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Abstract

Phase field models offer a systematic physical approach for investigating complex multiphase systems behaviors such

as near-critical interfacial phenomena, phase separation under shear, and microstructure evolution during solidifica-

tion. However, because interfaces are replaced by thin transition regions (diffuse interfaces), phase field simulations

require resolution of very thin layers to capture the physics of the problems studied. This demands robust numerical

methods that can efficiently achieve high resolution and accuracy, especially in three dimensions. We present here an

accurate and efficient numerical method to solve the coupled Cahn–Hilliard/Navier–Stokes system, known as Model H,

that constitutes a phase field model for density-matched binary fluids with variable mobility and viscosity. The nu-

merical method is a time-split scheme that combines a novel semi-implicit discretization for the convective Cahn–

Hilliard equation with an innovative application of high-resolution schemes employed for direct numerical simulations

of turbulence. This new semi-implicit discretization is simple but effective since it removes the stability constraint due to

the nonlinearity of the Cahn–Hilliard equation at the same cost as that of an explicit scheme. It is derived from a

discretization used for diffusive problems that we further enhance to efficiently solve flow problems with variable

mobility and viscosity. Moreover, we solve the Navier–Stokes equations with a robust time-discretization of the pro-

jection method that guarantees better stability properties than those for Crank–Nicolson-based projection methods.

For channel geometries, the method uses a spectral discretization in the streamwise and spanwise directions and a

combination of spectral and high order compact finite difference discretizations in the wall normal direction. The ca-

pabilities of the method are demonstrated with several examples including phase separation with, and without, shear in

two and three dimensions. The method effectively resolves interfacial layers of as few as three mesh points. The nu-

merical examples show agreement with analytical solutions and scaling laws, where available, and the 3D simulations,

in the presence of shear, reveal rich and complex structures, including strings.
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1. Introduction

Phase field-based models replace sharp fluid/material interfaces by thin but nonzero thickness transition

regions where the interfacial forces are smoothly distributed. The basic idea is to introduce an order pa-

rameter or phase field that varies continuously over thin interfacial layers and is mostly uniform in the bulk

phases. Perhaps the best-known example of this type of model is the Cahn–Hilliard equation [1,2] used for

modeling phase separation in a binary mixture quenched into the unstable region. The relaxation of the

order parameter is driven by local minimization of the free energy subject to phase field conservation and as
a result, the interface layers do not deteriorate dynamically.

One of the applications for which phase field models are particularly well-suited is the complex process

of phase separation, structure formation and evolution in flow systems, an area of technological impact in

soft materials processing. The hydrodynamics can be introduced in several ways. For density-matched

binary liquids, which is the case we focus on this work, this is accomplished with the coupling of the

convective Cahn–Hilliard equation with a modified momentum equation that includes a phase field-de-

pendent surface force. This is known as Model H according to the classification of Hohenberg and Halperin

[3]. In the case of fluids with different densities a phase field model has been proposed by Lowengrub and
Truskinovsky [4].

One of the salient points of the phase field description is that the order parameter has a physical meaning

and different phenomena can be accounted for by a suitable modification of the free energy. Moreover,

complex morphological and topological flow transitions such as coalescence and interface break-up can be

captured naturally and in a mass-conservative and energy-dissipative fashion. The main drawback on the

other hand is that to properly model relevant physical phenomena the interface layers have to be extremely

thin. As a consequence the phase field has large gradients that must be resolved computationally. This is not

an easy task. High resolution is required but the Cahn–Hilliard equation and the phase field-dependent
surface force have high order derivative components. Fully implicit treatment of these terms yields ex-

pensive schemes and explicit discretizations quickly lead to numerical instability or impose impractical

time-stepping constraints.

Here, we propose an efficient and robust numerical method for the coupled Cahn–Hilliard/Navier–

Stokes system. The time discretization of the method is a semi-implicit one based on an extraction of

constant coefficient leading order terms (at small scales) that are time-step split. The implicit discretization

of these constant coefficient terms can be inverted efficiently at optimal cost and relaxes the high order

stability constraints. The time splitting allows us to decouple at each time-step the Cahn–Hilliard and the
Navier–Stokes solvers. The semi-implicit discretization is combined with an original application of state-of-

the-art high-resolution schemes. We solve the flow using a robust time-discretization of the projection

method that is formally second order and has a stronger high modal decay than the popular Crank–Ni-

colson-based projection methods. For flows confined by walls and with streamwise and spanwise period-

icities, we discretize the system in space using a spectral approximation in those directions and a

combination of spectral and eighth order compact finite difference approximations [5] in the wall normal

direction. We demonstrate the efficacy of the method with examples of pure phase separation and binary

shear flow in two and three dimensions.
Little work has been done on the solution of the coupled Cahn–Hilliard/Navier–Stokes system [6–9]

and our three-dimensional simulations for separation under shear flow are, to our knowledge, one of the

first ever reported. The overall method proposed here is accurate and robust allowing interface thickness

of as few as three mesh points and, as the numerical experiments show, its efficiency makes possible

high-resolution 3D simulations even on modest personal computers. The numerical examples show

agreement with analytical solutions and scaling laws where available and the 3D simulations in the

presence of shear flow reveal rich and complex structures characterized by formation of string-like

phases.
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The rest of the paper is organized as follows. Section 2 gives a brief introduction to the model coupling

the phase field and the Navier–Stokes equations. Section 3 discusses our proposed numerical procedure,

and in Section 4 the method is validated through numerical examples, and the results of our numerical

experiments are presented and discussed. This is followed by some concluding remarks and an Appendix A.
2. The governing equations

2.1. The phase field method

Phase field methods are a particular class of diffuse-interface models that have been used successfully in

the study of critical phenomena but have not been used much for fluid interfaces. In a phase field method, it

is assumed that the state of the system at any given time can be described by an order parameter / which is

a function of the position vector. For example, in the case of an isothermal binary fluid / is the relative

concentration of the two components. A free energy can be defined for times when the system is not in

equilibrium [10], and this free energy can be written as a functional of /:

F ½/� ¼
Z
X

f ð/ðxÞÞ
�

þ 1

2
kjr/ðxÞj2

�
dx; ð1Þ

where X is the region of space occupied by the system. The term ð1=2Þkjr/ðxÞj2 accounts for the surface

energy, with k a positive constant, and f ð/ðxÞÞ is the bulk energy density which has two minima corre-

sponding to the two stable phases of the fluid.
The chemical potential l is defined as

lð/Þ ¼ dF ½/�
d/ðxÞ ¼ f 0ð/ðxÞÞ � kr2/ðxÞ: ð2Þ

The equilibrium interface profile can be found by minimizing the functional F ½/� with respect to vari-

ations of the function /, i.e., solving lð/Þ ¼ 0. Cahn and Hilliard [1,2] generalized the problem to time-

dependent situations by approximating interfacial diffusion fluxes as being proportional to chemical po-

tential gradients, enforcing conservation of the field. The convective Cahn–Hilliard equation can be written

as

o/
ot

þ u � r/ ¼ r � ðMð/ÞrlÞ; ð3Þ

where u is the velocity field andMð/Þ > 0 is the mobility or Onsager coefficient. Eq. (3) models the creation,

evolution, and dissolution of diffusively controlled phase field interfaces [11] (for a review of the Cahn–

Hilliard model see for example [12]). At the wall, we adopt the following no-flux boundary conditions:

n � r/ ¼ 0 and n �Mrl ¼ 0; ð4Þ

where n is the unit vector normal to the domain boundary.

