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Synopsis

We report the first numerical investigation of the coupling between flow and microstructure

evolution in a full three-dimensional simulation of a model nematic liquid crystalline polymer

(LCP), including both viscoelasticity and gradient elasticity, in a planar shear cell. We em-

ploy the molecular-based Doi-Marrucci-Greco (DMG) theory to gain insight into the nature

and dynamics of the complex, birefringent polydomain texture exhibited by LCPs and to pro-

vide a detailed description of the disclination loops that comprise the so-called worm texture.

We solve the coupled equations of motion and evolution equation for the polymer configura-

tion using a parallel implementation of a hybrid spectral/finite-difference algorithm. For an

initial director orientation along the vorticity axis, the model predicts a stream-wise-oriented

striped texture in accordance with previous experimental and theoretical studies. Subsequent

refinement of the texture is accompanied by the formation and development of 1/2-strength,

twist-type disclination loops, which reside between neighboring orientational domains within

the polydomain texture. These observations provide the first numerical confirmation of the

experimentally-inferred loop structure reported by De’Nève et al.[Macromolecules 28, 1541-

1546 (1995)]. Though often depicted as separate phenomena in the literature, we find an

explicit coupling between the disclination structure and polydomain texture.
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I. INTRODUCTION

Liquid crystalline polymers (LCPs) are rigid or semi-rigid macromolecules which exhibit spon-

taneous alignment above a critical concentration (lyotropic solutions) or below a critical tempera-

ture (thermotropic melts) that, if maintained in the solid state, provides an extremely high tensile

modulus and fracture strength (Donald et al., 2005). The broadest commercial application of LCPs

is in the form of high-strength, lightweight fibers (the best known being Du Ponts KevlarTMand

Celaneses VectranTM). Other potentially more important applications, however, have not yet been

realized, among which the greatest loss is the inability to produce structural materials other than

fibers with mechanical properties that derive from the molecular alignment that LCPs display in

the liquid state. In the case of LCP fibers, which are spun from either lyotropic solutions or LCP

melts, the inherent orientational order is preserved (and greatly enhanced) via the use of exten-

sional flow during the drawing process by which fibers are formed. The difficulty in maintaining

order in other forms of polymer processing (e.g., injection molding) lies in the fact that they in-

volve either shear flows or combinations of shear and extensional flows. For LCPs that “tumble”

in shear flows, which seem to include all lyotropic and many commercially-relevant thermotropic

LCPs (Burghardt and Fuller, 1990; Srinivasarao and Berry, 1991; Yang and Shine, 1993; Rendon

et al., 2004), these flows seriously degrade or even destroy the orientational order. The question

then is whether the degradation of orientational order can be controlled sufficiently by some mod-

ification of the processing procedure (i.e., modest changes in the flow geometry). A necessary

first step, from an engineering standpoint, is to elucidate the flow-structure interaction and the de-

pendence of the structural evolution on the flow type, and to develop a predictive capability that

reproduces experimental observations.
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The loss of orientational order in shear flows manifests itself in what is generally referred to

as textural evolution, in which the texture observed by polarizing microscopy represents spatial

variations in the mean molecular orientation, known as the director, and the profusion of orien-

tational defects, or disclinations (de Gennes and Prost, 1993), about which the director abruptly

changes direction. The natures of these flow-induced departures from the equilibrium tendency of

the material to orient along a preferred direction, both locally at the mesoscopic level and glob-

ally over macroscopic length scales, are dependent upon the relative magnitudes of the time scale

of the flow and the imposed shear stress. Respectively, these general measures of the ‘strength’

of the imposed flow give rise to the viscoelasticity and gradient elasticity exhibited by LCPs. If

the product of the inverse time scale of the flow (i.e., the bulk shear rate, γ̇) and the time scale

associated with molecular relaxation is O(1) or greater, the local degree of alignment is perturbed

away from its equilibrium value. This dimensionless ratio of time scales, which is known as the

Deborah number (Reiner, 1964) De, is therefore the relevant measure of the viscoelastic response

of the material. The non-local characteristic, on the other hand, derives from the resistance of the

system to develop spatial gradients in the orientation. As these gradients are a result of imposed

viscous torques, the appropriate measure of the non-local, elastic response is the dimensionless

Ericksen number (de Gennes and Prost, 1993) Er, which is the ratio of the viscous stress to the

elastic stress. In processing and experimental LCP flows, the Ericksen number is typically several

orders of magnitude larger than the Deborah number. As a result, the non-Newtonian characteris-

tics discussed above can generally be categorized into two separate regimes: the Ericksen number

and Deborah number cascades (Larson and Mead, 1993).

The Ericksen number cascade corresponds to ‘weak’ flows for which the dynamics are pre-

dominantly governed by gradient elasticity. These flows are weak in the sense that, while there
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are localized reductions in orientational order that pertain to topological disclinations, the bulk

orientational order remains largely unperturbed. It is, however, in this regime that the dominant

structural features within LCP flows develop. In particular, LCPs display a complex polydomain

texture within this regime, which undergoes refinement with increasing Er (Kiss and Porter, 1980;

Graziano and Mackley, 1984; Hsiao et al., 1990; Larson and Mead, 1992, 1993; Yan et al., 1994).

The polydomain texture is comprised of orientational domains (i.e., domains of spatial coherence

of the mean molecular orientation), in which the director is misaligned from the flow direction (Lar-

son and Mead, 1992, 1993; Yan et al., 1994). The orientation domains are, in turn, bounded by

regions in which the director field undergoes reorientation in passing from one domain to its neigh-

bor such that in moving perpendicular to the flow direction the director varies periodically (clock-

wise and counterclockwise) about the shear plane. The development of the polydomain texture

observed within the Ericksen number cascade is followed by the formation and proliferation of

disclinations, which typically orient along the flow direction (Graziano and Mackley, 1984; Alder-

man and Mackley, 1985; Hsiao et al., 1990; Larson and Mead, 1992, 1993; De’Nève et al., 1995)

and reside between orientational domains (Larson and Mead 1992, 1993). Graziano and Mackley

(1984) aptly likened the visual appearance of the resulting disclination-laden system to a ‘vat of

teeming worms’.

The Deborah number cascade corresponds to ‘strong’ flows in which viscoelasticity is the

dominant contribution to the macroscopic stress relative to gradient elasticity. The tumbling of

the director about the vorticity axis (which lies perpendicular to the shear plane) shown in weak

flows is arrested by viscoelastic stresses, which act to stabilize the flow within this regime, and

the polydomain texture gives way to the formation of distinct, flow-oriented striations (Larson

and Mead, 1993; Rita et al., 1997; Tan and Berry, 2002)). The findings of Larson and Mead
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(1993) suggest that this textural transition coincides with the theoretically-predicted tumbling-

to-wagging transition (Larson, 1990). Within the wagging regime, the existence of which has

been confirmed experimentally for nematic PBG [poly γ-(benzyl glutamate)] solutions (Mewis

et al., 1997; Grosso et al., 2003), the mean molecular orientation oscillates about a fixed angle

away from the flow axis. Given sufficiently high shear rates, the bulk mean orientation adopts

a steady orientation along the flow direction to yield a monodomain (Alderman and Mackley,

1985; Larson and Mead, 1993; Tan and Berry, 2002), which in a few lyotropic studies were absent

of both texture and disclinations (Larson and Mead, 1993; Tan and Berry, 2002). Although the

orientational patterns associated with the textural transitions observed in the Ericksen number and

Deborah number cascades have been reasonably ascertained via polarizing microscopy, no clear

picture currently exists for the physical nature of orientational domains. Additionally, little is

known about the coupling between the structure and dynamics of the polydomain texture and

those of the accompanying flow-induced disclinations.

