTIONS PRIOR TO APPLYING THE QR METHOD. 267

that renders a1 a multiple of e1 ∈ Rn−1. Note that by symmetry the same
transformation can be produced on the first row by aT1 P̃1. Thus, if we define

P1 =


1 0 · · · 0
0
... P̃1

0

 (11.44)

Then (noting that P T
1 = P1),

P T
1 AP1 =


∗ ∗ 0 · · · 0
∗ x · · · x
0 x · · · x
...
0 x · · · x

 . (11.45)

The same procedure can now be applied to the (n− 1)× (n− 1) sub-matrix
marked with x’s, etc. We can summarize the reduction as follows. Setting
A1 = A we obtain

Ak+1 = P T
k AkPk, k = 1, . . . , n− 2. (11.46)

Here, Pk is the orthogonal matrix formed with the Householder transforma-
tion P̃k of the k-th step:

Pk =

[
Ik 0

0 P̃k

]
, (11.47)

where Ik is the k × k identity matrix and the zeros represent zero blocks
of the corresponding size. After n − 2 steps the resulting matrix An−1 is
tridiagonal.

Since

Ak+1 = P T
k AkPk = P T

k P
T
k−1Ak−1Pk−1Pk (11.48)

it follows that

An−1 = P T
n−2 · · ·P T

1 AP1 · · ·Pn−2. (11.49)

268 CHAPTER 11. EIGENVALUE PROBLEMS

Moreover, symmetry implies that P T
n−2 · · ·P T

1 = (P1 · · ·Pn−2)T . Thus, defin-
ing P = P1 · · ·Pn−2 we obtain

An−1 = P TAP. (11.50)

To summarize, given a symmetric matrix A, there is an orthogonal and sym-
metric matrix P , constructed with Householder transformations, such that
P TAP is tridiagonal.

For symmetric tridiagonal matrices there are also specialized algorithms
to find a particular eigenvalue or set of eigenvalues, to any desired accuracy,
located in a given interval by using bisection.

Householder reflections are also used in the effective Golub-Reinsch method
to compute the SVD of an m× n matrix (m ≥ n). Rather than applying di-
rectly the QR algorithm to ATA, which could result in a loss of accuracy, this
method uses Householder transformations to reduce A to bidiagonal form.
Then, the SVD of this bidiagonal matrix is obtained using other orthogonal
transformations related to the QR method with a shift.

11.5 Bibliographic Notes

Section 11.1 . The presentation of this section is a simplified version of Sec-
tion 6.6.3 in [SB02], where additionally the issue of ill-conditioning is exam-
ined. The use of uTAu to approximate the eigenvalue follows that in [GVL13]
[7.3.1]. A thorough discussion of the convergence of the power method and
its variants and of the effects of round-off errors are extensively discussed in
the treatise by Wilkinson [Wil65].

Section 11.2 . Alston Householder proposed his approach to obtain the QR
factorization of a matrix in 1958 [Hou58]. The reason for employing or-
thogonal transformations in the reduction of A to upper triangular form
is that the condition number of orthogonal transformations is 1. Prior to
Householder’s work, the method of W. Givens, based on orthogonal trans-
formations constructed with planar rotations, was a popular approach to do
this reduction [Hou58]. The method of Givens is covered in most numerical
linear algebra texts, see for example [GVL13, Cia89].

Section 11.3 . The QR algorithm is due to J.G.F. Francis [Fra61, Fra62] and
V.N. Kublanovskaya [Kub62]. According to Wilkinson [Wil65][p.569], the

11.5. BIBLIOGRAPHIC NOTES 269

work of Francis’ dates from 1959 but was published only until 1961 and
Kublanovskaya discovered the algorithm independently. A proof for conver-
gence in the special case when A is invertible and with all eigenvalues distinct
in modulus is given in [Cia89].

Section 11.4 . This section is modeled after Section 6.2 in [Cia89]. Imple-
mentation details for both tridiagonal reduction in the symmetric case and
Hessenberg form in the non-symmetric case can be found in [GVL13]. The
Golub-Reinsch [GR71] method to compute the SVD is discussed in [SB02].

270 CHAPTER 11. EIGENVALUE PROBLEMS

Chapter 12

Non-Linear Equations

In this chapter we consider the problem of finding zeros of a continuous
function f , i.e. solving f(x) = 0 or a system of nonlinear equations:

f1(x1, x2, · · · , xm) = 0,

f2(x1, x2, · · · , xm) = 0,

...

fm(x1, x2, · · · , xm) = 0.

(12.1)

We will write this general system as

f(x) = 0, (12.2)

where f : U ⊆ Rm → Rm. Unless otherwise noted the function f is assumed
to be smooth in its domain U . More precisely, we present some basic numeri-
cal methods for approximating solutions of f(x) = 0 in the scalar case m = 1
and discuss briefly the case of a system of nonlinear equations (m > 1) in
the last section.

The numerical approximation of solutions to nonlinear equations is im-
portant in many applications and is also needed as part of some numerical
methods for the solution of nonlinear differential equations and nonlinear
optimization problems.

12.1 Bisection

We are going to start with a very simple but robust method that relies only
on the continuity of f and the existence of a zero.

271

272 CHAPTER 12. NON-LINEAR EQUATIONS

Suppose we are interested in solving a nonlinear equation in one unknown

f(x) = 0, (12.3)

where f is a continuous function on an interval [a, b] and has at least one
zero there. Suppose also that f has values of different sign at the end points
of the interval, i.e.

f(a)f(b) < 0. (12.4)

By the intermediate value theorem, f has at least one zero x∗ in (a, b). To
locate it, we bisect [a, b] to obtain the two subintervals [a, c] and [c, b] with
c = 1

2
(a+b). If f(c) = 0, we are done. Otherwise, we select the subinterval on

which f changes sign ([a, c] if f(a)f(c) < 0, else [c, b]) and repeat the process
until we bracket a zero within a desired accuracy. The resulting algorithm is
called bisection and is listed in pseudocode in Algorithm 12.1.

Algorithm 12.1 The Bisection Method

1: Given f , a and b (a < b), TOL, and Nmax, set k = 1 and do:
2: while (b− a) > TOL and k ≤ Nmax do
3: c = (a+ b)/2
4: if f(c) == 0 then
5: x∗ = c ▷ This is the solution
6: stop
7: end if
8: if sign(f(c)) == sign(f(a)) then
9: a← c

10: else
11: b← c
12: end if
13: k ← k + 1
14: end while
15: x∗ ← (a+ b)/2

Example 12.1. Let f(x) = e−x− 2x. Note that f(0)f(1) < 0 and hence his
continuous function has a zero x∗ in [0, 1]. In fact it is the only zero f has
as f ′(x) < 0 for all x. If we apply the bisection algorithm to find x∗ we get

12.2. RATE OF CONVERGENCE 273

following sequence of subintervals

[a1, b1] = [0, 1]

[a2, b2] = [0, 0.5]

[a3, b3] = [0.25, 0.5]

[a4, b4] = [0.25, 0.375]

[a5, b5] = [0.3125, 0.375]

[a6, b6] = [0.34375, 0.375]

[a7, b7] = [0.34375, 0.359375]

[a8, b8] = [0.3515625, 0.359375]

...

Thus, it follows that within two digits of accuracy x∗ ≈ 0.35.

12.1.1 Convergence of the Bisection Method

Starting with a1 = a and b1 = b, the bisection method generates a sequence
of midpoints

cn =
an + bn

2
, n = 1, 2, . . . (12.5)

where each an and bn, are the endpoints of the subinterval in which f changes
sign at each bisection step. Since

bn − an =
b− a
2n−1

, n = 1, 2, . . . (12.6)

and cn is the midpoint of the interval then

|cn − x∗| ≤
1

2
(bn − an) =

b− a
2n

(12.7)

and consequently cn → x∗, as n→∞.

12.2 Rate of Convergence

We define now in precise terms the rate of convergence of a sequence of
approximations to a value x∗.

274 CHAPTER 12. NON-LINEAR EQUATIONS

Definition 12.1. Suppose a sequence {xn}∞n=1 converges to x∗ as n → ∞.
We say that xn → x∗ of order p (p ≥ 1) if there is a positive integer N and
a constant C such that

|xn+1 − x∗| ≤ C |xn − x∗|p , for all n ≥ N. (12.8)

or equivalently

lim
n→∞

|xn+1 − x∗|
|xn − x∗|p

= C. (12.9)

For p = 1 we require C < 1 and we say that the sequence converges linearly
to x∗.

Example 12.2. The sequence generated by the bisection method converges
linearly to x∗ because

|cn+1 − x∗|
|cn − x∗|

≤
b−a
2n+1

b−a
2n

=
1

2
. (12.10)

Let us examine the significance of the rate of convergence. Consider first,
p = 1, linear convergence. Suppose

|xn+1 − x∗| ≈ C|xn − x∗|, n ≥ N. (12.11)

Then

|xN+1 − x∗| ≈ C|xN − x∗|,
|xN+2 − x∗| ≈ C|xN+1 − x∗| ≈ C(C|xN − x∗|) = C2|xN − x∗|.

Continuing this way we get

|xN+k − x∗| ≈ Ck|xN − x∗|, k = 0, 1, . . . (12.12)

and this is the reason for the requirement C < 1 when p = 1. If the error at
the N -th step, |xN−x∗|, is small enough it will be further reduced by a factor
of Ck after k more steps. Setting Ck = 10−dk , this reduction corresponds to
approximately

dk =

(
log10

1

C

)
k (12.13)

12.3. INTERPOLATION-BASED METHODS 275

digits.

Let us now do a similar analysis for p = 2, quadratic convergence. We
have

|xN+1 − x∗| ≈ C|xN − x∗|2,
|xN+2 − x∗| ≈ C|xN+1 − x∗|2 ≈ C(C|xN − x∗|2)2 = C3|xN − x∗|4,
|xN+3 − x∗| ≈ C|xN+2 − x∗|2 ≈ C(C3|xN − x∗|4)2 = C7|xN − x∗|8.

It is easy to prove by induction that

|xN+k − x∗| ≈ C2k−1|xN − x∗|2
k

, k = 0, 1, . . . (12.14)

To see how many digits of accuracy we gain in k steps beginning from xN ,
we write C2k−1|xN − x∗|2k = 10−dk |xN − x∗|, and solving for dk we get

dk =

(
log10

1

C
+ log10

1

|xN − x∗|

)
(2k − 1). (12.15)

It is not difficult to prove that for the general p > 1 and as k → ∞ we get
dk = αpp

k, where αp =
1

p−1 log10
1
C
+ log10

1
|xN−x∗| .

12.3 Interpolation-Based Methods

Assuming again that f is a continuous function in [a, b] and f(a)f(b) < 0
we can proceed as in the bisection method but instead of using the midpoint
c = 1

2
(a + b) to subdivide [a, b] we could use the zero of the interpolating

polynomial of (a, f(a)) and (b, f(b)). This is called the method of false posi-
tion. Unfortunately, this method only converges linearly and under stronger
assumptions than the bisection method.

An alternative, interpolation approach to find approximations to a so-
lution of f(x) = 0 is to proceed as follows: Given m + 1 approximations
x0, . . . , xm of a zero x∗ of f , construct the interpolating polynomial of f , pm,
at those points, and set the root of pm closest to xm as the new approximation
of x∗. In practice, only m = 1, 2 are used. The method for m = 1 is called
the secant method and we will look at it in some detail later. The method
for m = 2 is called Muller’s Method.

276 CHAPTER 12. NON-LINEAR EQUATIONS

x

y

x1 x0

f(x)

Figure 12.1: Geometric illustration of Newton’s method. Given an approxi-
mation x0 of a zero of f , x1 is the zero of the tangent line (in red) of f at x0.

12.4 Newton’s Method

If the function f is at least C2[a, b], and we have already a good approxi-
mation x0 of a zero x∗ of f , then the tangent line of f at x0, y = f(x0) +
f ′(x0)(x− x0) provides a good approximation to f in a small neighborhood
of x0, i.e.

f(x) ≈ f(x0) + f ′(x0)(x− x0). (12.16)

We can define the next approximation as the zero of this tangent line, i.e.

x1 = x0 −
f(x0)

f ′(x0)
. (12.17)

Figure 12.1 illustrates the geometric meaning of x1. Next, we consider the
tangent line of f at x1, set x1 as its zero, etc. At the k-th step of this iterative
process we get the new approximation xk+1 according to:

xk+1 = xk −
f(xk)

f ′(xk)
, k = 0, 1, . . . (12.18)

This iteration is calledNewton’s method or Newton-Raphson’s method. There
are some conditions for this method to converge. But when it does, it con-
verges at least quadratically [p = 2 in (12.8)]. Indeed, a Taylor expansion of
f around xk gives

f(x) = f(xk) + f ′(xk)(x− xk) +
1

2
f ′′(ξk(x))(x− xk)2, (12.19)

12.4. NEWTON’S METHOD 277

where ξk(x) is a point between x and xk. Evaluating at x = x∗ and using
that f(x∗) = 0 we get

0 = f(xk) + f ′(xk)(x
∗ − xk) +

1

2
f ′′(ξk(x

∗))(x∗ − xk)2, (12.20)

which, assuming f ′(xk) ̸= 0, we can recast as

x∗ = xk −
f(xk)

f ′(xk)
− 1

2

f ′′(ξ∗k)

f ′(xk)
(x∗ − xk)2

= xk+1 −
1

2

f ′′(ξ∗k)

f ′(xk)
(x∗ − xk)2,

(12.21)

where ξ∗k = ξk(x
∗). Thus,

|xk+1 − x∗| =
1

2

|f ′′(ξ∗)|
|f ′(xk)|

|xk − x∗|2. (12.22)

Therefore, if the sequence {xk}∞k=0 generated by Newton’s method converges
then it does so at least quadratically.

Theorem 12.1. Let x∗ be a simple zero of f (i.e. f(x∗) = 0 and f ′(x∗) ̸= 0)
and suppose f ∈ C2 on an interval containing x∗. Then, there is a neighbor-
hood of x∗ such that Newton’s method converges to x∗ for any initial guess
in that neighborhood.

Proof. For ϵ > 0 consider the neighborhood Iϵ of x∗ consisting of all the
points x such that |x − x∗| ≤ ϵ. We can choose ϵ small enough so that f is
C2 in Iϵ and f

′(x) ̸= 0 for all x ∈ Iϵ, since f ′ is continuous and f ′(x∗) ̸= 0.
Now consider the quantity

M(ϵ) =
1

2

maxx∈Iϵ |f ′′(x)|
minx∈Iϵ |f ′(x)|

. (12.23)

We can select ϵ sufficiently small so that in addition to satisfying the above
conditions we have ϵM(ϵ) < 1. This is possible because

lim
ϵ→0

M(ϵ) =
1

2

|f ′′(x∗)|
|f ′(x∗)| < +∞. (12.24)

278 CHAPTER 12. NON-LINEAR EQUATIONS

The condition ϵM(ϵ) < 1 allows us to guarantee that x∗ is the only zero of
f in Iϵ, as we show now. A Taylor expansion of f around x∗ gives

f(x) = f(x∗) + f ′(x∗)(x− x∗) + 1

2
f ′′(ξ)(x− x∗)3

= f ′(x∗)(x− x∗)
(
1 +

1

2
(x− x∗) f

′′(ξ)

f ′(x∗)

)
,

(12.25)

for some ξ between x and x∗. Since for all x ∈ Iϵ
1

2

∣∣∣∣(x− x∗) f ′′(ξ)f ′(x∗)

∣∣∣∣ = 1

2
|x− x∗| |f

′′(ξ)|
|f ′(x∗)| ≤ ϵM(ϵ) < 1 (12.26)

then f(x) ̸= 0 for all x ∈ Iϵ unless x = x∗.
We will now show that Newton’s iteration is well defined starting from

any initial guess x0 ∈ Iϵ. We prove this by induction. From (12.22) with
k = 0 it follow that x1 ∈ Iϵ as

|x1 − x∗| = |x0 − x|2
∣∣∣∣ 12f ′′(ξ0)f ′(x0)

∣∣∣∣ ≤ ϵ2M(ϵ) ≤ ϵ. (12.27)

Now assume that xk ∈ Iϵ. Then, again from (12.22)

|xk+1 − x∗| = |xk − x|2
∣∣∣∣ 12f ′′(ξk)f ′(xk)

∣∣∣∣ ≤ ϵ2M(ϵ) < ϵ (12.28)

so xk+1 ∈ Iϵ.
Finally,

|xk+1 − x∗| ≤ |xk − x∗|2M(ϵ) = |xk − x∗|ϵM(ϵ)

≤ |xk−1 − x∗|(ϵM(ϵ))2

...

≤ |x0 − x∗|(ϵM(ϵ))k+1

and since ϵM(ϵ) < 1 it follows that xk → x∗ as k →∞.

This theorem provides sufficient conditions to guarantee convergence lo-
cally, i.e. provided the initial guess is in a sufficiently small neighborhood of
x∗. However, for some functions Newton’s method might converge globally,
i.e. for any initial guess. But in general it is a good practice to initialize
Newton’s method with a good initial guess, typically obtained with another
method, like for example bisection.

12.5. THE SECANT METHOD 279

Example 12.3. Let us consider again the equation e−x − 2x = 0. We know
from Example 12.1 that x∗ ≈ 0.35156. If we perform Newton’s method with
x0 = 0.3 we get x∗ within machine precision in just three iterations. With
quadratic convergence, the number of digits of accuracy approximately doubles
with each iteration.

x0 = 0.3

x1 = 0.3513781686137115,

x2 = 0.3517336948002153,

x3 = 0.3517337112491958,

x4 = 0.3517337112491958.

Because of the convexity of f , Newton’s method will converge for any initial
guess. This is an example of global convergence.

Example 12.4. Consider f(x) = x3−5x. Clearly, one of the roots is x∗ = 0.
However, if we apply Newton’s method with x0 = 1 we get

x1 = 1− 1− 5

3(1)2 − 5
= −1, (12.29)

x2 = −1−
−1 + 5

3(−1)2 − 5
= 1, (12.30)

we get stuck oscillating between +1 and −1 and the method fails to converge.
This is behavior is called a cycle. On the other hand, if we take x0 = 0.5, we
obtain a fast, quadratic convergence to x∗ = 0:

x1 = −0.05882352941176472,
x2 = 8.158603247124252× 10−5,

x3 = −2.1722380838529176× 10−13,

x4 = 0.0.

This illustrates a case of local convergence.

12.5 The Secant Method

Sometimes it could be computationally expensive or not possible to evaluate
exactly the derivative of f . This is in fact often the case for large systems

280 CHAPTER 12. NON-LINEAR EQUATIONS

of nonlinear equations. The following method, known as the secant method,
approximates the derivative by a backward finite difference, i.e. by the first
divided difference of f with respect to xk−1 and xk

f ′(xk) ≈
f(xk)− f(xk−1)

xk − xk−1
= f [xk−1, xk]. (12.31)

This approximation corresponds to replacing the tangent line by the secant
in Newton’s method, that is

xk+1 = xk −
f(xk)

f [xk−1, xk]
, k = 1, 2, . . . (12.32)

Note that we need to start the secant iteration (12.32) with two different
approximations x0 and x1.

Since f(x∗) = 0

xk+1 − x∗ = xk − x∗ −
f(xk)− f(x∗)
f [xk−1, xk]

= (xk − x∗)
(
1−

f(xk)−f(x∗)
xk−x∗

f [xk−1, xk]

)

= (xk − x∗)
(
1− f [x∗, xk]

f [xk−1, xk]

)
= (xk − x∗)

(
f [xk−1, xk]− f [x∗, xk]

f [xk−1, xk]

)

= (xk − x∗)(xk−1 − x∗)

 f [xk,xk−1]−f [x∗,xk]

xk−1−x∗

f [xk−1, xk]


= (xk − x∗)(xk−1 − x∗)

f [xk−1, xk, x∗]

f [xk−1, xk]
.

(12.33)

If xk → x∗ as k →∞ then

lim
k→∞

f [xk−1, xk, x∗]

f [xk, xk−1]
=

1
2
f ′′(x∗)

f ′(x∗)
(12.34)

and

lim
k→∞

xk+1 − x∗
xk − x∗

= 0, (12.35)

12.5. THE SECANT METHOD 281

i.e. the sequence generated by the secant method would converge faster than
linear.

Defining ek = |xk − x∗|, the calculation above suggests

ek+1 ≈ Cekek−1, (12.36)

where C is a positive constant. Let us try to determine the rate of con-
vergence of the secant method. Starting with the ansatz ek ≈ Aepk−1 or

equivalently ek−1 =
(
1
A
ek
)1/p

we have

ek+1 ≈ Cekek−1 ≈ Cek

(
1

A
ek

) 1
p

.

On the other hand ek+1 = Aepk, therefore

Aepk ≈ Cek

(
1

A
ek

) 1
p

, (12.37)

which implies

A1+ 1
p

C
≈ e

1−p+ 1
p

k . (12.38)

Since the left hand side is a constant we must have 1− p+ 1
p
= 0, or equiva-

lently p2 − p− 1 = 0, whose solutions are p = 1±
√
5

2
. Consequently,

p =
1 +
√
5

2
=≈ 1.61803 (12.39)

gives the rate of convergence of the secant method. It is better than linear,
but worse than quadratic. Sufficient conditions for local convergence are as
those in Newton’s method.

Example 12.5. Consider again the equation e−x − 2x. Starting with x0 =
0.3 and x1 = 0.2, the secant method approximates the solution to machine

282 CHAPTER 12. NON-LINEAR EQUATIONS

precision with x6:

x0 = 0.3

x1 = 0.2

x2 = 0.3506699785963344,

x3 = 0.35171205360889224,

x4 = 0.3517337082511913,

x5 = 0.3517337112491874,

x6 = 0.35173371124919584.

The number of digits of accuracy almost doubles per iteration. Convergence
is slightly slower than in Newton’s method as expected from (12.39) but still
fast.

12.6 Fixed Point Iteration

Newton’s method is a particular example of a functional iteration of the form

xk+1 = g(xk), k = 0, 1, . . . (12.40)

with

g(x) = x− f(x)

f ′(x)
. (12.41)

Clearly, if x∗ is a zero of f then x∗ is a fixed point of g, i.e.

g(x∗) = x∗ (12.42)

For a given function f , if g(x) = x−f(x) or g(x) = x+f(x), then a solution
x∗ of f(x) = 0 is a fixed point of g and vice-versa. More generally, the same is
true if g(x) = x± ϕ(x)f(x), where ϕ is any function defined a neighborhood
of x∗. For example, in Newton’s method ϕ = 1/f ′.

We look next at fixed point iterations as a tool for solving f(x) = 0. The
central idea is to select g such that it shrinks distances between two points
and thus, starting with an initial approximation, the error is decreased at
every iteration. This desired property of g is made precise in the following
definition.

12.6. FIXED POINT ITERATION 283

Definition 12.2. Let g is defined in an interval [a, b]. We say that g is a
contraction or a contractive map if there is a constant L with 0 ≤ L < 1
such that

|g(x)− g(y)| ≤ L|x− y|, for all x, y ∈ [a, b]. (12.43)

Example 12.6. The function g(x) = 1
4
x2 in [0, 1] is a contraction because∣∣∣∣14x2 − 1

4
y2
∣∣∣∣ = 1

4
|(x+ y)(x− y)| = 1

4
|x+ y| |x− y| ≤ 1

2
|x− y| (12.44)

for all x, y ∈ [0, 1].

If x∗ is a fixed point of g in [a, b] and g is a contraction, then

|xk − x∗| = |g(xk−1)− g(x∗)|
≤ L|xk−1 − x∗|
≤ L2|xk−2 − x∗|
...

≤ Lk|x0 − x∗| → 0, as k →∞.

(12.45)

Theorem 12.2 (Contraction Mapping Theorem). If g is a contraction on
[a, b] and maps [a, b] into [a, b], then g has a unique fixed point x∗ in [a, b] and
the fixed point iteration (12.40) converges to it for any x0 ∈ [a, b]. Moreover,

(a) |xk − x∗| ≤ Lk|x0 − x∗|,

(b) |xk − x∗| ≤
Lk

1− L |x1 − x0|.

Proof. Since g : [a, b] → [a, b], the fixed point iteration xk+1 = g(xk), k =
0, 1, ... is well-defined. Proceeding as in (12.45) we have

|xk+1 − xk| = |g(xk)− g(xk−1)|
≤ L|xk − xk−1| ≤ · · · ≤ Lk|x1 − x0|.

(12.46)

Now, for n ≥ m

xn − xm = xn − xn−1 + xn−1 − xn−2 + . . .+ xm+1 − xm (12.47)

284 CHAPTER 12. NON-LINEAR EQUATIONS

and so

|xn − xm| ≤ |xn − xn−1|+ |xn−1 − xn−2|+ . . .+ |xm+1 − xm|
≤ Ln−1|x1 − x0|+ Ln−2|x1 − x0|+ . . .+ Lm|x1 − x0|
≤ Lm|x1 − x0|

(
1 + L+ L2 + . . . Ln−1−m)

≤ Lm|x1 − x0|
∞∑
j=0

Lj =
Lm

1− L |x1 − x0|.