2.2. The equations of fluid motion

This work focuses on density-matched binary mixtures with variable viscosity and mobility. The fluid
dynamics are described by the Navier–Stokes equations with a phase field-dependent surface force [13]

q
ou

ot

�
þ u � ru

�
¼ �rp þr � gðruþruTÞ þ lr/; ð5Þ
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r � u ¼ 0; ð6Þ

where u is the velocity field, p is a scalar related to the pressure that enforces the incompressibility constraint
(6), and g is the viscosity. The superscript T stands for the transpose operator. At a wall the Dirichlet

boundary condition is imposed for the velocity field, i.e., u ¼ u0 at a fixed domain boundary.

The coupled Cahn–Hilliard/Navier–Stokes system (3)–(6) is referred to as ‘‘Model H’’ according to the

nomenclature of Hohenberg and Halperin [3].

2.3. Interface properties

For the binary fluid we use the following double well potential:

f ð/Þ ¼ a
4

/

 
�

ffiffiffi
b
a

r !2

/

 
þ

ffiffiffi
b
a

r !2

; ð7Þ

where a and b are two positive constants. The equilibrium profile is given by the solutions of the equation

lð/Þ ¼ dF ½/�
d/

¼ a/3 � b/� kr2/ ¼ 0: ð8Þ

This leads to two stable uniform solutions /� ¼ �
ffiffiffiffiffiffiffiffi
b=a

p
representing the coexisting bulk phases, and a

one-dimensional (say along the z-direction) nonuniform solution

/0ðzÞ ¼ /þ tanh
zffiffiffi
2

p
n

� �
ð9Þ

that satisfies the boundary conditions /0ðz ! �1Þ ¼ �/ (see [6,14]). This solution was first found by van
der Waals [15] to describe the equilibrium profile for a plane interface normal to the z-direction, of

thickness proportional to n ¼
ffiffiffiffiffiffiffiffi
k=b

p
, that separates the two bulk phases.

We define the interface thickness to be the distance from 0:9/� to 0:9/þ so that the equilibrium interface

thickness is 2
ffiffiffi
2

p
n tanh�1ð0:9Þ ¼ 4:164n. This width contains 98.5% of the surface tension stress [7].

In equilibrium the surface tension r of an interface is equal to the integral of the free energy density

along the interface. For a plane interface r is given by [14]

r ¼ k
Z þ1

�1

d/0

dz

� �2

dz ¼
ffiffiffi
2

p

3

k1=2b3=2

a
: ð10Þ

It is evident from (9) and (10) that we can control the surface tension and interface width through the
parameters k, a, and b.

2.4. Nondimensionalization

We nondimensionalize the governing equations with the variables

u0 ¼ u

Uc

; t0 ¼ t
Tc

; x0 ¼ x

Lc

; p0 ¼ pLc

gcUc

: ð11Þ

Following Chella and Vi~nnals [6] we choose as characteristic length Lc the mean-field thickness n of the
interface, i.e., Lc ¼ n. The characteristic velocity Uc depends on the problem; for example, it could be the

imposed velocity in shear flow. The characteristic time Tc is the time required for the fluid to be convected a

distance of the order of the interface thickness (in the absence of capillarity), Tc ¼ n=Uc. The order
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parameter / is scaled with its mean-field equilibrium value /þ ¼
ffiffiffiffiffiffiffiffi
b=a

p
. Dropping the primes, Eqs. (3)–(6)

become

o/
ot

þ u � r/ ¼ 1

Pe
r � krl; ð12Þ
Re
ou

ot

�
þ u � ru

�
¼ �rp þr � hðruþruTÞ þ 1

Ca
lr/; ð13Þ
r � u ¼ 0; ð14Þ

where h ¼ g=gc and k ¼ M=Mc are the normalized viscosity and mobility, respectively, and l ¼ /3 � /�
r2/ is the dimensionless chemical potential. The dimensionless groups used above are the Reynolds

number, the P�eeclet number, and the capillary number given by

Re ¼ qUcn
g

; Pe ¼ Ucn
Mcb

; Ca ¼ agUc

b2n
¼ 2gUc

3r
; ð15Þ

respectively. Physically, the P�eeclet number Pe is the ratio between the diffusive time scale n2=ðMcbÞ and the

convective time scale n=Uc. The Reynolds number Re is the ratio between inertial and viscous forces and the

capillary number Ca provides a measure of the relative magnitude of viscous and capillary (or interfacial

tension) forces at the interface. Note that with this nondimensionalization the length of the fluid domain is

interpreted in units of interface thickness n.
We consider the viscosity g as a linear function of the order parameter /. That is, if g� 6 g6 gþ and

gc ¼ g� we get

h ¼ hmax � 1

2
/þ hmax þ 1

2
; ð16Þ

where hmax ¼ gþ=g� is the viscosity ratio. In this way g automatically changes across the interface with a

profile similar to the tanh function.

For the mobility M we follow [16] and we consider a profile as M ¼ Mcð1� c/2Þ so that we have

k ¼ ð1� c/2Þ: ð17Þ

where 06 c6 1. If c ! 0 we have phase separation dynamics controlled by bulk diffusion, if c ! 1 we have
dynamics controlled by interface diffusion.
3. The numerical method

3.1. Temporal discretization

We propose a semi-implicit time discretization combined with a time-split strategy. This discretization

effectively decouples Cahn–Hilliard and Navier–Stokes solvers and yields an efficient and robust modular
scheme.