The first detailed description of flow-induced disclinations was provided by Graziano and

Mackley (1984) in their study of the effects of shear in thermotropic LCPs. Though disclinations

were present in quiescent samples, they reported a sharp transition in the observed disclination tex-

ture at a critical shear rate, above which there was a ‘sudden and massive’ increase in the number

of disclinations. The disclinations that formed subsequent to this transition were initially reported

as short lines, with free-floating ends, but a following study by Alderman and Mackley (1985)

showed them to actually be thin loops oriented along the flow direction, as revealed upon cessation

of shear. The closed-loop disclinations which comprise the so-called ‘worm’ texture were later

confirmed by De’Nève et al. (1995) for the thermotropic LCP VectranTM. They also reported that

the texture was dominated by loop disclinations oriented along the flow direction that typically
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resided in the shear plane. In addition, the loops were identified as half-integer (±1/2) twist discli-

nations, wherein the disclination contour was marked by a twist in the director to accommodate

an orientation along the flow direction inside of the loop but along the vorticity axis outside. The

region about which the orientational transition occurs is referred to as the disclination core. Lar-

son and Mead (1993) identified the shear-induced disclinations observed in their PBG experiments

as order unity (±1) disclination lines since they were thick in comparison to the thin half-integer

disclinations seen in quiescent samples and terminated in the bulk fluid. However, since the na-

ture of the disclinations they observed is very similar to those observed by Graziano and Mackley

(1984), it is possible that the disclinations were loops that appeared to be lines when viewed from

above the sample, along the shear plane.

The complex phenomena outlined here highlight the fact that in modeling LCP flows, it is of

paramount importance to account for the coupling between the dynamics of the flow and the mi-

crostructure, which has often been neglected in the literature. This is particularly relevant when

evaluating the predictive capabilities of a given model against available experimental data. Re-

cently (Klein et al., 2007), we carried out an investigation of the predictions of the molecular-

based Doi-Marrucci-Greco (DMG) model for nematic LCPs (Doi, 1981; Feng et al., 2000; Mar-

rucci and Greco, 1991) for the Ericksen and Deborah number cascades. We solved the full, three-

dimensional coupled dynamic equations for the polymer conformation and flow, simplified only

by assuming that there are no spatial gradients in the flow direction. Encouragingly, we found that

this assumption did not limit the models ability to successfully predict much of the phenomena

observed in experiment. Within the Ericksen number cascade, the model captured the roll-cell

instability (Larson, 1993) and texture refinement, which exhibited scaling behavior consistent with

the experimental observations of Larson and Mead (1993) over a wide range of Er numbers. With
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regard to orientational defects observed in this regime, the model predicted ±1 disclinations, with

both singular and non-singular cores, and 1/2-strength (singular) twist disclinations, the latter be-

ing observed for the first time in a coupled-flow simulation. Within the Deborah number cascade,

with increasing Deborah number, the DMG model exhibits a striped texture oriented parallel to the

flow direction followed by a monodomain free of disclinations and texture.

We note that theoretical and numerical studies (Larson, 1993; Han and Rey, 1995; Feng et al.,

2001) have shown that the Leslie-Ericksen (LE) theory (Ericksen, 1961; Leslie, 1968) captures

much of the phenomena attributed to the Ericksen number cascade. This phenomenologically-

based model, however, is unable to capture singular disclination structures such as the 1/2-strength

disclination structures commonly observed in LCP flows, in which the disclination core repre-

sents a localized reduction in the orientational order, and neglects viscoelasticity. With regard to

the former, this is particularly limiting given that, as reported by Alderman and Mackley (1985);

De’Nève et al. (1995), singular loop disclinations are apparently characteristic of highly textured

systems. In addition, as the model lacks viscoelasticity, its predictions are strictly limited to very

weak flows, in which the orientational distribution remains uniaxial. Therefore, it cannot be applied

to LCP flows in general. If the prediction of structure in non-homogeneous, three-dimensional

flows is a long-term objective, as it is in this project, it is imperative that the model accounts

for both contributions to the non-Newtonian stress. In addition to the molecular theory used in

this investigation, the inherent deficiencies of the LE model have also prompted the use of phe-

nomenological, Landau-de Gennes-based tensor models (Tsuji and Rey, 1997, 1998, 2000). These

models, however, suffer several drawbacks. The first is that they invariably contain a large number

of unknown material constants that, in general, cannot be determined empirically from experiment

or rationally via descriptors of the system of interest. In addition, many material constants only
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depend on the equilibrium structure of the material, rather than coefficients that change as the

orientational distribution is modified by the flow. These limitations are particularly problematic

when trying to understand the formation and dynamics of disclinations and complex structures

that develop in flow such as those considered here.

In this study, we forgo our previous 2D assumption and solve the full, three-dimensional planar

shear flow problem. We consider two sets of parameters taken from our previous study, which cor-

respond to De values for which the director exhibits tumbling in the absence of gradient elasticity,

with the following objectives. Our first objective is to gain insights into the physical nature of orien-

tational domains and the nature of the coupling between the polydomain texture and flow-induced

disclinations. Secondly, we hope to provide understanding of the mechanism by which loop discli-

nations form, which is generally attributed to director tumbling, and a clear three-dimensional

depiction of their structure. Although ±1 disclinations are also of general interest in the literature,

we limit our discussion here to singular, 1/2-strength disclinations. Given our previous results,

we would expect the former to occur at relatively large strain, which as a result of computational

limitations discussed in the sections that follow are beyond the scope of the calculations discussed

here. The paper is organized as follows. In Sec. II, we describe the DMG molecular theory and

present the governing equations and parameter values used in this investigation. We then set up

the numerical problem and briefly discuss the computational scheme in Sec. III. In Sec. IV, we

discuss the predictions of the DMG theory, focusing specifically on the polydomain texture and

loop disclinations, and their pertinence in the context of the experimental observations discussed

above. In closing, we summarize our findings and conclusions drawn from this study in Sec. V.
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II. MODELING

A. Molecular theory

We model the nematic liquid crystalline polymer as a concentrated suspension of rigid rods,

whose dynamics are driven by Brownian and hydrodynamic forces and a mean-field interaction

that acts to maintain orientational order, both locally and globally, via a nematic potential. As-

suming the system to be isothermal and neglecting variance in number density ν, we can describe

the polymer dynamics for a material point x in terms of the orientational probability distribution

function ψ(u;x,t), which represents the probability of finding a rod at position x and time t whose

orientation, represented by the unit vector u, is within the solid angle du. The dynamics of this

distribution function, in the general form proposed by Doi (1981), is given by

∂ψ

∂t
+ v·∇ψ = −R·(u× κ·uψ) + D̄rR·

[
Rψ +

ψ

kBT
Rφ
]
, (1)

whereR=u×(∂/∂u) corresponds to the gradient operator on the surface of a unit sphere (Bird et al.,

1987), kB is the Boltzmann constant, T is the absolute temperature, and φ is the mean-field nematic

potential. The respective flow variables v and κ=(∇v)T are the fluid velocity and the transpose of

the velocity gradient.

