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Numerical study of Hele-Shaw flow with suction
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We investigate numerically the effects of surface tension on the evolution of an initially circular
blob of viscous fluid in a Hele-Shaw cell. The blob is surrounded by less viscous fluid and is drawn
into an eccentric point sink. In the absence of surface tension, these flows are known to form cusp
singularities in finite time. Our study focuses on identifying how these cusped flows are regularized
by the presence of small surface tension, and what the limiting form of the regularization is as
surface tension tends to zero. The two-phase Hele-Shaw flow, known as the Muskat problem, is
considered. We find that, for nonzero surface tension, the motion continues beyond the
zero-surface-tension cusp time, and generically breaks down only when the interface touches the
sink. When the viscosity of the surrounding fluid is small or negligible, the interface develops a
finger that bulges and later evolves into a wedge as it approaches the sink. A neck is formed at the
top of the finger. Our computations reveal an asymptotic shape of the wedge in the limit as surface
tension tends to zero. Moreover, we find evidence that, for a fixed time past the zero-surface-tension
cusp time, the vanishing surface tension solution is singular at the finger neck. The
zero-surface-tension cusp splits into two corner singularities in the limiting solution. Larger
viscosity in the exterior fluid prevents the formation of the neck and leads to the development of
thinner fingers. It is observed that the asymptotic wedge angle of the fingers decreases as the
viscosity ratio is reduced, apparently towards the zero angle~cusp! of the zero-viscosity-ratio
solution. © 1999 American Institute of Physics.@S1070-6631~99!03909-4#
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I. INTRODUCTION

A Hele-Shaw cell is a device for investigating the tw
dimensional flow of viscous fluids in a narrow gap betwe
two parallel plates. Through the similarity in their governin
equations, Hele-Shaw flows are linked to saturated flow
porous media. One of the main sources of interest in
type of flows is the oil industry. In particular, Hele-Sha
flows with suction are relevant to the process of oil recove
In these flows, a blob of viscous fluid, surrounded by inv
cid or less viscous fluid, is drawn radially into a point sin
The more viscous fluid can be associated with oil, s
rounded by water~inviscid fluid!, that is recovered through
well ~sink!.

Laboratory experiments1 show that Hele-Shaw flows
with suction can develop long ‘‘fingers’’ of the less visco
fluid that encroach upon the more viscous fluid. These
gers reach the sink before all the more viscous fluid is suc
out. In the oil analogy, this fingering process could redu
the amount of recoverable oil. From physical grounds, i
believed that surface tension plays a crucial role in the
velopment and width selection of the fingers. In the abse
of surface tension, fingering is not observed. Instead, s
tions of the Hele-Shaw equations, for the suction flow w
inviscid surrounding fluid, are known to form finite-time sin
gularities before the fluid interface reaches the sink. Th
singularities are generally in the form of3

2-power cusps.2,3

From the analytical point of view, very little is know
about the Hele-Shaw solutions in the presence of sur
tension. There is a local existence result by Duchon
Robert,4 and a global in time result for initial data close to
2471070-6631/99/11(9)/2471/16/$15.00
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circle by Constantin and Pugh.5 Tian6 shows that singularity
formation is inevitable if the center of the viscous blob is n
at the sink. However, the type of singularity is still unknow
The singularity could be caused by the interface reaching
sink or by other means.

It is natural to use the knowledge of the zero-surfa
tension solutions to study the asymptotic effects of surf
tension as a perturbation parameter. However, a perturba
analysis is difficult due to the ill posedness of the underly
zero-surface-tension problem7,8 and to the singular nature o
the perturbation. Instead, Howisonet al.2 propose an
asymptotic model in which small surface tension wou
cause the interface in the neighborhood of the cusp to pro
gate rapidly as a narrow jet, analogous to a thin crack. Ho
ever, this so-called ‘‘crack’’ model relies on the notion of
self-similar steady-state solution whose existence is
known. Thus, the effects of very small surface tension p
the cusp time remain unclear.