The outline of the method is as follows. Given /n and un the objective is to solve for /nþ1 and unþ1 with

the steps:

(1) Solve the Cahn–Hilliard equation with a second order semi-implicit method and spectral spatial discret-

ization to obtain /nþ1.
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(2) Using /nþ1 compute the surface force and solve the phase field modified Navier–Stokes equations with

a second order SBDF (semi-backward difference formula)-based projection method to obtain unþ1. The

spatial discretization is spectral in the streamwise and spanwise directions and eighth order compact

finite difference in the wall normal direction [5,17,18].
Our semi-implicit strategy uses a simple idea that works quite well for diffusion-dominated equations, for

example, the variable (even nonlinear) coefficient diffusion equation ut ¼ r � ðvruÞ, v > 0 [19,20]. We re-

write the latter as

ou
ot

¼ ar2uþ f ðuÞ; ð18Þ

where f ðuÞ ¼ r � ðvruÞ � ar2u and a is constant in space (but could be time-dependent). By treating the
first term on the right-hand side of (18) implicitly and f ðuÞ explicitly we can obtain semi-implicit discret-

izations that can be easily solved. With energy estimates one can show that a first order Euler discretization

is unconditionally stable if aP ð1=2Þmax v [19]. Since the truncation error is dissipative and proportional

to a, we consider a ¼ ð1=2Þmax v as an optimal value. Discretizations of this type are of common use in

spectral methods [20] as the constant coefficient implicit terms becomes diagonal in Fourier space and thus

can be inverted efficiently. However, as noted in [21], these discretizations are less successful for dispersion-

dominated problems.

We can apply this idea to deal with variable mobility. However, the application of the same idea to the
treatment of the nonlinear term due to the chemical potential is not straightforward. To achieve this, we

note thatr2f 0ð/Þ ¼ r � ðf 00r/Þ where f 0ð/Þ ¼ /3 �/ and f 00ð/Þ ¼ 3/2 � 1. Letting s ¼ ð1=2Þmaxðf 0ð/ÞÞ ¼
ð1=2Þf 00ð�1Þ ¼ 1 and defining kmax ¼ max k as the maximum of the normalized mobility (the mobility ratio

if Mc ¼ M�) we rewrite (12) as

o/
ot

¼ 1

Pe
kmax

2
sr2/
�

�r4/
�
þ 1

Pe
Að/Þ½ þ Bð/Þ� � u � r/; ð19Þ

where Að/Þ ¼ r � krf 0ð/Þ � ðkmax=2Þsr2/ and Bð/Þ ¼ ðkmax=2Þr4/�r � krðr2/Þ: By treating the first

term on the right-hand side of (19) implicitly and Að/Þ;Bð/Þ and the convective term u � r/ explicitly we

can obtain semi-implicit discretizations that can be solved efficiently at minimal cost. When looking for a

second order semi-implicit multi-step method it is fundamental to note that because of the very high fre-

quency content in the Cahn–Hilliard solutions we need a method with high modal damping. The use of

weakly damping schemes such as the popular combination of Crank–Nicolson with second or higher order

convective terms discretizations is not appropriate [22] since it can lead to extra iterations on the finest grid

when using multigrid methods with finite difference spatial discretizations, and to aliasing, when using
spectral collocation for spatial discretization as it is in our case. Among the second order multi-step

methods the extrapolated Gear (SBDF) scheme has the strongest high modal decay [22]. We experimented

numerically with the Crank–Nicolson discretization applied to the modified Cahn–Hilliard equation (19),

without convection, and found that unless Crank–Nicolson is used in its dissipative regime (Dt < Ch2) it
would be unstable. The high modal damping is apparently required to stabilize the high frequency content

of the explicitly treated difference between the variable coefficient term and the constant one. The SBDF

provides, without the stringent quadratic time-step constraint, the required damping. Applied to (19) this

scheme becomes

3
2
/nþ1 � 2/n þ 1

2
/n�1

Dt
¼ 1

Pe
kmax

2
sr2/nþ1
�

�r4/nþ1
�
þ 2

1

Pe
Að/nÞ½

�
þ Bð/nÞ� � un � r/n

�
� 1

Pe
Að/n�1Þ
��

þ Bð/n�1Þ
�
� un�1 � r/n�1

�
: ð20Þ
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In the absence of convection, this new discretization appears in our numerical experiments to be un-

conditionally stable. Eyre [23] considers a discretization of this type for the one-dimensional Cahn–Hilliard

equation with constant mobility, Smereka [24] uses it in the context of interface motion by surface diffusion

while Zhu et al. [25] use it for the mobility term but not for the nonlinear one, resulting in a conditionally

stable method.

For the Navier–Stokes equations (13) and (14) we use the Gear scheme combined with the above semi-

implicit discretization applied to the variable viscosity term. This discretization will provide the necessary

damping for the high mode components due to the near discontinuities in the derivatives of the velocity and
the presence of the almost singular surface-tension source term. The discretized Navier–Stokes equations

are

3
2
unþ1 � 2un þ 1

2
un�1

Dt
¼ �rpnþ1

Re
þ hmax

2Re
r2unþ1 þ 1

ReCa
lð/nþ1Þr/nþ1 þ 2

CðunÞ
Re

�
� un � run

	
� Cðun�1Þ

Re

�
� un�1 � run�1

	
; ð21Þ

where CðumÞ ¼ r � hmþ1ðrum þ ðrumÞTÞ � ðhmax=2Þr2um with m ¼ n; n� 1. Karniadakis et al. [26] employ
this scheme in the context of single phase flow, i.e., without the source term and the scheme was called

‘‘stiffly’’ stable. We use the same splitting with the addition of the source, i.e., surface tension, term. The

method can be summarized as follows:

Step 1:

u� � 2un þ 1
2
un�1

Dt
¼ 2

CðunÞ
Re

�
� un � run

	
� Cðun�1Þ

Re

�
� un�1 � run�1

	
þ 1

ReCa
lð/nþ1Þr/nþ1: ð22Þ

Step 2:

u�� � u�

Dt
¼ �rpnþ1

Re
: ð23Þ

Step 3 (Helmholtz equation):

3
2
unþ1 � u��

Dt
¼ hmax

2Re
r2unþ1 ð24Þ

with Dirichlet boundary conditions

unþ1 ¼ u0: ð25Þ

We need to introduce two further assumptions for the intermediate velocity fields u�; u��. First the in-

compressibility constraint

r � u�� ¼ 0 ð26Þ

and second that the same field u�� also satisfies the prescribed Dirichlet condition in the direction normal to
the boundary

u�� � n ¼ u0 � n: ð27Þ

Incorporating these assumptions into Eq. (23) we finally derive a separately solvable equation for the

pressure (Poisson equation)

r2pnþ1 ¼ Re
Dt

r � u�: ð28Þ
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Karniadakis et al. [26] derive the Neumann boundary conditions that allows second order accuracy in

the velocity and pressure in the context of single phase flow and constant viscosity. We follow the same

procedure and we evaluate the normal component of (21) at the boundary and let the term

r2u ¼ �r� ðr � uÞ (due to the incompressibility constraint (6)) to yield

opnþ1

on






C

¼ n � 2ðReun � run
h

þrhnþ1run � hnþ1r� ðr � unÞ þ r � hnþ1ðrunÞTÞ

� ðReun�1 � run�1 þrhnrun�1 � hnr� ðr � un�1Þ þ r � hnðrun�1ÞTÞ
i
: ð29Þ

Note that we calculate the term r2unþ1 with an extrapolation from the time levels n and n� 1.