Taking into account the dependence of the rotational diffusivity on the local degree of order

[known as the tube dilation effect (Doi and Edwards, 1986)], we use the following form of the

pre-averaged rotational diffusivity:

D̄r =
Dr

(1− S2)2 , (2)

where Dr is the rotational diffusivity in an isotropic solution having the same number density. The
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scalar order parameter

S =

[
1

2
(3A :A− 1)

]1/2

, (3)

is the quantitative measure of the local orientational order: its value can vary between 0 (isotropic)

and 1 (perfectly ordered). The tensor A that appears in the expression for the order parameter is

the second moment of ψ (i.e., A=
∫
S2 ψuudu=〈uu〉, where S2 is the unit sphere in R3), and the

contraction operation A:A=AijAji. Local and non-local molecular interactions are accounted for

via the nematic potential proposed by Marrucci and Greco (1991),

φMG = −3

2
UkBT

(
A +

`2

24
∇2A

)
:uu, (4)

where ` is the persistence length of the non-local interaction and U is a constant representing

the nematic strength. The first term in Eq. (4), A:uu, from which viscoelasticity arises, acts to

maintain a local preferential mean molecular orientation, while∇2A:uu acts to minimize gradients

in the mean orientation, therefore imposing gradient elasticity. Note that, in the absence of long-

range interactions, Eq. (4) reduces to the familiar Maier-Saupe potential (Maier and Saupe, 1958,

1960).

We couple the polymer dynamics to that of the flow via the contribution of the microstruc-

ture to the macroscopic stress using the constitutive relationship (i.e., polymeric stress) given by

Feng et al. (2000)

σp =
β

(νL3)2

(
νkBT

2Dr

)
κ :Q + 3νkBT [A− U (A ·A−A :Q)]

− 1

8
νkBTU`

2

[
A · ∇2A−Q :∇2A +

∇A : (∇A)T −∇∇A :A

4

]
,

(5)

where β is an O(103) empirical constant (Doi and Edwards, 1986), (νL3)2 is the crowdedness

factor, and Q=
∫
S2 ψuuuudu=〈uuuu〉 is the fourth moment of the distribution function. Using
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similar notation as before, the contraction operations in the last two terms in Eq. (5) are given as

[∇A:(∇A)T ]ij =(∂Akl/∂xi)(∂Alk/∂xj) and [∇∇A:A]ij=(∂2Akl/∂xi∂xj)Alk. When coupled with

the equations of fluid motion, Eqs. (1) and (5) provide us with a complete, closed system of equa-

tions with which we can solve the fully-coupled flow problem. However, the solution of Eq. (1) at

each material point presents a formidable numerical and computational challenge that, to-date, has

restricted coupled-flow calculations using the full model (which accounts for both viscoelasticity

and gradient elasticity) to preliminary, two-dimensional planar shear flows (Forest et al., 2007). In

addition, from Eq. (5), we see that the polymeric stress does not exhibit an explicit dependence

upon the orientational distribution function: σp is only a function of the second and fourth mo-

ments of ψ. In an effort to pose the full three-dimensional problem in a more tractable manner,

we therefore simplify the model description via the Bingham closure approximation (Chaubal and

Leal, 1998; Grosso et al., 2000a) to allow for direct calculation of A and Q without having to

solve for the full distribution function ψ. In doing so, we approximate Q as a function of the

second moment and solve only for the temporal evolution of A.

Although the choice of which closure approximation to use in modeling LCP flows is still much

a matter of debate within the literature, several features of the Bingham closure approximation

make it an ideal candidate for use in the calculations discussed in this article. Firstly, the Bing-

ham closure approximation is exact in the limiting case De→0 and is therefore well suited for the

investigation of Ericksen number cascade dynamics. Additionally, systematic comparisons made

between exact solutions of the original Doi theory, which neglects gradient elasticity, and solu-

tions obtained using various closure approximations for both homogeneous and non-homogeneous

flows (Feng et al., 1998; Grosso et al., 2000b) indicate that the Bingham closure should give the

best qualitative agreement with the exact solutions for low De in complex flows. We do note,
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however, that the Bingham closure approximation fails to predict the tumbling to flow-aligning

transition exhibited by the exact Doi theory for the nematic strength value used in this study. As

the parameter values used in this study correspond to the tumbling regime within the De parameter

space, this deficiency in the approximation does not inhibit the predictive capabilities of the DMG

model in the context of the work discussed here.

B. Governing equations

The domain used in this study is shown in Fig. 1(a), wherein the stream-wise, span-wise, and

wall-normal coordinates are x, y, and z, respectively. The velocity and director vectors and tip

angle continually referenced to throughout this work are defined in Figs. 1(b) and (c). We consider

three-dimensional shear flow between parallel plates separated a distanceH , one of which remains

stationary while the other translates at the constant velocity V . In non-dimensionalizing the gov-

erning equations for the flow and polymer dynamics presented below, we use the plate separation

H as the characteristic length scale and the characteristic velocity is the relative velocity between

the two plates V . The characteristic strain rate (or inverse time scale) is given as V /H .

Upon applying the Prager procedure (Prager, 1957) to Eq. (1) and non-dimensionalizing the re-

sulting expression using the aforementioned characteristic scales, we obtain an evolution equation

for the second moment

∂A

∂t
+ v·∇A = κ·A + A·κT − 2κ :Q

− f

De

(
A− δ

3

)
+
fU

De
(A·A−A :Q)

+
f

2cS2
eq

1

Er
(
∇2A·A + A·∇2A− 2∇2A :Q

)
,

(6)

where I is the identity matrix, f=(1-S2)−2, and c=νkBT /2ηDr is the concentration parameter,

which is proportional to the ratio between the zero-shear viscosity of the LCP and the viscosity of
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the Newtonian solvent, η. The equilibrium order parameter Seq is easily determined via substitu-

tion of Aeq=Seq(nn-I/3) (where n is a unit pseudo-vector) into the steady, homogeneous form of

Eq. (6),

−
(
A− I

3

)
+ U(A·A−A :Q) = 0. (7)

In this limiting case, the degree of orientational order is simply a result of the balance between

Brownian forces and those associated with the local term in the mean field potential. Our choice

of characteristic scales results in two dimensionless groups: the Deborah number,

De ≡ V/H

Dr

, (8)

is the ratio of the polymer relaxation time scale to the time scale associate with the flow; and the

Ericksen number,

Er ≡ ηV H

K
, (9)

whereK=1
8
νkBTU`

2S2
eq (Marrucci and Greco, 1991), is the ratio of the viscous stress to the elastic

stress imposed by gradient elasticity.

