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Abstract

A numerical study on the phase separation and ordering kinetics of a binary
mixture of a nematic liquid crystal and a flexible polymer modeled with a
Ginzburg-Landau free energy is presented. The system couples a generalized
Cahn-Hilliard equation, which incorporates the nematic elastic energy as
well as mixing, with a de Gennes-Prost evolution equation for the liquid
crystal’s director field. The effects of the liquid crystal micro-structure on the
phase separation and morphology dynamics during spinodal decomposition is
investigated numerically in two dimensions. It is found that the orientational
distortion of the director field induced by interfacial anchoring dramatically
affects both the morphology, the ordering kinetics of the binary mixture, and
the coarsening rate.
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1. Introduction

Phase separation of binary mixtures quenched rapidly from a homoge-
neous phase is characterized by a fast transition into an ordered phase, where
domains rich in either component form followed by a slow coarsening of these
domains. It is a fascinating problem that has been investigated for several
decades due to its fundamental and practical relevance in materials process-
ing. Binary alloys and polymer blends have been extensively studied (see
e.g. [7, 6]) and systems in which one of the components is a liquid crystal are
receiving increased attention [27, 30, 21, 26, 9, 8].
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In this work we investigate numerically the phase separation kinetics of a
two-dimensional binary system in which one of the components is a nematic
liquid crystal and the other component is a flexible polymer with a Ginzburg-
Landau free energy. Our focus is to examine the effects of the orientational
distortion in the nematic-rich phase and interfacial anchoring on the mor-
phology and coarsening rate of phase domains. We find that these effects
are dramatic. The late stage morphology of the phase separated system can
be largely controlled by the type of interfacial anchoring and the coarsening
rate is significantly affected by both long-range orientational distortion and
by the orientational interfacial anisotropy induced by anchoring.

The system is modeled through an order parameter or phase field φ,
which is a measure of the volume fraction of one of the components, and
a director field n, which quantifies the mean orientational order in the ne-
matic liquid crystal phase. The dynamics are driven by energy minimiza-
tion with conserved φ (Model B in the nomenclature of of Hohenberg and
Halperin [19]). Phase field models like this one have been used extensively
for the investigation of phase separation with and without an underlying
flow [15, 25, 20, 4, 1, 2, 22, 23, 5, 32, 34, 33, 3, 35, 13, 36, 12, 28, 18, 29].
In particular, the model that we employ stems from that considered in [32]
with the essential difference that we keep both elastic and anchoring terms
in the order parameter (Cahn-Hilliard) equation.

The rest of the paper is organized as follows. Section 2 is devoted to the
description of the mathematical model and the numerical method is sum-
marized in Section 3. This is followed by the presentation and discussion of
results in Section 5. Details on the calculation of the structure function are
given in Appendix A.

2. The Model

We consider a binary mixture of a nematic liquid crystal and a flexible
polymer with a Ginzburg-Landau free energy. The system can be described
with a phase field φ related to the species concentration and with the director
field n which is a measure of the mean molecular orientation in the nematic
liquid crystal phase. The pure, bulk phases are identified with φ = 1 and
φ = −1 for the nematic liquid crystal and the flexible polymer component,
respectively. A narrow neighborhood of the level set φ = 0 provides a diffuse
interface between the two species.
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The free energy density of the system consists of three parts: a mixing
energy density fmix, a bulk, orientational distortion energy density of the ne-
matic, fbulk, and the anchoring energy density of the liquid crystal molecules
on the interface, fanch [32]:

f(φ,n,∇φ,∇n) = fmix +
1 + φ

2
fbulk + fanch, (1)

where

fmix =
λc
2

[
|∇φ|2 +

(φ2 − 1)2

2ε2
c

]
, (2)

fbulk =
Kc

2

[
∇n : (∇n)T +

(|n|2 − 1)2

2δ2
c

]
, (3)

fanch =


Ac
2

(n · ∇φ)2 (planar anchoring)

Ac
2

[|n|2|∇φ|2 − (n · ∇φ)2] (homeotropic anchoring).