Here, we investigate numerically how surface tens
regularizes the cusped flows and what the limiting form
this regularization is as surface tension tends to zero.
consider the two-phase Hele-Shaw flow, known as
Muskat problem,9 and study also the effects that the viscos
of the surrounding fluid has on the Hele-Shaw sink flow. W
employ a highly accurate and efficient boundary integ
method developed by Houet al.10 This method allows us to
follow accurately the interface motion after the zero-surfa
tension cusp timetc , for very small values of surface tensio
and several viscosity ratios. With high resolution, our co
putations proceed up to very close to the moment when
1 © 1999 American Institute of Physics
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interface touches the sink and the solution breaks dow
the classical sense.

Kelly and Hinch11 study numerically the effects of sur
face tension on the Hele-Shaw flow with suction when
surrounding fluid is inviscid. Their computations show th
surface tension indeed regularizes the cusped flow and th
smooth narrow finger develops pasttc . However, as we
show here, Kelly and Hinch computations lack the high
curacy necessary to capture the interface behavior for s
ciently small surface tension. In addition, for a given surfa
tension, high resolution is needed to compute the fast in
face motion as the finger gets very close to the sink. In f
recent computations by Nie and Tian12 provide strong evi-
dence that the flow develops a curvature singularity~in the
form of a corner! when the interface reaches the sink. Ho
ever, Nie and Tian do not address the limiting behavior
the interface as surface tension tends to zero.

Numerical computations of unstable Hele-Shaw flo
are known to be difficult due to the ill posedness of t
zero-surface-tension problem.13,14 For sufficiently small sur-
face tension, even perturbations at the round-off error le
can lead to a rapid growth of the solution high-frequen
components.15,16In addition, surface tension introduces hig
order derivative terms that couple with the interface dyna
ics in a nonlinear and nonlocal manner. These terms lea
a severe time-step stability constraint or stiffness for expl
time-integration schemes. In their method, Houet al.10 effec-
tively identify and separate the terms causing the stiffnes
a form that makes implicit discretizations easy to impleme
Here, we apply this method to a spectrally accurate discr
zation in space combined with a fourth-order in tim
implicit/explicit multi-step scheme.

Our computations focus on the evolution of an initia
circular blob of viscous fluid surrounded by less visco
fluid. The blob is drawn into a point sink located inside it b
not at its initial center. We find that, for nonzero surfa
tension, the flow continues beyond the zero-surface-ten
cusp time, and breaks down only when the interface touc
the sink. When the viscosity of the surrounding fluid is sm
or negligible, the interface develops a finger that la
evolves into a wedge as it approaches the sink. As in
cases reported by Nie and Tian,12 our computations strongly
suggest that the Hele-Shaw solutions, for this type of geo
etry, generically break down by developing a corner at
tip of the wedge when the interface reaches the sink.

As surface tension is decreased, our numerical res
show several new interesting phenomena. An asympt
shape of the fingers is observed at the late stage of the i
face motion and a wedge angle at the tip of the finge
selected in the limit as surface tension tends to zero. Mo
over, for sufficiently small values of surface tension a we
defined neck develops at the top of the finger neartc . The
developing finger bulges but, being drawn strongly by
sink, quickly evolves into the wedge. The bulging of t
finger contradicts the ‘‘crack’’ model of Howisonet al. It is
conceivable that the neck and the bulging of the finger
due to the influence of the zero-surface-tension singula
In fact, our computations suggest that the vanishing surf
tension solution is singular at the finger neck, for any fix
in
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time pasttc but not greater than the asymptotic time at whi
the interface reaches the sink. The continuation solution
lected by the limit apparently splits the zero-surface-tens
cusp into two corner singularities at the finger neck.