3.2. Stability

A rigorous stability analysis for the overall scheme is quite difficult. Nevertheless one can obtain valuable

information about the stability and robustness of the scheme through numerical tests (see Section 4). In

particular, through numerical experiments we find that the semi-implicit discretization (20) for the Cahn–

Hilliard equation appears to be unconditionally stable when u � 0, regardless of the interface thickness.

Moreover, the unconditional stability seems to hold for aP f 00ð�1Þ=2 ¼ 1 just as for the corresponding

discretization of the variable diffusion equation ut ¼ r � ðvruÞ. Thus, for a given nonzero u, the scheme for
the convective Cahn–Hilliard equation has only a CFL stability condition

Dtcfl 6
jujmax

Dx

�
þ jvjmax

Dy
þ jwjmax

Dz

��1

; ð30Þ

where ðu; v;wÞ are the components of the velocity field.

When coupled with the time discretization of the modified Navier–Stokes equations (22)–(24), in ad-

dition to the natural CFL condition, we have to consider time step restrictions due to surface tension and

viscosity. For the surface tension we observe a mild stability constraint of the form

Dts 6C1

ffiffiffiffiffiffiffiffiffiffiffiffi
ReCa

p
ðminfDx;Dy;DzgÞ3=2; ð31Þ

where C1 is a constant. C1 ¼ 10, works well for all our numerical examples. Note that spatial mesh sizes are

nondimensional so that minðDx;Dy;DzÞ ¼ Oð1Þ. The same type of condition is found for capturing (‘‘color’’)

methods (with the appropriate nondimensionalization) such as the level set method [27] and the continuum

surface force method (CSF) [28] that rely both on less stiff evolution equations for the ‘‘color’’ function.

We now derive the stability constraint associated with the variable viscosity term. Using the incom-
pressibility condition, the Navier–Stokes equation (13) in indicial notation (repeated index summation

implied) becomes

oui
ot

�
þ uk

oui
oxk

�
¼ � 1

Re
op
oxi

þ 1

Re
o

oxk
h
oui
oxk

� ��
þ oh
oxk

ouk
oxi

�
þ 1

CaRe
l
o/
oxi

: ð32Þ

The semi-implicit discretization removes the severe stability constraint due to the term

ðo=oxkÞðhðoui=oxkÞÞ but has limited effect on the term oh=oxk ouk=oxi. This term gives rise to a CFL-like

stability constraint that can be determined by estimating max jrhj. In the limit of gently curved interfaces,

and when the motion of the interface is slow compared with the local relaxation times of /, we can

approximate / by the one-dimensional stationary solution /0 in (9) along the direction normal to the

interface, i.e., r/ ’ r/0. From (9) and (16) we have that rh / ðhmax � 1Þ sec h2x, then max jrhj /
ðhmax � 1Þ. Thus, the variable viscosity time-step constraint has the form
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Dtvr 6C2

Re
hmax � 1

ðminfDx;Dy;DzgÞ; ð33Þ

where C2 is a constant. For hmax ¼ 1 the discretization is unconditionally stable since it reduces to an

implicitly treated constant viscosity case. For hmax > 1 we could use successfully C2 ¼ 10 for all our sim-

ulations. Note that if we were treating the viscous term purely explicitly we would have the more restrictive
constraint Dt6 ðRe=hmaxÞ½ðDxÞ�2 þ ðDyÞ�2 þ ðDzÞ�2��1

.

We can now express our adaptive time-stepping strategy as

Dtnþ1 ¼ minðDtcfl;Dts;DtvrÞ: ð34Þ

The discretization (20) effectively removes the high order stability constraints associated with the Cahn–
Hilliard equation and makes the phase field-based method computationally competitive and robust. To

relax more the viscous stability constraint in the case of very small Re one can use a predictor–corrector

iteration strategy. Increasing the constant leading order term hmax=2 in (21) also relaxes the constraint by

allowing a larger constant C2, albeit at the cost of increasing the truncation error. For example if hmax is

used instead of ð1=2Þhmax we find that one can use C2 ¼ 180 giving a significant saving in time stepping.

3.3. Spatial discretization

We employ high-resolution spatial discretizations to be able to accurately resolve thin interfaces. The

Cahn–Hilliard equation is discretized in space (pseudo) spectrally (via FFT for periodic boundary conditions

or Cosine transform for the no-flux conditions). For the Navier–Stokes equations we use spectral derivatives

in the streamwise and spanwise (periodic) directions and an eighth order finite difference compact scheme [5]
for the wall normal derivatives of the velocity and pressure. Note that compact finite difference approxi-

mations are used only for the wall normal derivatives of the velocity in (22)–(24) and for the first order wall

normal derivative of / in (20). We compute the other derivatives spectrally in the x- and y-directions with the

fast Fourier transform (FFT). The details of the spatial discretization are given in Appendix A.
4. Numerical experiments and validation

We present three types of numerical experiments to validate the proposed method and test its capa-

bilities. The experiments are simulations of drop deformation, pure phase separation (spinodal decom-

position) and phase separation under shear flow. A resolution study is also performed to check the accuracy

and the stability of the method. This is briefly described next.

4.1. Drop deformation in a shear flow

We consider an initially 2D spherical drop in a shear flow. This is a classical problem that was solved

analytically for sharp interfaces and small deformations in the creeping flow approximation for unbounded

domain by Taylor [29] and in the presence of two walls by Shapira and Haber [30]. The drop will assume the

shape of an ellipsoid with a deformation that depends on the capillary number and the viscosity ratio.