(4)

In (2), λc is the mixing energy density constant, given in units of J/m, and
εc is the capillary width, with units of length. Equation (3) is the regularized
Frank energy density in which the elastic constants for splay, twist, and bend
are all equal to Kc and (|n| − 1)2/(2δc) is a penalty term to approximately
enforce the constraint |n| = 1. In (3) Kc has units of J/m and δc has
units of length. Finally, in (4), Ac is the strength of the anchoring, and is
given in J/m. The planar anchoring energy density favors alignment of the
director tangential to the interface whereas for the homeotropic anchoring
the alignment of n is perpendicular to it.

The free energy terms can be nondimensionalized as follows: Consider a
characteristic length scale Lc and a characteristic energy scale Ec and de-
fine the dimensionless parameters λ = λcLc/Ec, ε = εc/Lc, δ = δc/Lc,
K = KcLc/Ec, A = AcLc/Ec, then we can write the energy densities in
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dimensionless form as

f̃mix =
λ

2

[
|∇φ|2 +

(φ2 − 1)2

2ε2

]
, (5)

f̃bulk =
K

2

[
∇n : (∇n)T +

(|n|2 − 1)2

2δ2

]
, (6)

f̃anch =


A

2
(n · ∇φ)2 (planar anchoring)

A

2
[|n|2|∇φ|2 − (n · ∇φ)2] (homeotropic anchoring).

(7)

In what follows we will drop the tilde for ease of notation.
We consider a cylindrical domain of the form V = Ω × [0, d] (in dimen-

sionless variables), and assume that neither φ nor n depend on the z variable.
Then the total free energy is

F = d

∫
Ω

f(φ,n,∇φ,∇n)dx. (8)

Defining a chemical potential

µ =

(
δF

δφ

)
, (9)

the corresponding Cahn-Hilliard equation [10, 11] governing the dynamics of
the order parameter is

∂φ

∂t
= ∇ · [γ∇µ] , (10)

where γ is the mobility, which in this work is assumed to be a constant.
Taking all the contributions to the energy, (5)-(7), we have

µ = λ

[
−∇2φ+

φ(φ2 − 1)

ε2

]
+
K

4

[
∇n : (∇n)T +

(|n|2 − 1)2

2δ2

]
+ µanch, (11)

where

µanch =

{
−A∇ · [(n · ∇φ)n] (planar anchoring)

−A∇ · [|n|2∇φ − (n · ∇φ)n] (homeotropic anchoring)
(12)
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The director evolves following the simplified Leslie-Ericksen theory due to de
Gennes and Prost [16] and used by Yue, Feng, Liu, and Shen [32]

1

τ

∂n

∂t
= −δF

δn
, (13)

where τ is a measure of the relaxation time of the director. Hence the coupled
system of equations governing the phase separation of the mixture is

∂φ

∂t
= γ∇2

[
λ

(
−∇2φ+

φ3 − φ
ε2

)
+
K

4

(
∇n : (∇n)T +

(|n|2 − 1)2

2δ2

)
+ µanch

]
,

(14)

1

τ

∂n

∂t
= K

[
∇ ·
(

1 + φ

2
∇n

)
− 1 + φ

2

(|n|2 − 1)n

δ2

]
− g, (15)

where µanch is given by (12) and

g =

{
A(n · ∇φ)∇φ (planar anchoring),

A [ |∇φ|2n− (n · ∇φ)∇φ ] (homeotropic anchoring).
(16)

A more general combination of planar and homeotropic anchoring inter-
facial conditions can also be considered by writing the anchoring energy as

fanch =
A

2

[
Cp(x)(n · ∇φ)2 + Ch(x)