Even in the absence of surface tension, very little
known about the corresponding Muskat problem, i.e., wh
the viscosity of the surrounding fluid is taken into consid
ation. We find here that the viscosity of the exterior flu
alone does not prevent the formation of cusps. It only del
them. In the absence of surface tension, we observe gen
3
2-power cusps just as in the case of inviscid exterior flu
However, as the viscosity ratio is decreased, we find that
zero-surface-tension cusps develop closer to the sink. In
presence of surface tension, the interface behavior for sm
viscosity ratios differs significantly from that correspondin
the case of inviscid exterior fluid. We observe that lar
viscosity in the exterior fluid prevents the formation of th
neck and leads to the development of thinner fingers. T
fingers also tend to an asymptotic shape in the limit as s
face tension tends to zero. Moreover, the asymptotic ang
the finger tip decreases as the viscosity ratio is reduced,
parently towards the zero angle~cusp! of the zero-viscosity-
ratio solution.

The organization of the rest of the paper is as follows.
Sec. II, we present the equations of motion for the He
Shaw interface in a boundary integral formulation approp
ate for the numerical method we use. In Sec. III, we descr
the numerical method along with the main ideas that mak
efficient. The numerical results are presented in Sec.
These results are divided in two main parts: the case w
the surrounding fluid is inviscid and the effect of th
surrounding-fluid viscosity. An analysis of the numerical e
rors is included in this section. Section IV also contains
sults showing that the qualitative features of the flow a
insensitive to the initial position of the blob center with r
spect to the sink. Further discussion of the numerical res
and conclusions are presented in Sec. V.

II. THE GOVERNING EQUATIONS

Typically in a Hele-Shaw cell, two viscous fluids ar
confined between two closely spaced parallel plates. H
we consider the case of a blob of viscous fluid being suc
by an interior sink. The blob is surrounded by a less visco
fluid which fills the rest of the Hele-Shaw cell. For simplic
ity, we assume that the fluids are immiscible and inco
pressible with constant but differing viscosities. We use
subscripts 1 and 2 to refer to the fluids in the interior a
exterior of the blob. The velocity fielduj of each fluid is
given by Darcy’s law,

uj52
b2

12m j
¹pj , ~2.1!

where b is the cell gap,m j is the viscosity, andpj is the
pressure.M5b2/12m j is the fluid mobility. The incompress
ibility condition implies that¹•uj50 and therefore the pres
sure in each fluid satisfies Laplace’s equation:

¹2pj50. ~2.2!
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In other words, the interior and exterior fluids are potent
Consequently, the flow can be obtained from the dynam
of the free interface~blob boundary! between the two fluids
Denote the fluid interface byG. The interface motion is sub
ject to the following conditions,

@u•n̂#uG50, ~2.3!

@p#uG5tk, ~2.4!

where@•# denotes the jump across the interface taken as
difference of the interior minus the exterior quantity. Heren̂
is the exterior unit normal toG, t is the surface tension, an
k is the interface mean curvature. The kinematic bound
condition ~2.3! states that the normal component of the v
locity field is continuous across the interface. This impl
that particles on the interface remain there. The relat
~2.4!, known as the Laplace–Young boundary conditio
gives an account of how the presence of surface ten
modifies the pressure across the interface.

We assume that there is a point sink at the origin, ins
the fluid blob. For large distances away from the sink,
velocity field tends to the simple radial flow:

u~x!˜Q
x

uxu2 , as uxu˜`. ~2.5!

Here, Q is the suction rate which is assumed constant
negative.

Let the interfaceG be represented, at any instantt, by
„x(a,t),y(a,t)…, where a in @0,2p# defines a counter
clockwise parametrization ofG. Both x and y are periodic
functions ofa. The interface governing equations can be p
in a convenient form by introducing the complex positi
variable z(a,t)5x(a,t)1 iy(a,t) and the complex conju
gate velocityW(a,t)5u(a,t)2 iv(a,t). This interface ve-
locity can be represented by a boundary integral plus the
contribution as follows~for a derivation, see, e.g., Ref. 17!