Taylor [29] found that for equal viscosity blends at steady state, i.e., when deformation due to the externally
imposed shear flow and interfacial relaxation balance one another, the deformation parameter

D ¼ ðl� sÞ=ðlþ sÞ is related to the capillary number Ca as

D ¼ 35

32
Ca; ð35Þ
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where l; s denote, respectively, the longest and shortest axes of the ellipsoid in the shear gradient plane. This

relation is valid in the limit of vanishing deformations and holds in good approximation for D < 0:3. We

use this problem to demonstrate the convergence and accuracy of the numerical results under grid re-

finement. At the same time, we validate the calculation of surface tension and viscosity ratio.

As initial condition we start with a 2D circular drop in the center of the domain with a ‘‘tanh’’ profile of

the interface and we solve the Cahn–Hilliard equation without convection to reach a steady state that leads

to a completely saturated mixture. Then we impose a shear flow with the top and bottom lid moving in

opposite directions and with the dimensionless velocity equal to plus or minus one, respectively. We
consider three capillary numbers Ca ¼ 0:6, 0.9, and 1.2. The fluids have the same viscosity and Re ¼ 0:1,
Pe ¼ 10. We employ two resolutions 128� 128 and 256� 256, and domain sizes of L ¼ 178 and L ¼ 355,

respectively. This combination of parameters determines an interface thickness of three mesh points. Recall
Fig. 1. 2D deformation of an initially spherical drop described by /, Pe ¼ 10, Re ¼ 0:1 for: (a) Ca ¼ 0:6, (b) Ca ¼ 0:9, and

(c) Ca ¼ 1:2. First column N ¼ 128 and L ¼ 178, second column N ¼ 256 and L ¼ 355.



Fig. 1. (continued)
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that, based on our nondimensionalization, the length of the domain L is to be interpreted in units of the

interface thickness n. In Fig. 1 we plot the final equilibrium stage. The convergence of the results under grid

refinement is evident. The drop shape is ellipsoidal with the major axis converging to an angle of 45� as Ca
decreases, just as predicted by the analytic results [29,30]. Moreover, the contours )0.9 and 0.9 describing
the interface are well behaved since they stay parallel throughout the computation. Increasing the capillary

number results in increased deformation and the angle diminishes in the direction of the major axis to the

undisturbed (horizontal) streamlines. This result matches the numerical result of Rallison [31] for defor-

mations where the analytical solution is not available.

Now we perform 3D simulations with a grid size 128� 128� 128 and L ¼ 178 which correspond to a

three mesh-point thick interface. We choose the droplet radius to be 35 grid points which is large enough to

avoid effects due to the finite interfacial width and the presence of the walls [30]. We see from Fig. 2 that the

deformation parameters obtained from simulations with different capillary numbers Ca and Re ¼ 0:01,
Pe ¼ 100 (error bars) correspond well with the theoretical predictions of (35). The error bars in Fig. 2 result

from errors due to the use of diffuse interface (i.e., errors in estimating l and s) and the use of a finite Re
instead of a Re ¼ 0. These numerical results are analogous to the ones reported in [32].

To test the accuracy of the time discretization we perform a sequence of simulations with 512� 512 mesh

points keeping the spatial resolution fixed and halving the time step. As a parameter we use interface

thicknesses of three, four and five mesh points (respectively L ¼ 711, L ¼ 533, L ¼ 426). Again Ca ¼ 1:5,
Pe ¼ 10 and Re ¼ 1 and the mean initial drop radius is 128 mesh points. Denoting by Vi;jðDtÞ ¼ ð/i;j; ui;jÞ
the approximation obtained using a step-size Dt, and defining the error ratios

RðDtÞ ¼
PNx;Ny

i;j¼1 jVi;jðDtÞ � Vi;jðDt=2ÞjPNx;Ny

i;j¼1 jVi;jðDt=2Þ � Vi;jðDt=4Þj
; ð36Þ

we calculate the order of convergence in time as

OðV Þ ¼ logRðDtÞ
log 2

: ð37Þ

In Table 1 we show the results for / and for the w component of ui;j ¼ ðui;j;wi;jÞ.



Fig. 2. Deformation of a droplet subject to shear flow. The continuous line represent the theoretical prediction of Taylor [29] while the

error bars represent the steady-state deformation parameter D obtained from 3D simulations as a function of the capillary number Ca.

Table 1

Order of convergence in time

Interfacial thickness Oð/Þ OðwÞ

3 1.01 0.98

4 1.20 1.18

5 1.42 1.39
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To test the accuracy of the space discretization we compute a sequence of 2D simulations with Ca ¼ 1:5,
Pe ¼ 10 and Re ¼ 1 to time 2.0 using a fixed time step that satisfies the stability requirement on three

different grids, 128� 128, 256� 256 and 512� 512 with L ¼ 133, L ¼ 266 and L ¼ 533, respectively (four

mesh-points thick interface). Further, we set the initial drop mean radius equal to 1/4 the domain length.
We proceed as for the time accuracy check (Eqs. (36) and (37)) and by comparing the difference in the

numerical solutions for adjacent resolutions we estimate the maximum error point-wise. We then use these

estimates of the error to compute a numerical convergence rate. For points close to the periodic boundaries

and away from the interface we found a convergence rate of 2.7 for the velocity field and 2.8 for /. In points

close to the walls and to the interface the convergence rate deteriorates with, respectively, 1.9 and 0.91 for

the velocity and 2.1 and 0.95 for /. These results compare favorably with the level set [27] and volume of

fluid [33] methods. Even though we cannot preserve spectral accuracy due to the presence of the interface,

the high accuracy discretization is important as interface layers of only a few mesh points need to be re-
solved and numerical diffusion has to be limited to avoid unphysical coalescence of interfaces.

Finally, we examine drop deformation in the case of variable viscosity. Shown in Fig. 3 are the results for

Pe ¼ 10, Re ¼ 0:1, Ca ¼ 0:8. Three viscosity ratios are considered: hmax ¼ 2, 5, and 10. We plot the contour



Fig. 3. 2D deformation of an initially spherical drop described by /, Pe ¼ 10, Re ¼ 0:1, Ca ¼ 0:8, hmax ¼ 2, 5 and 10. N ¼ 256 and

L ¼ 355.
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of / ¼ 0 only. The observed deformation increases in accordance with the predictions in [29,30] without

any appreciable change in the orientation.