(
|n|2|∇φ|2 − (n · ∇φ)2

)]
, (17)

where Cp(x) and Ch(x) are spatially varying weights determining the strength
of each anchoring term: 0 ≤ Cp(x), Ch(x) ≤ 1 and Cp(x) +Ch(x) = 1. With
this anchoring energy we have

µanch = A∇ ·
[
(Cp − Ch)(n · ∇φ)n + Ch(|n|2∇φ)

]
, (18)

g = A
[
(Cp − Ch)(n · ∇φ)∇φ+ Ch|φ|2n

]
. (19)

We select continuous weights to create smooth transitions between the an-
choring types. Specifically, on a L× L periodic domain, we take Cp(x, y) =
0.5 + 0.5 sin(2πx/L) and Ch(x, y) = 0.5− 0.5 sin(2πx/L). Since Cp, Ch only
vary in x in this case, this anchoring favors planar on the left half of the
domain and homeotropic on the right.
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3. Numerical Scheme

The numerical scheme is a linearly implicitly discretization, as the one
considered in [1] and [37], in which the implicit part is discretized using a
second-order backward difference formula (BDF) and the explicit part cor-
responds to a second order Adams-Bashforth method. The scheme can be
written as follows

3
2
φn+1 − 2φn + 1

2
φn−1

∆t
= γλ

[ α
ε2
∇2φn+1 −∇4φn+1

]
+ 2F(φn,nn)−F(φn−1,nn−1),

(20)

1

τ

3
2
nn+1 − 2nn + 1

2
nn−1

∆t
= Kβ∇2nn+1 + 2G(φn,nn)− G(φn−1,nn−1), (21)

where

F(φ,n) = γ∇2

[
λ

(
φ3 − φ
ε2

)
+
K

4

(
∇n : (∇n)T +

(|n|2 − 1)2

2δ2

)
+ µanch

]
− γλ α

ε2
∇2φ,

(22)

G(φ,n) = K

[
∇ ·
(

1 + φ

2
∇n

)
− 1 + φ

2

(|n|2 − 1)n

δ2

]
− g

−Kβ∇2n.

(23)

Here, α and β are numerical parameters introduced to relax the time step
stability constraint [1]. In the simulations reported in this work we take
α = 2 and β = 1. In addition, to limit the terms (1 + φ)/2 from exceeding 1
due to numerical overshoot, we approximate this term by (1 + sφ)/2 , where
s = 0.95. These equations are solved on a square [0, L]× [0, L] with periodic
boundary conditions. The spatial derivatives are handled spectrally, using
the FFTW package in Fortran, on a uniform grid.

4. Parameters

Guided by [32], we consider a square domain of dimensionless side length
L = 3.974 and we choose the dimensionless parameters λ = 1.342 × 10−2,
γ = 4×10−5, δ = 6.325×10−2, ε = 1.265×10−2, τ = 1, and A = 6.708×10−3.
With K/A = 1, the choice of K is set to A. The numerical scheme is run on
a 512× 512 grid, leading to ∆x = ∆y ≈ 7.76× 10−3, and we impose periodic
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boundary conditions on each side. The timestep is initially set to ∆t = 10−3,
but can be increased at later times.

To understand the scaling of the parameters, we start with an estimate
on the order of 10−11 N for the elastic energy constant Kc [24] and 10−3 −
10−6 J/m2 for the surface anchoring strength Wc [24], which is related to
Ac by Wc = 2

√
2Ac/3εc [32]. To balance anchoring and elastic energy, we

select Kc = Ac. Then with the definition of Wc, a range for εc can be
recovered, which places ε ≈ 10−5 − 10−8 m. Using this range for εc and
the nondimensional value ε, a range for a length scale can be produced:
Lc ≈ 10−3 − 10−6 m. From [24], realistic values for the ratio Kc/Wc are
10−5 − 10−8 m. Utilizing the relationship between Wc and Ac, and that
Kc/Ac = 1, the choice of parameters from [32] in the simulations places
Kc/Wc in 10−5 − 10−8 m, which is within the bounds of the values in [24].