W5
Q

z~a,t !
1

1

2p i
P.V.E

0

2p g~a8,t !

z~a,t !2z~a8,t !
da8, ~2.6!

where the P.V. denotes the principal value integral.g is the
~unnormalized! vortex sheet strength which measures
tangential velocity jump across the interface by

g5sa@u#uG• ŝ, ~2.7!

wheresa5Axa
21ya

2, the subscripta denotes differentiation
with respect to that variable, andŝ is the unit tangential vec
tor onG. W(a,t) gives, in complex form, the average velo
ity (u,v)5 1

2(u11u2) on the interface and satisfies th
boundary condition~2.5!, provided g has zero mean. To
close the system, an equation forg can be derived by using
Eq. ~2.1!. We have that

~¹p12¹p2!• ŝ5S 12m2

b2 u22
12m1

b2 u1D • ŝ

52
12

b2 ~Dmu1m̄~u12u2!!• ŝ, ~2.8!

whereDm5m12m2 ,m̄5 1
2(m11m2). Thus,
l.
s

e
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g52sa

Dm

m̄
u• ŝ2sa

b2

12m̄
“~p12p2!• ŝ. ~2.9!

Using the dynamic boundary condition~2.4! and the com-
plex conjugate velocity, we obtain the following equation f
g:

g52Am Re$zaW%1Ska . ~2.10!

Here, Am5(m12m2)/(m11m2) is the viscosity Atwood ra-
tio andS5(b2/12m̄)t is a scaled surface tension paramet
We nondimensionalize the equations of motion by taking
initial blob radius to be 1 and by settingQ521. Taking into
account that there is freedom in selecting the tangential
locity at the interface, the evolutions equations can be w
ten as

z̄t~a,t !52
1

z~a,t !
1

1

2p i
P.V.E

0

2p g~a8,t !

z~a,t !2z~a8,t !

3da81A~a,t !
z̄a~a,t !

uza~a,t !u
, ~2.11!

g~a,t !52Am ReS 2
za~a,t !

z~a,t !
1

za~a,t !

2p i
P.V.

3E
0

2p g~a8,t !

z~a,t !2z~a8,t !
da8D 1Ska , ~2.12!

where the bar denotes the complex conjugate. Here,A(a,t)
is arbitrary and only determines the parametrization~frame!
of the interface but does not affect its dynamics. For e
ample, the frequently used Lagrangian frame is obtained
taking A5g/(2uzau).

III. THE NUMERICAL METHOD

A spectrally accurate spatial discretization of Eqs.~2.11!
and ~2.12! can be achieved easily by computing the spa
derivatives with the pseudo-spectral approximation, i.e.,
ing the fast Fourier transform~FFT!. The principal value
integral can also be computed with spectral accuracy by
ploying the alternate-point trapezoidal rule:18

P.V.E
0

2p g~a8!

z~a i !2z~a8!
da8' (

j 50
( j 2 i )odd

N21
g j

zi2zj
2h, ~3.1!

where N is the number of computational particles on t
interface,h52p/N, anda i5 ih for i 50,...,N21. The quan-
tities with subscripts are the corresponding discrete appr
mations. However, surface tension introduces a term (ka)
with high-order derivatives that couple into the interface d
namics in a nonlinear and nonlocal manner. This leads
high-order stability constraint~stiffness! for explicit time-
integration methods and makes implicit methods difficult
implement. Houet al.10 have designed an efficient method
remove the high-order stability constraint. This is the meth
we use here. The method is based on a reformulation of
equations of motion in terms of variables more naturally
lated to the curvature and on the identification of the sm
scale terms that contribute to the stiffness. The natural v
ables are the tangent angle to the interfaceu and the arc-
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length metricsa5uzau. In these two variables, the curvatu
has the simple formk5ua /sa and the evolution equation
are given by

sat5Ta2uaU, ~3.2!

u t5
1

sa
~Ua1Tua!, ~3.3!

whereT and U are the tangential and normal velocity, r
spectively. The stiffness is hidden at the small spatial sc
of Ua in the u-equation. The leading order behavior ofU at
small scales is given by10

U~a,t !;
1

2sa
H@g#~a,t !, ~3.4!

whereH is the Hilbert transform which is diagonalizable b
the Fourier transform asĤ@ f #52 isign (k) f̂ . The notation
f ;g means that the difference betweenf andg is smoother
than f andg. Moreover,g is dominated by the surface ten
sion term at small scales, that is,

g~a,t !;Ska5S ua

sa
D

a

. ~3.5!