(12.48)

Thus, given ϵ > 0, there is N such that

LN

1− L |x1 − x0| ≤ ϵ. (12.49)

Therefore, for n ≥ m ≥ N , |xn − xm| ≤ ϵ, that is {xn}∞n=0 is a Cauchy
sequence in [a, b] and so it converges to a point x∗ ∈ [a.b]. But

|xk − g(x∗)| = |g(xk−1)− g(x∗)| ≤ L|xk−1 − x∗|, (12.50)

thus xk → g(x∗) as k → ∞ i.e. x∗ is a fixed point of g. We already proved
part (a) in (12.45) and part (b) follows by taking the limit as n → ∞ in
(12.48).

Finally, we prove that the fixed point is unique. Suppose that there are
two fixed points, x1, x2 ∈ [a, b]. Then,

|x1 − x2| = |g(x1)− g(x2)| ≤ L|x1 − x2|, (12.51)

which implies

(1− L)|x1 − x2| ≤ 0 (12.52)

but 0 ≤ L < 1, therefore |x1 − x2| = 0 and thus x1 = x2.

If g is differentiable in (a, b), then by the mean value theorem

g(x)− g(y) = g′(ξ)(x− y) (12.53)

for some ξ between x and y. If the derivative is bounded, i.e.

|g′(x)| ≤ L for all x ∈ (a, b) (12.54)

and 0 ≤ L < 1, then |g(x)− g(y)| ≤ L|x− y|, i.e. g is contractive in [a, b].

12.7. SYSTEMS OF NONLINEAR EQUATIONS 285

Example 12.7. Let g(x) = 1
6
(x3 + 3) for x ∈ [0, 1]. Then, 0 ≤ g(x) ≤ 1

and |g′(x)| ≤ 1
2
for all x ∈ [0, 1]. Thus, g is contractive in [0, 1] and the fixed

point iteration will converge to the unique fixed point of g in [0, 1].

Note that if g is differentiable

xk+1 − x∗ = g(xk)− g(x∗) = g′(ξk)(xk − x∗), (12.55)

for some ξk between xk and x∗. Thus, if the fixed point iteration converges
to x∗

lim
k→∞

xk+1 − x∗
xk − x∗

= g′(x∗) (12.56)

and unless g′(x∗) = 0, the fixed point iteration would converges only linearly.
In Newton’s method g(x) = x− f(x)/f ′(x), so

g′(x) = 1− (f ′(x))2 − f ′′(x)f(x)
(f ′(x))2

(12.57)

and consequently g(x∗) = 0, which explains the quadratic convergence of
Newton’s method.

12.7 Systems of Nonlinear Equations

We now look at the problem of finding numerical approximation to the solu-
tion(s) of a nonlinear system of equations f(x) = 0, where f : U ⊆ Rm → Rm.

The main approach to solve a nonlinear system is fixed point iteration
xk+1 = g(xk), k = 0, 1, . . ., where we assume that g is defined on a closed set
B ⊆ Rm and g : B → B.

The map g is a contraction (with respect to some norm,∥ · ∥) if there is a
constant L with 0 ≤ L < 1 and

∥g(x)− g(y)∥ ≤ L∥x− y∥, for all x, y ∈ B. (12.58)

Then, as we know, by the contraction map principle, g has a unique fixed
point and the sequence generated by the fixed point iteration (12.40) con-
verges to it.

If g is C1 on some convex set B ⊆ Rm, for example a ball, then there
is a mean value theorem that stems from the one-variable case as follows.

286 CHAPTER 12. NON-LINEAR EQUATIONS

Consider the line segment x+ t(y − x) for t ∈ [0, 1] with x, y fixed in B and
define the one-variable function

h(t) = g(x+ t(y − x)). (12.59)

Then, by the chain rule, h′(t) = Dg(x+ t(y−x))(y−x), where Dg stands for
the derivative matrix (the Jacobian matrix) of g. Hence, using the definition
of h and the fundamental theorem of Calculus we have

g(y)− g(x) = h(1)− h(0) =
∫ 1

0

h′(t)dt

=

∫ 1

0

Dg(x+ t(y − x))(y − x)dt.
(12.60)

We can now use this mean value result. Suppose there is 0 ≤ L < 1 such
that

∥Dg(x)∥ ≤ L, for all x ∈ B, (12.61)

for some subordinate norm ∥ · ∥. Then,

∥g(y)− g(x)∥ ≤ L∥y − x∥ (12.62)

and g is a contraction (in that norm).

12.7.1 Newton’s Method for Systems

By Taylor’s theorem

f(x) ≈ f(x0) +Df(x0)(x− x0) (12.63)

so if we take x1 as the zero of the right hand side of (12.63) we get

x1 = x0 − [Df(x0)]
−1f(x0). (12.64)

Continuing this way, Newton’s method for the system of equations f(x) = 0
can be written as

xk+1 = xk − [Df(xk)]
−1f(xk). (12.65)

In the implementation of Newton’s method for a large system of equa-
tions, we do not compute the inverse matrix. Instead, we solve the linear

12.7. SYSTEMS OF NONLINEAR EQUATIONS 287

system Df(xk)∆xk = −f(xk) at each iteration and do the update xk+1 =
xk +∆xk.

To illustrate Newton’s method for a system we consider the simplest
(m = 2) case:

f1(x, y) = 0,

f2(x, y) = 0.
(12.66)

We are labeling the independent variables x and y instead of x1 and x2 to
avoid using double indices in the iteration. Then,

xk+1 = xk +∆xk,

yk+1 = yk +∆yk,
(12.67)

where [∆xk,∆yk]
T is the solution of the linear system

∂f1
∂x

(xk, yk)
∂f1
∂y

(xk, yk)

∂f2
∂x

(xk, yk)
∂f2
∂y

(xk, yk)


∆xk
∆yk

 = −

f1(xk, yk)
f2(xk, yk)

 . (12.68)

Using Kramer’s rule we find

∆xk =
1

Jk

(
f2(xk, yk)

∂f1
∂y

(xk, yk)− f1(xk, yk)
∂f2
∂y

(xk, yk)

)
,

∆yk =
1

Jk

(
f1(xk, yk)

∂f2
∂x

(xk, yk)− f2(xk, yk)
∂f1
∂x

(xk, yk)

)
,

(12.69)

where

Jk =
∂f1
∂x

(xk, yk)
∂f2
∂y

(xk, yk)−
∂f1
∂y

(xk, yk)
∂f2
∂x

(xk, yk). (12.70)

Example 12.8. Consider the nonlinear system

x2 + y2 = 1,

xy = 0.
(12.71)

It has a solutions (1, 0) and (0, 1). Letting f1(x, y) = x2+y2−1 and f2(x, y) =
xy, (12.67), (12.69), and (12.70) give us for k = 0, 1, . . .

xk+1 = xk −
xk(x

2
k − y2k − 1)

2(x2k − y2k)
,

yk+1 = yk −
yk(x

2
k − y2k + 1)

2(x2k − y2k)
.

(12.72)

288 CHAPTER 12. NON-LINEAR EQUATIONS

Starting with (x0, y0) = (0.6, 0.3) the solution (1, 0) is computed within ma-
chine precision in just 6 iterations:

(x1, y1) = (1.411111111111111,−0.4055555555555555),
(x2, y2) = (1.091789018985025,−0.09177367214647353),
(x3, y3) = (1.0071173377858802,−0.007117337668119214),
(x4, y4) = (1.0000499455377991,−4.9945537799225316× 10−5),

(x5, y5) = (1.0000000024943076,−2.494307586986392× 10−9),

(x6, y6) = (1.0,−6.221570734917062× 10−18).

As observed in the other examples of quadratic convergence, the number of
digits of accuracy approximately double with each iteration.

12.8 Bibliographic Notes

The main references for this chapter were Chapter 5 of Schwarz’s book, Chap-
ter 4 of Gautschi’s book [Gau11], and the classical book by Ortega and Rhein-
boldt [OR70] (for systems of nonlinear equations).

Section 12.1 . There are problems in which one is interested in finding selec-
tively some or all the roots of a polynomial. The bisection method can be
combined with a theorem of Sturm to achieve this. This method is described
in [Gau11](4.3.2) and [SB02](5.6).

Section 12.2 . The definitions are standard. For the behavior of the order of
convergence we followed [Gau11](4.2).

Section 12.3 . Muller’s method was originally proposed for computing the ze-
ros of polynomials [Mul56]. The method is presented in detail in [Sch89](5.3.3).

Section 12.4. Newton published his method in Principia Mathematica (1687)
as a tool to solve Kepler’s equation [NCW99] but had already discussed the
method in 1969 [Gol77] as a tool to solve the equation x3−2x−5 = 0. Raph-
son [Rap90] presented the method in a simpler and more systematic way in
1690 and this is why the method is often called Newton-Raphson method.
The proof of the theorem of local convergence was adapted from the proof

12.8. BIBLIOGRAPHIC NOTES 289

for the secant method presented in [Gau11].

Section 12.5. The derivation of the super-linear rate of convergence of the
secant method follows that in [Gau11, Sch89].

Section 12.6. The contraction mapping theorem and its proof can be found
in introductory books on analysis and in any standard text on numerical
analysis.

Section 12.7. The book by Ortega and Rheinboldt [OR70] has extensive
material on systems of nonlinear equations, including existence results, mean
value theorems and numerical methods.

290 CHAPTER 12. NON-LINEAR EQUATIONS

Chapter 13

Numerical Methods for ODEs

In this chapter we study numerical methods for ordinary differential equa-
tions (ODEs) and systems of ODEs. We first review some basic theory for the
ODE initial value problem before proceeding to give an overview of the main
numerical methods for this important mathematical problem. The central
focus of this chapter are the fundamental concepts of consistency, stability,
and convergence.

13.1 The Initial Value Problem for ODEs

We will focus on numerical methods to approximate the solution of the fol-
lowing the first order, initial value problem (IVP):

dy(t)

dt
= f(t, y(t)), t0 < t ≤ T, (13.1)

y(t0) = α. (13.2)

Here, f is a given function of the independent variable t and the unknown
function y. Geometrically, it represents the slope of the solution y. Often,
t represents time but not necessarily. Equation (13.2), where α is a given
constant, is called the initial condition. The problem is therefore to find a
function y(t) for t in some interval [t0, T] such that it is equal to α at t = t0
and satisfies the ODE (13.1). Without loss of generality we will often take
t0 = 0, unless otherwise noted.

In the IVP (13.1)-(13.2), y and f may be vector-valued, i.e y ∈ Rd and
f(t, y) ∈ Rd, d > 1, in which case we have an IVP for a d× d system of first
order ODEs.

291

292 CHAPTER 13. NUMERICAL METHODS FOR ODES

The time derivative is also frequently denoted with a dot (especially in
physics) or an apostrophe

dy

dt
= ẏ = y′. (13.3)

We will not write the dependence of y on t in the ODE; we will simply
write y′ = f(t, y).

Example 13.1.

y′ = t sin y, 0 < t ≤ 2π, (13.4)

y(0) = α. (13.5)

Example 13.2.

y′1 = y1y2 − y21,
y′2 = −y2 + t2 cos y1, 0 < t ≤ T,

(13.6)

y1(0) = α1, y2(0) = α2. (13.7)

These two are examples of first order ODEs. Higher order ODEs can be
written as first order systems by introducing new variables as we illustrate
in the next two examples.

Example 13.3. The Harmonic Oscillator.

y′′ + k2y = 0. (13.8)

If we define

y1 = y, (13.9)

y2 = y′, (13.10)

we get

y′1 = y2,

y′2 = −k2y1.
(13.11)

Example 13.4.

y′′′ + 2yy′′ + cos y′ + et = 0. (13.12)

13.1. THE INITIAL VALUE PROBLEM FOR ODES 293

Introducing the variables

y1 = y, (13.13)

y2 = y′, (13.14)

y3 = y′′, (13.15)

we obtain the first order system:

y′1 = y2,

y′2 = y3,

y′3 = −2y1y3 − cos y2 − et.
(13.16)

If f does not depend explicitly on t we call the ODE (or the system
of ODEs) autonomous. We can turn a non-autonomous system into an
autonomous one by introducing t as a new variable.

Example 13.5. Consider the ODE

y′ = sin t− y2. (13.17)

If we define

y1 = y, (13.18)

y2 = t, (13.19)

we can write this ODE as the autonomous system

y′1 = sin y2 − y21,
y′2 = 1.

(13.20)

Continuity of f guarantees local existence of solutions but not uniqueness.
A sufficient condition for uniqueness is given by the following definition.

Definition 13.1. A function f defined on a domain D ⊂ R × Rd and with
values in Rd is Lipschitz in y, if there is L ≥ 0 such that

∥f(t, y)− f(t, w)∥ ≤ L∥y − w∥ (13.21)

for all (t, y) and (t, w) in D and some norm ∥ · ∥ defined in Rd. L is called
the Lipschitz constant.

294 CHAPTER 13. NUMERICAL METHODS FOR ODES

Note that if f is differentiable and D is convex (D contains the line
segment joining any two points in D), the Lipschitz condition is equivalent
to boundedness of fy, i.e. if there is L ≥ 0 such that∥∥∥∥∂f∂y (t, y)

∥∥∥∥ ≤ L (13.22)

for all (t, y) ∈ D. For a system, fy is derivative matrix of f with respect to
y (see Section 12.7). It is usually easier to check (13.22) than to use directly
the Lipschitz condition (13.21).

We now state a fundamental theorem of local existence and uniqueness
of solutions of the IVP (13.1)-(13.2).

Theorem 13.1 (Local Existence and Uniqueness). Let

D = {(t, y) : t0 ≤ t ≤ T, ∥y − α∥ ≤ b} . (13.23)

If f is continuous in D and Lipschitz in y, with ∥f∥ bounded by M , and
T ≤ t0 + b/M , the IVP (13.1)-(13.2) has a unique solution for each α ∈ Rd.

We emphasize the local nature of this result. However, if f and fy are
continuous on an open set D ⊂ R×Rd then for every point (t0, α) ∈ D there
is a unique solution that can be continued up to the boundary of D.

Example 13.6.

y′ = y1/2, 0 < t,

y(0) = 0.
(13.24)

The partial derivative

∂f

∂y
=

1

2
y−1/2 (13.25)

is not continuous around 0. While f is continuous, it is not Lipschitz in y.
Clearly, y ≡ 0 is a solution of this initial value problem but so is y(t) = 1

4
t2.

There is no uniqueness of solution for this IVP.

Example 13.7.

y′ =
1

2
y2, 0 < t ≤ 3,

y(0) = 1.
(13.26)

13.1. THE INITIAL VALUE PROBLEM FOR ODES 295

We can integrate to obtain

y(t) =
2

2− t , (13.27)

which becomes unbounded as → 2. There is a unique solution only for t ∈
[0, 2) and it cannot be continued past this interval. Note that

∂f

∂y
(t, y(t)) = y(t) (13.28)

becomes unbounded at t = 2.

Integrating (13.1) from t0 to t and using the initial condition (13.2), the
IVP (13.1)-(13.2) can be reformulated as

y(t) = α +

∫ t

t0

f(s, y(s))ds. (13.29)

This is an integral equation for the unknown function y. In particular, if f
does not depend on y the problem is reduced to the approximation of the
definite integral ∫ t

t0

f(s)ds, (13.30)

for which a numerical quadrature can be applied.
The numerical methods we will study in this chapter deal with the more

general and important case when f depends on the unknown y. These meth-
ods produce an approximation of the exact solution of the IVP (assuming
uniqueness) at a set of discrete points

0 = t0 < t1 < . . . < tN ≤ T. (13.31)

For simplicity in the presentation, we will assume these points are equispaced,

tn = n∆t, n = 0, 1, . . . , N and ∆t = T/N, (13.32)

but they do not have to be. ∆t is called the step size.
We will write a numerical method for an IVP as an algorithm to go

from one discrete time, tn, to the next one, tn+1. With that in mind, it is
convenient to integrate (13.1) from tn to tn+1:

y(tn+1) = y(tn) +

∫ tn+1

tn

f(t, y(t))dt. (13.33)

This equation provides a useful framework for the construction of some nu-
merical methods employing quadratures.

296 CHAPTER 13. NUMERICAL METHODS FOR ODES

13.2 A First Look at Numerical Methods

Let us denote by yn the approximation1 produced by the numerical method
of the exact solution at tn, i.e.

yn ≈ y(tn). (13.34)

Starting from (13.33), if we approximate the integral using only f evaluated
at the lower integration limit∫ tn+1

tn

f(t, y(t))dt ≈ f(tn, y(tn))(tn+1 − tn) = f(tn, y(tn))∆t (13.35)

and replace f(tn, y(tn)) by f(tn, y
n), we obtain the so called forward Euler

method:

y0 = α, (13.36)

yn+1 = yn +∆tf(tn, y
n), n = 0, 1, . . . N − 1. (13.37)

This provides an explicit formula to advance from one time step to the next.
The approximation yn+1 at the future step only depends on the approxima-
tion yn at the current step. The forward Euler method is an example of an
explicit one-step method.

Example 13.8. Consider the initial value problem:

y′ = −1

5
y − e−t/5 sin t, 0 < t ≤ 2π, (13.38)

y(0) = 1. (13.39)

To use the forward Euler method for this problem we start with y0 = 1 and
proceed with the iteration (13.37) with f(tn, y

n) = −1
5
yn − e−tn/5 sin tn. Fig-

ure 13.1 shows the forward Euler approximation with ∆t = 2π/20 and the
exact solution, y(t) = e−t/5 cos t.

Note we just compute an approximation yn of the solution at the discrete
points tn = n∆t, for n = 0, 1, . . . , N . However, the numerical approximation
is often plotted using a continuous curve that passes through all the points
(tn, y

n), n = 0, 1, . . . , N (i.e. an interpolant).

1We use a superindex for the time approximation, instead of the most commonly em-
ployed subindex notation, to facilitate the transition to numerical methods for PDEs.

13.2. A FIRST LOOK AT NUMERICAL METHODS 297

0 π 2π

0

1

t

y

Exact solution.
Forward Euler approximation.

Figure 13.1: Forward Euler approximation with ∆t = 2π/20 and exact solu-
tion of the IVP (13.38)-(13.39).

If we approximate the integral in (13.33) employing only the upper limit
of integration and replace f(tn+1, y(tn+1)) by f(tn+1, y

n+1) we obtain the
backward Euler method:

y0 = α, (13.40)

yn+1 = yn +∆tf(tn+1, y
n+1), n = 0, 1, . . . N − 1. (13.41)

Note that now yn+1 is defined implicitly in (13.41). Thus, to update the ap-
proximation we need to solve this equation for yn+1, for each n = 0, . . . , N−1.
If f is nonlinear, we would generally need to employ a numerical method to
solve y − F (y) = 0, where F (y) = ∆tf(tn+1, y) + yn. This is equivalent
to finding a fixed point of F . By the contraction mapping theorem (Theo-
rem 12.2), we can guarantee a unique solution yn+1 if ∆tL < 1 (where L is the
Lipschitz constant of f). In practice, an approximation to yn+1 is obtained
by performing a limited number of fixed point iterations y(k+1) = F (y(k)),
k = 0, 1, . . . , K, or by a few iterations of Newton’s method for y − F (y) = 0
with yn as initial guess. The backward Euler method is an implicit one-step
method.

We can employ more accurate quadratures as the basis for our numerical

298 CHAPTER 13. NUMERICAL METHODS FOR ODES

methods. For example, if we use the trapezoidal rule∫ tn+1

tn

f(t, y(t))dt ≈ ∆t

2
[f(tn, y(tn)) + f(tn+1, y(tn+1))] (13.42)

and proceed as before, we get the trapezoidal rule method:

y0 = α, (13.43)

yn+1 = yn +
∆t

2

[
f(tn, y

n) + f(tn+1, y
n+1)

]
, n = 0, 1, . . . N − 1. (13.44)

Like the backward Euler method, this is an implicit one-step method.
We will see later an important class of one-step methods, known as

Runge-Kutta (RK) methods, which use intermediate approximations to
the derivative (i.e. to f) and a corresponding quadrature. For example, if we
employ the midpoint rule quadrature and the approximation

f
(
tn+1/2, y(tn+1/2)

)
≈ f

(
tn+1/2, y

n +
∆t

2
f(tn, y

n)

)
, (13.45)

where tn+1/2 = tn + ∆t/2, we obtain the explicit midpoint Runge-Kutta
method

yn+1 = yn +∆tf

(
tn+1/2, y

n +
∆t

2
f(tn, y

n)

)
. (13.46)

Another possibility is to approximate the integrand f in (13.33) by an
interpolating polynomial of f evaluated at m previous approximations yn,
yn−1, . . ., yn−(m−1). To simplify the notation, let us write

fn = f(tn, y
n), fn−1 = f(tn−1, y

n−1), etc. (13.47)

For example, if we replace f in [tn, tn+1] by the linear polynomial p1 interpo-
lating (tn, f

n) and (tn−1, fn−1),

p1(t) =
(t− tn−1)

∆t
fn − (t− tn)

∆t
fn−1 (13.48)

we get ∫ tn+1

tn

f(t, y(t))dt ≈
∫ tn+1

tn

p1(t)dt =
∆t

2
[3fn − fn−1] (13.49)

13.2. A FIRST LOOK AT NUMERICAL METHODS 299

and the corresponding numerical method is

yn+1 = yn +
∆t

2

[
3fn − fn−1] , n = 1, 2, . . . N − 1. (13.50)

This is a two-step method because to determine yn+1 we need the approxima-
tions at the previous two steps, yn and yn−1. Numerical methods that require
approximations of more than one step to determine the approximation at the
future step are called multistep methods. Note that to start using (13.50),
i.e. n = 1, we need y0 and y1. For y0 we use the initial condition, y0 = α,
and for y1 we can employ a one-step method of comparable accuracy. All
multistep methods require this initialization process where approximations
to y1, . . . , ym−1 have to be generated with one-step methods before we can
apply the multistep formula.

Numerical methods can also be constructed by approximating y′ using
finite differences or interpolation. For example, the central difference ap-
proximation

y′(tn) ≈
y(tn +∆t)− y(tn −∆t)

2∆t
≈ yn+1 − yn−1

2∆t
(13.51)

produces the two-step method

yn+1 = yn−1 + 2∆tfn. (13.52)

If we approximate y′(tn+1) by the derivative of the polynomial interpo-
lating yn+1 and some previous approximations we obtain a class of methods
known as backward differentiation formula (BDF) methods. For in-
stance, let p2 ∈ P2 be the polynomial that interpolates (tn−1, yn−1), (tn, yn),
and (tn+1, y

n+1). Then

y′(tn+1) ≈ p′2(tn+1) =
3yn+1 − 4yn + yn−1

2∆t
, (13.53)

which gives the BDF method

3yn+1 − 4yn + yn−1

2∆t
= fn+1, n = 1, 2, . . . N − 1. (13.54)

Note that this is an implicit multistep method.

300 CHAPTER 13. NUMERICAL METHODS FOR ODES

13.3 One-Step and Multistep Methods

As we have seen, there are two broad classes of methods for the IVP (13.1)-
(13.2): one-step methods and multistep methods.

Explicit one-step methods can be written in the general form

yn+1 = yn +∆tΦ(tn, y
n,∆t) (13.55)

for some continuous function Φ. For example Φ(t, y,∆t) = f(t, y) for the
forward Euler method and Φ(t, y,∆t) = f

(
t+ ∆t

2
, y + ∆t

2
f(t, y)

)
for the mid-

point RK method. For an implicit one-step method Φ is also a function of
yn+1. Φ is call the increment function.

A general, m-step (m > 1) linear multistep method has the form

amy
n+1 + am−1y

n + . . .+ a0y
n−(m−1) =

∆t
[
bmf

n+1 + bm−1f
n + . . .+ b0f

n−(m−1)] , (13.56)

for some coefficients a0, a1, . . . , am and b0, b1, . . . , bm with am ̸= 0. If bm ̸= 0
the multistep is implicit otherwise it is explicit. This class of methods are
called linear because the right hand size in (13.56) is a linear function of the
values f j = f(tj, y

j) for j = n− (m− 1), . . . , n+1. There are also nonlinear
multistep methods, where the hand side is a nonlinear function of f , and
which are useful for some specialized IVP’s. We will limit the discussion
here to the more widely used linear multistep methods and simply call them
multistep methods.

Shifting the index by m−1, we can also write an m-step (m > 1) method
as

m∑
j=0

ajy
n+j = ∆t

m∑
j=0

bjf
n+j. (13.57)

13.4 Local and Global Error

At each time step in the numerical approximation of an IVP there is an error
associated with evolving the solution from tn to tn+1 with the numerical
method instead of using the ODE (or the integral equation). There is also
an error due to employing yn instead of y(tn) as the starting point. After
several time steps, these local errors accumulate in the global error of the
approximation. Let us make the definition of these errors more precise.

13.4. LOCAL AND GLOBAL ERROR 301

0 π t6 2π
−0.8

0

1

e6(∆t)
∆tτ6(∆t)

t

y

Exact solution.
Forward Euler approximation.

y(t5).
One step of Euler starting from y(t5).

Figure 13.2: Global and local discretization error of the forward Euler method
at t6 with ∆t = 2π/10 for the IVP (13.38)-(13.39).