5. Results

We consider spinodal decomposition starting from the slightly, randomly
perturbed homogeneous phase φ ≡ 0. To this end, we take the initial order
parameter φ0 at each grid point (xi, yj) to be φ0(xi, yj) = ξij, where ξij ∈
U(−ε, ε), that is ξij is a uniformly distributed random number in (−ε, ε).
The small parameter ε here is the same as that in the mixing energy (5), i.e.
a measure of the interfacial thickness. The initial director field n0 is given

by n0(xi, yj) = (1, ωij)/
√

1 + ω2
ij where ωij ∈ U(−0.05, 0.05).

We examine the effect of the liquid crystal anchoring at the interface
between flexible polymer-rich and liquid crystal-rich phases on the coarsening
and morphology of the separating mixture. We consider first phase separation
with planar anchoring. Figure 1 shows a time series of the phase separation
and the formation of a coarsening pattern with a bicontinuous structure. The
polymer-rich phase is shown in solid color and the liquid crystal-rich phase
is white with the (subsampled) director field depicted with arrows. The long
range orientational distortion of the director field significantly affects the
spinodal pattern and the strong planar anchoring favors the formation of
horizontal lamellae.

The simulation in Fig. 1 is run with timestep ∆t = 10−3 up to t = 1000
and then the timestep is increased tenfold to ∆t = 10−2 until reaching t =
10000. At early times in the simulation (around t = 500) the polymer- and
liquid crystal-rich phases separate relative to the orientation of the director
field and the anchoring type. These effects lead to long, finger-like connected
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(a) Time 500 (b) Time 1,000

(c) Time 5,000 (d) Time 10,000

Figure 1: Time sequence of spinodal decomposition with planar anchoring.
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regions of each phase, running horizontally. Since the interface is primarily
parallel to the orientation of the director, the distortion of this field near the
interface is not evident, but it can be observed near the finger tips of the
polymer-rich phase. As the mixture coarsens, the smaller structures begin
to merge and some form regions islands, which can been seen in the data at
t = 1000. At later times, the islands and fingers merge with larger formations
and several horizontal lamellae develop. At t = 5000, five lamellae are present
for each phase and only four by t = 10000, each roughly equally spaced and
with straight edges. The initial condition on the liquid crystal phase has
a large influence on the morphology, creating structures not typically seen
in standard Canh-Hilliard phase separation. While this analysis is based on
a single time series, these characteristics have been observed in additional
simulations with the same parameters and defferent initial data for φ and n.

We now consider homeotropic anchoring, taking the same parameters as
in the previously discussed planar achoring case but with a different seed
for the random initial data. Figure 2 shows snapshots of the corresponding
separating mixture. Around t = 500, the polymer-rich phase has separated
into long vertical domains, including a few fingers branching off of these areas
and an island on the left-side of the domain. This is due to the directors
of the liquid crystal-rich phase being oriented left to right, initially, and the
polymer-rich phase adapting to have a perpendicular director at the interface.
Locally, near the finger tips or in the vicinity of the island, the liquid crystal
has adjusted to match the anchoring. By t = 1000, the island has disappeared
and several of the polymer-rich domains have consolidated into larger regions.
At t = 5000, the polymer-rich phase has formed two small ellipsoidal nuclei
of the liquid crystal-rich phase. By this time, three lamellae have formed,
albeit with one including both an island and a finger extending from it. The
director field is largely influenced by the anchoring in areas where parts of the
interface are close together, such as inside the nuclei and near the finger tip
upper-right corner. At the end of the simulation (t = 10000) the two liquid
crystal-rich nuclei and the finger have merged with the larger structures to
form three lamellae, two of which are fairly straight on the sides and a large
third lamellae that extends to the other side of the domain via the periodic
boundary conditions. At this point, the liquid crystal has largely oriented
itself back to its original left-to-right direction.