Therefore,

U~a,t !;
S

2sa
H@~ua /sa!a#~a,t !. ~3.6!

This dominant term at small scales simplifies if the a
length metricsa is constant in space. This can be achiev
by exploiting the freedom in selecting the tangential veloc
By letting

T~a,t !5E
0

a

ua8U da82
a

2p E
0

2p

ua8U da8, ~3.7!

sa is maintained constant and equal to its mean at all tim
i.e., sa5L(t)/2p, whereL(t) is the total length of the curve
at time t. The equations of motion can now be written as

Lt52E
0

2p

ua8U da8, ~3.8!

u t5
S

2 S 2p

L D 3

H@u#aaa1P, ~3.9!

whereP represents lower-order terms at small spatial sca
L can be updated by an explicit method as Eq.~3.8! is free of
stiffness. To remove the high-order stiffness it is sufficient
discretize implicitly the leading order term in Eq.~3.9! and
treat the lower order termP explicitly. This gives a linear
time-step stability constraint, i.e.,Dt<Ch, whereDt is the
time-step size. Moreover, because of its constant coefficie
the implicit term can be easily inverted by using FFT. He
we use the following fourth-order explicit/implicit metho
studied by Ascheret al.:19
es

-
d
.

s,

s.

o

ts,
,

1

Dt S 25

12
un1124un13un212

4

3
un221

1

4
un23D

5
S

2 S 2p

Ln11D 3

H@un11#aaa14Pn26Pn21

14Pn222Pn23. ~3.10!

HereL is updated first using a fourth-order explicit Adams
Bashforth multi-step scheme to obtainLn11 before comput-
ing un11 via FFT.

Note that, at each time step,g has to be obtained from
~2.12! to compute the velocities. It has been shown20 that the
Fredholm integral equation forg has a globally convergen
Neumann series. We solve forg by fixed point iteration,
accelerated by constructing a fourth-order extrapolated in
guess from previous time steps. It typically takes a few ite
tions to obtain a convergent solution forg when the interface
is relatively smooth. The overall method is fourth order
time and spectrally accurate in space.

IV. NUMERICAL RESULTS

We consider an initially circular blob of viscous flui
surrounded by less viscous fluid. The center of the ini
blob is at (0,20.1) and the sink is placed at the origin. O
numerical results focus on the regularizing effect of surfa
tension, past theS50 singularity time, and on the limiting
behavior of the interface as surface tension tends to zero.
results are divided in two main parts. First, we present
case where the viscosity of the surrounding fluid is neg
gible, which corresponds to Am51. In the second part, we
investigate the additional effect that nonzero viscosity in
surrounding fluid has on the interface dynamics, i.e.,m

,1.
All the computations presented here are performed

64-bit arithmetic ~standard double precision!. Krasny
filtering21 is used to prevent the spurious growth of the hig
frequency components of the round-off error. This nonline
numerical filter is implemented by setting to zero all t
Fourier modes of the solution whose magnitudes are belo
certain level. In our computations we set this filter level to
10212. The numberN of uniformly spaced points along th
interface is chosen so that all the Fourier modes of the
gent angleu(a,t) are well resolved. Initially, we useN
52048 for most of the computations. The time stepDt is
selected so that decreasing it further would not produce
appreciable difference within plotting resolution in the cu
vature of the interface. We doubleN as soon as the magn
tude of the highest frequency mode ofu(a,t) is greater than
the filter level. Very small values ofDt are required to com-
pute accurately the interface motion as it approaches
sink. At the latest stage of the motion, the number of g
points typically increases toN58192 orN516384 andDt
5231027. A detailed resolution study is presented later
this section.
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A. Development of the interface for A m51