Definition 13.2. The local discretization or local truncation error τn+1(∆t)
at tn+1 is given by

τn+1(∆t) =
y(tn+1)− ỹn+1

∆t
, (13.58)

where ỹn+1 is computed by doing one step of the numerical method starting
with the exact value y(tn) for a one-step method and with y(tn), y(tn−1), . . .,
y(tn−m+1) for an m-step method.

Definition 13.3. The global error en(∆t) at tn is given by

en(∆t) = y(tn)− yn, (13.59)

where y(tn) and yn are the exact solution of the IVP and the numerical
approximation at tn, respectively.

Figure 13.2 shows the global error and the local discretization error times
∆t at t6 = 6∆t for the forward Euler method applied to the IVP (13.38)-
(13.39) with ∆t = 2π/10. Note that the ∆tτ 6 is the local error made by

302 CHAPTER 13. NUMERICAL METHODS FOR ODES

taking only one step of the numerical method starting from the exact initial
condition y(t5) whereas e

6(∆t) is the global error of the approximation after
six time steps starting from y0 = α = 1.

For an explicit one-step method the local truncation error is simply

τn+1(∆t) =
y(tn+1)− [y(tn) + ∆tΦ(tn, y(tn),∆t)]

∆t
. (13.60)

That is,

τn+1(∆t) =
y(tn+1)− y(tn)

∆t
− Φ(tn, y(tn),∆t) (13.61)

For an explicit multistep method (bm = 0),

τn+m(∆t) =
y(tn+m)− ỹn+m

∆t
, (13.62)

where

amỹ
n+m = −

m−1∑
j=0

ajy(tn+j) + ∆t
m∑
j=0

bjf(tn+j, y(tn+j)). (13.63)

Substituting (13.63) into (13.62) we get

τn+m(∆t) =
1

∆t

m∑
j=0

ajy(tn+j)−
m∑
j=0

bjf(tn+j, y(tn+j)), (13.64)

where we assumed, without loss of generality, that am = 1. Since y′ = f(t, y),
we also have

τn+m(∆t) =
1

∆t

m∑
j=0

ajy(tn+j)−
m∑
j=0

bjy
′(tn+j). (13.65)

For implicit methods we can also use (13.64) for the local truncation error
because it is (13.62) up to a multiplicative factor. Indeed, let

τ̃n+m(∆t) =
1

∆t

m∑
j=0

ajy(tn+j)−
m∑
j=0

bjf(tn+j, y(tn+j)). (13.66)

13.4. LOCAL AND GLOBAL ERROR 303

Then,

m∑
j=0

ajy(tn+j) = ∆t
m∑
j=0

bjf(tn+j, y(tn+j)) + ∆t τ̃n+m(∆t). (13.67)

On the other hand ỹn+m in the definition of the local error is computed using

amỹ
n+m +

m−1∑
j=0

ajy(tn+j) = ∆t

[
bmf(tn+m, ỹn+m) +

m−1∑
j=0

bjf(tn+j, y(tn+j))

]
.

(13.68)

Subtracting (13.68) to (13.67) and using am = 1 we get

y(tn+m)− ỹn+m = ∆t bm
[
f(tn+m, y(tn+m))− f(tn+m, ỹ

n+m)
]

+∆t τ̃n+k(∆t).
(13.69)

Assuming f is a scalar C1 function, from the mean value theorem we have

f(tn+m, y(tn+m))− f(tn+m, ỹ
n+m) =

∂f

∂y
(tn+m, η)

[
y(tn+m)− ỹn+m

]
,

for some η between y(tn+m) and ỹn+m. Substituting this into (13.69) and
solving for y(tn+m)− ỹn+m we get

τn+m(∆t) =

[
1−∆t bm

∂f

∂y
(tn+m, η)

]−1
τ̃n+m(∆t). (13.70)

If f is a vector valued function (a system of ODEs), the partial derivative
in (13.70) is a derivative matrix. A similar argument can be made for an
implicit one-step method if the increment function Φ is Lipschitz in y and
we use absolute values in the errors. Thus, (13.61) and (13.64) can be used
as the definition of the local truncation error for one-step and multi-step
methods, respectively. With this definition, we can view the local truncation
error as a measure of how well the exact solution of the IVP satisfies the
numerical method formula.

Example 13.9. The local truncation error for the forward Euler method is

τn+1(∆t) =
y(tn+1)− y(tn)

∆t
− f(tn, y(tn)). (13.71)

304 CHAPTER 13. NUMERICAL METHODS FOR ODES

Taylor expanding the exact solution around tn we have

y(tn+1) = y(tn) + ∆t y′(tn) +
1

2
(∆t)2y′′(ηn) (13.72)

for some ηn between tn and tn+1. Using y
′ = f and substituting (13.72) into

(13.71) we get

τn+1(∆t) =
1

2
y′′(ηn)∆t. (13.73)

Thus, assuming the exact solution is C2, the local truncation error of the
forward Euler method is O(∆t).

To simplify notation we will henceforth write O(∆t)k instead of O((∆t)k).

Example 13.10. For the explicit midpoint Runge-Kutta method we have

τn+1(∆t) =
y(tn+1)− y(tn)

∆t
− f

(
tn+1/2, y(tn) +

∆t

2
f(tn, y(tn))

)
. (13.74)

Taylor expanding f around (tn, y(tn)) we obtain

f

(
tn+1/2, y(tn) +

∆t

2
f(tn, y(tn))

)
= f(tn, y(tn))

+
∆t

2

∂f

∂t
(tn, y(tn))

+
∆t

2
f(tn, y(tn))

∂f

∂y
(tn, y(tn))

+O(∆t)2.

(13.75)

But y′ = f , y′′ = f ′ and

f ′ =
∂f

∂t
+
∂f

∂y
y′ =

∂f

∂t
+
∂f

∂y
f. (13.76)

Therefore

f

(
tn+1/2, y(tn) +

∆t

2
f(tn, y(tn))

)
= y′(tn) +

1

2
∆t y′′(tn) +O(∆t)2. (13.77)

On the other hand

y(tn+1) = y(tn) + ∆t y′(tn) +
1

2
(∆t)2y′′(tn) +O(∆t)3. (13.78)

Substituting (13.77) and (13.78) into (13.74) we get

τn+1(∆t) = O(∆t)2. (13.79)

13.5. ORDER OF A METHOD AND CONSISTENCY 305

In the previous two examples the methods are one-step. We now obtain
the local truncation error for a particular multistep method.

Example 13.11. Let us consider the 2-step Adams-Bashforth method (13.50).
We have

τn+2(∆t) =
y(tn+2)− y(tn+1)

∆t
− 1

2
[3f(tn+1, y(tn+1))− f(tn, y(tn))] (13.80)

and using y′ = f

τn+2 =
y(tn+2)− y(tn+1)

∆t
− 1

2
[3y′(tn+1)− y′(tn)] . (13.81)

Taylor expanding y(tn+2) and y
′(tn) around tn+1 we have

y(tn+2) = y(tn+1) + y′(tn+1)∆t+
1

2
y′′(tn+1)(∆t)

2 +O(∆t)3, (13.82)

y′(tn) = y′(tn+1)− y′′(tn+1)∆t+O(∆t)2. (13.83)

Substituting these expressions into (13.81) we get

τn+2(∆t) = y′(tn+1) +
1

2
y′′(tn+1)∆t

− 1

2
[2y′(tn+1)−∆ty′′(tn+1)] +O(∆t)2

= O(∆t)2.

(13.84)

13.5 Order of a Method and Consistency

As we have seen, if the exact solution of the IVP y′ = f(t, y), y(0) = α is
sufficiently smooth, the local truncation error can be expressed as O(∆t)p,
for some positive integer p and sufficiently small ∆t.

Definition 13.4. A numerical method for the initial value problem (13.1)-
(13.2) is said to be of order p if its local truncation error is O(∆t)p.

Euler’s method is order 1 or first order. The midpoint Runge-Kutta
method and the 2-step Adams-Bashforth method are order 2 or second order.

As mentioned above, the local truncation error can be viewed as a measure
of how well the exact solution of the IVP satisfies the numerical method
formula. Thus, a natural requirement is that the numerical method formula
approaches y′ = f(t, y) as ∆t → 0 and not some other equation. This
motivates the following definition.

306 CHAPTER 13. NUMERICAL METHODS FOR ODES

Definition 13.5. We say that a numerical method is consistent (with the
ODE of the IVP) if

lim
∆t→0

(
max

1≤n≤N
|τn(∆t)|

)
= 0. (13.85)

Equivalently, if the method is at least of order 1.

For one-step methods, we have

τn+1(∆t) =
y(tn+1)− y(tn)

∆t
− Φ(tn, y(tn),∆t). (13.86)

Since [y(tn+1) − y(tn)]/∆t converges to y′(tn) as ∆t → 0 and y′ = f(t, y), a
one-step method is consistent with the ODE y′ = f(t, y) if and only if2

Φ(t, y, 0) = f(t, y). (13.87)

To find a consistency condition for a multistep method, we expand y(tn+j)
and y′(tn+j) around tn

y(tn+j) = y(tn) + (j∆t)y′(tn) +
1

2!
(j∆t)2y′′(tn) + . . . (13.88)

y′(tn+j) = y′(tn) + (j∆t)y′′(tn) +
1

2!
(j∆t)2y′′′(tn) + . . . (13.89)

and substituting in the definition of the local error (13.64) we get that a
multistep method is consistent if and only if

a0 + a1 + . . .+ am = 0, (13.90)

a1 + 2a2 + . . .mam = b0 + b1 + . . .+ bm. (13.91)

All the methods that we have seen so far are consistent (with y′ = f(t, y)).

13.6 Convergence

A basic requirement of the approximations generated by a numerical method
is that they get better and better as we take smaller step sizes. That is,
we want the approximations to approach the exact solution at each fixed
t = n∆t as ∆t→ 0 .

2We assume Φ is continuous as stated in the definition of one-step methods.

13.6. CONVERGENCE 307

Definition 13.6. A numerical method for the IVP (13.1)-(13.2) is conver-
gent if the global error converges to zero as ∆t → 0 with t = n∆t fixed
i.e.

lim
∆t→0
n∆t=t

[y(n∆t)− yn] = 0. (13.92)

Note that for a multistep method the initialization values y1, . . . , ym−1 must
converge to y(0) = α as ∆t→ 0.

If we consider a one-step method and the definition (13.61) of the local
truncation error, the exact solution satisfies

y(tn+1) = y(tn) + ∆tΦ(tn, y(tn),∆t) + ∆t τn+1(∆t) (13.93)

while the approximation is given by

yn+1 = yn +∆tΦ(tn, y
n,∆t). (13.94)

Subtracting (13.94) from (13.93) we get a difference equation for the global
error

en+1(∆t) = en(∆t) + ∆t [Φ(tn, y(tn),∆t)− Φ(tn, y
n,∆t)] + ∆t τn+1(∆t).

(13.95)

The growth of the global error as we take more and more time steps is linked
not only to the local truncation error but also to the increment function Φ.
To have a controlled error growth, we need an additional assumption on Φ,
namely that it is Lipschitz in y, i.e. there is L ≥ 0 such that

|Φ(t, y,∆t)− Φ(t, w,∆t)| ≤ L|y − w| (13.96)

for all t ∈ [0, T] and y and w in the relevant domain of existence of the
solution. Recall that for a consistent one-step method Φ(t, y, 0) = f(t, y) and
we assume f(t, y) is Lipschitz in y to guarantee existence and uniqueness of
the IVP. Thus, the Lipschitz assumption on Φ is somewhat natural.

Taking absolute values (or norms in the vector case) in (13.95), using the
triangle inequality and (13.96) we obtain

|en+1(∆t)| ≤ (1 + ∆tL)|en(∆t)|+∆t |τn+1(∆t)|. (13.97)

308 CHAPTER 13. NUMERICAL METHODS FOR ODES

For a method of order p, |τn+1(∆t)| ≤ C(∆t)p, for sufficiently small ∆t.
Therefore,

|en+1(∆t)| ≤ (1 + ∆tL)|en(∆t)|+ C(∆t)p+1

≤ (1 + ∆tL)
[
(1 + ∆tL)|en−1(∆t)|+ C(∆t)p+1

]
+ C(∆t)p+1

≤ . . .

≤ (1 + ∆tL)n+1|e0(∆t)|+ C(∆t)p+1

n∑
j=0

(1 + ∆tL)j

(13.98)

and summing up the geometric sum we get

|en+1(∆t)| ≤ (1 + ∆tL)n+1|e0(∆t)|+
[
(1 + ∆tL)n+1 − 1

∆tL

]
C(∆t)p+1.

(13.99)

Now 1 + t ≤ et for all real t and consequently (1 + ∆tL)n ≤ en∆tL = etL.
Since e0(∆t) = 0,

|en(∆t)| ≤
[
etL − 1

∆tL

]
C(∆t)p+1 <

C

L
etL (∆t)p. (13.100)

Therefore, the global error goes to zero like (∆t)p as ∆t→ 0, keeping t = n∆t
fixed. We have thus established the following important result.

Theorem 13.2. A consistent (p ≥ 1) one-step method with a Lipschitz in y
increment function Φ is convergent.

The Lipschitz condition on Φ allowed us to bound the growth of the local
truncation error as more and more time steps are taken. This controlled
error growth, which is called numerical stability, was achieved through the
bound

(1 + ∆tL)n ≤ constant. (13.101)

Example 13.12. The forward Euler method is order 1 and hence consistent.
Since Φ = f and we are assuming that f is Lipschitz in y, by the previous
theorem the forward Euler method is convergent.

13.7. RUNGE-KUTTA METHODS 309

Example 13.13. Prove that the midpoint Runge-Kutta method is convergent
(assuming f is Lipschitz in y).

The increment function in this case is

Φ(t, y,∆t) = f

(
t+

∆t

2
, y +

∆t

2
f(t, y)

)
. (13.102)

Therefore

|Φ(t, y,∆t)− Φ(t, w,∆t)| =
∣∣∣∣f (t+ ∆t

2
, y +

∆t

2
f(t, y)

)
− f

(
t+

∆t

2
, w +

∆t

2
f(t, w)

)∣∣∣∣
≤ L

∣∣∣∣y + ∆t

2
f(t, y)− w − ∆t

2
f(t, w)

∣∣∣∣
≤ L |y − w|+ ∆t

2
L |f(t, y)− f(t, w)|

≤
(
1 +

∆t

2
L

)
L |y − w| ≤ L̃ |y − w| .

(13.103)

where L̃ = (1 + ∆t0
2
L)L and ∆t ≤ ∆t0, i.e. for sufficiently small ∆t. This

proves that Φ is Lipschitz in y and since the midpoint Runge-Kutta method
is of order 2, it is consistent and therefore convergent.

The exact solution of the IVP at tn+1 is determined uniquely from its value
at tn. In contrast, multistep methods use not only yn but also yn−1, . . . , yn−(m−1)

to produce yn+1. The use of more than one step introduces some peculiari-
ties to the theory of stability and convergence of multistep methods. We will
cover these topics separately after we take a look at the most widely used
class of one-step methods: the Runge-Kutta methods.

13.7 Runge-Kutta Methods

Runge-Kutta (RK) methods are based on replacing the integral in

y(tn+1) = y(tn) +

∫ tn+1

tn

f(t, y(t))dt (13.104)

310 CHAPTER 13. NUMERICAL METHODS FOR ODES

with a quadrature formula and using accurate enough intermediate approxi-
mations for the integrand f (the derivative of y). To illustrate their deriva-
tion, we consider the simplest case with two quadrature nodes, tn and another
point tn + c∆t with c ∈ (0, 1], so that the method has the form

K1 = f(tn, y
n), (13.105)

K2 = f(tn + c∆t, yn + a∆tK1), (13.106)

yn+1 = yn +∆t [b1K1 + b2K2] . (13.107)

The constants c, a and the quadrature weights b1 and b2 are going to be
determined so that the method has the highest order possible. Note that
K1 and K2 are approximations to the derivative of y at tn and tn + c∆t,
respectively. This is a two-stage method. In the first stage, K1 is computed
and in the second stage K2 is obtained using K1. The last step, Eq. (13.107),
employs the selected quadrature to update the approximation.

Recall the definition of the local truncation error (13.61). We have

τn+1(∆t) =
y(tn+1)− y(tn)

∆t
− [b1f(tn, y(tn)) + b2K2(tn, y(tn))] , (13.108)

where

K2(tn, y(tn)) = f (tn + c∆t, y(tn) + a∆tf(tn, y(tn))) . (13.109)

We first Taylor expand y(tn+1) around tn:

y(tn+1) = y +∆ty′ +
1

2
(∆t)2y′′ +O(∆t)3

= y +∆tf +
1

2
(∆t)

2(ft + ffy) + (∆t)3,
(13.110)

where, on the right hand side, all instances of y and its derivatives, and f
and its derivatives, are evaluated at tn and (tn, y(tn)), respectively. We also
need to Taylor expand the right hand side of (13.109) around (tn, y(tn)):

K2(tn, y(tn)) = f + c∆tft + a∆tffy +O(∆t)2. (13.111)

Substituting (13.110) and (13.111) into (13.108) we get

τn+1(∆t) = (1− b1 − b2) f +∆t

(
1

2
− b2c

)
ft +∆t

(
1

2
− b2a

)
fy

+O(∆t)2.

(13.112)

13.7. RUNGE-KUTTA METHODS 311

Thus, to have second order we need

b1 + b2 = 1, (13.113)

cb2 = 1/2, (13.114)

ab2 = 1/2. (13.115)

It is also clear that a higher order is unattainable with the four parameters
(the O(∆t)3 in (13.110) involves some partial derivatives of f that cannot be
matched with those in the O(∆t)2 term of b1K1+b2K2). This system of three
equations in four unknowns has an infinite number of solutions. For any value
b2 ̸= 0 there correspond one solution. For example, with b2 = 1/2 we get
b1 = 1/2 (trapezoidal rule quadrature), c = 1, and a = 1, which corresponds
to the RK method known as the improved Euler method or Heun method:

K1 = f(tn, y
n), (13.116)

K2 = f(tn +∆t, yn +∆tK1), (13.117)

yn+1 = yn +∆t

[
1

2
K1 +

1

2
K2

]
. (13.118)

If we take b2 = 1 wet get b1 = 0, c = 1/2, a = 1/2 we obtain the midpoint
RK method (13.46) which can now be written as

K1 = f(tn, y
n), (13.119)

K2 = f

(
tn +

∆t

2
, yn +

∆t

2
K1

)
, (13.120)

yn+1 = yn +∆tK2. (13.121)

Obtaining the order of an RK method using Taylor expansions becomes
a long, tedious process because the number of terms in the derivatives of f
grows rapidly (y′ = f, y′′ = ft+fyf, y

′′′ = ftt+2ftyf+fyyf
2+fyft+f

2
y f , etc.).

There is a beautiful alternative approach based on graph theory to obtain
the order of an RK method due to J.C. Butcher but we will not discuss it
here.

One of the most popular RK method is the following 4-stage (and fourth

312 CHAPTER 13. NUMERICAL METHODS FOR ODES

order) explicit RK, known as the classical fourth order RK:

K1 = f(tn, y
n),

K2 = f(tn +
1

2
∆t, yn +

1

2
∆tK1),

K3 = f(tn +
1

2
∆t, yn +

1

2
∆tK2),

K4 = f(tn +∆t, yn +∆tK3),

yn+1 = yn +
∆t

6
[K1 + 2K2 + 2K3 +K4] .

(13.122)

A general s-stage RK method can be written as

K1 = f

(
tn + c1∆t, y

n +∆t
s∑

j=1

a1jKj

)
,

K2 = f

(
tn + c2∆t, y

n +∆t
s∑

j=1

a2jKj

)
,

...

Ks = f

(
tn + cs∆t, y

n +∆t
s∑

j=1

asjKj

)
,

yn+1 = yn +∆t
s∑

j=1

bjKj.

(13.123)

RK methods are determined by the constants c1, . . . , cs that specify the
quadrature nodes, the coefficients a1j, . . . , asj for j = 1, . . . , s used to ob-
tain approximations of the solution at the intermediate quadrature points,
and the quadrature coefficients b1, . . . , bs. Consistent RK methods need to
satisfy the condition

s∑
j=1

bj = 1. (13.124)

Additionally, the following simplifying condition is assumed

s∑
j=1

aij = ci, i = 1, . . . , s. (13.125)

13.7. RUNGE-KUTTA METHODS 313

This condition arises by requiring that the method preserves the non-autonomous
to autonomous transformation (t′ = 1) illustrated in Example 13.5.

To define an RK method it is enough to specify the coefficients cj, aij and
bj for i, j = 1, . . . , s. These coefficients are often displayed in a table, called
the Butcher tableau (after J.C. Butcher) as shown in Table 13.1.

Table 13.1: Butcher tableau for a general RK method.

c1 a11 . . . a1s
...

...
...

...
cs as1 . . . ass

b1 . . . bs

For an explicit RK method, the matrix of coefficients A = (aij) is lower
triangular with zeros on the diagonal, i.e. aij = 0 for i ≤ j. The zeros of A
are usually not displayed in the Butcher tableau.

Example 13.14. Tables 13.2-13.4 show the Butcher tableaux of some explicit
RK methods.

Table 13.2: Improved Euler.

0
1 1

1
2

1
2

Table 13.3: Midpoint RK.

0
1
2

1
2

0 1

Implicit RK methods are useful for some initial values problems with dis-
parate time scales as we will see later. To reduce the computational work
needed to solve for the unknown K1, . . . , Ks (each K is vector-valued for a

314 CHAPTER 13. NUMERICAL METHODS FOR ODES

Table 13.4: Classical fourth order RK.

0
1
2

1
2

1
2

0 1
2

1 0 0 1
1
6

1
3

1
3

1
6

system of ODEs) in an implicit RK method, two particular types of implicit
RK methods are usually employed. The first type is the diagonally implicit
RK method or DIRK which has aij = 0 for i < j and at least one aii is
nonzero. The second type has also aij = 0 for i < j but with the addi-
tional condition that aii = γ for all i = 1, . . . , s and γ is a constant. The
corresponding methods are called singly diagonally implicit RK or SDIRK.

Example 13.15. Tables 13.5-13.8 show some examples of DIRK and SDIRK
methods.

Table 13.5: Backward Euler.

1 1
1

Table 13.6: Implicit mid-point rule RK.

1
2

1
2

1

13.8 Implementation for Systems

As mentioned in the introduction, the IVP could be for a first order system
of ODEs, i.e. for vector-valued y and f . The implementation of a numerical

13.8. IMPLEMENTATION FOR SYSTEMS 315

Table 13.7: Hammer and Hollingworth DIRK.

0 0 0
2
3

1
3

1
3

1
4

3
4

Table 13.8: Two-stage, order 3 SDIRK (γ = 3±
√
3

6
).

γ γ 0
1− γ 1− 2γ γ

1
2

1
2

method for an ODE system requires the appropriate updating of all the
components of the approximate solution as the following example illustrates.

Consider the IVP

y′1 = f1(t, y1, y2), (13.126)

y′2 = f2(t, y1, y2), (13.127)

y1(0) = α1, y2(0) = α2 (13.128)

and suppose we would like to get an approximation for the solution of this
first order ODE system for t ∈ [0, T] using the improved Euler method. We
can write this in the form

K11 = f1(tn, y
n
1 , y

n
2), (13.129)

K12 = f2(tn, y
n
1 , y

n
2), (13.130)

K21 = f1(tn +∆t, yn1 +∆tK11, y
n
2 +∆tK12), (13.131)

K22 = f2(tn +∆t, yn1 +∆tK11, y
n
2 +∆tK12), (13.132)

yn+1
1 = yn1 +∆t

[
1

2
K11 +

1

2
K21

]
, (13.133)

yn+1
2 = yn2 +∆t

[
1

2
K12 +

1

2
K22

]
. (13.134)

The implementation is now straightforward; it just requires one procedure
to evaluate f1(t, y1, y2) and f2(t, y1, y2) and this is called twice per time step:

316 CHAPTER 13. NUMERICAL METHODS FOR ODES

first with arguments (parameters) (tn, y
n
1 , y

n
2) for the first stage and then with

arguments (tn +∆t, yn1 +∆tK11, y
n
2 +∆tK12) for the second stage.

Note that for an explicit (m-step) multistep method we only need to
evaluate f once per time step because we store the other m − 1 previous
values which in turn get successively updated as the time stepping proceeds.

13.9 Adaptive Stepping

So far we have considered a fixed ∆t throughout the entire computation of an
approximation to the IVP of an ODE or of a system of ODEs. We can vary
∆t as we march up in t to maintain the approximation within a given error
bound. The idea is to obtain an estimate of the error using two different
methods, one of order p and one of order p+ 1, and employ this estimate to
decide whether the size of ∆t is appropriate or not at the given time step.

Let yn+1 and wn+1 be the numerical approximations updated from yn

using the method of order p, and p+ 1, respectively. Then, we estimate the
error at tn+1 by

en+1(∆t) ≈ wn+1 − yn+1. (13.135)

If |wn+1 − yn+1| ≤ δ, where δ is a prescribed tolerance, then we maintain
the same ∆t and use wn+1 as initial condition for the next time step. If
|wn+1 − yn+1| > δ, we decrease ∆t (e.g. we set it to ∆t/2), recompute yn+1

and wn+1, obtain the new estimate of the error (13.135), etc.