Neglecting inertia, which is typically small in LCP flows, and assuming incompressibility, we

may write the equations of motion in non-dimensional form as

∇2v −∇p = −∇·σp, (10)

∇·v = 0, (11)

Scaling the polymeric stress by ηV /H , as is done for the pressure in (10), we obtain the following

equation for the non-dimensional polymeric stress

σp =
cβ

(νL3)2 (κ :Q) +
c

De
[A− U (A·A−A :Q)]

− 1

S2
eqEr

[
∇2A·A−Q :∇2A +

∇A : (∇A)T −∇∇A :A

4

]
.

(12)
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C. Parameter values

For the results discussed in this article, we varied the values of the dimensionless groups De

and Er that appear in Eqs. (6) and (12) in our calculations, while holding the material parameters

U , β, (νL3)2 and c at fixed values. In their investigation of the Ericksen number and Deborah

number cascades for sheared PBG solutions Larson and Mead (1993) reported that they observed

the tumbling-to-wagging transition at De∼2 and steady, homogeneous flow-alignment for De&5.

Exact solutions of the original Doi theory (Feng and Leal, 1997) show comparable transition values

using a nematic strength of U=6. Since no such data for the full (DMG) theory is available from the

literature, we useU=6 in our simulations, which in turn yields an equilibrium order parameter value

of Seq=0.7445. As previously noted, experimental studies of PBG solutions (Zero and Pecora,

1982) indicate β to be an O(103) empirical constant. We therefore set it equal to the 1000 here.

The crowdedness parameter value used in our simulations, (νL3)2=2×106, is representative of

that of lytropic solutions (Jain and Cohen, 1981). The concentration parameter value used here,

c=100, has previously been shown to yield both qualitative and quantitative agreement between

the predictions of the DMG model and available experimental shear-flow data for poly(γ-benzyl-

glutamate) (PBG) LCP solutions in previous calculations (Klein et al., 2007).

For the simulation results discussed in this work, we chose the Er and De values such that the

ratio Er/De=1000. As the material parameter values were held fixed in our calculations, by using

a constant value for this ratio we are effectively simulating a system for which the separation be-

tween the parallel plates, H , remains constant while the shear rate is varied as is commonly done

in experiments. With regard to the experimental flow data to which we refer in our discussion of

the results presented in this work, approximate values for Er/De range from O(105) to O(106).
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For the Er values used in these calculations, such large values for Er/De would result in numer-

ical constraints that would severely limit the scope of our calculations. We therefore use a more

conservative value here. A possible consequence of using such a relatively low value for this ratio

is the inability to separate the competing effects of gradient elasticity and viscoelasticity in our

calculations. The qualitative agreement between the results discussed in the section that follows

and relevant experiment data, however, suggests that this is not the case and that, given our choice

of parameter values, the predictions of the DMG model are representative of Ericksen cascade

phenomena. We consider two different Er values, Er=500 and 2000, the corresponding De values

being De=0.5 and 2, respectively. With regard to the dynamics of the original Doi theory, although

the later of these values lies just below the tumbling-to-wagging transition, they both are within

the tumbling regime.

III. NUMERICAL IMPLEMENTATION

A. Boundary and initial conditions

Having chosen H as the characteristic length scale in our formulation, we define our com-

putational domain (see Fig. 1) as a rectangular parallelepiped bounded by two parallel plates at

the z=0,1 and periodic boundaries at x=0,L/H and y=0,W /H . A no-slip condition is applied at

the lower and upper boundaries of our computational domain, which respectively corresponds to

v|z=0 = (0 0 0)T and v|z=1 = (1 0 0)T as the bottom plate is stationary and the non-dimensional

velocity at the top plate is equal to 1. The initial conditions for the flow variables are those of sim-

ple shear, i.e., v(x)|τ=0=(z 0 0)T . As we chose V /H as the inverse time scale in our formulation,

the dimensionless time τ is given in units of strain.
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Parallel anchoring of the mean molecular orientation is imposed at the solid-wall boundaries,

with a uniaxial, equilibrium orientational distribution, so that A takes the form

A|z=0,1 = Seq

(
nn− I

3

)
+

I

3
, (13)

where n=(0 1 0)T . In this equilibrium limit the vector n is known as the director, a name coined in

conjunction with the Leslie Erickson model, which also applies to this limiting case. Although the

distribution function away from the boundaries will not retain this equilibrium, uniaxial form, it is

convenient to retain the notion of a director, but now identified as the eigenvector associated with

the largest eigenvalue of A. To distinguish this vector from the classical Leslie-Erickson (equilib-

rium) notation, we will denote this generalized form for the director as d. The same equilibrium

form for A is also imposed as an initial condition away from the solid-wall boundaries. However,

in order to drive the system away from this initial condition, which is generally referred to as the

log-rolling configuration and is linearly stable for the Er values used in this study, we introduced

thermal noise via a small but finite amplitude perturbation of the initial orientation field. This is

done by replacing n in Eqn. (13) with n|τ=0=(-sin εξ cos εξ 0)T , where ε=10−4(π/180) and ξ is

Gaussian noise.

B. Discretization and solution technique

We discretize our computational domain using a staggered grid in the wall-normal (z) direc-

tion with the velocity and configuration tensor components defined on the regular mesh, with Nz

points along the z-axis, and the pressure defined on Nz-1 half-grid points. Additionally, we use

equally-spaced grid points along the stream-wise (x) and span-wise (y) directions, and we apply

a hyperbolic tangent-based coordinate transformation (Vinokur, 1983) along the z direction to in-

crease the density of grid points near the lower and upper bounds of the domain. Upon performing
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the transformation, the grid spacing near these boundaries is approximately half that of the spacing

along the midplane. In taking advantage of the fact that the stream-wise length scales associated

with the polydomain texture and disclinations are generally much larger than those along the span-

wise and wall-normal directions, the grid spacing used along the x direction, ∆x, is eight times that

used along the y direction, ∆y. In summary, as we define ∆z(z) such that its mean is equal to ∆y,

the relationship between the the discretizations along the coordinate axes is ∆x=8∆y=8〈∆z(z)〉,

where 〈...〉 denotes the mean. The computational size of the full three-dimensional problem lim-

ited the extent to which we could perform refinement studies for the Er=500 and 2000 simulations

discussed here. Hence, we have simply used the respective values taken from our previous inves-

tigation (Klein et al., 2007): ∆y=1/128 and 1/256.