1. Zero-surface-tension cusp formation

In the absence of surface tension, an initially circu
blob whose center is not at the sink develops a3

2-power cusp
singularity in finite time. Figure 1 shows the evolution a
collapse of the fluid interface forAm51 andS50. The cusp
occurs at approximatelytc50.2842 and is located at~0,
0.2305! for this particular case where the blob is initial
centered at (0,20.1). To resolve well the interface up t
times very close to the formation of the cusp, we take adv
tage of the particle clustering characteristic of the Lagrang
frame. That is, for this special case (S50), we discretize
directly Eqs.~2.11! and ~2.12! with A5g/(2uzau) using the
pseudo-spectral approximation for the derivatives and
alternate-point trapezoidal rule~3.1! for the singular integral.
An explicit fourth-order Adams-Bashforth scheme is used
integrate in time.

2. The regularizing effect of surface tension

The presence of surface tension regularizes the cus
flow in a very special way. Figure 2 shows the fluid interfa
at different times forS50.01. A smooth finger with a
rounded tip develops past the zero-surface-tension br
down time tc50.2842. As the interface gets closer to t
sink, the finger evolves rapidly into a wedge. We stop
computation when the distance of the finger tip to the sin
5.984831023. We useN58192 andDt5231027 for the
last stage of the computation. The formation of the wedge
the interface approaches the sink is consistent with the
sults reported by Nie and Tian12 for the two values of surface
tension they computed.

FIG. 1. Evolution and collapse of the interface for the initially circular bl
centered at (0,20.1) being sucked by a point sink at the origin.S50 and
Am51. The curves, from the outer perimeter inwards, correspond to
times t50, 0.1, 0.2, 0.24, 0.28, and 0.2842. The cusp is formed appr
mately att50.2842. The computation was performed usingN52048 and
Dt5131025 in the Lagrangian frame.
r

n-
n

e

o

ed

k-

e
s

s
e-

We decrease now surface tension to the valueS54
31024. A time sequence of the interface evolution for th
small surface tension is presented in Fig. 3. The interf
passes smoothly the zero-surface-tension cusp timetc . Soon
after tc , we observe the appearance of an almost stra

e
i-

FIG. 2. Evolution of the initially circular fluid blob forS50.01 and Am
51. The curves, from the outer perimeter inwards, correspond to the ti
t50, 0.080, 0.160, 0.240, 0.284, 0.290, 0.296, 0.300, and 0.301 419.
distance of the tip of the finger to the sink, for the last computed interf
(t50.301 419), is 5.984831023 and the tip curvature is2180.37. N
58192 andDt5231027 for the last stage of the motion.

FIG. 3. Evolution of the initially circular fluid blob forS5431024 and
Am51. The interface is plotted at times aroundtc50.2842 and well past it.
From the the outer perimeter inwards, the curves correspond to the timt
50.280, 0.284, 0.288, 0.290, 0.292, 0.293, and 0.2932.N516 384 andDt
5231027 for the last stage of the motion. Att50.2932, the distance of the
wedge tip to the sink is 8.931024 and the tip curvature is21945.26.
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finger that begins to bulge but is quickly drawn into the si
forming a wedge. Note that the top of this finger is narrow
than the one corresponding to the larger surface tensioS
50.01 ~Fig. 2!. A look at the tangent angleu(a,t) around
the finger tip for S5431024, shown in Fig. 4, strongly
suggests the formation of a corner when the interface touc
the sink. The tangent angleu appears to develop a discont
nuity at the finger tip (a50), precisely when the Hele-Sha
solution breaks down. The computations of Nie and Tian12

for another type of initial data, also suggest this breakdo
scenario. The formation of the wedge and the tip corner se
to be generic for this type of flow.