One-step methods allow for straightforward use of variable ∆t. Variable
step, multistep methods can also be derived but are not used much in practice
due to more limited stability properties.

13.10 Embedded Methods

For computational efficiency, adaptive stepping as described above is imple-
mented reusing as much as possible evaluations of f , the derivative of y,
because this is the most expensive part of RK methods. So the idea is to em-
bed, with minimal additional f evaluations, an RK method inside another.
The following example illustrates this.

13.11. MULTISTEP METHODS 317

Consider the improved Euler method (second order) and the Euler method
(first order). We can embed them as follows

K1 = f(tn, y
n), (13.136)

K2 = f (tn +∆t, yn +∆tK1) , (13.137)

wn+1 = yn +∆t

[
1

2
K1 +

1

2
K2

]
, (13.138)

yn+1 = yn +∆tK1. (13.139)

Note that the approximation of the derivative K1 is used for both methods.
The computation of the higher order method (13.138) only costs an additional
evaluation of f .

13.11 Multistep Methods

Multistep methods use approximations from more than one step to obtain
the approximation at the next time step. Linear multistep methods can be
written in the general form

m∑
j=0

ajy
n+j = ∆t

m∑
j=0

bjf
n+j. (13.140)

where m ≥ 2 is the number of previous steps the method employs.

Multistep methods only require one evaluation of f per time step be-
cause the other previously computed values of f are stored. Thus, multistep
methods have generally lower computational cost per time step than one-step
methods of the same order. The trade-off is reduced numerical stability as
we will see later.

We used in Section 13.2 interpolation and finite differences to construct
some examples of multistep methods. It is possible to build also multistep
methods by choosing the coefficients a0, . . . , am and b0, . . . , bm so as to achieve
a desired maximal order for a given m ≥ 2 and/or to have certain stability
properties.

Two classes of multistep methods, both derived from interpolation, are
among the most commonly used multistep methods. These are the explicit
and implicit Adams methods.

318 CHAPTER 13. NUMERICAL METHODS FOR ODES

13.11.1 Adams Methods

We constructed in Section 13.2 the two-step Adams-Barshforth method

yn+1 = yn +
∆t

2

[
3fn − fn−1] , n = 1, 2, . . . N − 1,

where fn = f(tn, y
n) and fn−1 = f(tn−1, yn−1). An m-step explicit Adams

method, also called Adams-Bashforth, can be derived by starting with the
integral formulation of the IVP,

y(tn+1) = y(tn) +

∫ tn+1

tn

f(t, y(t))dt, (13.141)

and replacing the integrand with the interpolating polynomial p ∈ Pm−1 of
(tj, f

j) for j = n −m + 1, . . . , n. Recall that f j = f(tj, y
j). If we represent

p in Lagrange form we have

p(t) =
n∑

j=n−m+1

lj(t)f
j, (13.142)

where

lj(t) =
n∏

k=n−m+1
k ̸=j

(t− tk)
(tj − tk)

, for j = n−m+ 1, . . . , n. (13.143)

Thus, the m-step explicit Adams method has the form

yn+1 = yn +∆t
[
bm−1f

n + bm−2f
n−1 + . . . b0f

n−m+1
]
, (13.144)

where

bj−(n−m+1) =
1

∆t

∫ tn+1

tn

lj(t)dt, for j = n−m+ 1, . . . , n. (13.145)

Here are the first three explicit Adams methods, 2-step, 3-step, and 4-step,
respectively:

yn+1 = yn +
∆t

2

[
3fn − fn−1] , (13.146)

yn+1 = yn +
∆t

12

[
23fn − 16fn−1 + 5fn−2] , (13.147)

yn+1 = yn +
∆t

24

[
55fn − 59fn−1 + 37fn−2 − 9fn−3] . (13.148)

13.11. MULTISTEP METHODS 319

The implicit Adams methods, also called Adams-Moulton methods, are
derived by including (tn+1, f

n+1) in the interpolation. That is, p ∈ Pm is now
the polynomial interpolating (tj, f

j) for j = n −m + 1, . . . , n + 1. Here are
the first three implicit Adams methods:

yn+1 = yn +
∆t

12

[
5fn+1 + 8fn − fn−1] , (13.149)

yn+1 = yn +
∆t

24

[
9fn+1 + 19fn − 5fn−1 + fn−2] , (13.150)

yn+1 = yn +
∆t

720

[
251fn+1

+ 646fn − 264fn−1 + 106fn−2 − 19fn−3] . (13.151)

13.11.2 D-Stability and Dahlquist Equivalence Theo-
rem

Recall that we can write a general multistep method as

m∑
j=0

ajy
n+j = ∆t

m∑
j=0

bjf
n+j.

The coefficients aj’s and bj’s define two characteristic polynomials of the
multistep method:

ρ(z) = amz
m + am−1z

m−1 + . . .+ a0, (13.152)

σ(z) = bmz
m + bm−1z

m−1 + . . .+ b0. (13.153)

Consistency, given by the conditions (13.90)-(13.91), can be equivalently ex-
pressed as

ρ(1) = 0, (13.154)

ρ′(1) = σ(1). (13.155)

Numerical stability is related to the notion of a uniform bound (indepen-
dent of n) of the amplification of the local error in the limit as n → ∞ and
∆t → 0 [see bound (13.101) for one-step methods]. Thus, it is natural to
consider the equation:

amy
n+m + am−1y

n+m−1 + . . .+ a0y
n = 0. (13.156)

320 CHAPTER 13. NUMERICAL METHODS FOR ODES

This is a homogeneous linear difference equation. Since am ̸= 0, we can easily
solve for yn+m in terms of the previous values m values. So given the initial
values y0, y1, . . . , ym−1, there is a unique solution of (13.156). Let us look for
a solution of the form yn = cξn, where c is a constant and the n in ξn is a
power not a superindex. Plugging this ansatz in (13.156) we obtain

cξn
[
amξ

m + am−1ξ
m−1 + . . .+ a0

]
= 0. (13.157)

If cξn = 0 we get the trivial solution yn ≡ 0, for all n. Otherwise, ξ has to
be a root of the polynomial ρ.

If ρ has m distinct roots, ξ1, ξ2, . . . , ξm, the general solution of (13.156) is

yn = c1ξ
n
1 + c2ξ

n
2 + . . .+ cmξ

n
m, (13.158)

where c1, c2, . . . , cm are determined uniquely from the m initial values y0, y1,
. . ., ym−1.

If the roots are not all distinct, the solution of (13.156) changes as follows:
If for example ξ1 = ξ2 is a double root, i.e. a root of multiplicity 2 [ρ(ξ1) = 0,
and ρ′(ξ1) = 0 but ρ′′(ξ1) ̸= 0] then yn = nξn1 is also a solution of (13.156).
Let’s check this is indeed the case. Substituting yn = nξn1 in (13.156) we get

am(n+m)ξn+m
1 + am−1(n+m− 1)ξn+m−1

1 + . . .+ a0nξ
n
1

= ξn1
[
am(n+m)ξm1 + am−1(n+m− 1)ξm−11 + . . .+ a0n

]
= ξn1 [nρ(ξ1) + ξ1ρ

′(ξ1)] = 0.

(13.159)

Thus, when there is one double root, the general solution of (13.156) is

yn = c1ξ
n
1 + c2nξ

n
1 + c3ξ

n
3 + . . .+ cmξ

n
m. (13.160)

If there is a triple root, say ξ1 = ξ2 = ξ3, the general solution of (13.156) is
given by

yn = c1ξ
n
1 + c2nξ

n
1 + c3n(n− 1)ξn1 + . . .+ cmξ

n
m, (13.161)

and so on and so forth.
We need the solution yn of (13.156) to remain bounded as n → ∞ for

otherwise it will not converge to y(t) = α, the solution of y′ = 0, y(0) = α.
Thus, we need that all the roots ξ1, ξ2, . . . , ξm of ρ satisfy:

(a) |ξj| ≤ 1, for all j = 1, 2, . . . ,m.

13.11. MULTISTEP METHODS 321

(b) If ξk is a root of multiplicity greater than one then |ξk| < 1.

(a) and (b) are known as the root condition.
Since the exact solution y(t) is bounded, the global error is bounded as

∆t→ 0 (n→∞) if and only if the numerical approximation yn is bounded
as ∆t → 0 (n → ∞). This motivates the following central concept in the
theory of multistep methods.

Definition 13.7. A multistep method is D-stable (or zero-stable) if the zeros
of ρ satisfy the root condition.

Example 13.16. All the m-step (m > 1) methods in the Adams family have

ρ(ξ) = ξm − ξm−1. (13.162)

The roots of ρ are 1 (with multiplicity one) and 0. Hence, the Adams methods
are all D-stable.

As we have seen, D-stability is necessary for convergence of a multistep
method. It is truly remarkable that D-stability, together with consistency, is
also sufficient for convergence. In preparation for this fundamental result, let
us go back to the general linear multistep method. Without loss of generality
we take am = 1 and write a general multistep method as

yn+m + am−1y
n+m−1 + . . .+ a0y

n = cn+m, (13.163)

where

cn+m = ∆t
m∑
j=0

bjf
n+j. (13.164)

For cn+m given, (13.163) is a inhomogeneous linear difference equation. We
will show next that we can express the solution of (13.163) in terms of m
particular solutions of the homogeneous equation (cn+m = 0), the m initial
values, and the right hand side in a sort of Discrete Duhamel’s principle.
For a multistep method, cn+m actually depends on the solution itself so we
proceed formally to find the aforementioned solution representation.

Let ynk , for k = 0, 1, . . . ,m − 1, be the solution of the homogeneous
equation with initial values ynk = δn,k, n = 0, 1, . . . ,m − 1, and let wn

k for
k = m,m+ 1, ... be the solution of the “unit impulse equation”

wn+m
k + am−1w

n+m−1
k + . . .+ a0w

n
k = δn,k−m, (13.165)

322 CHAPTER 13. NUMERICAL METHODS FOR ODES

with initial values w0
k = w1

k = . . . = wm−1
k = 0. Then, the solution of (13.163)

with initial values y0 = α0, y
1 = α1, . . . , y

m−1 = αm−1 can be written as

yn =
m−1∑
k=0

αky
n
k +

n∑
k=m

ckw
n
k , n = 0, 1, (13.166)

The first sum enforces the initial conditions and is a solution of the homoge-
neous equation (13.156). Since wn

k = 0 for n < k we can extend the second
sum to ∞. Let

zn =
n∑

k=m

ckw
n
k =

∞∑
k=m

ckw
n
k . (13.167)

Then

m∑
j=0

ajz
n+j =

m∑
j=0

aj

∞∑
k=m

ckw
n+j
k =

∞∑
k=m

ck

m∑
j=0

ajw
n+j
k

=
∞∑

k=m

ck δn,k−m = cn+m,

(13.168)

i.e. zn is a solution of (13.163). Finally, we can interpret (13.165) as a ho-
mogeneous problem with m “delayed” (by k − m + 1 steps) initial values
0, 0, . . . , 0, 1. Hence, wn

k = yn+m−k−1
m−1 and we arrive at the following represen-

tation of the solution of (13.163)

yn =
m−1∑
k=0

αky
n
k +

n∑
k=m

cky
n+m−1−k
m−1 , n = 0, 1, . . . (13.169)

where ynm−1 = 0 for n < 0.

Theorem 13.3. (Dahlquist Equivalence Theorem) A multistep method is
convergent if and only if it is consistent and D-stable.

Proof. Necessity of D-stability. If a multistep method is convergent for all
IVP’s y′ = f(t, y), y(0) = α with f continuous and uniformly Lipschitz in y,
then so is for y′ = 0, y(0) = 0 whose solution is y(t) = 0. In this case yn

satisfies (13.156). One of the solutions of this equation is yn = ∆tξn, where
ξ is a root of the characteristic polynomial ρ (13.152). Note that yn = ∆tξn

13.11. MULTISTEP METHODS 323

satisfies the convergence requirement that yk → 0 for k = 0, 1, . . . ,m− 1 as
∆t → 0. If |ξ| > 1, for fixed t = n∆t (0 < t ≤ T), |yn| = ∆t|ξ|n = t|ξ|n/n
does not converge to zero as n→∞. Similarly, if ξ is a root of multiplicity
greater than 1 and |ξ| = 1, yn = ∆tnξn is a solution and |yn| = ∆tn|ξ|n =
t|ξ|n = t does not converge to zero as n→∞.

Necessity of consistency. Consider the particular IVP y′ = 0, y(0) = 1,
whose solution is y(t) = 1. Again, yn satisfies (13.156). Setting y0 = y1 =
. . . = ym−1 = 1 we can obtain yn for n ≥ m from (13.156). If the method
converges, then yn → 1 as n → ∞. Using this in (13.156) implies that
am + am−1 + . . .+ a0 = 0 or equivalently ρ(1) = 0. Now, consider the initial
value, y′ = 1, y(0) = 0. Then, the multistep method satisfies

amy
n+m + am−1y

n+m−1 + . . .+ a0y
n = ∆t(bm + bm−1 + . . .+ b0). (13.170)

We are now going to find a solution of this equation of the form yn = An∆t
for a suitable constant A. First, note that yk = Ak∆t converges to zero as
∆t → 0 for k = 0, 1, . . . ,m − 1, as required. Substituting yn = An∆t into
(13.170) we get

A∆t [am(n+m) + am−1(n+m− 1) + . . .+ a0n] = ∆t(bm + bm−1 + . . .+ b0)

and splitting the left hand side,

A∆tn [am + am−1 + . . .+ a0] + A∆t [mam + (m− 1)am−1 + . . .+ a1]

= ∆t(bm + bm−1 + . . .+ b0).

(13.171)

Using ρ(1) = 0 this simplifies to

A∆t [mam + (m− 1)am−1 + . . .+ a1] = ∆t(bm + bm−1 + . . .+ b0), (13.172)

i.e. Aρ′(1) = σ(1). Since D-stability is necessary for convergence ρ′(1) ̸= 0

and consequently A = σ(1)/ρ′(1) and yn = σ(1)
ρ′(1)n∆t is a solution of (13.170).

For fixed t = n∆t, yn should converge to t as n → ∞. Therefore, we must
have σ(1) = ρ′(1), which together with ρ(1) = 0, implies consistency.

Sufficiency of consistency and D-stability. From the definition of the local
truncation error (13.64)

m∑
j=0

ajy(tn+j) = ∆t
m∑
j=0

bjf(tn+j, y(tn+j)) + ∆t τn+m(∆t). (13.173)

324 CHAPTER 13. NUMERICAL METHODS FOR ODES

Subtracting (13.140) to this equation we get

m∑
j=0

aje
n+j(∆t) = cn+m, n = 0, 1, . . . , N −m, (13.174)

where ej(∆t) = y(tj)− yj is the global error at tj and

cn+m = ∆t
m∑
j=0

bj[f(tn+j, y(tn+j))− fn+j] + ∆t τn+m(∆t). (13.175)

Then, using (13.169) we can represent the solution of (13.174) as

en(∆t) =
m−1∑
k=0

ek(∆t)ynk +
n−m∑
k=0

ck+my
n−1−k
m−1 , n = 0, 1, . . . , N. (13.176)

Since the method is D-stable, the solutions of the homogeneous linear differ-
ence equation, ynk , k = 0, 1, . . .m− 1, are bounded, i.e. there is M such that
|ynk | ≤M , k = 0, 1, . . .m− 1 and all n. Then,

|en(∆t)| ≤ mM max
0≤k≤m−1

|ek(∆t)|+M
n−m∑
k=0

|ck+m|, n = 0, 1, . . . , N.

(13.177)

Moreover, using the Lipschitz continuity of f and the bound of the local
truncation error

|ck+m| ≤ ∆t

[
Lb

m∑
j=0

|ek+j(∆t)|+ C(∆t)p

]
, (13.178)

where L is the Lipschitz constant and b = maxj |bj|. Therefore,
|en(∆t)| ≤ mM max

0≤k≤m−1
|ek(∆t)|

+ (n−m+ 1)M∆t

[
(m+ 1)Lb max

0≤k≤n
|ek(∆t)|+ C(∆t)p

]
,

(13.179)

for n = 0, 1, . . . , N . Let En = max0≤k≤n |ek(∆t)| (we omit the dependance
of En on ∆t to simplify the notation). Then, we can write (13.179) as

|en(∆t)| ≤ mMEm−1 + (n−m+ 1)M∆t [(m+ 1)LbEn + C(∆t)p] .
(13.180)

13.11. MULTISTEP METHODS 325

Since En = |ek′(∆t)| for some 0 ≤ k′ ≤ n, we can replace the left hand side
of (13.180) by En and because m > 1 it follows that

En ≤ C̃n∆tEn +mMEm−1 +MCn(∆t)p+1, (13.181)

where C̃ = (m+ 1)MLb. Therefore,(
1− C̃n∆t

)
En ≤ mMEm−1 +MCn(∆t)p+1. (13.182)

If we restrict the integration up to T1 = 1/(2C̃), i.e. C̃n∆t ≤ 1/2, we have

En ≤ 2M
[
mEm−1 + T1C(∆t)

p
]
, 0 ≤ n∆t ≤ T1 (13.183)

and going back to the definition of En we obtain

|en(∆t)| ≤ 2M
[
mEm−1 + T1C(∆t)

p
]
, 0 ≤ n∆t ≤ T1. (13.184)

The term Em−1 depends only on the m initialization values of the multistep
method. For a consistent method p ≥ 1 and Em−1 → 0 as ∆t → 0. Hence
(13.184) implies convergence on the interval [0, T1], where T1 = 1/(2C̃). We
can repeat the argument on the interval [T1, 2T1], using the estimate of the
error (13.184) for the first m values ek1−(m−1), ek1−(m−2), . . . , ek1 , where k1 =
[T1/∆t], and obtain convergence in [T1, 2T1]. Continuing with this process a
finite number of times, J = [T/T1], we can prove convergence on the intervals

[0, T1], [T1, 2T1], . . . , [(J − 1)T1, T]. (13.185)

The pointwise error bound on each of these interval depends on the error
bound of the previous interval as follows

Ej ≤ 2M [mEj−1 + T1C(∆t)
p] , j = 1, . . . , J, (13.186)

where Ej is the (pointwise) error bound on [(j − 1)T1, jT1] and E0 = Em−1.
Defining A = 2Mm and B = 2MT1C(∆t)

p, we get for the error bound of
the last interval

EJ ≤ AEJ−1 +B ≤ A [AEJ−2 +B] +B

= A2EJ−2 + AB +B

≤ A2 [AEJ−3 +B] + AB +B

= A3EJ−3 + (A2 + A+ 1)B

...

≤ AJE0 + (AJ−1 + AJ−2 + . . .+ 1)B.

(13.187)

326 CHAPTER 13. NUMERICAL METHODS FOR ODES

Therefore, we obtain the error bound

|en(∆t)| ≤ (2Mm)JEm−1 + S(∆t)p, (13.188)

where S = [(2Mm)J−1+(2Mm)J−2+ . . .+1](2MT1C), which establishes the
convergence of a consistent, D-stable multistep method, and shows the de-
pendence of the global error on the initialization error and on the truncation
error.

13.12 A-Stability

So far we have discussed numerical stability in the sense of a bounded growth
of the error, or equivalently of the boundedness of the numerical approxima-
tion in the limit as ∆t → 0 (n → ∞). There is another type of numerical
stability which gives us some guidance on the actual size of ∆t one can take
for a stable computation using a given ODE numerical method. This type
of stability is called linear stability, absolute stability, or A-stability. It is
based on the behavior of the given numerical method for the simple linear
problem:

y′ = λy, (13.189)

y(0) = 1, (13.190)

where λ is a complex number. The exact solution is y(t) = eλt.
Let us look at the forward Euler method applied to this model problem:

yn+1 = yn +∆tλyn = (1 + ∆tλ)yn

= (1 + ∆tλ)(1 + ∆tλ)yn−1 = (1 + ∆tλ)2yn−1 (13.191)

= . . . = (1 + ∆tλ)n+1y0 = (1 + ∆tλ)n+1.

Thus, yn = (1+∆tλ)n. Evidently, in order for this numerical approximation
to remain bounded as n→∞ (long time behavior) we need

|1 + ∆tλ| ≤ 1. (13.192)

This puts a constraint on the size of ∆t we can take for a stable computation
with the forward Euler method. For example, if λ ∈ R and λ < 0, we need
to take ∆t ≤ 2/|λ|. Denoting z = ∆tλ, the set

S = {z ∈ C : |1 + z| ≤ 1} , (13.193)

13.12. A-STABILITY 327

5 4 3 2 1 0 1 2 3
3

2

1

0

1

2

3

Forward Euler

RK2
RK3
RK4

Forward Euler

RK2
RK3
RK4

Forward Euler

RK2
RK3
RK4

Forward Euler

RK2
RK3
RK4

Forward Euler

RK2
RK3
RK4

Forward Euler

RK2
RK3
RK4

Forward Euler

RK2
RK3
RK4

Figure 13.3: A-Stability regions for explicit RK methods of order 1–4.

i.e. the unit disk centered at −1 is the region of A-stability of the forward
Euler method.

Runge-Kutta methods applied to the linear problem (13.189) produce a
solution of the form

yn+1 = R(∆tλ)yn, (13.194)

where R is a rational function, i.e. R(z) = P (z)
Q(z)

, where P ands Q are polyno-
mials. In particular, when the RK method is explicit R is just a polynomial.
For an RK method, the region of A-stability is given by the set

S = {z ∈ C : |R(z)| ≤ 1} . (13.195)

R is called the stability function of the RK method. Figure 13.3 shows the
A-stability regions for explicit RK methods of order 1 (Euler) through 4.
Note that as the order increases so does the A-stability region.

Example 13.17. The improved Euler method. We have

yn+1 = yn +
∆t

2
[λyn + λ(yn +∆tλyn)] , (13.196)

328 CHAPTER 13. NUMERICAL METHODS FOR ODES

that is

yn+1 =

[
1 + ∆tλ+

1

2
(∆tλ)2

]
yn. (13.197)

The stability function is therefore R(z) = 1 + z + z2

2
. Observe that

R(z) = ez +O(z3). (13.198)

That is, R(∆tλ) approximates e∆tλ to third order in ∆t, as it should, because
the method is second order. The A-stability region, i.e. the set of all complex
numbers z such that |R(z)| ≤ 1 is the RK2 region shown in Fig. 13.3).

Example 13.18. The backward Euler method. In this case we have,

yn+1 = yn +∆tλyn+1, (13.199)

and solving for yn+1 we obtain

yn+1 =

[
1

1−∆tλ

]
yn. (13.200)

So its stability function is R(z) = 1/(1 − z) and its A-stability region is
therefore the set of complex numbers z such that |1− z| ≥ 1, i.e. the exterior
of the unit disk centered at 1 as shown in Fig. 13.4(a).

Example 13.19. The implicit trapezoidal rule method. We have

yn+1 = yn +
∆t

2

(
λyn + λyn+1

)
(13.201)

and solving for yn+1 we get

yn+1 =

[
1 + ∆t

2
λ

1− ∆t
2
λ

]
yn. (13.202)

Thus, the region of A-stability of the (implicit) trapezoidal rule method is the
set complex numbers z such that∣∣∣∣1 + z

2

1− z
2

∣∣∣∣ ≤ 1 (13.203)

and this is the entire left half complex plane, Re{z} ≤ 0 [Fig. 13.4(b)]

13.12. A-STABILITY 329

1

(a)

0

(b)

Figure 13.4: Region of A-stability for (a) backward Euler and (b) the trape-
zoidal rule method.

Definition 13.8. A method is called A-stable if its linear stability region
contains the left half complex plane.

The trapezoidal rule method and the backward Euler method are both
A-stable.

Let us consider now A-stability for linear multistep methods. When we
apply an m-step (m > 1) method to the linear ODE (13.189) we get

m∑
j=0

ajy
n+j −∆tλ

m∑
j=0

bjy
n+j = 0. (13.204)

This is a constant coefficients, linear difference equation. We look for solu-
tions of this equation in the form yn = c ξn as we have done earlier. Substi-
tuting into (13.204) we have

c ξn
m∑
j=0

(aj −∆tλbj)ξ
j = 0. (13.205)

If c ξn = 0 we get the trivial solution yn ≡ 0, otherwise ξ must be root of the
polynomial

π(ξ, z) = (am − zbm)ξm + (am−1 − zbm−1)ξm−1 + . . .+ (a0 − zb0), (13.206)

where z = ∆tλ. We can write π(ξ, z) in terms of the characteristic polyno-
mials of the multistep method ρ and σ, (13.152) and (13.153), respectively,

330 CHAPTER 13. NUMERICAL METHODS FOR ODES

as

π(ξ, z) = ρ(ξ)− zσ(ξ). (13.207)

Hence, for the numerical approximation yn to remain bounded as n→∞ we
need that all the roots of the polynomial π satisfy the root condition.