The importance of the elastic and anchoring contributions to the coarsen-
ing dynamics and the phase morphology can also be gauged by considering
an often used simplified model in which these effects are neglected in the
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(a) Time 500 (b) Time 1,000

(c) Time 5,000 (d) Time 10,000

Figure 2: Time sequence of spinodal decomposition with homeotropic anchoring.
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(a) Full Model (b) Simplified Model

Figure 3: Comparison of order parameter and the director field during spinodal decompo-
sition with planar anchoring for the full model (a) and the simplified model (b) at t = 1000
for the same initial conditions.

Cahn-Hilliard equation [32], that is

∂φ

∂t
= γλ∇2

[
−∇2φ+

φ3 − φ
ε2

]
, (24)

1

τ

∂n

∂t
= K

[
∇ ·
(

1 + φ

2
∇n

)
− 1 + φ

2

(|n|2 − 1)n

δ2

]
− g. (25)

Figure 3 shows the striking contrast between the solution of the full system
(14)-(15) and the simplified model (24)-(25) for the same parameters and
initial conditions. While more tractable computationally, the simpler model
(24)-(25) has no coupling of φ with n in (24) and thus it fails to capture the
important nematic elastic effects, the interfacial anisotropy of the director
field due to anchoring, and the proper energy dissipation. A model using the
Allen-Cahn equation instead of the Cahn-Hilliard equation with the correct
energy dissipation has been recently proposed [31].

The effect of the director’s interfacial configuration can be also examined
by comparing the spinodal late morphology for the cases of homeotropic
anchoring and a combination of planar and homeotropic (mixed) anchoring as
shown in Fig. 4. While homeotropic anchoring favors the formation of vertical
lamellae despite the initial perturbed horizontal alignment, mixed anchoring
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(a) Homeotropic Anchoring (b) Mixed Anchoring

Figure 4: The spinodal pattern at t = 1000 for (a) homeotropic anchoring and (b) mixed
anchoring.

leads to a more complex coarsening pattern where both liquid crystal-rich
and flexible polymer-rich nuclei develop on the left (planar) region of the
domain. A long range distortion of the director is clearly visible on the left
side of the flexible polymer-rich nucleus.

To quantify the influence of the nematic component on the coarsening
rate of the separated phases, we estimate a time-dependent length scale L(t)
characterizing the domain growth. This characteristic length scale is obtained
from the first moment k1(t) of the structure function s(k, t) (see Appendix A
for details) and L(t) ∼ 1/k1(t) [37]. Simple scaling arguments [6] show that
L(t) ∼ t1/3 for the Cahn-Hilliard equation with a Ginzburg-Landau energy.
The assumption of a single characteristic length scale L(t) implies that the
structure function obeys the scaling

s(k, t) = L(t)dg(kL(t)) (26)

for sufficiently long times, where d is the space dimension. Equivalently,
s(k, t) = k1(t)−dg(k/k1(t)).

For the case of planar anchoring, after an initial transient phase, the
structure function and subsequently the coarsening rate are computed from
φ. For this case, we employ an ensemble average of twelve simulations with
the same parameters, but different random initial data.
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(b) Scaled Structure Function

Figure 5: Bicontinuous system with planar anchoring: (a) the structure function s(k, t)
and (b) the scaled structure function k2

1s(k, t) as a function of k/k1.

In Fig. 5, the first plot is the structure function from t = 2000 to t =
10000. As time increases, the maximum of the structure function, moves
closer to zero, indicating that the growth of the characteristic domain size.
The second plot has the structure function at late times (near t = 10000),
scaled as k/k1 and k2

1s(k, t). With this scaling, the data at the five times
shown collapse onto a single curve, demonstrating the aforementioned scaling
s(k, t) = L(t)dg(kL(t)). With homeotropic anchoring conditions a simalar
self-similarity is obtained as Fig. 6 demonstrates.