The sizes of the domains used in the Er=500 and 2000 simulations, in terms of the total number

of grid points N=Nx×Ny×Nz, are N=128×512×128 and 128×512×256, respectively. Systems

of this ‘computational’ size yield degrees of freedom in excess of 107 in solving the equations

of motion, (10) and (11), and the number of nodal values of the dependent variables v, p and A

stored at each time step is typically O(108). As such, the solution of the governing equations and

associated memory requirements necessitates the use of parallel computation, in which we utilize

domain decomposition along the wall-normal direction to distribute the work and memory load

over multiple processors. Given that we impose periodic boundary conditions at x=0,L/H and

y=0,W /H , we use spectral collocation to facilitate the use of efficient fast Fourier transformations

in evaluating derivatives along the stream-wise and span-wise directions. Derivatives with respect

to the z direction are evaluated using a second-order finite difference formulation. Integration of

the evolution equation for the configuration tensor (6) is performed using the second-order Runge-

Kutta TVD (total-variation-diminishing) scheme proposed by Shu and Osher (1988). Since this is
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an explicit scheme and the spatial derivative evaluations are for the most part local to each proces-

sor (i.e., the bulk of the data required to perform these calculations do not have to be retrieved from

other processors), this portion of the calculation does not differ greatly from those which would be

performed in a serial implementation. This is, however, not the case with the simultaneous solution

of the equations of motion (10) and the continuity equation (11), which required the development

of a parallel implementation of the Uzawa Bi-Conjugate Gradient Stabilized method (Klein, 2007).

IV. RESULTS AND DISCUSSION

A. Polydomain texture

The initial structure that is observed in the simulations discussed here are orientational domains

aligned along the flow direction. As also shown by Klein et al. (2007), this initial structure also

coincides with the formation of roll cells, wherein the orientational domains that comprise the

poly-domain texture encompass stream-wise-oriented vortices. However, this explicit coupling

between the flow and microstructure breaks down as the texture refines and complex flow and

disclination structures develop, at which point the roll cell descriptor seems no longer appropriate.

Spatial coherence of the director on the other hand is maintained and is therefore the more relevant

consideration. Additionally, the concept of orientational domains, in the context of the results

presented here, can readily be extended to the discussion of experimental flows for which the

texture observed using polarizing microscopy is not coincidental with the stream-wise direction

or for which there are no velocimetry data available. A few examples of such flows are cessation

experiments (Kiss and Porter, 1980; Gleeson et al., 1992), in which span-wise oriented bands are

commonly observed, or start-up flows in which the initial mean molecular orientation coincides
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with the stream-wise or wall-normal directions (Larson and Mead, 1992, 1993; Yan et al., 1994;

Müller et al., 1996).

Figure 2 shows a typical example of the early development and evolution of the polydomain

texture observed in our calculations. As can be seen in Fig. 2(a), the orientational domains, which

appear after approximately 15 strain units in the Er=500 simulation, initially have the shape of

slender ellipsoids whose long axes are oriented along the flow direction. In comparing Figs. 2(a)

through (c), we see that with continued strain the orientational domains increase in length while

being convected along the stream-wise direction, as indicated by the change in the position of the

features highlighted in Figs. 2(b) and (c). The growth of the domains coincides with an increase in

the tip of the director within the domains away from its initial orientation along the y axis towards

the flow axis, as described by the tip angle θ defined earlier in Fig. 1(c). Eventually, although

stream-wise variations are still evident in the orientation field, the solution exhibits a somewhat

regular arrangement of orientational domains aligned along the flow direction. The dimensionless

time required for the development of the polydomain texture seen in this and the Er=2000 simula-

tion discussed later in the text range from 15 to 20 strain units. These strains are consistent with

those reported for comparable (Er value) shear flow experiments, which typically range from 10 to

100 strain units for lyotropic LCPs (Larson and Mead, 1992, 1993; Yan et al., 1994). Additionally,

tip angle values corresponding to the director alignment within the orientational domains observed

in our calculations, which range from 80 to 88 degrees, agree well with those reported by Yan et al.

(1994).

As noted in its caption, the boundaries of the orientational domains that appear in Fig. 2 are

identified using isosurfaces corresponding to θ=±10 degrees. Our reasoning behind using the tip

angle to identify regions of spatial coherence in the director field can be understood by considering
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the coupling between the director field and polydomain texture discussed in the introduction. The

simplest example of this coupling is the periodic variation in the alignment of the director along the

span-wise direction observed both experimentally (Larson and Mead, 1992, 1993; Yan et al., 1994)

and in numerical investigations (Feng et al., 2001; Klein et al., 2007; Larson and Mead, 1993) using

the same initial conditions as those used here. In Fig. 3, we show the director profile along the

z=0.5 plane, within the interior of the flow domain, taken from the data set presented in Fig. 2(d).

Moving along the y direction in Fig. 3, we clearly see that ‘bend’ deformations (de Gennes and

Prost, 1993), within which the tip angle changes sign, accommodate the periodic misalignment

of the director from the flow axis. We can therefore highlight these regions using isosurfaces

of alternating sign as is done in Fig. 3, wherein the alternating red and blue bands correspond

to neighboring orientational domains. The gray bands, the edges of which correspond to ±10

degrees, designate their boundaries as defined by the isosurfaces shown in Fig. 2 and figures that

follow. Since sign changes in the tip angle are also indicative of ‘twist’, which is the second-most

common deformation mode observed in our simulations, this description can be readily extended

to three dimensions.

Taking a more detailed look at the internal structure of the orientational domains in Fig. 4, we

show contour slices of the tip angle magnitude, |θ|, for x-planes along the flow direction [Fig. 4(a)]

and a close-up of the velocity and orientation fields within an extracted x-plane that is represen-

tative of the solution throughout the domain [Fig. 4(b)]. The maximum value for the secondary

flow is roughly 1 percent of that of the primary flow, and the maximum tip angle of the orientation

away from the y-z plane of approximately 86 degrees occurs within the orientational domains. As

is evident from the dark horizontal bands in which |θ|→0 in the contour plots in Figs. 4(a) and (b),

the boundaries between the orientational domains are well defined, and the mean molecular orien-
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tation within each domain is predominantly along the flow direction, which corresponds to θ=90

degrees. In addition, as has been observed in two- and quasi-three-dimensional simulations of

LCPs for such flows (Larson, 1993; Feng et al., 2000; Klein et al., 2007), the orientational domain

boundaries coincide with counter-rotating vortex pairs typical of the roll-cell structure discussed

above. In this particular example, there are, however, noticeable fluctuations in the orientation

field along the wall-normal direction in a few of the domains, particularly the orientation domain

residing within the region 1.7.y.1.9, which as we shall see in the section that follows can play a

leading role in the formation of disclinations.