Definition 13.9. The region of A-stability of a linear multistep method is
the set

S = {z ∈ C : all the roots of π(ξ, z) satisfy the root condition} . (13.208)

Recall that consistency for a multistep method translates into the follow-
ing conditions ρ(1) = 0 and ρ′(1) = σ(1). The first condition implies that
π(1, 0) = 0. Because the zeros of a polynomial depend continuously on its
coefficients, it follows that π has a root ξ1(z) for z in the neighborhood of
zero. Such root is called the principal root of π(ξ, z) and it can be shown that
ξ1(z) = ez + O(zp+1) for a method of order p. Thus, it carries the expected
approximation to the exact solution ez. The other roots of π(ξ, z) are called
parasitic roots.

Example 13.20. Consider the 2-step method

yn+1 + 4yn − 5yn−1 = ∆t
[
4fn + 2fn−1] . (13.209)

Then

ρ(ξ) = ξ2 + 4ξ − 5 = (ξ − 1)(ξ + 5), (13.210)

σ(ξ) = 4ξ + 2. (13.211)

Thus, ρ(1) = 0 and ρ′(1) = σ(1) and the method is consistent. However, the
roots of ρ are 1 and −5 and hence the method is not D-stable. Therefore, by
Dahlquist Equivalence Theorem, it is not convergent. Note that

π(ξ, z) = ξ2 + 4(1− z)ξ − (5 + 2z) (13.212)

has roots

ξ± = −2 + 2z ± 3

√
1− 2

3
z +

4

9
z2 (13.213)

13.12. A-STABILITY 331

1 0
3

2

1

0

1

2

3
m = 2

1 0
3

2

1

0

1

2

3
m = 3

1 0
3

2

1

0

1

2

3
m = 4

Figure 13.5: A-Stability regions (shown shaded) for the m-step Adams-
Bashforth method for m = 2, 3, 4.

and for small |z|√
1− 2

3
z +

4

9
z2 = 1− 1

3
z +

1

6
z2 +

1

18
z3 +O(z4) (13.214)

we have

ξ+ = 1 + z +
1

2
z2 +

1

6
z3 +O(z4) = ez +O(z4) principal root. (13.215)

ξ− = −5 + 3z +O(z2) parasitic root. (13.216)

Note that this 2-step, explicit method is third order. However, it is completely
useless!

Figure 13.5 displays the A-stability region for the (explicit)m-step Adams-
Bashforth (AB) method for m = 2, 3, 4. Note that the A-stability region of
the AB methods decreases as m increases and that these stability regions are
significantly smaller than those of the explicit RK counterparts (Fig. 13.5).

The (implicit) Adams-Moulton methods have a relatively larger stabil-
ity region than the Adam-Bashforth methods as Fig. 13.6 shows. Note the

332 CHAPTER 13. NUMERICAL METHODS FOR ODES

6 3 0

3

2

1

0

1

2

3

m = 2

6 3 0

3

2

1

0

1

2

3

m = 3

6 2 0

3

2

1

0

1

2

3

m = 4

Figure 13.6: A-Stability regions (shown shaded) for the Adams-Moulton
method of step m = 2, 3, 4.

change in the axis scale in this figure with respect to that used in Fig. 13.5.
Implicit RK methods have a much larger stability region but are computa-
tionally more expensive than the multistep methods. Moreover, there is an
A-stability barrier for the latter: it is not possible to have A-stable multistep
methods of more than two steps (m > 2).

13.13 Numerically Stiff ODEs and L-Stability

In applications we often have systems of ODEs that have two or more dis-
parate time scales. For example, a process that evolves very fast in a slowly
varying environment or a reaction of several chemicals with vastly different
reaction rates. This type of problems are called numerically stiff and, as we
will see, explicit numerical methods fail miserably when applied to them. In
fact, numerically stiff systems are often defined as those systems for which
explicit numerical methods fail.

13.13. NUMERICALLY STIFF ODES AND L-STABILITY 333

0.00 0.25 0.50 0.75 1.00
t

1

0

1

y

Figure 13.7: The exact solution (13.217) of the IVP (13.218)-(13.219) with
α = 0.75 and λ = −1000.

Consider the function

y(t) = αeλt + sin 2πt, (13.217)

where α, λ ∈ R and λ is negative with large absolute value. Thus, for α ̸= 0, y
has two components: an exponentially decaying, transient part and a slowly
(order one time scale) varying sinusoidal part. It is easy to verify that y in
(13.217) is the solution of the IVP

y′(t) = λ [y(t)− sin 2πt] + 2π cos 2πt, 0 < t ≤ 1 (13.218)

y(0) = α. (13.219)

For concreteness, let us take λ = −1000. Figure 13.7 shows y(t) for α = 0.75.
Clearly, y(t) quickly approaches the steady part, sin 2πt. This will be the
case for any other non-zero initial value α.

The explicit (forward) Euler method applied to (13.218)-(13.219) requires
∆t < 2/1000 = 1/500 for A-stability. Figure 13.8 presents the approximation
for t ∈ [0, 0.25] obtained with the forward Euler method for ∆t = 1/512, close
to the boundary of S. Observe that the Euler approximation approaches

334 CHAPTER 13. NUMERICAL METHODS FOR ODES

0.00 0.25
t

1

0

1

y

Forward Euler
Exact Solution

Figure 13.8: Forward Euler approximation and exact solution of (13.218)-
(13.219) with α = 0.75 and λ = −1000 for t ∈ [0, 0.25]. ∆t = 1/512.

the steady solution but with an oscillatory behavior. The method fails to
adequately capture the fast transient and the smooth evolution of the exact
solution, despite the small ∆t. The accuracy is clearly not O(∆t)!

We now consider the implicit (backward) Euler method to solve (13.218)-
(13.219) again with λ = −1000 and ∆t = 1/512. Figure 13.9 compares
the backward Euler approximation with the exact solution and shows this
method produces a smooth and accurate approximation. The backward Euler
method is A-stable so for λ < 0 there is no stability restriction for ∆t. This
is advantageous when are interested in reaching quickly the steady state by
taking a large ∆t and do not care too much about the ultra fast transient.

The backward Euler method is only first order accurate. It is tempting
to replace it with a second order A-stable method, like the trapezoidal rule
method. After all, the latter has about the same computational cost as
the former but its order is higher. Well, as Fig. 13.10 demonstrates, the
trapezoidal rule method is actually a poor choice for this stiff problem; the
first order, backward Euler method turns out to be more accurate than the
second order trapezoidal rule method in the stiff regime |λ∆t| large (we used
∆t = 0.05).

13.13. NUMERICALLY STIFF ODES AND L-STABILITY 335

0.00 0.25
t

1

0

1

y

Backward Euler
Exact Solution

Figure 13.9: Backward Euler approximation and exact solution of (13.218)-
(13.219) with α = 0.75 and λ = −1000 for t ∈ [0, 0.25]. ∆t = 1/512.

This behavior can be explained in terms of the stability function R. Recall
that for the trapezoidal rule method

R(z) =
1 + 1

2
z

1− 1
2
z
, (13.220)

with z = λ∆t. In this example, z = −50 and R(−50) = −24/26 ≈ −0.923,
which is close to −1. Hence, the trapezoidal rule approximation decays very
slowly toward the solution’s steady state part and does so with oscillations
because of the negative sign in R(z). In contrast, for the backward Euler
method R(−50) = 1/51 ≈ 0.0196 and the decay is fast and nonoscillatory.

Note that if we take the initial condition α = 0 the numerical stiffness
of the initial value problem (13.218)-(13.219) disappears and the trapezoidal
rule method approximates more accurately the exact solution y(t) = sin 2π
than the backward Euler method for the same ∆t, as expected.

As we have just seen, the behavior |R(z)| → 0 as |z| → ∞ is desirable for
some stiff problems where the solution or some components of the solution
have fast decay. This motivates the following definition.

336 CHAPTER 13. NUMERICAL METHODS FOR ODES

0.00 0.25 0.50 0.75 1.00
t

1

0

1

y

Backward Euler
Exact Solution
Trapezoidal Rule

Figure 13.10: Trapezoidal rule approximation compared with the backward
Euler approximation and the exact solution of (13.218)-(13.219) with α =
0.75 and λ = −1000 for t ∈ [0, 1]. ∆t = 0.05.

13.13. NUMERICALLY STIFF ODES AND L-STABILITY 337

Definition 13.10. A one-step method is L-stable if it is A-stable and

lim
|z|→∞

|R(z)| = 0. (13.221)

Example 13.21. The backward Euler method is A-stable and has stability
function R(z) = 1/(1 − z). Therefore, it is L-stable. The trapezoidal rule
method, while A-stable is not L-stable for |R(z)| → 1 as |z| → ∞.

Let us consider now the linear system

y′ = Ay + f(t), (13.222)

where y, f ∈ Rd and A is an d × d matrix. If A has distinct eigenvalues
λ1, λ2, . . . λd, with corresponding eigenvectors v1,v2, . . .vd, and all the eigen-
values have a negative real part, the general solution consists of a transient
part and a steady state part, just as in the scalar example that motivated
this section. Specifically, the general solution of y′ = Ay+f(t) can be written
as

y(t) =
d∑

k=1

ake
λktvk + s(t), (13.223)

where the ak’s are constants determined by the initial condition and s(t)
represents the steady state. Let λp and λq be the eigenvalues with the largest
and the smallest absolute value of the real part, i.e. |Re{λp}| = max

j
|Re{λj}|

and |Re{λq}| = min
j
|Re{λj}|. For an explicit method, |Re{λp}| limits the

size of ∆t to be in the A-stability region while |Re{λq}| dictates how long we
need to time-step to reach the steady state; the smaller |Re{λq}| the longer
we need to compute. Hence, the ratio of the fastest to slowest time scale

Sr =
|Re{λp}|
|Re{λq}|

(13.224)

is a measure of the numerical stiffness for this linear system.
Often, numerically stiff ODE systems are nonlinear. We can get some

estimate of their degree of stiffness by linearization. The idea is that small
perturbations in the solution are governed by a linear system and if this is
numerically stiff, then so is the nonlinear system.

338 CHAPTER 13. NUMERICAL METHODS FOR ODES

Consider the autonomous nonlinear system y′ = f(y) and write

y(t) = y(t∗) + ϵw(t), (13.225)

for small ϵ. Here, y(t∗) is just a given state, for example y(tn). Now, Taylor
expand f(y) around y(t∗), retaining only up the O(ϵ) term,

f(y(t)) ≈ f(y(t∗)) + ϵ
∂f

∂y
(y(t∗))w(t). (13.226)

substituting (13.225) and (13.226) into y′ = f(y), we find the perturbation
w(t) approximately satisfies the linear ODE system

w′(t) =
∂f

∂y
(y(t∗))w(t) +

1

ϵ
f(y(t∗)). (13.227)

Then, at least locally (i.e. in a neighborhood of t∗) the variation of the solu-
tion is approximately governed by (13.227). Thus, one approximate indicator
of numerical stiffness could be the stiffness ratio Sr of the Jacobian matrix
∂f
∂y
(y(t∗)). However, if the Jacobian varies significantly in the time interval

of interest, Sr might not a good stiffness indicator. In practice, numerical
stiffness is often assessed by using two error estimators. One for an explicit
method and the other for a lower order approximation but that outperforms
the explicit method in the stiff limit. If the error estimate for the lower order
method is smaller than that of the explicit method repeatedly over several
time-steps, it is viewed as an indication that the explicit method is inade-
quate, the IVP is considered stiff, and the explicit method is replaced by a
suitable implicit one.

Example 13.22. The van der Pol system

y′1 = y2 − y31 + 2µy1, (13.228)

y′2 = −y1, (13.229)

is a simple model of an RLC electric circuit; y1 and y2 are related to the
current and voltage, respectively, and the parameter µ controls the resistance.
This ODE system has only one equilibrium point, (0, 0). Let’s look at the
Jacobian evaluated at (0, 0)

∂f

∂y
(0, 0) =

[
2µ 1
−1 0

]
. (13.230)

13.14. BIBLIOGRAPHIC NOTES 339

The eigenvalues of this matrix are

λ = µ±
√
µ2 − 1. (13.231)

For moderate values of |µ| the system could be integrated with an explicit
method. However, for very negative values of µ it becomes numerically stiff.
For example, if µ = −100 the corresponding stiffness ratio is

Sr =

∣∣∣∣∣µ−
√
µ2 − 1

µ+
√
µ2 − 1

∣∣∣∣∣ ≈ 4× 104. (13.232)

13.14 Bibliographic Notes

Numerical methods for ODEs is a much broader topic than presented here.
The main references are the two volumes “Solving Differential Equations”
by Hairer, Nørsett, and Wanner [HNW93] and Hairer and Wanner [HNW96],
the classical texts by Henrici [Hen62] and Lambert [Lam91], and the book by
Butcher [But08]. Other excellent, specialized books on numerical methods
for both ordinary and partial differential equations are the ones by Lev-
eque [LeV07] and by Iserles [Ise08].

Section 13.1 . The theory of the ODE IVP can be found in most differential
equations books. For example Coddington and Levison [CL84](Chapters 1
and 2), and Sideris [Sid13](Chapter 3). Also, Volume I of “Solving Differen-
tial Equations” [HNW93] has three chapters (I.7, I.8, I.9) on existence theory
with historical notes.

Section 13.2 . Euler proposed his method in 1768 [Eul68] (Caput VII, p.
494). RK methods were first introduced by Runge in 1895 [Run95] with sub-
sequent contributions by Heun [Heu00] and Kutta [Kut01] as indicated by
Butcher [But08](p. 93). The idea of multistep methods was first proposed
by Bashforth and Adams [BA83], see [But08](p. 105) for a short historical
account.

Section 13.3 . The division of numerical methods for the IVP into Runge-
Kutta and multistep methods is a standard one in most texts. Here we
follow instead Henrici’s [Hen62] use of one-step and multistep. Stoer and Bu-
lirsch [SB02][7.2.7] employ the general form of a nonlinear multistep method

340 CHAPTER 13. NUMERICAL METHODS FOR ODES

for the discussion of the main theory of multistep methods. Lambert and
Shaw [LS66] provide early examples of a class of nonlinear multistep meth-
ods.

Section 13.4. For the definition of the local truncation error (LTE) we fol-
lowed Hairer, Nørsett, and Wanner [HNW93], except that we chose to divide
by ∆t to make it consistent with the standard definition of LTE for finite
differences for partial differential equations as we will see in the next chap-
ter. Leveque [LeV07] makes a similar choice. The discussion of the LTE for
implicit linear multistep methods follows that in [HNW93][III.2].

Section 13.5. The local truncation error and the definition of order of ac-
curacy for a multistep method can be equivalently given in terms of the

linear operator L(y, t,∆t) =
m∑
j=0

ajy(tn+j) −
m∑
j=0

bjy
′(tn+j), see for example

[Gau11, HNW93].

Section 13.6. The proof of Theorem 13.2 follows that in [Sch89] with some
minor variations.

Section 13.7. We only presented a brief introduction of RK methods. The
book by Butcher [But08] is an excellent reference on this topic, including the
use of trees for order conditions, implicit RK methods, stability, and imple-
mentation details. Chapter II of [HNW93] is also a comprehensive reference
for RK methods. The DIRK and SDIRK examples are from this text.

Section 13.8. The method of lines often employed in IVP for partial differen-
tial equations (see Section 14.2), which consists in discretizing in the space
variables but keeping time continuous, leads to a large, first order system of
ODE to which the methods seen in this chapter may be applied.

Section 13.9 and Section 13.10. Here we follow the exposition of Leveque’s
text [LeV07][5.7.1].

Section 13.11. We only discussed Adams methods but there are several
other classes of multistep methods. For example, the Nyström methods are
derived, like the Adams methods, using interpolation but starting from the

13.14. BIBLIOGRAPHIC NOTES 341

integral equation from tn−1 to tn+1. There are also the briefly mentioned BDF
methods, extrapolation methods, second derivative methods for stiff ODEs,
among others (see Chapter III of [HNW93] and Chapter V of [HNW93]). We
chose D-stable to refer to methods that satisfy the root condition, in honor
of Dahlquist [HNW93] but zero-stable is more commonly used. The proof
of Dahlquist theorem [Dah56] follows that in [IK94] with minor variations.
Another proof can be found in Henrici’s classical text [Hen62].

Section 13.12. This is a standard topic in numerical ODE texts, where it is
commonly found as absolute stability. Here we have followed [HNW93][IV.3,
also for L-stability] and [V.1]. Example 13.20 is from Dahlquist [Dah56], see
also [HNW93][III.3].

Section 13.13. The standard reference for stiff ODEs is the book by Hairer
andWanner [HNW96]. Our presentation follows that in Leveque’s book [LeV07].
For the van der Pol equation and for applications in circuit theory see for
example Chapter 12 of [HSD04].

342 CHAPTER 13. NUMERICAL METHODS FOR ODES

Chapter 14

Numerical Methods for PDE’s

This chapter provides a brief introduction to the vast topic of numerical
methods for partial differential equations (PDEs). We focus the discussion on
finite difference methods. Other important classes of numerical methods for
PDEs, not treated here, are the finite element method and spectral methods.

We introduce the main concepts (truncation error, consistency, stability,
and convergence) through one example, the heat equation in one spatial
dimension. We then look at the method of lines, which connects the solution
of initial value problems (IVPs) for PDEs with that of IVPs for large systems
of ODEs. This is followed by two examples of implicit methods, the extension
to higher dimensional problems, and wave propagation.

14.1 Key Concepts through One Example

Consider a thin rod of length L, with an initial temperature distribution f
and whose left and right endpoints are keep at fixed temperatures uL and uR,
respectively. Assuming the rod is homogeneous, the temperature u(t, x) at a
later time t and at a point x in the rod satisfies the heat equation problem:

ut(t, x) = Duxx(t, x), 0 < x < L, 0 < t ≤ T, (14.1)

u(0, x) = f(x), 0 < x < L, (14.2)

u(t, 0) = uL, u(t, L) = uR, (14.3)

where D > 0 is the rod’s diffusion coefficient and T defines the endpoint
of the time interval of interest. This is an IVP with Dirichlet boundary
conditions because we are specifying the value of the solution at the boundary,

343

344 CHAPTER 14. NUMERICAL METHODS FOR PDE’S

Eq. (14.3). For simplicity, we are going to take uR = uL = 0 and L = π. This
linear problem can be solved analytically, using the method of separation of
variables and Fourier (sine) series. Having a representation of the exact
solution will be very helpful in the discussion of the fundamental aspects of
the numerical approximations.

Assuming,

u(t, x) = ϕ(t)ψ(x) (14.4)

and substituting into the heat equation (14.1) we get ϕ′ψ = Dϕψ′′, and
rearranging

ϕ′

Dϕ
=
ψ′′

ψ
. (14.5)

The expression on the left hand side of (14.5) is a function of t only while
that on the right hand side is a function of x only. Therefore, they must both
be equal to a constant. This constant has to be negative since D > 0 and
the temperature cannot grow exponentially in time. We write this constant
as −λ2 and get from (14.5) the following two linear ODEs

ψ′′ + λ2ψ = 0, (14.6)

ϕ′ + λ2Dϕ = 0. (14.7)

The first equation, (14.6), is that of a harmonic oscillator whose general
solution is

ψ(x) = a cosλx+ b sinλx. (14.8)

The boundary condition at x = 0 implies a = 0, while the boundary condition
at x = π gives that λ has to be an integer, which we can assume to be positive
since b sin(−λx) = −b sin(λx) and we can absorb the negative sign in b. So
we set λ = k for all k ∈ Z+. On the other hand, the solutions of (14.7)
are a constant times exp(−k2Dt). Thus, for every k ∈ Z+ and constant bk,
bk exp(−k2Dt) sin kx is a solution of the heat equation which vanishes at the
boundary. We find the general solution by superposition:

u(t, x) =
∞∑
k=1

bke
−k2Dt sin kx. (14.9)

14.1. KEY CONCEPTS THROUGH ONE EXAMPLE 345

The coefficients bk are determined from the initial condition (14.2):

f(x) =
∞∑
k=1

bk sin kx. (14.10)

In other words, the bk’s are the sine Fourier coefficients of the initial temper-
ature f , i.e.

bk =
2

π

∫ π

0

f(x) sin kxdx, k = 1, 2, . . . (14.11)

In general, we cannot evaluate these coefficients exactly but we can obtain
an accurate approximation of them by using the composite trapezoidal rule
and computing the corresponding discrete sine coefficients efficiently with
the DST (or the FFT by extending f as an odd function, Section 3.12).
Naturally, in any practical use of the solution’s representation formula (14.9)
we would also have to decide on where to truncate the series. Note that
the solution is a superposition of harmonic modes whose amplitudes decay
exponentially for t > 0, that is

u(t, x) =
∞∑
k=1

ûk(t) sin kx, (14.12)

where ûk(t) = bke
−k2Dt is the amplitude of each harmonic mode (each sin kx).

Thus, even for a merely continuous initial condition, an accurate approxima-
tion can be obtained by truncating the series (14.12) after just a moderate
number of terms.

Suppose the initial temperature is the function

f(x) =


x 0 ≤ x ≤ π

3
,

π
3

π
3
< x ≤ 2π

3

π − x 2π
3
< x ≤ π,

(14.13)

shown in Fig. 14.1. For this piece-wise linear initial condition, we can evaluate
the Fourier coefficients (14.11) exactly using integration by parts. Figure 14.2
shows snapshots of the solution (the series was truncated after 100 terms) for
this initial condition. Note that even though the initial temperature f is just
continuous, the solution at any t > 0 is smooth and decays monotonically in
time.

346 CHAPTER 14. NUMERICAL METHODS FOR PDE’S

0 π/2 π

x

0

π/4

π/2

f

Figure 14.1: Initial temperature (14.13), u(0, x) = f(x).

0 π/2 π

x

0

π/4

π/2

u

t = 0

t = 0.25

t = 0.5

t = 1

Figure 14.2: Exact solution of the heat equation with D = 1 for initial
condition (14.13) and with homogenous Dirichlet boundary conditions.

14.1. KEY CONCEPTS THROUGH ONE EXAMPLE 347

x

t

Figure 14.3: Grid in the xt-plane. The interior nodes (where an approxima-
tion to the solution is sought), the boundary points, and initial value nodes
are marked with black, blue, and green dots, respectively.

While the preceding method based on a Fourier expansion yields an exact
representation of the solution, ultimately approximations have to be made
to obtain the Fourier coefficients of the initial condition and to truncate
the series, as mentioned earlier. The method is also quite limited in its
applicability. Finite difference methods offer a much broader applicability
and are widely used in both linear and nonlinear PDE problems.

In finite difference methods, we start by laying out a grid on the com-
putational space. In our example, the computational space is the rectangle
[0, π] × [0, T] in the xt plane. For simplicity, we employ a uniform grid, i.e
one created by a uniform partition of [0, π] and [0, T] as shown in Fig. 14.3.
We select positive integers M and N so that our grid or mesh is defined by
the nodes

(tn, xj) = (n∆t, j∆x), n = 0, 1, . . . , N, j = 0, 1, . . .M, (14.14)

where ∆t = T/N is the temporal mesh size or time step size and ∆x = π/M
is the spatial mesh size. We look for an approximation

unj ≈ u(tn, xj) (14.15)

of the solution at the interior nodes (tn, xj), n = 1, 2, . . . , N , j = 1, 2, . . . ,M−
1. To this end, we approximate the derivatives with finite differences (Chap-
ter 6). For example, if we use forward in time and centered in space finite

348 CHAPTER 14. NUMERICAL METHODS FOR PDE’S

differences we get

un+1
j − unj
∆t

= D
unj+1 − 2unj + unj−1

(∆x)2
, (14.16)

for n = 0, 2, . . . , N − 1 and j = 1, 2, . . . ,M − 1, with boundary conditions
un0 = 0, unM = 0, and initial condition u0j = f(xj), j = 0, 1, . . . ,M . We

can solve explicitly for un+1
j and march up in time, starting from the initial

condition; for n = 0, 1, . . . , N − 1,

un+1
j = unj + α

[
unj+1 − 2unj + unj−1

]
, for j = 1, 2, . . . ,M − 1, (14.17)

where

α = D∆t/(∆x)2. (14.18)

Note that the boundary conditions are used for j = 1 and j = M − 1.
This is an explicit, one-step finite difference scheme and is straightforward
to implement. The resulting approximation, however, depends crucially on
whether α ≤ 1/2 or α > 1/2. As Fig. 14.4(a)-(c) shows, for α = 0.55 the
numerical approximation does not vary smoothly; it has oscillations whose
amplitude grows with n and has no resemblance with the exact solution.
Clearly, the approximation for α = 0.55 is numerically unstable in the sense
that unj is not bounded as n→∞. In contrast, for α = 0.50 [Fig. 14.4(d)] the
numerical approximation has the expected smooth and monotone behavior
and approximates well the exact solution.

The following simple estimate offers some clue on why there is a marked
difference in the numerical approximation depending on whether α ≤ 1/2.