Utilizing the data at incremental times and computing the first moment,
k1, of the structure function at these times, the coarsening exponent can be
estimated. Assuming a relation of the form L(t) ∼ tα and using k1(t) =
1/L(t), we can cast the rate of coarsening in terms of the first moment
as k1(t) ∼ t−α. As a point of comparison, the exponent related to Cahn-
Hilliard is α = 1/3. In order to remove the effect of the initial transient in
the simulations, we estimate the coarsening rate from t = 3200 (when the
transient visually appears to end) to t = 10000.

The coarsening rate for planar anchoring is estimated to be α = 0.2317.
This indicates that for the planar anchoring the domains grow with a char-
acteristic length scale which is shorter than that in standard Cahn-Hilliard
dynamics.

Similar to the planar anchoring case, we run twelve simulations for the
homeotropic anchoring case to compute the structure function and subse-
quently the coarsening rate. The transient stage ends around t = 4800 and
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Figure 6: Bicontinuous system with homeotropic anchoring: (a) the structure function
s(k, t) and (b) the scaled structure function k2

1s(k, t) as a function of k/k1.
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(a) Planar Anchoring
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Figure 7: Time behavior of the first moment k1(t): L(t) ∼ k−1
1 (t) ∼ tα. The best fit

line for (a) planar anchoring from time 3,200 to 10,000 leads to α = 0.2317 and (b) for
homeotropic anchoring from time 4,800 to 10,000 leads to α = 0.4006.
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using the data from this point to t = 10000, the coarsening rate is estimated
to be α = 0.4006. This is larger than both the corresponding Cahn-Hilliard
value and the planar anchoring exponent of 0.2317. Thus, the homeotropic
anchoring leads to a higher coarsening rate than in the previously mentioned
cases.

In Fig. 7 we present the time behavior of k1 ∼ L−1 for planar and
homeotropic anchoring, respectively, corresponding to the cases shown in
Figs. 5 and 6.

We now consider the phase separation which takes place from an initially
perturbed homogeneous state with one majority phase, close to the end of
the spinodal interval. The other phase will nucleate in the majority phase-
rich matrix and the system will coarsen. We first take the initial condition
φ0(xi, yj) = 0.5 + ξij, where ξij ∈ U(−ε, ε). This corresponds to a small
random perturbation of the homogenous state φ ≡ 0.5 where the liquid
crystal is the dominant component. The initial director field is selected as

before, n0(xi, yj) = (1, ωij)/
√

1 + ω2
ij where ωij ∈ U(−0.05, 0.05).

Figure 8 displays both the order parameter and the director field of the ne-
matic matrix at a late time of the phase separation (t = 1000). With planar
anchoring [Fig. 8(a)] the orientational distortion in the liquid crystal-rich
matrix is more pronounced around the largest flexible polymer-rich nuclei
but remains somewhat localized. In contrast, with homeotropic anchoring
[Fig. 8(b)], the nearly horizontal initial director field undergoes a global re-
ordering into a predominantly vertical alignment to accommodate for the
perpendicular interfacial distribution of the director field. Similar results are
displayed in Fig. 9 where the majority and minority roles are reversed.

6. Discussion

In summary, we have presented a numerical study of the phase separation
and ordering kinetics of a binary mixture comprised of a nematic liquid crys-
tal and a flexible polymer. We have considered both planar and homeotropic
anchoring, and demonstrated that the presence of the nematic liquid crys-
tal in the blend can impact significantly both the resulting morphology, the
ordering kinetics, and the coarsening rates of the binary mixture. Specifi-
cally, the morphology and coarsening are found to be dramatically affected
by the orientational anisotropy introduced by anchoring and by long-range
orientational distortion of the nematic phase.
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(a) Planar Anchoring (b) Homeotropic Anchoring

Figure 8: The order parameter and the director field for nucleation of a flexible polymer
phase in a liquid crystal matrix with (a) planar anchoring and (b) homeotropic anchoring
at t = 1000 with the same initial conditions.