B. Disclinations

1. Er=500 simulation

If we continue to follow the dynamics exhibited by the DMG model in the Er=500 simulation,

as shown in Fig. 5, we see that with increased strain the residual fluctuations in the orientational

domains lead to a rearrangement of the local orientation field which leads to conditions for which

the system is amenable to the formation of disclinations. Initially, we observe that the fluctuations

in the director field along the z direction within the orientation domain along y≈2 give rise to the

reappearance of a smaller, interior domain. As can be seen by comparing Figs. 5(a) and (b), the

interior domain increases in stream-wise length with continued strain. Eventually, the crowding

brought about by the continued growth of this domain results in an abrupt rearrangement of the

orientation field [see Fig. 5(c)] that leads to the development of a more regular structure [Fig. 5(d)].

However, as is evident from the disclination core highlighted in Fig. 5(d) using an S=0.7 isosurface,

the resulting arrangement of orientational domains gives rise to the formation of a disclination

within which the minimum in the order parameter Smin=0.34, a considerable reduction from its
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equilibrium value of Seq=0.74. (The particular choice of the isosurface values used in this and

subsequent figures was subject to the limitations of the plotting software, which required the use

relatively large values in order to “visually” resolve the structure.) From this discussion (and that

which follows regarding the orientational structure in the vicinity of the region of reduced order),

it appears that the breakdown of the initial polydomain texture is initiated by residual fluctuations

in the molecular orientation field. As topological (i.e., singular) disclinations we not observed for

Er=500 in our previous study (Klein et al., 2007), in which we used the same parameter values as

those used here, they a manifestation of the three-dimensional nature of the problem, which cannot

be captured in two-dimensional flow.

It is difficult to draw qualitative conclusions from the data presented in Figs. 5(a)-(d) regarding

the driving force behind this process. The fact that the disclination forms not during the com-

plex rearrangement in the bulk orientation field and orientational domain topology but afterwards,

within what appears to be a regular configuration, seems somewhat counter intuitive. We therefore

look to the free energy of the system for guidance in this respect, which we evaluate in the same

manner as was done previously (Klein et al., 2007). In Fig. 6, we show the evolution of the non-

dimensional free energy, where the free energy F is scaled by νkBTV (V being the volume of the

computational domain), as a function of applied strain for our Er=500 simulation. In reference to

the previously discussed data, we see that the initial upturn in the free energy at τ≈15 strain units

corresponds to the strain at which orientational domains begin to form. Its subsequent increase

coincides with the initial development of the polydomain texture. This trend continues until τ≈46

strain units, the approximate strain at which we observed the formation of the smaller orientational

domain along y≈2. The decrease in the free energy that follows, between τ≈46 and τ≈58 strain

units, coincides with the growth of the smaller transitory structure and precipitate change in the
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local arrangement of orientational domains. Considering this, it appears that the system was sim-

ply following a more favorable energetic pathway made available by the aforementioned residual

fluctuations in the orientation field. Though this progression ultimately brings about a lower free

energy state, a minimum is reached at τ≈58 strain units, the strain at which we first observe the

disclination core shown in Fig. 5(d). The free energy then rises steadily as the disclination struc-

ture develops during the remainder of the simulation, which (for reasons discussed below) was

terminated at τ=90 strain units.

We continue to follow the evolution of the microstructure in Fig. 7, in which we highlight

the disclination structures using S=0.7 isosurfaces as before. We see that the disclination core

first observed at τ≈59 strain units [Fig. 5(d)] quickly develops into a distorted loop structure

whose orientation is along the flow axis [see Fig. 7(a)]. In comparing Figs. 7(a)-(c), we find that

while there is a clearly noticeable increase in the contour length of the disclination loop with

continued strain, there is minimal change in its overall shape. Additionally, there is not a marked

decrease in the minimum order parameter value along the perimeter of the disclination loop, which

fluctuates about Smin≈0.31, as it moves along the flow direction with the local fluid velocity. As

can be seen in Fig. 7(c), another defect that appears at τ≈62 strain units [Fig. 7(a)], which also

exhibits an irregular loop structure that (we shall see later) evolves in much the same manner. With

regard to the persistence of distinct features in the disclinations observed in this simulation, similar

observations were made by Larson and Mead (1993), who reported that each disclination that they

observed for a particular range of shear rates ‘translates in the shearing fluid without changing

its intensity or irregular shape.’ Though they attributed the wavy nature of the disclination to

misalignment in the initial director field, our results suggest that the irregular structure was simply

a consequence of the complex domain structure within which the disclination formed. The nature
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of these disclinations can be better understood by taking a closer look at the topologies of the

orientational domain boundaries about the disclination core prior to and following its development.

In particular, we consider the evolution of the defect first observed in the Er=500 simulation at

τ≈59 strain units [see Fig. 5(d)] during its transition of this localized reduction in the orientational

order to the complex loop structure shown in Fig. 7(a).

Since the disclination highlighted in Fig. 5(d) is within the bulk fluid, we consider the vol-

ume indicated by the rectangular box in the snapshot of the polydomain texture at τ=58.5 strain

units presented at the top of Fig. 8. Side and front views, with respect to the flow axis (x), of

the highlighted cutout region are shown in Figs. 8(a)-(c). As before, we distinguish neighboring

orientational domains using alternating red and blue isosurfaces, within which the director orients

toward the flow direction and between which it assumes a span-wise orientation (see Fig. 3). Ad-

ditionally, as is most evident in the side views, we vary the stream-wise length of the volume of

interest to account for the growth of the disclination loop with increasing strain. From comparison

of the views shown in Fig. 8(a), we can see that what initially appears to be several domains when

viewed from the side is actually two distinct, “entangled” domains. For example, if we follow the

blue isosurface on the right in the front view presented in Fig. 8(a), we see that the domain comes

back upon itself in the upper-left corner. The red isosurface that designates the boundary of the

neighboring domain on the other side of this interface in turn goes back upon itself near the upper,

solid-wall boundary indicated in black. This configuration results in a saddle-shaped interfacial

region between the two domains, within which a disclination forms as highlighted Fig. 8(b). Inter-

estingly, the region occupied by the disclination loop corresponds to a tear, or hole, in the interface

between the two domains. This is in opposition to the somewhat abrupt reorientation exhibited

by the director indicated by the narrow region between alternating red and blue isosurfaces. We
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find this also to be case with the disclination that we observe at later strain [see Fig. 7(b)]. These

observations are consistent with the findings of Larson and Mead (1992), who reported that the

disclination lines typically reside between roll cells. In the context of the calculations discussed

here, these regions correspond to the orientational domain boundaries. Since we qualitatively ex-

pect the elastic stress, which scales with the curvature of the orientation field along the interface, to

be the larger in regions such that depicted in Figs. 8(a)-(c), it appears that they are relatively more

susceptible to shear-induced degradation.

In coupling the disclination structure to the degradation of the orientational domain boundaries,

we can see from the discussion above that this process simply represents a mechanism by which

orientational domains undergo coalescence. Coalescence was also observed during the initial de-

velopment of the polydomain texture (see Fig. 2), but large spatial gradients in the orientation field

had yet to develop and thereby provided more energetically favorable conditions for coalescence.