From (14.17) we can rewrite the finite difference scheme as

un+1
j = αunj+1 + (1− 2α)unj + αunj−1 for j = 1, 2, . . . ,M − 1. (14.19)

Note that (since D > 0) α > 0 and if α ≤ 1/2 then 1− 2α ≥ 0. Taking the
absolute value in (14.19) and using the triangle inequality we get

|un+1
j | ≤ α|unj+1|+ (1− 2α)|unj |+ α|unj−1|. (14.20)

Denoting

∥un∥∞ = max
1≤j≤M−1

|unj |, (14.21)

14.1. KEY CONCEPTS THROUGH ONE EXAMPLE 349

0 π/2 π

x

0

π/4

π/2

f

(a)

0 π/2 π

x

0

π/4

π/2

f

(b)

0 π/2 π

x

−7500

−5000

−2500

0

2500

5000

7500

f

(c)

0 π/2 π

x

0

π/4

π/2

f

t = 0

t = 0.25

t = 0.5

t = 1

(d)

Figure 14.4: Numerical approximation of the heat equation with the forward
in time-centered in space finite difference scheme for α = 0.55 after (a) 30
time steps, (b) 40 time steps, and (c) 100 time steps and for α = 0.5 (d)
plotted at different times. In all the computations ∆x = π/128.

350 CHAPTER 14. NUMERICAL METHODS FOR PDE’S

and taking the maximum over j in (14.20) we obtain

∥un+1∥∞ ≤ α∥un∥∞ + (1− 2α)∥un∥∞ + α∥un∥∞
= [α + (1− 2α) + α] ∥un∥∞ = ∥un∥∞,

(14.22)

and consequently,

∥un+1∥∞ ≤ ∥un∥∞ (14.23)

for all integers n ≥ 0. Numerical schemes with this property are called
monotone; the size of numerical approximation (in some norm) does not
increase from one time step to the next. Using (14.23) repeatedly all the way
down to n = 0 we have

∥un∥∞ ≤ ∥un−1∥∞ ≤ ∥un−2∥∞ ≤ . . . ≤ ∥u0∥∞ (14.24)

and thus

∥un∥∞ ≤ ∥u0∥∞ (14.25)

for all integers n ≥ 0. Since the initial condition ∥u0∥∞ = ∥f∥∞ ≤ constant
we have that the numerical approximation remains bounded as n → ∞.
Thus, numerical method for α ≤ 1/2 is stable.

14.1.1 von Neumann Analysis of Numerical Stability

The heat equation is a linear PDE with constant coefficients. This allowed us
to use a Fourier (sine) series to arrive at the exact solution (14.9). Specifically,
we separated the problem into an x and a t dependance. For the former, we
found that for each k ∈ Z+, sin kx is the solution of

d2

dx2
ψ = −k2ψ

that vanishes at 0 and π, i.e., sin kx is an eigenfunction of the second deriva-
tive operator on the space of C2[0, π] functions vanishing at the boundary.
We can do a similar separation of variables to represent the solution of the
finite difference scheme

un+1
j = unj + α

[
unj+1 − 2unj + unj−1

]
, (14.26)

14.1. KEY CONCEPTS THROUGH ONE EXAMPLE 351

with the boundary conditions un0 = unM = 0 for all n. To this effect, we note
that the vector whose components are sin(kj∆x), j = 1, . . . ,M − 1, with
∆x = π/M , is an eigenvector of the centered, finite difference operator

δ2uj := uj−1 − 2uj + uj+1 (14.27)

with vanishing boundary conditions (at j = 0,M), i.e. of the (M − 1) ×
(M − 1) matrix 

−2 1
1 −2 1

.

1
1 −2

 . (14.28)

To prove this and to simplify the algebra we employ the complex exponential

eikj∆x = cos(kj∆x) + i sin(kj∆x), j = 1, 2, . . . ,M − 1. (14.29)

We have

δ2eikj∆x =
[
e−ik∆x − 2 + eik∆x

]
eikj∆x

= −2 [1− cos(k∆x)] eikj∆x.
(14.30)

Taking the imaginary part, we obtain

δ2 sin(kj∆x) = −2 [1− cos(k∆x)] sin(kj∆x). (14.31)

This result and (14.12) suggest to look for solutions of the finite difference
scheme (14.27) of the form

unj = ûnk sin(kj∆x), for k ∈ Z+. (14.32)

Substituting this in (14.27), and cancelling the common factor sin(kj∆x),
we obtain

ûn+1
k − [1− 2α(1− cos(k∆x))] ûnk = 0. (14.33)

For each k ∈ Z+, this is a constant coefficient, linear difference equation (in
the super-index) whose solutions are of the form

ûnk = bkξ
n, (14.34)

352 CHAPTER 14. NUMERICAL METHODS FOR PDE’S

where bk is a constant determined by the initial condition bk = û0k, n in ξn is
a power, and

ξ = 1− 2α [1− cos(k∆x)] . (14.35)

The function ξ is called the amplification factor of the finite difference scheme
because it determines how the amplitude of a Fourier mode grows or decays
each time step, the discrete counterpart to e−Dk2∆t. Note that ξ depends
on k∆x, henceforth we will emphasize this dependence by writing ξ(k∆x).
Using linearity of the finite difference scheme (14.27) we can write its solution
as

unj =
∞∑
k=1

bk ξ
n(k∆x) sin(kj∆x), j = 1, 2, . . . ,M − 1. (14.36)

Since u0j = f(j∆x) it follows that the coefficients bk are the sine coefficients
of the initial condition f and are thus given by (14.11). Therefore,

|unj | ≤
∞∑
k=1

|bk||ξ(k∆x)|n. (14.37)

If |ξ(k∆x)| ≤ 1 for all possible values of k∆x, then

|unj | ≤
∞∑
k=1

|bk| = constant, (14.38)

where we have assumed that the initial condition has an absolutely conver-
gent sine series. That is, the numerical approximation is guaranteed to be
bounded as n → ∞ if |ξ(k∆x)| ≤ 1. On the other hand if for some k∗,
|ξ(k∗∆x)| > 1, then the corresponding Fourier mode, bk∗ξ

n sin(k∗j∆x), will
grow without a bound as n → ∞ if the initial condition has a nonzero bk∗ .
Setting θ = k∆x, we conclude that the finite difference scheme (14.17) is
numerically stable if and only if

|ξ(θ)| ≤ 1, ∀ θ ∈ [0, π], (14.39)

and using (14.35) this condition translates into

−1 ≤ 1− 2α(1− cos θ) ≤ 1, ∀ θ ∈ [0, π]. (14.40)

14.1. KEY CONCEPTS THROUGH ONE EXAMPLE 353

Since α > 0 the second inequality is always satisfied. From the first inequal-
ity, noting that the maximum of 1 − cos θ occurs for θ = π, we obtain that
the scheme (14.17) is numerically stable if and only if

α ≤ 1/2. (14.41)

This is the same condition we found earlier using a maximum norm esti-
mate. However, the Fourier analysis for the finite difference scheme, which
is commonly called von Neumann analysis, offers additional information on
what happens if α > 1/2. If I |ξ(k∆x)| > 1 for some k, the corresponding
Fourier mode will not be bounded as n→∞. The mode that becomes most
unstable is the one for which |ξ| is the largest, i.e. when k∆x ≈ π or equiv-
alently k ≈ π/∆x. This is precisely the highest wave number (k =M − 1 in
this case) mode we can resolve with a mesh of size ∆x. Going back to our
numerical experiment in Fig. 14.4(a)-(c) we see that the oscillations in the
numerical approximation with α > 1/2 have a wavelength of approximately
2∆x. Moreover, the oscillations appear first in a localized region around the
points where the underlying exact solution is less regular. The short wave-
length of the oscillations, its initial localized appearance, and fast amplitude
growth as n increases are a telltale of numerical instability.

It is important to note that due to the linearity of the finite difference
scheme and its constant coefficients, we only need to examine the behavior of
individual Fourier modes of the numerical approximation. This is the basis
of the von Neumann analysis: to examine how the finite difference scheme
evolves a (complex) Fourier mode ξneikj∆x. The focus of this analysis is on
stability at the interior nodes, not at the boundary, so the problem need
not have periodic or homogeneous boundary conditions. For non-periodic
boundary conditions, the stability of the numerical scheme at the boundary
has to be considered separately.

For some finite difference schemes, ξ might also be a function of ∆t. In
this case the stability condition for the amplification factor has the milder
form

|ξ(k∆x,∆t)| ≤ 1 + C∆t, (14.42)

where C is a constant or equivalently, |ξ|2 ≤ 1 + C̃∆t for some constant
C̃. The condition for |ξ|2 is generally easier to check than (14.42) because it
avoids the square root when ξ is complex.

354 CHAPTER 14. NUMERICAL METHODS FOR PDE’S

14.1.2 Order of a Method and Consistency

It is instructive to compare the representations (14.9) and (14.36) of the
exact solution and of the solution of the forward in time and centered in
space finite difference scheme, respectively. It is clear that the amplification
factor ξ(k∆x) should be an approximation of e−k

2D∆t for sufficiently small ∆t
and ∆x. Keeping α = D∆t/(∆x)2 fixed, we have k2D∆t = α(k∆x)2 = αθ2

and Taylor expanding

ξ(θ) = 1− 2α

[
1

2
θ2 − 1

24
θ4 + . . .

]
(14.43)

e−αθ
2

= 1− αθ2 + 1

2
α2θ4 + . . . , (14.44)

from which it follows that

ξ(k∆x) = e−k
2D∆t +O(∆t)2. (14.45)

This is reminiscent of the approximation of eλ∆t by the stability function
for a first order one-step method (Section 13.12) and which gives the local
truncation error of said method (up to the factor y(tn)/∆t). Indeed, (14.45)
is a consequence of the fact that the finite difference scheme (14.16) provides
a O(∆t) approximation to the time derivative and an O(∆x)2 approximation
to the spatial second derivative.

Definition 14.1. The local discretization or truncation error τn+1
j (∆t,∆x)

at (tn+1, xj) is given by

τn+1
j (∆t,∆x) =

u(tn+1, xj)− ũn+1
j

∆t
, (14.46)

where ũn+1
j is computed by doing one step of the numerical method starting

with the exact solution of the PDE IVP at time tn for a one-step method or
at times tn−(m−1), . . ., tn−1, tn for an m-step (m > 1) method.

The local discretization error of the finite difference scheme (14.16) at a
point (xj, tn+1) is thus given by

τn+1
j (∆t,∆x) =

u(tn+1, xj)− u(tn, xj)
∆t

−Du(tn, xj+1)− 2u(tn, xj) + u(tn, xj−1)

(∆x)2
,

(14.47)

14.1. KEY CONCEPTS THROUGH ONE EXAMPLE 355

where u(t, x) is the exact solution of the PDE IVP1. As in the ODE case, the
local truncation error can be interpreted as a measure of how well the exact
solution of the PDE satisfies the finite difference scheme locally.

Assuming the exact solution has enough continuous derivatives, we can
Taylor expand the right hand side of (14.47) around (tn, xj) to find

τn+1
j (∆t,∆x) = ut −Duxx +

1

2
utt∆t−

D

12
uxxxx(∆x)

2

+O(∆t)2 +O(∆x)4,
(14.48)

where all the derivatives on the right hand side are evaluated at (tn, xj).
Since u is the exact solution, we have that

τn+1
j (∆t,∆x) = O(∆t) +O(∆x)2 (14.49)

and we say that the finite difference method is of order 1 in time and of order
2 in space.

Definition 14.2. A finite difference scheme is consistent with the PDE it is
approximating at a fixed point (tn+1, xj) if

τn+1
j (∆t,∆x)→ 0, as ∆t,∆x→ 0. (14.50)

Consistency means that the exact solution of the PDE satisfies increas-
ingly better the finite difference scheme as ∆t,∆x → 0. This is a necessary
requirement for the finite difference scheme to approximate the PDE in ques-
tion and not another equation. However, as we have seen, consistency is not
sufficient to guarantee the finite difference approximation will get better as
the mesh is refined. We also need stability (α ≤ 1/2 in this particular case).

14.1.3 Convergence

At a fixed point (t, x), we want unj to be an accurate approximation of u(t, x)
and to improve as ∆t,∆x→ 0, keeping t = n∆t, x = j∆x fixed.

1Note that the finite difference operators, the forward in time and the standard second
difference in space, can be defined at any point (x, t), not necessarily a grid point. Thus,
the local truncation error is well-defined at each (t, x).

356 CHAPTER 14. NUMERICAL METHODS FOR PDE’S

Definition 14.3. The global error of the finite difference approximation at
point (tn, xj) is given

enj (∆t,∆x) = u(tn, xj)− unj , (14.51)

where u(tn, xj) and u
n
j are the exact solution and the numerical approximation

at (tn, xj), respectively.

Because of the linearity of the finite difference scheme it is easy to derive
an equation for the global error and using both stability and consistency
prove convergence of the numerical approximation to the exact solution, i.e
enj (∆t,∆x)→ 0 as ∆t,∆x→ 0, keeping t = n∆t, x = j∆x fixed.

Using (14.47) it follows that the exact solution satisfies

u(tn+1, xj) = αu(tn, xj+1) + (1− 2α)u(tn, xj) + αu(tn, xj−1)

+ ∆t τn+1
j (∆t,∆x)

(14.52)

and subtracting (14.19) from this equation we obtain

en+1
j = αenj+1 + (1− 2α)enj + αenj−1 +∆t τn+1

j (∆t,∆x), (14.53)

where we have written enj instead of enj (∆t,∆x) for short. Taking the absolute
value, using the triangle inequality, and the stability condition α ≤ 1/2 we
have

|en+1
j | ≤ α|enj+1|+ (1− 2α)|enj |+ α|enj−1|+∆t |τn+1

j (∆t,∆x)|. (14.54)

Now, taking the maximum over j, and using that (14.49) implies there exist
constants C1 and C2 such that |τnj (∆t,∆x)| ≤ C1∆t+C2(∆x)

2 for sufficiently
small ∆t and ∆x, we obtain

∥en+1∥∞ ≤ ∥en∥∞ + C1(∆t)
2 + C2∆t(∆x)

2, (14.55)

where again ∥en+1∥∞ = max
j
|en+1

j |, etc. Applying repeatedly this inequality

it follows that

∥en∥∞ ≤ ∥en−1∥∞ + C1(∆t)
2 + C2∆t(∆x)

2

≤ ∥en−2∥∞ + 2
[
C1(∆t)

2 + C2∆t(∆x)
2
]

. . .

≤ ∥e0∥∞ + n
[
C1(∆t)

2 + C2∆t(∆x)
2
]
.

(14.56)

14.2. THE METHOD OF LINES 357

But n∆t ≤ T and ∥e0∥∞ = 0 (u0j coincides with the initial condition), there-
fore

∥en∥∞ ≤ T
[
C1∆t+ C2(∆x)

2
]
, (14.57)

for all n. The fact that the terms in the rectangular brackets go to zero as
∆t,∆x→ 0 is a restatement of consistency and from this the convergence of
the numerical approximation follows.

14.1.4 The Lax-Richmyer Equivalence Theorem

We just seen in one example the importance of consistency and stability in
the notion of convergence. It is clear that both consistency and stability are
necessary for convergence; for without consistency we would not be solving
the correct problem in the limit as ∆t,∆x → 0 and without stability the
numerical approximation (and therefore the global error) would not remain
bounded as n → ∞. For the case of well-posed, linear PDE IVP’s consis-
tency and stability are also sufficient for the convergence of a finite difference
scheme. This is the content of the following fundamental theorem in the
theory of finite difference methods.

Theorem 14.1. The Lax-Richmyer Equivalence Theorem. A consistent fi-
nite difference scheme for a well-posed, linear initial value PDE problem is
convergent if and only if it is stable.

A rigorous proof of this result requires advanced functional analysis tools
and will not be presented here.

14.2 The Method of Lines

One approach to construct numerical methods for PDE IVPs is to discretize
in space but leave time dependance continuous. This produces a large ODE
system to which, in principle, one can apply a suitable ODE method. This
construction is known as the method of lines because times varies along the
lines defined by the spatial nodes as Fig. 14.5 suggests. We emphasize “in
principle” in the previous statement because a blind application of this tech-
nique, without an understanding of the underlying PDE to be solved, can
have disastrous consequences.

358 CHAPTER 14. NUMERICAL METHODS FOR PDE’S

xx0 x1 x2 . . . xM

t

Figure 14.5: Method of lines. Space is discretized and time is left continuous.

To illustrate this approach let us consider again the one-dimensional heat
equation and discretize the second derivative with respect to x using the
standard, centered, second finite difference but leaving time continuous:

duj(t)

dt
= D

uj−1(t)− 2uj(t) + uj+1(t)

(∆x)2
, j = 1, . . . ,M − 1, (14.58)

uj(0) = f(xj), j = 1, . . . ,M − 1, (14.59)

where u0(t) = 0 and uM(t) = 0 and we are interested in solving this ODE
system for 0 < t ≤ T . If we apply the forward Euler method to this ODE
system we get the forward in time-centered in space scheme (14.16) we have
analyzed in detail. But, as we will see in Section 14.6 with the simple equation
ut + aux = 0, it is crucial to have an understanding of the PDE to be solved
before applying the method of lines. The issue of numerical stability is also
much more subtle than that for ODE methods.

14.3. THE BACKWARD EULER AND CRANK-NICOLSONMETHODS359

14.3 The Backward Euler and Crank-Nicolson

Methods

The forward in time-centered in space scheme (14.16) has a somewhat re-
strictive stability constraint, α ≤ 1/2, i.e.

∆t ≤ 1

2D
(∆x)2. (14.60)

This is a quadratic stability constraint in ∆x. For example, with D = 5,
even for a modest spatial resolution of ∆t = 0.01 we require a fairly small
∆t, less than 10−5 and the constraint becomes more severe for D large. The
computational cost associated with such small time-steps can be significant
in higher spatial dimensions.

As we saw in Chapter 13 implicit methods offer larger A-stability re-
gions than the corresponding explicit ones. In particular, the backward Euler
method is A-stable. Let’s use the method of lines and apply the backward
Euler method to (14.58). We obtain

un+1
j − unj
∆t

= D
un+1
j+1 − 2un+1

j + un+1
j−1

(∆x)2
, j = 1, . . . ,M − 1, (14.61)

with the initial condition u0j = f(xj), j = 1, . . . ,M − 1, and the boundary

conditions un+1
0 = 0, un+1

M = 0. This is an implicit scheme. At each time
step n, to update the numerical approximation for the future time step n+1
we need to solve this linear system for the M − 1 unknowns, un+1

1 , . . . , un+1
M−1.

Using again α = D∆t/(∆x)2 we can write (14.61) as

−αun+1
j−1 + (1 + 2α)un+1

j − αun+1
j+1 = unj , j = 1, . . . ,M − 1. (14.62)

This is of course a tridiagonal linear system. It is also diagonally dominant
and hence nonsingular. In fact it is also positive definite. Thus there is a
unique solution and we can find it efficiently in O(M) operations with the
tridiagonal solver, Algorithm 9.5.

Let us look at the stability of (14.61) via von Neumann analysis. As
before, we look at how the finite difference scheme evolves a Fourier mode
unj = ξneikj∆x. Plugging this into (14.61) we get

ξn+1eikj∆x = ξneikj∆x + α
[
ξn+1eik(j−1)∆x − 2ξn+1eikj∆x + ξn+1eik(j+1)∆x

]
.

360 CHAPTER 14. NUMERICAL METHODS FOR PDE’S

Cancelling out the common factor ξneikj∆x and using that cos θ = 1
2
(eiθ+e−iθ)

we obtain

ξ(k∆x) =
1

1 + 2α(1− cos(k∆x))
. (14.63)

Since α > 0 and cos θ ≤ 1 we have that

|ξ(k∆x)| ≤ 1 (14.64)

for all k ∈ Z, regardless of the value of α. Because there is no restriction
on ∆t to satisfy (14.64) we say that the backward in time-centered in space
scheme (14.61) is unconditionally stable. It is easy to see that scheme (14.61)
is first order in time and second order in space.

If we now use the method of lines again and the trapezoidal rule for the
ODE system (14.58) we get the following second order in time and second
order in space scheme:

un+1
j − unj
∆t

=
D

2

[
un+1
j+1 − 2un+1

j + un+1
j−1

(∆x)2
+
unj+1 − 2unj + unj−1

(∆x)2

]
, (14.65)

for j = 1, . . . ,M − 1 with u0j = f(xj), j = 1, . . . ,M − 1, and un+1
0 = 0,

un+1
M = 0. This implicit method is known as Crank-Nicolson. As in the

backward Euler method, we have a tridiagonal (diagonally dominant) linear
system to solve for un+1

j , j = 1, . . . ,M − 1 at each time step which can be
done with the tridiagonal solver.

Let’s do von Neumann analysis for the Crank-Nicolson method. Substi-
tuting a Fourier mode unj = ξneikj∆x in (14.65) and cancelling the common
term we get that the amplification factor is given by

ξ(k∆x) =
1− α(1− cos(k∆x))

1 + α(1− cos(k∆x))
(14.66)

and consequently

|ξ(k∆x)| ≤ 1 (14.67)

for all k ∈ Z, independent of the value of α, that is, the Crank-Nicolson
method is also unconditionally stable. However, note that |ξ(k∆x)| → 1
as α → ∞ (recall that the trapezoidal rule method is not L-stable, i.e.
not accurate in the stiff limit). Thus, for large α, ξ is not an accurate
approximation of e−k

2D∆t, particularly for the high wavenumber modes (large
|k|. As a result, the Crank-Nicolson method is not a good choice for problems
with non-smooth data and large α.

14.4. NEUMANN BOUNDARY CONDITIONS 361

x−1 x0 x1 x

Figure 14.6: Neumann boundary condition at x0 = 0. A “ghost point” (•),
x−1 = −∆x is introduced to implement the boundary condition.

14.4 Neumann Boundary Conditions

We look now briefly at how to apply a Neumann boundary condition with
finite differences. Consider again the heat equation in the interval [0, π] and
suppose there is a homogeneous Neumann boundary condition on x = 0,
ux(t, 0) = 0, which enforces a no-heat flux across x = 0, and a homogenous
Dirichlet boundary condition at x = π. Note that now the value of the
solution at x = 0 is unknown (we only know its derivative). Thus, for each
n we need to find the M values un0 , u

n
1 , . . . , u

n
M−1. For concreteness, let’s

consider the forward in time-centered in space scheme. As before

un+1
j = unj + α

[
unj+1 − 2unj + unj−1

]
, for j = 1, 2, . . . ,M − 1, (14.68)

with α = D∆t/(∆x)2. But now we also need an equation to update un0 . If
we take j = 0 at (14.68) we get

un+1
0 = un0 + α

[
un1 − 2un0 + un−1

]
. (14.69)

However, this equation involves un−1, an approximation corresponding to the
point x−1 = −∆x, outside of the domain as Fig. 14.6 shows. We can eliminate
this so-called ghost point by using the Neumann boundary condition:

0 = ux(tn, 0) ≈
un1 − un−1
2∆x

, (14.70)

where we are approximating the spatial derivative at x = 0 with the centered
difference. With this approximation un−1 = un1 and substituting this in (14.69)
we obtain

un+1
0 = un0 + 2α [un1 − un0] . (14.71)

This equation together with (14.68) gives us the complete scheme.

362 CHAPTER 14. NUMERICAL METHODS FOR PDE’S

14.5 Higher Dimensions and the ADI Method

We are going to consider now the heat equation in a rectangular domain
Ω = [0, Lx]× [0, Ly] as an example of an initial value problem in more than
one spatial dimension. The problem is to find u(t, x, y) for 0 < t ≤ T and
(x, y) ∈ Ω such that

ut(t, x, y) = D∇2u(t, x, y), (x, y) ∈ Ω, 0 < t ≤ T, (14.72)

u(0, x, y) = f(x, y), (x, y) ∈ Ω, (14.73)

u(t, x, y) = g(x, y), (x, y) ∈ ∂Ω. (14.74)

In (14.72), ∇2u = uxx + uyy is the Laplacian of u, also denoted2 ∆u, and ∂Ω
in (14.74) denotes the boundary of Ω.

As in the one-dimensional case, we start by discretizing the domain. For
simplicity, we are going to use a uniform grid. To this effect we choose
positive integers Mx and My to partition [0, Lx] and [0, Ly], respectively and
generate the grid points or nodes

(xl, ym) = (l∆x,m∆y), l = 0, 1, . . . ,Mx, m = 0, 1, . . . ,My, (14.75)

where ∆x = Lx/Mx and ∆y = Ly/My are the grid sizes in the x and y
direction, respectively. Also for simplicity we discretize time uniformly, tn =
n∆t, n = 0, 1, . . . , N with ∆t = T/N , but variable time stepping can be
useful in many problems. We seek for a numerical approximation unl,m of
u(tn, xl, ym) at the interior nodes l = 1, . . . ,Mx − 1, m = 1,My − 1 and for
n = 1, . . . , N .

We now approximate the Laplacian of u at the interior nodes using cen-
tered finite differences for the second derivatives:

∇2u(tn, xl, ym) ≈
unl−1,m − 2unl,m + unl+1,m

(∆x)2
+
unl,m−1 − 2unl,m + unl,m+1

(∆y)2
(14.76)

As in the 1D case, it is useful to introduce the following notation for the
centered finite differences:

δ2xu
n
l,m = unl−1,m − 2unl,m + unl+1,m, (14.77)

δ2yu
n
l,m = unl,m−1 − 2unl,m + unl,m+1. (14.78)

2We prefer not to use ∆u for the Laplacian when discussing numerical methods to avoid
confusion with the common notation employed for numerical increments or variations, such
as ∆u = u(x+ h)− u(x).