4.2. 2D and 3D phase separation

We begin the numerical experiments with an example of pure spinodal phase separation of a binary

mixture. An initially homogeneous disordered phase separates into ordered structures when quenched into

a metastable region. The Cahn–Hilliard equation (without convection) models this process. For pure phase

separation it is convenient to nondimensionalize (3), with u ¼ 0, using variables (11) with Lc as the domain

size and Tc ¼ Mcb. Dropping the primes, Eq. (3) becomes

o/
ot

¼ r � ð1� c/2Þrðf 0ð/Þ � C2r2/Þ; ð38Þ

where C ¼ n=Lc is the Cahn number and f 0ð/Þ ¼ /3 � /. The Cahn number represents the ratio between

the interface thickness and the domain size. Characteristic properties of (38) are the conservation of the

order parameter [12]
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d

dt

Z
X
/ðt; xÞ dx ¼ 0; ð39Þ

and a monotonic decrease in the total energy

d

dt
F ½/� ¼

Z
X

f ð/Þ
�

þ C2

2
jr/j2

�
dx6 0: ð40Þ
Fig. 4. Evolution of /, represented in flooded contours, at different times: (a) t ¼ 6:93� 10�4, (b) t ¼ 0:36, (c) t ¼ 1:16, (d) t ¼ 2:76.

N ¼ 1024, c ¼ 0, /m ¼ 0, C ¼ 7:03� 10�4 and Dt ¼ 4:95� 10�7 for (a), Dt ¼ 0:0002 for (b)–(d).
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We take as initial condition a random perturbation of a uniform mixture as follows:

/ð0; xÞ ¼ /m þ CrðxÞ; ð41Þ

where the random rðxÞ is in ½�1; 1� and has zero mean. /m is the constant concentration of the uniform

mixture. The domain is the unit square.

In our first examplewe consider periodic boundary conditions, constantmobility ðc ¼ 0Þ and/m ¼ 0which

corresponds to the well known case of spinodal phase separation controlled by bulk diffusion. We take

C ¼ 7:03� 10�4 and using a spatial mesh of 1024� 1024 points we have interfacial thickness of three points.

According to linear analysis (see e.g. [34]) the fastest growth rate is 1=ð4C2Þ. The solution quickly develops two
spatial length scales, one associated with the wavelength k of the fastest growing mode and the other, the

shortest one, with the transitions between phases. For /m ¼ 0, k ¼ 2p
ffiffiffi
2

p
C, while the phase transition layers

are approximately of sizeC and thus amesh size of OðCÞ is needed. After the fast initial stage the dynamics are

very slow and it takes a long time to reach a quasi-stationary state.With the second order semi-implicit scheme

we can compute stably the solution and resolve both the fast initial dynamics and the slow long-time behavior,

varying Dt to adjust to the dynamics, while at the same time retaining the required high spatial resolution.

Fig. 4 shows snapshots of the solution plotted as flooded contours. The lightest phase corresponds to

/ ¼ 1 and the darkest one to / ¼ �1. The initially homogeneous mixture undergoes a fast separation
followed by slow coarsening where typical spinodal structures can be observed. Due to the very small Cahn

number and the high resolution the interfaces separating the structures appear fairly sharp. We start the
Fig. 5. Structure function as a function of k at five different time steps for bulk-diffusion-controlled coarsening. Time increases in the

direction of vertical axes.
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computation with Dt ¼ 4:95� 10�7 to resolve the early fast growth of solution, but we only compute with

this time-step up to t ¼ C ¼ 7:03� 10�4. For the longer time computation we use Dt ¼ 0:0002. This time-

step selection is based on accuracy as the method appears to be unconditionally stable, and any choice of Dt
produces a stable computation.

As shown in [35] a two-phase morphology undergoing coarsening can be characterized by the time-

dependent structure function

Sðk; tÞ ¼ 1

N

X
r

X
r0

e�ik�r /ðr
h*

þ r0; tÞ/ðr0; tÞ � h/i2
i+

; ð42Þ

where both sums run over the lattice, N is the total number of points in the lattice, and h i stands for

average over all lattice points. The normalized structure function sðk; tÞ is given by

sðk; tÞ ¼ Sðk; tÞ
N h/2ðrÞi � h/i2
h i ð43Þ

and we can characterize the typical length scale RðtÞ with the first moment of sðk; tÞ [25],

k1ðtÞ ¼
P

ksðk; tÞP
sðk; tÞ : ð44Þ

In Fig. 5 we plot the normalized and circularly averaged structure function at five different time steps.

The lines are spline fits to the simulation data. As time increases, the maximum value of the structure
Fig. 6. The cubic of the average domain size vs time at the late stage of bulk-diffusion-controlled coarsening (domain size characterized

by (1=k1)).
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function increases and shifts to lower k, indicating an increase in the real-space average length scale. This is

consistent with the results reported in [25]. In Fig. 6 we plot the cubic of the average domain size vs time.

The straight line behavior confirms the expected cubic growth law [25].

We now consider a case of variable mobility by setting c ¼ 0:9. Fig. 7 shows the morphological evolution

of the mixture for /m ¼ 0 and Cahn number C ¼ 0:001 using a 1024� 1024 resolution. This is the case of

interface-diffusion-controlled coarsening that is characterized by much slower dynamics but with similar

morphological patterns. These results are analogous to the ones reported in [25]. But here, with the un-

conditionally stable scheme, we are able use a large time step (Dt ¼ 0:01) to follow the very slow coarsening
Fig. 7. Variable mobility: evolution of /, represented in flooded contours, at different times: (a) t ¼ 0:1, (b) t ¼ 0:47, (c) t ¼ 1:4,

(d) t ¼ 3:0. N ¼ 1024, c ¼ 0:9, /m ¼ 0:0, C ¼ 0:001 and Dt ¼ 0:01 for (a)–(d).
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dynamics. Moreover, we can resolve a thinner interface of only three mesh points, with second order time

integration.

We turn now to two 3D simulations of pure phase separation with constant mobility ðc ¼ 0Þ and no-flux

boundary conditions, i.e., n � r/ ¼ 0 and n � rðf 0ð/Þ � C2r2/Þ ¼ 0 (Figs. 8 and 9). We take first /m ¼ 0

and C ¼ 0:01 and we render the iso-surface of separation of the two fluids at / ¼ 0. Fig. 8 depicts rep-

resentative snapshots of the iso-surface. Notice the complexity of the patterns that cannot be extrapolated
Fig. 8. Evolution of /, represented by the iso-surfaces of separation of the two fluids at / ¼ 0:0, at different times: (a) t ¼ 0:0375,

(b) t ¼ 6:5, (c) t ¼ 14:0, (d) t ¼ 94:0. N ¼ 256, c ¼ 0:0, /m ¼ 0:0 and Dt ¼ 2:5� 10�4 for (a), Dt ¼ 0:01 for (b)–(d).
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from the 2D counterpart. The simulation begins with Dt ¼ 2:5� 10�4 up to t ¼ C ¼ 0:01 and for longer

times Dt ¼ 0:01 is used. Fig. 9 presents very different separation morphology. For this simulation we take

/m ¼ �0:5 and we render the initial stages using Dt ¼ 2:5� 10�4. The initial uniform mixture evolves into a

system consisting of a large array of round particles at t ¼ 0:01. The coarsening takes place and the

spherical drops grow until they coalesce.
Fig. 9. Evolution of /, represented by the iso-surfaces of separation of the two fluids at / ¼ 0:0, at different times: (a) t ¼ 0:10375,

(b) t ¼ 0:10475, (c) t ¼ 0:10625, (d) t ¼ 0:15. N ¼ 256, c ¼ 0:0, /m ¼ �0:5 and Dt ¼ 2:5� 10�4 for (a)–(d).