The only way by which the system can accommodate this process after the boundaries between

domains have become well-defined, as is the case here, is by lowering the associated distortional

energy penalty at the expense of the energy required to form a disclination. Since the disclination

represents the perimeter of the tear in the interface between the domains undergoing coalescence,

the increase in its contour length can be viewed as a measure of the progression of the coalescence

process. Though the coalescence of orientational domains counters the texture refinement process

driven by the imposed shear flow, as the free energy of the system is a balance between the entropy,

which favors the less-ordered orientational state with the disclination core, and internal energy that

acts to maintain local orientational order and minimize gradients in the mean molecular orienta-

tion. We would, therefore, expect that at large strain a quasi-steady state would be reached, at

which point the contour length of disclinations per unit volume scales as the bulk shear rate (Lar-
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son and Doi, 1991). As we assume periodicity along the stream-wise and span-wise directions in

these calculations and stop each simulation when the overall stream-wise length of a disclination is

comparable to that of the computational domain, we are unable to reach such a state in this study.

Having coupled the disclination topology to that of the local boundary, or interface, between

neighboring orientational domains, we now consider the details of the disclination structure along

its contour length in the context of the bulk mean molecular orientation field and the coupling be-

tween the disclination dynamics and that of the local flow field. Since the increase in the length of

the disclination predominantly occurs along and opposite the flow direction, we consider the con-

figuration and velocity fields within y-z planes (at several constant x positions) as shown in Fig. 9,

which is a zoom of the disclination loop presented earlier in Fig. 7(b). From the secondary velocity

vsec=(vy,vz) and order parameter S fields shown in Figs. 9(a)–(c), it is evident that the disclination

is dragging fluid along with it as it increases in size. This is particularly obvious in Fig. 9(b), where

the secondary flow drawn from the left and right of the second forward-most bend in the disclina-

tion loop, with respect to the flow direction, along y≈2.15 reaches a magnitude of |vsec|≈0.05, a

five-fold increase relative to that of the surrounding fluid. Similarly, though smaller in magnitude,

the flow structures centered about (y,z)≈(2.15,0.55) in Fig. 9(c) and (y,z)≈(2.05,0.75) in Fig. 9(a)

correspond respectively to the relative motions of the lower-most portion of the disclination loop

and its leading edge.

As is depicted in the cartoon located in the lower left-hand corner of Fig. 9, the director d

and tip angle magnitude |θ| fields shown in Figs. 9(b) and (c) indicate that the disclination is a

1/2-strength loop (de Gennes and Prost, 1993). Along the disclination contour, we find that the

core structure alternates between +1/2 and -1/2 twice, so that their sum equals zero, as we should

expect given the topological constraints associated with singular-type defects in LCP systems. The
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regions along the sharp bends in the contour, from which the 1/2-strength cores emanate as the

disclination increases in size, do not have an apparent strength or sign, they are simply regions of

low orientational order. With regard to the variation in the order parameter along the disclination

contour, it is in these nondescript regions that S reaches it minimum value of 0.31, while represen-

tative values for the +1/2 and -1/2 cores are Smin≈0.46 and 0.34, repectively. To determine what

particular ‘type’ of disclination we are considering here, we can trace the dark bands in the con-

tour plots shown in Figs. 9(b) and (c), which designate the orientational domain boundaries, while

monitoring the director orientation. In doing so, we see that in passing through the disclination

cores there is an abrupt transition in the orientation field. The director goes from being oriented

predominantly along the vorticity (y) axis along the orientational domain boundaries to a nearly

flow-aligning orientation within the disclination perimeter. This is precisely the twist-type discli-

nation structure observed by De’Nève et al. (1995) (cf. Figs. 13 and 14 presented therein) in their

investigation of shear-flow dynamics of VectraTM, a commercially-relavent thermotropic LCP.

With increasing shear strain, our calculations indicate that the continued growth of the discli-

nation loops observed in the Er=500 simulation results in a coalescence event. We know from our

previous discussion that disclinations are simply manifestations of holes in the boundaries between

neighboring orientational domains. As such, it is clear that in order for coalescence to occur, the

two loops must lie along the same interface. The dynamics leading up to and following this event,

during which the two disclinations merge to form a single, 1/2-strength loop, are shown in the

series of images presented in Fig. 10. To aid us in monitoring this process, we utilize the peri-

odic boundary condition to extend the data shown in Figs. 10(a)-(d) along the flow direction such

that the data in the region 8≤x<10 is simply a copy of that which pertains to 0≤x<2. The inset

cartoons in Figs. 10(a)-(c) depict the relative motions of the two loops within the corresponding
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highlighted regions during the coalescence process and indicate the “signs” of the differing sec-

tions of the loops. From our previous discussion regarding the disclination structure, we know that

the increase in the overall length of a disclination loop occurs primary along sharp bends in its

contour. Additionally, as is indicated in the inset cartoons, the portions of the loops involved in

the coalescence event are opposite in sign, which results in a net attractive force acting across the

thinning interfacial bridge between them. We would therefore expect a net increase in the thinning

rate relative to that which can be attributed to the velocity gradient along the z direction, which

would seem to favor a coalescence event such as that observed here.

2. Er=2000 simulation

In addition to forming at earlier strain, the onset and development of the loop disclinations observed

in the Er=2000 simulation, as can be seen in the sequence of images shown in Fig. 11, are much

less dramatic than those discussed previously. Rather than forming along topologically-complex,

three-dimensional interfaces such as the distorted loops observed in the Er=500 calculation, the

disclinations seen here form along the relatively flat domain boundaries within the initial polydo-

main texture. The resulting structures, whose aspect ratios are notably higher than those of the

disclinations seen in the lower Er calculation, lie almost strictly within the shear plane. From close

inspection of the interface between the orientational domains residing in the region 0.25.y.0.75

in Fig. 11(a), it appears that the development of the earliest-observed disclinations are initiated

by residual fluctuations in the director field. These fluctuations in turn perturb the orientational

domain boundaries, thereby introducing curvature into the interface. In the case of the Er=500

simulation, the relative contribution of gradient elasticity to macroscopic stress was such that the

associated elastic stress did not jeopardize the integrity of the interface. With regard to the suscep-
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tibility of the system to disclination formation, this dependence upon the nature of the polydomain

texture further highlights the coupling between these two phenomena within the Ericksen number

cascade.