14.5. HIGHER DIMENSIONS AND THE ADI METHOD 363

Assuming u is smooth enough,

∇2u(tn, xl, ym) =
1

(∆x)2
δ2xu(tn, xl, ym) +

1

(∆y)2
δ2yu(tn, xl, ym)

+O(∆x)2 +O(∆y)2.

(14.79)

The finite difference 1
(∆x)2

δ2xu
n
l,m + 1

(∆y)2
δ2yu

n
l,m is called the 5-point discrete

Laplacian because it uses 5 grid points to approximate ∇2u(tn, xl, ym).
The explicit, forward in time (forward Euler) can be written as

un+1
l,m = unl,m + αxδ

2
xu

n
l,m + αyδ

2
yu

n
l,m, (14.80)

for n = 0, 1, . . . , N − 1 and l = 1, . . .Mx − 1, m = 1, . . . ,My − 1. Here
αx = D∆t/(∆x)2 and αy = D∆t/(∆y)2. As in the one-dimensional case, this
scheme has a quadratic stability constraint. Unless the diffusion coefficient
D is very small, it is better to employ an implicit method. For example, the
Crank-Nicolson method can be written as

un+1
l,m = unl,m +

1

2

[
αxδ

2
xu

n+1
l,m + αyδ

2
yu

n+1
l,m + αxδ

2
xu

n
l,m + αyδ

2
yu

n
l,m

]
, (14.81)

for n = 0, 1, . . . , N−1 and l = 1, . . .Mx−1,m = 1, . . . ,My−1. This is a linear
system of (Mx−1)×(My−1) equations in the same number of unknowns. The
structure of the matrix of coefficients, depends on how we label the unknowns.
The most common labeling is the so-called lexicographical order, bottom to
top and left to right: un+1

1,1 , u
n+1
1,2 , . . . , u

n+1
1,My−1, u

n+1
2,1 , u

n+1
2,2 , . . . , u

n+1
2,My−1, . . ., etc.

(see Section 9.6). The result is a block tridiagonal, linear system which is
symmetric and positive definite. This system could be solved, for example,
with the (preconditioned) conjugate gradient method but it is more efficient
to employ the following approach which splits the differentiation in each
direction:

u∗l,m = unl,m +
1

2

[
αxδ

2
xu
∗
l,m + αyδ

2
yu

n
l,m

]
, (14.82)

un+1
l,m = u∗l,m +

1

2

[
αxδ

2
xu
∗
l,m + αyδ

2
yu

n+1
l,m

]
. (14.83)

Equation (14.82) can be viewed as a half-step (∆t/2) to produce an inter-
mediate approximation u∗l,m by considering the differentiation in x implicitly
and that in y explicitly. In the second half-step, Eq. (14.83), the situation is

364 CHAPTER 14. NUMERICAL METHODS FOR PDE’S

reversed; the differentiation in y is implicit while that in y is evaluated explic-
itly. The scheme (14.82)-(14.83) is called the Alternating Direction Implicit
method or ADI.

Note that each half-step, gives us a tridiagonal linear system of equations,
as in the one dimensional case, which can be solved efficiently with the tridi-
agonal solver. However, we need a boundary condition for u∗l,m. It is easy to
show that

u∗l,m = u(tn +∆t/2, xl, ym) +O(∆t) +O(∆x)2 +O(∆y)2. (14.84)

Thus, we could take as boundary condition for u∗ the boundary value of
u(tn + ∆t/2, xl, ym). It is remarkable that the second half-step corrects the
O(∆t) discretization error of the first half step to produce an O(∆t)2 method
that is also unconditionally stable!

14.6 Wave Propagation and Upwinding

We now look at a simple model for wave propagation. As we will see, nu-
merical methods for these type of equations must obey a condition to ensure
the numerical approximation evolves with the correct speed of propagation
and the direction of the flow (upwinding) needs to be taken into account.

The model is the IVP for the one-way wave equation or transport equa-
tion:

ut + aux = 0, (14.85)

u(0, x) = f(x), (14.86)

where a is constant and we are considering the problem, for the moment,
in the entire real line. This linear, first order PDE can be solved easily
by using the method of characteristics, which consists in employing curves
(called characteristics) along which the PDE reduces to a simple ODE that
can be readily integrated. For (14.85), the characteristics X(t) are the curves
that satisfy

dX(t)

dt
= a (14.87)

X(0) = x0, (14.88)

14.6. WAVE PROPAGATION AND UPWINDING 365

x

t

Figure 14.7: Characteristic curves X(t) = x0+at, for ut+ux = 0 with a > 0.
Note that the slope of the characteristic lines is 1/a.

where x0 ∈ R is a starting point (we get one curve for each value of x0) .
Thus, the characteristics for (14.85)-(14.86) are the lines

X(t) = x0 + at, t ≥ 0. (14.89)

Figure 14.7 displays a few characteristics in the xt plane.
Let us look at u along the characteristics. We have

du(t,X(t))

dt
= ut + ux

dX

dt
= ut + aux = 0. (14.90)

Thus, u is constant along the characteristic lines X(t) = x0 + at and conse-
quently

u(t,X(t)) = u(0, X(0)) = f(x0) = f (X(t)− at) . (14.91)

The solution to the pure IVP (14.85)-(14.86) is therefore

u(t, x) = f (x− at) , (14.92)

which corresponds to a traveling wave moving with speed a; the solution is
just a translation of the initial condition f . If a > 0 the wave moves to the
left and if a < 0 it moves to the right.

Suppose a > 0 and consider the finite difference scheme

un+1
j − unj
∆t

+ a
unj+1 − unj

∆x
= 0. (14.93)

366 CHAPTER 14. NUMERICAL METHODS FOR PDE’S

The local truncation error of this scheme is

τn+1
j (∆t,∆x) =

u(tn+1, xj)− u(tn, xj)
∆t

+ a
u(tn, xj+1)− u(tn, xj)

∆x
= O(∆t) +O(∆x),

(14.94)

assuming the exact solution is sufficiently smooth. Thus, the method (14.93)
is consistent with ut + aux = 0. Let us do von Neumann analysis to look at
the stability of this scheme. As in the example of the heat equation we take
an individual Fourier mode unj = ξneikj∆x and see how this evolves under the
finite difference scheme. Substituting unj = ξneikj∆x into (14.93) we get

ξneikj∆x

(
ξ − 1

∆t
+ a

eik∆x − 1

∆x

)
= 0 (14.95)

and cancelling the common term and setting λ = a∆t/∆x we obtain that
the amplification factor satisfies

ξ = 1 + λ− λeik∆x. (14.96)

Since ξ is complex let us compute the square of its modulus

|ξ|2 = (1 + λ− λ cos θ)2 + (λ sin θ)2, (14.97)

where we have set θ = k∆x. Developing the square and using sin2 θ+cos2 θ =
1 we have

|ξ|2 = 1 + 2(1 + λ)λ− 2(1 + λ)λ cos θ. (14.98)

Now, λ > 0 because a > 0. Thus, except for θ = π/2

|ξ|2 > 1 + 2(1 + λ)λ− 2(1 + λ)λ = 1. (14.99)

Consequently, the scheme is unstable regardless of the value of ∆t. On the
other hand if a < 0 then λ < 0. It follows that

|ξ|2 ≤ 1, if and only if −1 ≤ λ < 0. (14.100)

In other words, the scheme (14.93) is stable for a < 0 if and only if

|a|∆t
∆x
≤ 1. (14.101)

14.6. WAVE PROPAGATION AND UPWINDING 367

This stability constraint is know as the CFL condition (after Courant, Friedrichs,
and Lewy). An interpretation of this condition is that the “numerical speed”
∆x/∆t must be greater or equal than the actual speed of propagation |a|.
Similarly, for a > 0 the scheme

un+1
j − unj
∆t

+ a
unj − unj−1

∆x
= 0 (14.102)

is stable if and only if the CFL condition a∆t/∆x ≤ 1 is satisfied. The
approximation of aux by a backward or forward finite difference depending
on whether a is positive or negative, respectively is called upwinding, because
we are using the direction of the flow (propagation) for our discretization:

aux ≈


a
unj − unj−1

∆t
if a > 0,

a
unj+1 − unj

∆t
if a < 0.

(14.103)

Let us look at another finite difference scheme for ut + aux = 0, this one
with a centered difference to approximate ux:

un+1
j − unj
∆t

+ a
unj+1 − unj−1

2∆x
= 0 (14.104)

It is easy to show that

τn+1
j (∆t,∆x) = O(∆t) +O(∆x)2 (14.105)

if the exact solution of ut + aux = 0 is smooth enough. Thus, the scheme is
consistent. Let us do von Neumann analysis. Set unj = ξneikj∆x, we get

ξn+1eikj∆x = ξneikj∆x − λ

2
ξn
[
eik(j+1)∆x − eik(j−1)∆x

]
, (14.106)

cancelling ξneikj∆x, setting θ = k∆x and using

sin θ =
eiθ − e−iθ

2i
(14.107)

we find that the amplification factor satisfies

ξ = 1− iλ sin θ. (14.108)

368 CHAPTER 14. NUMERICAL METHODS FOR PDE’S

Consequently

|ξ|2 = 1 + λ2 sin2 θ > 1 (14.109)

except for θ = 0, π. Therefore, scheme (14.104) is unconditionally unstable!
The previous three examples illustrate the importance of understanding

the underlying PDE problem to be solved and the pitfalls that a blind appli-
cation of the method of lines could cause.

The following finite different scheme is an example of a method that is
not constructed by a direct discretization of the PDE and provides a stable
modification of the second order in space scheme (14.104). First, we note
that since ut + aux = 0 then

ut = −aux, (14.110)

utt = −auxt = −a(ut)x = −a(−aux)x = a2uxx, (14.111)

where we assumed the exact solution has continuous second derivatives.
Moreover,

u(t+∆t) = u(t, x) + ut(t, x)∆t+
1

2
utt(t, x)(∆t)

2 +O(∆t)3 (14.112)

= u(t, x)− aux(t, x)∆t+
1

2
a2uxx(t, x)(∆t)

2 +O(∆t)3, (14.113)

where we have used (14.110) and (14.111). Employing a centered, second
order discretization for ux and uxx we obtain the following finite difference
scheme:

un+1
j = unj −

λ

2
(unj+1 − unj−1) +

λ2

2
(unj+1 − 2unj + unj−1), (14.114)

with λ = a∆t/∆x as before and is considered to be fixed. This numerical
scheme is called Lax-Wendroff. By construction,

τn+1
j (∆t,∆x) = O(∆t)2 +O(∆x)2 (14.115)

so this is a consistent, second order method in space and time. It supports a
Fourier mode unj = ξneikj∆x provided

ξ = 1− iλ sin θ − λ2(1− cos θ) (14.116)

14.6. WAVE PROPAGATION AND UPWINDING 369

with θ = k∆x. Therefore,

|ξ|2 = 1− 4λ2 sin2 1

2
θ + 4λ4 sin4 1

2
θ + λ2 sin2 θ, (14.117)

where we have used 1− cos θ = 2 sin 1
2
θ. The right hand side of (14.117), let

us call it g(θ), is an analytic and periodic function of θ. Thus, it achieves its
extreme values at the critical points g′(θ) = 0:

g′(θ) = −4λ2 sin 1

2
θ cos

1

2
θ + 8λ2 sin3 1

2
θ cos

1

2
θ + 2λ2 sin θ cos θ. (14.118)

Therefore, g′(θ) = 0 only for θ = 0,±π. Moreover, g(0) = 1 so we only need
to consider θ = ±π. Now,

|ξ|2 ≤ g(±π) = 1− 4λ2 + 4λ4 (14.119)

and 1− 4λ2 + 4λ4 ≤ 1 implies −4λ2(1− λ2) ≤ 0 from which it follows that

|λ| ≤ 1. (14.120)

The Lax-Wendroff scheme is stable provided the CFL condition (14.120) is
satisfied.

Our last example is the two-step method

un+1
j − un−1j

2∆t
+ a

unj+1 − unj−1
2∆x

= 0. (14.121)

This multistep finite difference scheme is know as the leap frog method. Like,
the Lax-Wendroff, the leap frog is consistent and second order in space and
time. As a multistep method, it requires another method to initialize it,
i.e. to compute u1j . The Lax-Wendroff method could be used to that ef-
fect. Again, to do von Neumann analysis we substitute unj = ξneikj∆x into
the scheme. We obtain that the amplification factor in this case satisfies a
quadratic equation (this is a two-step method):

ξ2 + 2iλ sin θξ − 1 = 0, (14.122)

with θ = k∆x and λ = a∆t/∆x as before. The solutions of this quadratic
equation are

ξ± = −iλ sin θ ±
√

1− λ2 sin2 θ. (14.123)

370 CHAPTER 14. NUMERICAL METHODS FOR PDE’S

If the roots are distinct then both Fourier modes ξn+e
ikj∆x and ξn−e

ikj∆x are
solutions of the scheme and if ξ+ = ξ− then ξn+e

ikj∆x and nξn+e
ikj∆x are.

If |λ| > 1, for θ = π/2 we have |ξ−| = |λ| +
√
λ2 − 1 > 1. Therefore, the

leap frog scheme is unstable for |λ| > 1. Now, for |λ| ≤ 1

|ξ+|2 = |ξ−|2 = 1− λ2 sin2 θ + λ2 sin2 θ = 1. (14.124)

In this case ξ+ = ξ− only when |λ| = 1 (and θ = π/2) and because nξn+e
ikj∆x

is a solution, the leap frog scheme is stable if and only if |λ| < 1.

14.7 Advection-Diffusion

We consider now a PDE that models the combined effects of transport (also
called advection) and diffusion. The equation is

ut + aux = Duxx, (14.125)

where D > 0, is supplemented with initial and boundary conditions. Let us
consider the following explicit finite difference scheme

un+1
j − unj
∆t

+ a
unj+1 − unj−1

2∆x
= D

unj+1 − 2unj + unj−1
(∆x)2

. (14.126)

This is a first order in time and second order in space method. With α =
D∆t/(∆x)2 fixed, the advection term contributes O(∆t) to the amplification
factor in the von Neumann analysis. Thus, (14.42) applies and the stability
is dictated by the discretization of the (higher order) diffusion term. That
is, (14.126) is stable if and only if α ≤ 1/2.

Using the definitions of λ and α, (14.126) can be written as

un+1
j = (1− 2α)unj +

(
α− λ

2

)
unj+1 +

(
α +

λ

2

)
unj−1. (14.127)

Recall that for D = 0, (14.126) is unstable so it is important to examine
the behavior of the numerical scheme when diffusion is much smaller than
advection. To quantify this, we introduce a numerical Péclet number

µ =
1

2

(
λ

α

)
. (14.128)

14.7. ADVECTION-DIFFUSION 371

Then, we can write (14.127) as

un+1
j = (1− 2α)unj + α (1− µ)unj+1 + α (1 + µ)unj−1. (14.129)

If |µ| ≤ 1 and α ≤ 1/2, we have

|un+1
j | ≤ (1− 2α) |unj |+ α (1− µ) |unj+1|+ α (1 + µ) |unj−1| (14.130)

and taking the maximum over j

∥un+1∥∞ ≤ [1− 2α + α (1− µ) + α (1 + µ)] ∥un∥∞ = ∥un∥∞. (14.131)

Therefore

∥un+1∥∞ ≤ ∥un∥∞ for all n (14.132)

and the scheme is monotone. Thus, if α ≤ 1/2 and |µ| ≤ 1 the finite
difference method (14.126) is both stable and monotone. If on the other
hand |µ| > 1, there is no monotonicity and the numerical solution could be
oscillatory. However, the oscillations would remain bounded as the scheme
is stable for α ≤ 1/2.

The condition for monotonicity |µ| ≤ 1 means that

∆x ≤ 2
D

|a| . (14.133)

This is a condition on the ∆x needed to resolve the length scale associated
with the diffusion process. It is not a stability constraint!

One way to avoid the oscillations when |µ| > 1 is to use upwinding to
approximate aux. For example, for a > 0

un+1
j − unj
∆t

+ a
unj − unj−1

∆x
= D

unj+1 − 2unj + unj−1
(∆x)2

, (14.134)

which we can rewrite as

un+1
j = [1− 2α(1 + µ)]unj + αunj+1 + α (1 + 2µ)unj−1. (14.135)

Thus, we get monotonicity when 1− 2α(1 + µ) ≥ 0 i.e. when

2α(1 + µ) ≤ 1 (14.136)

or equivalently

2D
∆t

(∆x)2

(
1 +

∆x

2

a

D

)
≤ 1. (14.137)

Thus, for a/D large (advection dominating diffusion) we get a much milder
condition, close to the CFL.

372 CHAPTER 14. NUMERICAL METHODS FOR PDE’S

14.8 The Wave Equation

Consider a stretched string of length L pinned at its end points. Assuming
small deformations from its stretched horizontal state, the string vertical
displacement at the time t and at the point x, u(t, x), satisfies the wave
equation

utt(t, x) = a2uxx(t, x) 0 < x < L, t > 0, (14.138)

with initial conditions u(0, x) = f(x), ut(0, x) = g(x), and boundary condi-
tions u(t, 0) = u(t, L) = 0. Here, a > 0 is the speed of propagation.

It is instructive to consider the pure initial value problem (the so-called
Cauchy problem) for the wave equation:

utt(t, x) = a2uxx(t, x) −∞ < x <∞, t > 0, (14.139)

u(0, x) = f(x), (14.140)

ut(0, x) = g(x). (14.141)

Using the characteristic coordinates

µ = x+ at, (14.142)

η = x− at (14.143)

and defining

U(µ, η) = u(t(µ, η), x(µ, η)) (14.144)

we have

Uµ = ut
1

2a
+ ux

1

2
, (14.145)

Uµη = −utt
1

4a2
+ utx

1

4a
− uxt

1

4a
+

1

4
uxx (14.146)

and assuming u has continuous second derivatives we get

Uµη = −
1

4a2
[
utt − a2uxx

]
= 0. (14.147)

that it U has the form

U(µ, η) = F (µ) +G(η) (14.148)

14.8. THE WAVE EQUATION 373

Figure 14.8: Solution of the pure initial value problem for the wave equation
consists of a wave traveling to the left, F (x + at), plus one traveling to the
right, G(x− at). Here a > 0.

for some functions F and G, to be determined by the initial conditions. Note
that, going back to the original variables,

u(t, x) = F (x+ at) +G(x− at). (14.149)

So the solutions consists of the sum of a wave traveling to the left and one
traveling to the right as Fig. 14.8 illustrates.

At t = 0

F (x) +G(x) = f(x), (14.150)

aF ′(x)− aG′(x) = g(x). (14.151)

Integrating (14.151) we get

F (x)−G(x) = 1

a

∫ x

0

g(s)ds+ C, (14.152)

374 CHAPTER 14. NUMERICAL METHODS FOR PDE’S

where C is a constant. Combining (14.150) and (14.152) we find

F (x) =
1

2
f(x) +

1

2a

∫ x

0

g(s)ds+
1

2
C, (14.153)

G(x) =
1

2
f(x)− 1

2a

∫ x

0

g(s)ds− 1

2
C, (14.154)

and therefore the solution to the pure initial value problem of the the wave
equations utt − a2uxx = 0 is given by

u(t, x) =
1

2
[f(x+ at) + f(x− at)] + 1

2a

∫ x+at

x−at
g(s)ds, (14.155)

an expression which is known as D’Alembert’s formula.
Let us go back to the original initial boundary value problem for the

deformations of a string. Consider the following finite difference scheme

un+1
j − 2unj + un−1j

(∆t)2
= a2

unj+1 − 2unj + unj−1
(∆x)2

, (14.156)

where ∆x = L/M and the interval [0, L] has been discretized with the eq-
uispaced points xj = j∆x, for j = 0, 1, . . . ,M . This scheme is clearly a
second order, both in space and time, and hence consistent with the wave
equation. It is also a two-step method. To initialize this multistep scheme
we use u0j = f(xj) for j = 1, 2, . . . ,M − 1, from the first initial condition,
u(0, x) = f(x), and to obtain u1j we can employ the second initial condition,
ut(0, x) = g(x), as follows

g(xj) = ut(0, xj) ≈
u1j − u0j
∆t

(14.157)

that is

u1j = u0j +∆t g(xj), for j = 1, 2, . . . ,M − 1. (14.158)

Let us do von Neumann to look at the stability of (14.156). Substituting
unj = ξneikj∆x into (14.156) and cancelling the common term we find that

ξ − 2 +
1

ξ
= −4λ2 sin2 1

2
θ, (14.159)

14.9. BIBLIOGRAPHIC NOTES 375

where, as before, λ = a∆t/∆x and θ = k∆x. We can write (14.159) as(√
ξ − 1√

ξ

)2

=

(
±2iλ sin 1

2
θ

)2

(14.160)

and thus √
ξ − 1√

ξ
= ±2iλ sin 1

2
θ. (14.161)

Multiplying (14.161) by
√
ξ we get

ξ ± 2i
√
ξλ sin

1

2
θ − 1 = 0. (14.162)

This is a quadratic equation for
√
ξ and its roots are

ξ
1/2
± = ±iλ sin 1

2
θ ±

√
1− λ2 sin2 1

2
θ (14.163)

and consequently

ξ± =

(√
1− λ2 sin2 1

2
θ ± iλ sin 1

2
θ

)2

. (14.164)

Thus, |ξ±| ≤ 1 if and only if |λ| ≤ 1. Also ξ+ = ξ− for θ = 0 or if |λ| = 1
and θ = π. Recall that with equal roots, nξn−1+ eikj∆x is also a solution of the
numerical scheme. However, since the wave equation is a second order PDE
in time, it allows linearly growing solutions like Ct so the mode nξn−1+ eikj∆x

with |ξ+| = 1 is permissible here. We conclude that the scheme (14.156) is
stable if and only if it satisfies the CFL condition

|λ| ≤ 1. (14.165)

14.9 Bibliographic Notes

Our main reference for the theory of finite difference method is the classical
book by Richtmyer and Morton [RM67]. Other more modern, specialized
texts covering finite differences, and which we have also used in this chapter,
are the books by Strikwerda [Str04], Leveque [LeV07], Iserles [Ise08], and

376 CHAPTER 14. NUMERICAL METHODS FOR PDE’S

Thomas [Tho98].

Section 14.1 . This section follows, with some variations, the masterful in-
troduction in [RM67]. It is an attempt to present a simplified introduction
to the main concepts and theory of finite difference without the use of more
advanced mathematics. The monograph by Richtmyer and Morton [RM67]
offers an unsurpassed treatment of the theory of finite differences and an el-
egant proof of the Lax-Richtmyer equivalence theorem [LR56]. The Fourier
analysis for stability, known as von Neumann analysis, was first used by J.
von Neumann in the 1940’s but the first published version of it appeared in a
paper by Crank and Nicolson in 1947 [CN47], as Gustafsson recounts [Gus18].
This widely used stability technique was only published until 1950 [CFvN50],
with von Neumann as coauthor, in the more general form described in Sub-
section 14.1.1.

Section 14.2 . The method of lines applied to linear problems can be linked
to A-stability of the ODE method employed [LeV07], with one important
caveat. One is interested not on an ODE system of a finite size M but one
for which M →∞ as ∆x→ 0.

Section 14.3 . The Crank-Nicolson method for the heat equation was pro-
posed by J. Crank and P. Nicolson in the aforementioned 1947 paper [CN47],
where the (von Neumann) Fourier analysis to examine stability of finite differ-
ences is described. But the method was already mentioned in the pioneering
1911 paper on finite differences for PDE’s by L F. Richardson, as a way
to initialize a two step (the Leap Frog) method [Ric11][§2.2]. As described
in this remarkable paper, the computations were done manually by people
Richardson hired and called computers.

Section 14.4 . Here, we only presented one possibility for implementing a
Neumann boundary condition. Other choices, using sided differences, are
described in [Str04].

Section 14.5 . The ADI method was developed by D. W. Peaceman and
H. H. Rachford [PR55] and by J. Douglas [Dou55]. The version of the ADI
method presented here is the Peaceman-Rachford method. The natural ex-
tension of this method to 3D loses unconditional stability and the accuracy
drops to first order in ∆t. However, the more general ADI procedure pro-

14.9. BIBLIOGRAPHIC NOTES 377

posed by Douglas and Gunn [DG64] written in terms of Crank-Nicolson inter-
mediate steps produces an unconditionally stable and second order method
in 3D and higher dimensions [RM67][8.8].

Section 14.6 . The method of characteristics for first order PDEs and the
transport (one-way wave) equation are described in most PDE texts for ex-
ample in [McO03, Eva10]. The CFL condition was introduced by R. Courant,
K. O. Friedrichs, and H. Lewy in a remarkable paper [CFL28] (the English
version is [CFL67]) that set the basis for understanding stability and con-
vergence of finite difference methods, well before the advent of electronic
computers. The Lax-Wendroff scheme was proposed by P. Lax and B. Wen-
droff in 1960 [LW60] and, as mentioned above, the leap frog FD was suggested
for the heat equation in the landmark paper by Richardson [Ric11].

Section 14.7 . This section follows 6.4 in Strikwerda’s text [Str04].