(a) Planar Anchoring (b) Homeotropic Anchoring

Figure 9: The order parameter and the director field for nucleation of a liquid crystal phase
in a flexible polymer matrix with (a) planar anchoring and (b) homeotropic anchoring at
t = 1000 with the same initial conditions.
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While the model considered here has several limitations, the results un-
equivocally point to strong effects that a liquid crystal component can have
on phase separating mixture and underline a potential mechanism for con-
trolling morphology. It would be interesting to examine the how these effects
are modified in the presence of a flow (Model H) and in a three-dimensional
system.
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Appendix A. Structure Function

The structure function, also referred to as the time-dependent structure
factor [14], is defined as:

S(k, t) =

〈
1

N

∣∣∣∣∣∑
r

e−ik·r [ψ(r, t)− 〈ψ〉]

∣∣∣∣∣
2〉

. (A.1)

In this definition, the sum runs over the lattice of linear size L and N = L2

is the total number of points in the lattice and the 〈·〉 notation is spatial
averaging over the lattice for φ and an ensemble average for the outer braces.
Using this, and assuming isotropy, the circularly-averaged structure function,
S(k, t), is computed.

Note that the discrete Fourier transform is similar to the summation in
r:

Ψ(n) =
∑

r

ψ(r)e−2πin·(r/L). (A.2)

Then define k = 2πn/L, so that:

Ψ(k) =
∑

r

ψ(r)e−ik·r. (A.3)

If we examine the summation terms in the structure function, we can compute
the summations by interpreting it as a discrete Fourier transform of a discrete
convolution [17].
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The circular average is the average over all wave vectors of magnitude
between k − 1

2
∆k and k + 1

2
∆k [17]. The value of ∆k is chosen to be of

the form (2π/L) × c, where c is a value near one for which the plot of the
structure function is smooth. Then S(k, t) can be written in discrete form as

S(k, t) =

∑
k−1

2
∆k<|k|≤k+

1
2

∆k

S(k, t)

∑
k−1

2
∆k<|k|≤k+

1
2

∆k

1
. (A.4)

For n1, n2 > L/2, we reassign n1 = L− n1 + 1, n2 = L− n2 + 1.
The structure function can then be normalized to

s(k, t) =
S(k, t)

〈ψ2(t)〉 − 〈ψ〉2
. (A.5)

The the first moment of s(k, t) is calculated as

k1(t) =

∑
k

ks(k, t)∑
k

s(k, t)
. (A.6)

This is in lieu of km(t) = argmaxks(k, t) since km(t) is difficult to calculate
due to the discrete nature of k [37]. The typical length scale of the domain
is then L(t) = 1/k1(t).
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[15] R. Chella and V. Viñals. Mixing of a two-phase fluid by a cavity flow.
Phys. Rev. E, 53:3832, 1996.

19



[16] P. G. de Gennes and J. Prost. The Physics of Liquid Crystals. Interna-
tional Series of Monographs on Physics. Clarendon Press, 1993.

[17] S. C. Glotzer, M. F. Gyure, F. Sciortino, A. Coniglio, and H. E. Stanley.
Pinning in phase-separating systems. Phys. Rev. E, 49(1):247–258, Jan
1994.

[18] H. Gomez and T. J. R. Hughes. Provably unconditionally stable, second-
order time-accurate, mixed variational methods for phase-field models.
J. Comput. Phys., 230(13):5310–5327, 2011.

[19] P. C. Hohenberg and B. I. Halperin. Theory of dynamic critical phe-
nomena. Rev. Mod. Phys., 49(3):435, 1977.

[20] D. Jacqmin. Calculation of two-phase Navier-Stokes flows using phase-
field modeling. J. Comput. Phys., 155:96–127, 1999.