In comparing Figs. 11(a)-(c), we see that the disclination loops observed in this simulation

develop in much the same manner as those seen in our Er=500 calculations wherein growth of the

disclination primarily occurs along the sharp, cusp-like bends in its contour. This being the case,

we again consider configuration and flow fields within y-z planes along the flow axis, as shown

in Fig. 12, in identifying the disclination structure and evaluating the coupling between the flow

dynamics and that of the microstructure in the region local to the disclination. Having previously

examined the details of the loop structure observed in the Er=500 simulation, we can easily see

from the director and tip angle magnitude fields presented in Figs. 12(b) and (c) that this too is a

1/2-strength, twist-type disclination. As is indicated in the cartoon in the lower left-hand corner

of the figure, the upper and lower branches along the disclination contour are -1/2 and +1/2 cores,

respectively. The order parameter varies between S=0.33 and 0.44 along the backbone of the

disclination, reaching its minimum value along the sharp bends in the contour, which we simply

classify as regions of low order as before, while representative values for the -1/2 and +1/2 cores are

S=0.36 and 0.41. Lastly, although they are not as prominent as those which we saw for Er=500, the

subtle features along y≈0.49 in the secondary velocity fields presented in Figs. 12(a)-(c) highlight

the coupling between the flow and microstructure, which though small are non-negligible.

V. CONCLUSIONS

In this investigation, we provide the first account of the predictions of the DMG model for

a three-dimensional shear flow. We have provided a detailed picture of the physical nature of
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the orientational domains that comprise the polydomain texture, in which we use the tip angle

to parameterize regions of spatial coherence of the director. For an initial director orientation

along the vorticity axis, the orientional domains align along the flow direction to yield the so-

called striped texture (Larson and Mead, 1992). In accordance with experiment, the director within

the domains is oriented away from the shear plane by approximately 15 degrees, and the sign

of the angle alternates between neighboring domains such that it varies periodically along the

vorticity axis (Larson and Mead, 1992, 1993; Yan et al., 1994). Subsequent refinement of the

texture is accompanied by the formation and development of 1/2-strength, twist-type disclination

loops similar in structure to those observed in a thermotropic LCP by De’Nève et al. (1995). In

conclusion, we have verified that the DMG molecular theory for LCPs is capable of capturing

complex three-dimensional phenomena characteristic of gradient elasticity in planar, shear-driven

flows. Additionally, these results have validated the computation tools developed as part of this

investigation.
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List of Figure Captions

FIG. 1. Schematics of (a) the three-dimensional shear flow domain and (b) velocity and (c) director

vector components, where θ is the tip angle (i.e., the angle between the director and y-z plane).

The flow field is bounded along the z direction by parallel plates separated a distance H and along

the x and y directions by periodic boundaries separated a distance L and W , respectively. V is the

relative velocity between the two plates.

FIG. 2. Development of polydomain texture in the Er=500 simulation. The regions between

orientational domains are highlighted using isosurfaces corresponding to θ=+10 (blue) and -10

(red) degrees, θ being the tip angle. Note: a color animation showing the development of the

polydomain texture is available online.

FIG. 3. Top-down view (along the negative z axis) of the directer profile and neighboring orienta-

tional domains along span-wise direction.

FIG. 4. Er=500 (De=0.5) solution at τ=40 strain units: domain structure. (a) Contour slices of the

tip angle magnitude |θ| for x-planes along the flow direction and (b) secondary flow vector field

(vy,vz) and |θ| contour for the x=3.175 plane.

FIG. 5. Er=500 (De=0.5), orientational domain breakdown and dynamics leading to disclination

formation: contour slices of the tip angle magnitude |θ| for x-planes along the flow direction. The

disclination that appears in (d), as indicated by the red object centered at (x,y)≈(1.5,2), is rendered

using an S=0.7 isosurface, S being the scalar order parameter. Note: a color animation showing

the dynamics leading to disclination formation is available online.

FIG. 6. Evolution of the free energy as a function of applied strain for Er=500 (De=0.5). The

labeled arrows indicate strains corresponding to the data presented in Fig. 5.
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FIG. 7. Er=500 (De=0.5), disclination dynamics: contour slices of the tip angle magnitude |θ| for

constant x along the flow direction and disclinations as indicated by the red distorted loops ren-

dered using S=0.7 isosurfaces. Note: a color animation showing the dynamics of the disclinations

is available online.

FIG. 8. Er=500 (De=0.5): close up of a cutout region about the interface between orientational

domains during the evolution of the disclination structure. The regions between neighboring do-

mains are highlighted using alternating red and blue isosurfaces respectively corresponding to

θ=-10.0 and +10.0 degrees, where θ is the tip angle. (The reader should note that the shading in

the isosurfaces is only a consequence of the fact that the isosurfaces are slightly transparent.)

FIG. 9. Er=500 (De=0.5) at τ=62 strain units: coupling of disclination and flow structures. Close-

up of disclination shown in Fig. 7(b). (top) Secondary flow vector field (vy,vz) and contour of the

order parameter S and (bottom) director vector field d(x) and contour of the tip angle magnitude

|θ| at (a) x=4.25, (b) x=3.625, and (c) x=3.4375. The three-armed symbols and circles in (b) and

(c) indicate the respective intersections of -1/2 and +1/2 portions of the disclination loop and the y-

z plane. Note: a color animation showing the disclination and flow structure along the disclination

“backbone” is available online.

FIG. 10. Er=500 (De=0.5), disclination coalescence: contour slices of the tip angle magnitude

|θ| for constant x along the flow direction and disclinations as indicated by the red distorted loops

rendered using S=0.7 isosurfaces.

FIG. 11. Er=2000 (De=2), disclination dynamics: contour slices of the tip angle magnitude |θ|

for constant x along the flow direction and disclinations as indicated by the red lines and loops

rendered using S=0.5 isosurfaces. Note: a color animation showing the development of the poly-
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domain texture and disclinations is available online.

FIG. 12. Er=2000 (De=2) at τ=35 strain units: coupling of disclination and flow structures. Close-

up of disclination shown in Fig. 11(c). (top) Secondary flow vector field (vy,vz) and contour of the

order parameter S and (bottom) director vector field d(x) and contour of the tip angle magnitude

|θ| at (a) x=3.953, (b) x=2.729, and (c) x=1.757. The three-armed symbols and circles in (b) and

(c) indicate the respective intersections of -1/2 and +1/2 portions of the disclination loop and the

y-z plane.

41

http://engr.ucsb.edu/~harley/docs/pubs/KleinJORFig11Anim.gif


FIG. 1. Klein, Journal of Rheology
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FIG. 2. Klein, Journal of Rheology

43

http://engr.ucsb.edu/~harley/docs/pubs/KleinJORFig02Anim.gif


FIG. 3. Klein, Journal of Rheology
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FIG. 4. Klein, Journal of Rheology
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FIG. 5. Klein, Journal of Rheology
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FIG. 6. Klein, Journal of Rheology
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FIG. 7. Klein, Journal of Rheology

48

http://engr.ucsb.edu/~harley/docs/pubs/KleinJORFig07Anim.gif


FIG. 8. Klein, Journal of Rheology
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FIG. 9. Klein, Journal of Rheology
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FIG. 10. Klein, Journal of Rheology
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FIG. 11. Klein, Journal of Rheology

52

http://engr.ucsb.edu/~harley/docs/pubs/KleinJORFig11Anim.gif


FIG. 12. Klein, Journal of Rheology
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