Fig. 10. Behavior of the mean /m and of the energy F ð/Þ in time for the semi-implicit scheme for /mðt ¼ 0Þ ¼ 0.
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Fig. 10 shows the time behavior of the phase field mean and the energy for a spinodal decomposition
with a resolution of 128� 128� 128. We find that the mean is preserved within 3–4 digits and the energy

decreases monotonically (and smoothly) throughout the entire computation as required by (40).

4.3. 2D and 3D phase separation and pattern formation in a channel under shear

We consider phase separation (spinodal decomposition) of a density-matched binary fluid mixtures in a

channel under shear. As we will see, linear shear plays a crucial role in the morphology and evolution of the

patterns. The initial conditions are a random perturbation around the uniform concentration / ¼ 0. Figs.

11(a) and (b) show 2D results at two shear rates with the top lid and bottom lid moving horizontally in

opposite directions. The shear rate is defined as sr ¼ Uc=h where h is the distance between the two plates.

Since we impose a fixed geometry, sr / Uc. Thus, to change the shear rate we need to change Pe, Re and
Ca as they all contain Uc. The flow in Fig. 11(b) has five times the shear rate as that in Fig. 11(a). We notice



Fig. 11. 2D spinodal decomposition in a channel under shear: (a) (first column) Pe ¼ 7:5, Re ¼ 0:1, and Ca ¼ 0:5; (b) (second column)

Pe ¼ 37:5, Re ¼ 0:5, and Ca ¼ 2:5. N ¼ 256 and L ¼ 355.
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that after a transient stage characterized by the formation of patterns in the mixture under the influence of

the Cahn–Hilliard term (spinodal decomposition), the domains get elongated into long layers against their

intrinsic surface tension instabilities. Moreover, the patterns formed in the early stage are quite different
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when the shear velocity increases, and the number of layers in the late stage increases when the shear rate is

higher. This behavior is in accordance with experiments reported in [36] and simulations in [9].

In Fig. 12 we consider a 3D simulation in the presence of shear. Here the structures are much more

complex with strings forming. String-like structures have been observed in polymer blends which are

thermodynamically near a phase transition point [37,38] and in immiscible viscoelastic systems in complex

flow fields [39] and in dispersed droplets [39]. There is great current interest in micro- and nanolengthscale
Fig. 12. 3D spinodal decomposition in a channel under shear, Pe ¼ 10, Re ¼ 0:5, Ca ¼ 5, N ¼ 128 and L ¼ 178: (a) t ¼ 800,

(b) t ¼ 2500, (c) t ¼ 5000, (d) t ¼ 57,100.
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technologies in which polymer blends could play an important role. For example, if we create strings with a

conductive material in an insulating matrix with good mechanical properties, then one could produce wires.

In other ways [39] it might be possible to manufacture ultrathin materials of high one-dimensional strength

or scaffolds. A detailed study of the string process formation with our numerical procedure is under way

and it will be reported elsewhere. The methodology presented here appears quite promising for the design

and analysis of multiphase and complex fluid formulations.
5. Concluding remarks

An accurate and efficient numerical method for computing phase ordering kinetics coupled with fluid

dynamics was presented. The numerical method is a time-split scheme that combines a novel semi-implicit

discretization for the convective Cahn–Hilliard equation with a ‘‘stiffly stable’’ time-discretization of the

projection method for the Navier–Stokes equations. The numerical method is robust and has minimal cost.

Some of the capabilities of the method were illustrated with numerical examples in two and three di-

mensions, including the technologically important problem of phase separation under shear flow. In par-
ticular, the 3D simulations in the presence of shear flow reveal rich and complex structures, including

strings. The method can be extended to general geometries through the use of other spatial high order

discretizations such as in spectral element methods, while retaining the same characteristic of stability and

efficiency. The type of discretizations presented here also offer great promise for the computation of

complex fluid systems such as polymeric flows.
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Appendix A. The spatial discretization

A.1. Helmholtz equation

We rewrite the third step of the projection method (24) (Helmholtz equation) as

2Re
hmax

u�

Dt
�r2u� ¼ 2Re

hmax

un

Dt

�
� un � run

�
þ 2

hmaxCa
lð/nþ1Þr/nþ1

þ 2

hmax

r � hnþ1ðrun
�

þ ðrunÞTÞ � hmax

2
r2un

	
: ðA:1Þ

Since we have periodic boundary conditions in the horizontal direction we can Fourier transform to

obtain (dropping the asterisk)

2Re
hmaxDt

�
þ k2x þ k2y

�
ûu� ûu00 ¼ bXXðkx; ky ; zÞ; ðA:2Þ
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where the prime denotes derivative with respect to z, Xðx; y; zÞ is the right-hand side of (A.1) and the caret

stands for the 2D Fourier transform in the streamwise direction. Thus (i is the z-index of the grid)

ûu00i ¼ k2ûui � bXXi; ðA:3Þ

where k2 ¼ ðRe=hmaxDtÞ þ k2x þ k2y . An eighth order finite difference compact scheme discretization of (A.6),

as we will see in Section A.3, yields the pentadiagonal system

Cûui�2 þ Bûui�1 þ Aûui þ Bûuiþ1 þ Cûuiþ2 ¼ bbXXi�2 þ abXXi�1 þ bXX i þ abXX iþ1 þ bbXXiþ2; ðA:4Þ

where A ¼ k2 þ ðb=2þ 2aÞ=ðDzÞ2, B ¼ ak2 � a=ðDzÞ2, C ¼ bk2 � b=ð2DzÞ2. The parameters a, b, a and b
(given in Section A.3) are chosen to achieve formal eighth order accuracy [5].