[21] Y. J. Jeon, Y. Bingzhu, J. T. Rhee, D. L. Cheung, and M. Jamil. Appli-
cation and new developments in polymer-dispersed liquid crystal simu-
lation studies. Macromolecular Theory and Simulations, 16(7):643–659,
2007.

[22] J. Kim, K. Kang, and J. Lowengrub. Conservative multigrid methods
for Cahn-Hilliard fluids. J. Comput. Phys., 193:511–543, 2004.

[23] J. Kim, K. Kang, and J. Lowengrub. Conservative multigrid methods
for ternary Cahn-Hilliard systems. Comm. Math. Sci., 2:53–77, 2004.

[24] O. Lavrentovich, B. Lev, and A. Trokhymchuk. Liquid crystal colloids
foreward. Condensed Matter Physics, 13(3):1–2, 2010.

[25] J. Lowengrub and L. Truskinovsky. Quasi-incompressible Cahn-Hilliard
fluids and topological transitions. Proc. R. Soc. London A, 454:2617,
1998.

[26] A. Matsuyama and R. Hirashima. Phase separations in liquid crystal-
colloid mixtures. The Journal of Chemical Physics, 128(4):–, 2008.

[27] M. Motoyama, H. Nakazawa, T. Ohta, T. Fujisawa, H. Nakada,
M. Hayashi, and M. Aizawa. Phase separation of liquid crystal-polymer
mixtures. Computational and Theoretical Polymer Science, 10(3-4):287
– 297, 2000.

20



[28] G. Sheng, T. Wang, Q. Du, K. G. Wang, Z. K. Liu, and L. Q. Chen.
Coarsening kinetics of a two phase mixture with highly disparate diffu-
sion mobility. Commun. Comput. Phys., 8(2):249–264, 2010.

[29] O. Wodo and B. Ganapathysubramanian. Computationally efficient so-
lution to the Cahn-Hilliard equation: Adaptive implicit time schemes,
mesh sensitivity analysis and the 3D isoperimetric problem. J. Comput.
Phys., 230(15):6037–6060, 2011.

[30] J. Xia, J. Wang, Z. Lin, F. Qiu, and Y. Yang. Phase separation kinetics
of polymer dispersed liquid crystals confined between two parallel walls.
Macromolecules, 39(6):2247–2253, 2006.

[31] X. Yang, M. G. Forest, C. Liu, and J. Shen. Shear cell rupture of nematic
liquid crystal droplets in viscous fluids. J. Non-Newton. Fluid Mech.,
166(9-10):487–499, May 2011.

[32] P. Yue, J. J. Feng, C. Liu, and J. Shen. A diffuse-interface method for
simulating two-phase flows of complex fluids. J. Fluid Mech., 515:293–
317, 2004.

[33] P. Yue, J. J. Feng, C. Liu, and J. Shen. Diffuse-interface simulations of
drop-coalescence and retraction in viscoelastic fluids. J. non-Newtonian
Fluid Dynamics, 129:163–176, 2005.

[34] P. Yue, J. J. Feng, C. Liu, and J. Shen. Viscoelastic effects on drop
deformation in steady shear. J. Fluid Mech., 540:427–437, 2005.

[35] P. Yue, C. Zhou, J. J. Feng, C. F. Ollivier-Gooch, and H. H. Hu. Phase-
field simulations of interfacial dynamics in viscoelastic fluids using finite
elements with adaptive meshing. J. Comput. Phys., 219:47–67, 2006.

[36] T. Zhang and Q. Wang. Cahn-Hilliard vs singular Cahn-Hilliard equa-
tions in phase field modeling. Commun. Comput. Phys., 7(2, SI):362–
382, 2010.

[37] J. Zhu, L.-Q. Chen, J. Shen, and V. Tikare. Coarsening kinetics from a
variable-mobility Cahn-Hilliard equation: Application of a semi-implicit
Fourier spectral method. Phys. Rev. E, 60(4):3564–3572, 1999.

21