Section 14.7 . The representation formula for the solution of the pure initial
value problem for the wave equation (d’Alembert’s formula) was derived by J.
R. d’Alembert in 1747 [d’A47]. The stability analysis of the centered scheme
for the wave equation follows that in [Str04][8.2].

378 CHAPTER 14. NUMERICAL METHODS FOR PDE’S

Bibliography

[Ale04] V. B. Alekseev. Abel’s Theorem in Problems and Solutions: Based
on the lectures of Professor V.I. Arnold. Kluwer Academic Pub-
lishers, 2004.

[BA83] F. Bashforth and J. C. Adams. An Attempt to Test the Theories
of Capillary Action by Comparing the Theoretical and Measured
Forms of Drops of Fluid, with an Explanation of Integration Em-
ployed in Construction of Integrating the Tables Which Give the
Theoretical Forms of Such Drops. Cambridge University Press,
1883.

[BBC+94] R. Barrett, M.W. Berry, T.F. Chan, J. Demmel, J. Donato,
J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. van der
Vorst. Templates for the Solution of Linear Systems: Building
Blocks for Iterative Methods. Other Titles in Applied Mathemat-
ics. Society for Industrial and Applied Mathematics, 1994.

[Bel97] R. Bellman. Introduction to Matrix Analysis: Second Edition.
Classics in Applied Mathematics. Society for Industrial and Ap-
plied Mathematics, 1997.

[Ben24] E. Benôıt. Note sur une méthode de résolution des équations
normales provenant de l’application de la méthode des moindres
carrés à un système d’équations linéaires en nombre inférieur à
celui des inconnues, (procédé du commandant Cholesky). Bulletin
géodésique, 2:67–77, 1924.

[Bre10] C. Brezinski. Some pioneers of extrapolation methods. In
A. Bultheel and R. Cools, editors, The Birth of Numerical Anal-
ysis, pages 1–22. World Scientific, Singapore, 2010.

379

380 BIBLIOGRAPHY

[BT04] J.-P. Berrut and L. N. Trefethen. Barycentric Lagrange interpo-
lation. SIAM Review, 46(3):501–517, 2004.

[BT14] C. Brezinski and D. Tournès. André-Louis Cholesky. Mathemati-
cian, Topographer and Army Officer. Birkhäuser Cham, 2014.

[But08] J.C. Butcher. Numerical Methods for Ordinary Differential Equa-
tions. Wiley, 2008.

[Cau40] A. Cauchy. Sur les fonctions interpolaires. Comptes rendus de
l’Académie des Sciences, 11:775–789, November 1840.

[CC60] C. W. Clenshaw and A. R. Curtis. A method for numerical in-
tegration on an automatic computer. Numerische Mathematik,
2:197–205, 1960.

[CdB72] S. D. Conte and C. W. de Boor. Elementary Numerical Analy-
sis: An Algorithmic Approach. McGraw-Hill Book Company, 2nd
edition, 1972.

[CFL28] R. Courant, K. Friedrichs, and H. Lewy. Über die partiellen dif-
ferenzengleichungen der mathematischen physik. Mathematische
Annalen, 100:32–74, 1928.

[CFL67] R. Courant, K. Friedrichs, and H. Lewy. On the Partial Difference
Equations of Mathematical Physics. IBM Journal of Research and
Development, 11:215–234, March 1967.

[CFvN50] J. G. Charney, R. Fjörtoft, and J. von Neumann. Numerical
integration of the barotropic vorticity equation. Tellus, 2(4):237–
254, 1950.

[Che82] E. W. Cheney. Introduction to Approximation Theory. Interna-
tional series in pure and applied mathematics. McGraw-Hill Book
Company, 2nd edition, 1982.

[Cho05] A.-L. Cholesky. Sur la résolution numérique des systèmes
d’équations linéaires. Bulletin de la Sabix, 39:81–95, 2005.

[Cia89] P.G. Ciarlet. Introduction to Numerical Linear Algebra and Opti-
misation. Cambridge Texts in Applied Mathematics. Cambridge
University Press, 1989.

BIBLIOGRAPHY 381

[CL84] A. Coddington and N. Levinson. Theory of Ordinary Differential
Equations. International series in pure and applied mathematics.
R.E. Krieger, 1984.

[CN47] J. Crank and P. Nicolson. A practical method for numerical eval-
uation of solutions of partial differential equations of the heat-
conduction type. Advances in Computational Mathematics, 6:207–
226, 1947.

[CT65] J. W. Cooley and J. W. Tukey. An algorithm for the machine cal-
culation of complex Fourier series. Mathematics of Computation,
19:297–301, 1965.

[d’A47] J. R. d’Alembert. Recherches sur la courbe que forme une corde
tenduë mise en vibration. Histoire de l’académie royale des sci-
ences et belles lettres de Berlin, 3:214–219, 1747.

[Dah56] G. Dahlquist. Convergence and stability in the numerical integra-
tion of ordinary differential equations. MATHEMATICA SCAN-
DINAVICA, 4:33–53, Dec. 1956.

[Dav75] P. J. Davis. Interpolation and Approximation. Dover Publications,
1975.

[dB78] C. de Boor. A Practical Guide to Splines, volume 27 of Applied
Mathematical Sciences. Springer, New York, 1978.

[Dem97] J.W. Demmel. Applied Numerical Linear Algebra. EngineeringPro
collection. Society for Industrial and Applied Mathematics, 1997.

[DG64] J. Douglas and J. E. Gunn. A general formulation of alternating
direction methods. Numerische Mathematik, 6(1):428–453, 1964.

[dLVP19] C. J. de La Vallée Poussin. Leçons sur l’approximation des fonc-
tions d’une variable réelle. Collection de monographies sur la
théorie des fonctions. Gauthier-Villars, 1919.

[Dou55] J. Douglas. On the numerical integration ∂2u
∂x2 + ∂2u

∂y2
= ∂u

∂t
by

implicit methods. Journal of the Society for Industrial and Applied
Mathematics, 3(1):42–65, 1955.

382 BIBLIOGRAPHY

[DR84] P. J. Davis and P. Rabinowitz. Methods of Numerical Integration.
Academic Press, INC, London, second edition, 1984.

[Erd64] P. Erdős. Problems and results on the theory of interpolation. II.
Acta Mathematica Academiae Scientiarum Hungarica, 12(1):235–
244, 1964.

[Eul68] L. Euler. Institutionum calculi integralis. Number V. 1 in Insti-
tutionum calculi integralis. imp. Acad. imp. Saènt., 1768.

[Eva10] L.C. Evans. Partial Differential Equations. Graduate studies in
mathematics. American Mathematical Society, 2010.

[Far02] G. Farin. Chapter 1 - A history of curves and surfaces in CAGD.
In G. Farin, J. Hoschek, and M.-S. Kim, editors, Handbook of
Computer Aided Geometric Design, pages 1–21. North-Holland,
Amsterdam, 2002.

[For96] B. Fornberg. A practical guide to pseudospectral methods. Cam-
bridge University Press, 1996.

[Fra61] J. G. F. Francis. The QR Transformation A Unitary Analogue
to the LR Transformation—Part 1. The Computer Journal,
4(3):265–271, 01 1961.

[Fra62] J. G. F. Francis. The QR Transformation—Part 2. The Computer
Journal, 4(4):332–345, 01 1962.

[Fre71] G. Freud. Orthogonal Polynomials. Pergamon Press, 1971.

[Gau16] C.F. Gauss. Methodus nova integralium valores per approxima-
tionem inveniendi. Dietrich, 1816.

[Gau81] W. Gautschi. A survey of Gauss-Christoffel quadrature formulae.
In P. L. Butzer and F. Fehér, editors, E. B. Christoffel: The
Influence of His Work on Mathematics and the Physical Sciences.
Birkhäuser, Basel, 1981.

[Gau04] W. Gautschi. Orthogonal Polynomials: Computation and Approx-
imation. Numerical Mathematics and Science. Oxford University
Press, 2004.

BIBLIOGRAPHY 383

[Gau11] W. Gautschi. Numerical Analysis. Birkhäuser, Boston, 2011.

[GC12] A. Greenbaum and T. P. Chartier. Numerical Methods: Design,
Analysis, and Computer Implementation of Algorithms. Princeton
University Press, 2012.

[Gen72] W. M. Gentleman. Implementing Clenshaw-Curtis quadrature,
I. Methodology and experience. Communications of the ACM,
15(5):337–342, 1972.

[GLR07] A. Glaser, X. Liu, and V. Rokhlin. A fast algorithm for the calcu-
lation of the roots of special functions. SIAM Journal on Scientific
Computing, 29(4):1420–1438, 2007.

[Gol77] H. H. Goldstine. A history of numerical analysis. From the 16th
century through the 19th century. Studies in the History of Math-
ematics and Physical Sciences 2. Springer-Verlag, 1977.

[GR71] G. H. Golub and C. Reinsch. Singular value decomposition and
least squares solutions. Linear Algebra, pages 134–151, 1971.

[Grc11] J. Grcar. Mathematicians of Gaussian elimination. Notices of the
American Mathematical Society, 58(06):782–792, 2011.

[Gre97] Anne Greenbaum. Iterative Methods for Solving Linear Systems.
Society for Industrial and Applied Mathematics, 1997.

[Gus18] B. Gustafsson. Scientific Computing: A Historical Perspective.
Texts in Computational Science and Engineering. Springer Inter-
national Publishing, 2018.

[GVL13] G.H. Golub and C.F. Van Loan. Matrix Computations. Johns
Hopkins Studies in the Mathematical Sciences. Johns Hopkins
University Press, 2013.

[GW69] G. H. Golub and J. H. Welsch. Calculation of Gauss quadrature
rules. Mathematics of Computation, 23(106):221–230, May 1969.

[Hac94] W. Hackbusch. Iterative Solution of Large Sparse Systems of
Equations. Springer-Verlag, Applied mathematical sciences, 1994.

384 BIBLIOGRAPHY

[Hen61] P. Henrici. Two remarks on the Kantorovich inequality. The
American Mathematical Monthly, 68(9):904–906, 1961.

[Hen62] P. Henrici. Discrete Variable Methods in Ordinary Differential
Equations. Wiley, 1962.

[Hen64] P. Henrici. Elements of Numerical Analysis. Wiley, 1964.

[Her77] C. Hermite. Sur la formule d’interpolation de Lagrange. Journal
für die reine und angewandte Mathematik, 84:70–79, 1877.

[Heu00] K. Heun. Neue methode zur approximativen integration der differ-
entialgleichungen einer unabhängigen variablen. Z. Math. Phys.,
45:23–38, 1900.

[Hil13] F. B. Hildebrand. Introduction to Numerical Analysis: Second
Edition. Dover Books on Mathematics. Dover Publications, 2013.

[HJ94] R.A. Horn and C.R. Johnson. Topics in Matrix Analysis. Cam-
bridge University Press, 1994.

[HJ13] R.A. Horn and C.R. Johnson. Matrix Analysis. Cambridge Uni-
versity Press, 2013.

[HJB85] M. T. Heideman, D. H. Johnson, and C. S. Burrus. Gauss and
the history of the fast Fourier transform. Archive for History of
Exact Sciences, 34(3):265–277, 1985.

[HNW93] E. Hairer, S.P. Nørsett, and G. Wanner. Solving Ordinary Dif-
ferential Equations I Nonstiff problems. Springer, Berlin, second
edition, 1993.

[HNW96] E. Hairer, S.P. Nørsett, and G. Wanner. Solving Ordinary Dif-
ferential Equations II: Stiff and Differential-Algebraic Problems.
Springer, second edition, 1996.

[Hou58] A. S. Householder. Unitary triangularization of a nonsymmetric
matrix. J. ACM, 5(4):339–342, oct 1958.

[HS52] M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for
solving linear systems. J Res NIST, 49(6):409–436, 1952.

BIBLIOGRAPHY 385

[HSD04] M.W. Hirsch, S. Smale, and R.L. Devaney. Differential Equations,
Dynamical Systems, and an Introduction to Chaos. Pure and Ap-
plied Mathematics - Academic Press. Elsevier Science, 2004.

[HT13] N. Hale and A. Townsend. Fast and accurate computation of
Gauss–Legendre and Gauss–Jacobi quadrature nodes and weights.
SIAM Journal on Scientific Computing, 35(2):A652–A674, 2013.

[HTF09] T. Hastie, R. Tibshirani, and J. H. Friedman. The Elements
of Statistical Learning: Data Mining, Inference, and Prediction.
Springer series in statistics. Springer, 2009.

[Huy09] C. Huygens. De Circuli Magnitudine Inventa (1654). Kessinger
Publishing, 2009.

[IK94] E. Isaacson and H. B. Keller. Analysis of Numerical Methods.
Dover Books on Mathematics. Dover Publications, 1994.

[Ise08] A. Iserles. A First Course in the Numerical Analysis of Differ-
ential Equations. Cambridge University Press, USA, 2nd edition,
2008.

[KC02] D.R. Kincaid and E.W. Cheney. Numerical Analysis: Mathemat-
ics of Scientific Computing. (The Sally Series; Pure and Applied
Undergraduate Texts, Vol. 2). Brooks/Cole, 2002.

[Kry12] V. I. Krylov. Approximate Calculation of Integrals. Dover books
on mathematics. Dover Publications, 2012.

[Kub62] V.N. Kublanovskaya. On some algorithms for the solution of the
complete eigenvalue problem. USSR Computational Mathematics
and Mathematical Physics, 1(3):637–657, 1962.

[Kut01] W. Kutta. Beitrag zur näherungsweisen integration totaler differ-
entialgleichungen. Z. Math. Phys., 46:23–38, 1901.

[Lam91] J.D. Lambert. Numerical Methods for Ordinary Differential Sys-
tems: The Initial Value Problem. John Wiley and Sons, 1991.

[LeV07] R. J. LeVeque. Finite Difference Methods for Ordinary and Par-
tial Differential Equations. Society for Industrial and Applied
Mathematics, 2007.

386 BIBLIOGRAPHY

[LR56] P. D. Lax and R. D. Richtmyer. Survey of the stability of linear
finite difference equations. Communications on Pure and Applied
Mathematics, 9(2):267–293, 1956.

[LS66] J. D. Lambert and B. Shaw. A generalisation of multistep meth-
ods for ordinary differential equations. Numerische Mathematik,
8(3):250–263, 1966.

[LW60] P. Lax and B. Wendroff. Systems of conservation laws. Commu-
nications on Pure and Applied Mathematics, 13(2):217–237, 1960.

[LY08] D.G. Luenberger and Y. Ye. Linear and Nonlinear Programming.
International Series in Operations Research & Management Sci-
ence. Springer US, 2008.

[McO03] R.C. McOwen. Partial Differential Equations: Methods and Ap-
plications. Prentice Hall, 2003.

[Mul56] D. E. Muller. A method for solving algebraic equations using an
automatic computer. Mathematics of Computation, 10:208–215,
1956.

[NCW99] I. Newton, I.B. Cohen, and A. Whitman. The Principia: Mathe-
matical Principles of Natural Philosophy. The Principia: Mathe-
matical Principles of Natural Philosophy. University of California
Press, 1999.

[NW06] J. Nocedal and S. Wright. Numerical Optimization. Springer
Series in Operations Research and Financial Engineering. Springer
New York, 2006.

[OR70] J.M. Ortega and W.C. Rheinboldt. Iterative Solution of Nonlinear
Equations in Several Variables. Classics in Applied Mathematics.
Society for Industrial and Applied Mathematics, 1970.

[Ove01] M. L. Overton. Numerical Computing with IEEE Floating Point
Arithmetic: Including One Theorem, One Rule of Thumb, and
One Hundred and One Exercises. Other titles in applied mathe-
matics. Society for Industrial and Applied Mathematics, 2001.

BIBLIOGRAPHY 387

[PR55] D. W. Peaceman and H. H. Rachford. The numerical solution of
parabolic and elliptic differential equations. Journal of the Society
for Industrial and Applied Mathematics, 3(1):28–41, 1955.

[Rap90] J. Raphson. Analysis aequationum universalis seu ad aequationes
algebraicas resolvendas methodus generalis, & expedita, ex nova
infinitarum serierum methodo, deducta ac demonstrata. 1690.

[Ric11] L. F. Richardson. IX. The approximate arithmetical solution by
finite differences of physical problems involving differential equa-
tions, with an application to the stresses in a masonry dam.
Philosophical Transactions of the Royal Society of London. Series
A, Containing Papers of a Mathematical or Physical Character,
210(459-470):307–357, 1911.

[Riv81] T. J. Rivlin. An Introduction to the Approximation of Functions.
Dover Publications, 1981.

[Riv20] T. J. Rivlin. Chebyshev Polynomials. Dover Publications, 2020.

[RM67] R.D. Richtmyer and K.W. Morton. Difference Methods for Initial
Value Problems. Wiley, 1967.

[Rom55] W. Romberg. Vereinfachte numerische integration. Det Kongelige
Norske Videnskabers Selskab Forhandlinger, 28(7):30–36, 1955.

[RR01] A. Ralston and P. Rabinowitz. A First Course in Numerical Anal-
ysis. Dover books on mathematics. Dover Publications, 2001.

[Run95] C. Runge. Ueber die numerische auflösung von differentialgle-
ichungen. Mathematische Annalen, 46:167–178, 1895.

[Run01] C. Runge. Über empirische Funktionen und die Interpolation zwis-
chen äquidistanten Ordinaten. Zeit. fur Math. Physik, 246:224–
243, 1901.

[Saa03] Y. Saad. Iterative Methods for Sparse Linear Systems. Society for
Industrial and Applied Mathematics, second edition, 2003.

[Sal72] H. E. Salzer. Lagrangian Interpolation at the Chebyshev Points
xn,ν ≡ cos(νπ/n), ν = O(1)n; some Unnoted Advantages. The
Computer Journal, 15(2):156–159, 1972.

388 BIBLIOGRAPHY

[Sau12] T. Sauer. Numerical Analysis. Pearson Addison Wesley, second
edition, 2012.

[SB02] J. Stoer and R. Bulirsch. Introduction to Numerical Analysis.
Texts in Applied Mathematics. Springer, New York, 2002.

[Sch89] H. R. Schwarz. Numerical Analysis: A Comprehensive Introduc-
tion. Wiley, 1989. With a contribution by J. Waldvogel.

[Sid13] T.C. Sideris. Ordinary Differential Equations and Dynamical Sys-
tems. Atlantis Studies in Differential Equations. Atlantis Press,
2013.

[Sim43] T. Simpson. Mathematical Dissertations on a Variety of Physical
and Analytical Subjects. T. Woodward, London, 1743.

[Str04] J. Strikwerda. Finite Difference Schemes and Partial Differen-
tial Equations. Other titles in applied mathematics. Society for
Industrial and Applied Mathematics, 2004.

[Sze39] G. Szegő. Orthogonal Polynomials. American Mathematical So-
ciety, 1939.

[TB97] L.N. Trefethen and D. Bau. Numerical Linear Algebra. Society
for Industrial and Applied Mathematics, 1997.

[Tho98] J.W. Thomas. Numerical Partial Differential Equations: Finite
Difference Methods. Texts in Applied Mathematics. Springer New
York, 1998.

[Tim94] A. F. Timan. Theory of Approximation of Functions of a Real
Variable. Dover books on advanced mathematics. Dover Publica-
tions, 1994.

[Tre92] L. N. Trefethen. The definition of numerical analysis. SIAM News,
25, November 1992.

[Tre00] L. N. Trefethen. Spectral Methods in MATLAB. Society for In-
dustrial and Applied Mathematics, 2000.

[Tre08] L. N. Trefethen. Is Gauss quadrature better than Clenshaw–
Curtis? SIAM Review, 50(1):67–87, 2008.

BIBLIOGRAPHY 389

[Wil65] J.H. Wilkinson. The Algebraic Eigenvalue Problem. Monographs
on numerical analysis. Clarendon Press, 1965.

[Wil94] J. H. Wilkinson. Rounding Errors in Algebraic Processes. Dover
books on advanced mathematics. Dover, 1994.

	Contents
	Preface
	Introduction
	What is Numerical Analysis?
	An Illustrative Example
	An Approximation Principle
	Divide and Conquer
	Convergence and Rate of Convergence
	Error Correction
	Richardson Extrapolation

	Super-algebraic Convergence
	Bibliographic Notes

	Function Approximation
	Norms
	Uniform Polynomial Approximation
	Bernstein Polynomials and Bézier Curves
	Weierstrass Approximation Theorem

	Best Approximation
	Best Uniform Polynomial Approximation

	Chebyshev Polynomials
	Bibliographic Notes

	Interpolation
	Polynomial Interpolation
	Equispaced and Chebyshev Nodes

	Connection to Best Uniform Approximation
	Barycentric Formula
	Barycentric Weights for Chebyshev Nodes
	Barycentric Weights for Equispaced Nodes
	Barycentric Weights for General Sets of Nodes

	Newton's Form and Divided Differences
	Cauchy Remainder
	Divided Differences and Derivatives
	Hermite Interpolation
	Convergence of Polynomial Interpolation
	Piecewise Polynomial Interpolation
	Cubic Splines
	Natural Splines
	Complete Splines
	Minimal Bending Energy
	Splines for Parametric Curves

	Trigonometric Interpolation
	The Fast Fourier Transform
	The Chebyshev Interpolant and the DCT
	Bibliographic Notes

	Least Squares
	Least Squares for Functions
	Trigonometric Polynomial Approximation
	Algebraic Polynomial Approximation
	Gram-Schmidt Orthogonalization
	Orthogonal Polynomials

	Convergence of Least Squares by Orthogonal Polynomials
	Chebyshev Expansions
	Decay of Chebyshev Coefficients for Analytic Functions
	Splines

	Discrete Least Squares Approximation
	High-dimensional Data Fitting
	Bibliographic Notes

	Computer Arithmetic
	Floating Point Numbers
	Rounding and Machine Precision
	Correctly Rounded Arithmetic
	Propagation of Errors and Cancellation of Digits
	Bibliographic Notes

	Numerical Differentiation
	Finite Differences
	The Effect of Round-Off Errors
	Richardson's Extrapolation
	Fast Spectral Differentiation
	Fourier Spectral Differentiation
	Chebyshev Spectral Differentiation

	Bibliographic Notes

	Numerical Integration
	Elementary Simpson's Rule
	Interpolatory Quadratures
	Gaussian Quadratures
	Convergence of Gaussian Quadratures
	Computing the Gaussian Nodes and Weights

	Clenshaw-Curtis Quadrature
	Composite Quadratures
	Modified Trapezoidal Rule
	The Euler-Maclaurin Formula
	Romberg Integration
	Bibliographic Notes

	Linear Algebra
	Numerical Linear Algebra
	Linear Systems
	Eigenvalue Problems
	Singular Value Decomposition

	Notation
	Some Important Types of Matrices
	Schur Theorem
	QR Factorization
	Matrix Norms
	 Condition Number of a Matrix
	What to Do When A is Ill-conditioned?

	Bibliographic Notes

	Linear Systems of Equations I
	Easy to Solve Systems
	Gaussian Elimination
	The Cost of Gaussian Elimination

	LU and Choleski Factorizations
	Tridiagonal Linear Systems
	A 1D BVP: Deformation of an Elastic Beam
	A 2D BVP: Dirichlet Problem for the Poisson's Equation
	Linear Iterative Methods for Ax=b
	Jacobi, Gauss-Seidel, and SOR.
	Convergence of Linear Iterative Methods

	Bibliographic Notes

	Linear Systems of Equations II
	Positive Definite Linear Systems as an Optimization Problem
	Line Search Methods
	Steepest Descent

	The Conjugate Gradient Method
	Generating the Conjugate Search Directions
	Krylov Subspaces
	Convergence of the Conjugate Gradient Method
	Preconditioned Conjugate Gradient

	Bibliographic Notes

	Eigenvalue Problems
	The Power Method
	Householder QR Factorization
	The QR Method for Eigenvalues
	Reductions Prior to Applying the QR Method.
	Bibliographic Notes

	Non-Linear Equations
	Bisection
	Convergence of the Bisection Method

	Rate of Convergence
	Interpolation-Based Methods
	Newton's Method
	The Secant Method
	Fixed Point Iteration
	Systems of Nonlinear Equations
	Newton's Method for Systems

	Bibliographic Notes

	Numerical Methods for ODEs
	The Initial Value Problem for ODEs
	A First Look at Numerical Methods
	One-Step and Multistep Methods
	Local and Global Error
	Order of a Method and Consistency
	Convergence
	Runge-Kutta Methods
	Implementation for Systems
	Adaptive Stepping
	Embedded Methods
	Multistep Methods
	Adams Methods
	D-Stability and Dahlquist Equivalence Theorem

	A-Stability
	Numerically Stiff ODEs and L-Stability
	Bibliographic Notes

	Numerical Methods for PDE's
	Key Concepts through One Example
	von Neumann Analysis of Numerical Stability
	Order of a Method and Consistency
	Convergence
	The Lax-Richmyer Equivalence Theorem

	The Method of Lines
	The Backward Euler and Crank-Nicolson Methods
	Neumann Boundary Conditions
	Higher Dimensions and the ADI Method
	Wave Propagation and Upwinding
	Advection-Diffusion
	The Wave Equation
	Bibliographic Notes

	Bibliography