A.2. Poisson equation

Since we have periodic boundary conditions in the horizontal direction we can Fourier transform the

Poisson equation (28) to obtain

ðk2x þ k2y Þp̂p � p̂p00 ¼ bNNðkx; ky ; zÞ; ðA:5Þ

where the prime denotes derivative with respect to z, Nðx; y; zÞ is the right-hand side of (28) and the caret

stands for the 2D Fourier transform in the streamwise direction. Thus (i is the z-index of the grid)

p̂p00i ¼ k2p̂pi � bNNi; ðA:6Þ

where k2 ¼ k2x þ k2y . An eighth order finite difference compact scheme discretization of (A.6) yields the

pentadiagonal system:

Cp̂pi�2 þ Bp̂pi�1 þ Ap̂pi þ Bp̂piþ1 þ Cp̂piþ2 ¼ bbNNi�2 þ abNN i�1 þ bNNi þ abNN iþ1 þ bbNNiþ2; ðA:7Þ

where A ¼ k2 þ ðb=2þ 2aÞ=ðDzÞ2, B ¼ ak2 � a=ðDzÞ2, C ¼ bk2 � b=ð2DzÞ2 and the parameters a, b, a and b
as provided in the next section. The Neumann boundary condition (29), applied at i ¼ 1 and i ¼ Nz, is

implemented via second order approximations:

3

2Dz
p̂p1 �

2

Dz
p̂p2 þ

1

2Dz
p̂p3 ¼ �p̂p01; ðA:8Þ
� 1

2Dz
p̂pNz�2 þ

2

Dz
p̂pNz�1 �

3

2Dz
p̂pNz

¼ �p̂p0Nz
ðA:9Þ

where p̂p01 and p̂p0Nz
are the ðx; yÞ-transforms of the z-derivatives at the walls. The pentadiagonal matrix for this

linear system is well-conditioned, except for k ¼ 0, in which case it is singular. This situation arises because,

with Neumann conditions at both ends of the domain, the solution for the pressure is nonunique since

pressure is only defined within a constant. Rewriting the momentum equation (13) at the wall with the use

of the incompressibility condition (14)

op
oz

¼ h
o2w
oz2

; ðA:10Þ

where w is the wall normal component of u ¼ ðu; v;wÞ. Fourier transforming (A.10) in x- an y-directions

and using the incompressibility condition (14) we get
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op̂p
oz

¼ ikxh
oûu
oz

þ ikyh
ov̂v
oz

; ðA:11Þ

i.e., for the singular case kx ¼ ky ¼ 0 the two Neumann conditions at both ends of the domain (29) reduce

to

op̂p
oz

¼ 0: ðA:12Þ

To solve for the case k ¼ kx ¼ ky ¼ 0 we use the cosine transform since it automatically satisfy (A.12); we

then deal with a third wave number kz and for the case kx ¼ ky ¼ kz ¼ 0 we set the solution as a constant.

This is inconsequential since as noted before pressure is only defined within a constant.

A.3. Finite difference compact schemes

For the first derivative in the z (wall normal direction) we use the compact approximation scheme [5]

bûu0i�2 þ aûu0i�1 þ ûu0i þ aûu0iþ1 þ bûu0iþ2 ¼ b
ûuiþ2 � ûui�2

4Dz
þ a

ûuiþ1 � ûui�1

2Dz
; ðA:13Þ

where the prime denotes derivative with respect z and the caret stands for the 2D Fourier transform in the

streamwise direction. The optimized coefficients for an eighth order compact stencil are a ¼ 4=9, b ¼ 1=36,
a ¼ 40=27, b ¼ 25=54. For the points neighboring boundaries i ¼ 2 and i ¼ Nz � 1 we use a fourth order

scheme with a ¼ 1=4; b ¼ 0; a ¼ 3=2; b ¼ 0.

The compact approximation schemes for the boundaries i ¼ 1 and Nz are

ûu01 þ 2ûu02 ¼
1

Dz

�
� 5

2
ûu1 þ 2ûu2 þ

1

2
ûu3

�
; ðA:14Þ
ûu0Nz
þ 2ûu0Nz�1 ¼

1

Dz
5

2
ûuNz

�
� 2ûuNz�1 �

1

2
ûuNz�2

�
: ðA:15Þ

These are third order schemes [5,18].

To approximate the second derivative we use

bûu00i�2 þ aûu00i�1 þ ûu00i þ aûu00iþ1 þ bûu00iþ2 ¼ b
ûuiþ2 � 2ûui þ ûui�2

4ðDzÞ2
þ a

ûuiþ1 � 2ûui þ ûui�1

ðDzÞ2
ðA:16Þ

and the optimized coefficients for an eighth-order compact stencil are a ¼ 344=1179; b ¼ 23=2358;
a ¼ 320=393; b ¼ 310=393; while for the points i ¼ 2 and i ¼ Nz � 1 we use a fourth order scheme with

a ¼ 1=10, b ¼ 0, a ¼ 6=5. b ¼ 0;. For the boundaries we choose

ûu001 þ 11ûu002 ¼
1

ðDzÞ2
ð13ûu1 � 27ûu2 þ 15ûu3 � ûu4Þ; ðA:17Þ
ûu00Nz
þ 11ûu00Nz�1 ¼

1

ðDzÞ2
ð13ûuNz � 27ûuNz�1 þ 15ûuNz�2 � ûuNz�3Þ: ðA:18Þ

These are third order accurate schemes with a truncation error 10 times smaller than that of the anal-

ogous explicit one (see [5,18]).
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A.4. Properties of cosine transforms

We define the Fourier cosine transforms of a function f ðxÞ as

C½f ðxÞ� ¼ 2

p

Z 1

0

f ðxÞ cosxx dx: ðA:19Þ

For the second derivatives we have

C
d2f
dx2

� 	
¼ � 2

p
df
dx

ð0Þ � x2C½f � ðA:20Þ

under the hypothesis of compact support for f ðxÞ and f 0ðxÞ.
For the fourth derivative we have

C
d4f
dx4

� 	
¼ � 2

p
d3f
dx3

ð0Þ
�

� x2 df
dx

ð0Þ
�
þ x4C½f � ðA:21Þ

under the hypothesis of compact support for f ðxÞ, f 0ðxÞ and f 000ðxÞ. We used these properties to solve the

Cahn–Hilliard and the Poisson equation for the case kx ¼ ky ¼ 0; for the Cahn–Hilliard equation

f 0ð0Þ ¼ f 000ð0Þ ¼ 0 due to the boundary conditions (4) and for the Poisson equation f 0ð0Þ ¼ 0 due to the

boundary condition (A.12). Note that these properties hold for the discrete transforms as well.
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