Smaller values of surface tension reveal new feature
the interface evolution. Figure 5 shows the interface sh
for S5531025. The finger clearly bulges and develops
well-defined neck before it becomes a wedge. It is interes
to note that this neck appears at a height close to that of
zero-surface-tension cusp. It is conceivable that the for
tion of the neck and the bulging of the finger are due to
influence of the zero-surface-tension singularity. In fact
look at the curvature shown at Fig. 6~a! for the time t
50.2860, which is very close totc50.2842, shows alread
the appearance of two symmetric spikes corresponding to
location of the neck. The behavior of the interface curvat
at subsequent times is shown in Figs. 6~c! and 6~d!. Note in
particular that the curvature grows almost ten times in m
nitude from t50.2916 @Fig. 6~c!# to t50.2918 @Fig. 6~d!#.
The sharp and large spike ata50 is an indication of the
corner singularity forming as the tip of the wedge touch
the sink. We useN516 384 andDt5231027 to resolve
accurately this large curvature motion. Att50.2918, the dis-
tance of the wedge tip to the sink isr 52.9231023 and the
tip curvature isk521371.11. The sink pressure2 log r
dominates the surface tension pressureSk.

FIG. 4. Behavior of the tangent angleu(a,t) around the finger tip (a50)
as the interface is about to collapse, forS5431024 and Am51. The tan-
gent angle, plotted against the parametrization variablea at the timest
50.2920, 0.2930, and 0.2932, appears to develop a discontinuityN
516 384 andDt5231027.
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3. The interface limiting behavior as S ˜0

We investigate now the interface limiting behavior b
fore and pasttc . We present numerical evidence to show th
an asymptotic corner angle is selected in the limit as surf
tension tends to zero when the finger tip is about to reach
sink. The computations presented here also suggest tha
vanishing surface tension solution is singular at the fin
neck.

To obtain information on the behavior of the wedg
angle in the limit as surface tension tends to zero, we co

FIG. 5. Evolution of the initially circular fluid blob pasttc , for S55
31025 and Am51. ~a! The interface plotted att50.2880, 0.2900, and
0.29181. ~b! A close-up of the interface finger at the timest50.2840,
0.2860, 0.2880, 0.2900, and 0.291 81.N516 384 andDt5231027 for the
last stage of the motion. Att50.29181, the distance of the wedge tip to th
sink is 2.9231023 and the tip curvature is21371.11.
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FIG. 6. Interface curvaturek(a,t) versusa around the finger tip (a50) at
different times pasttc for S5531025 and Am51. ~a! t50.2860. ~b! t
50.2880. ~c! t50.2916. ~d! t50.291 81. N516 384 andDt5231027

were used to resolve the largest curvature~d!.

FIG. 7. Comparison of the interface finger for a sequence of surface
sions with Am51. From the outer curve inwards, the fingers correspond
the surface tension valuesS5831024, 431024, 231024, 131024, and
531025. Each interface is plotted when the tip of the finger reaches
fixed levely50.01 atx50. N516384 andDt5231027.

TABLE I. Change in the finger widths as surface tension is decreased
Am51. The first column shows the height level at which the fingers
compared. Columns 2–5 give the differenceD(S,S/2) between the width of
the finger corresponding to a surface tensionS and that corresponding to
S/2.

y
D~0.0008,
0.0004!

D~0.0004,
0.0002!

D~0.0002,
0.0001!

D~0.0001,
0.00005!

0.1 1.6331023 1.1731023 8.9631024 6.6231024

0.06 1.2431023 9.1431024 6.9831023 5.3931024

0.02 5.9931024 4.5731024 3.4531024 2.4731024
pare the interfaces for a set of decreasing values of sur
tension. Since the velocity of the interface depends on s
face tension, we compare the interfaces when their finger
reach the same level above the sink rather than at a fi
time. As surface tension is reduced, the finger tip reaches
given level faster. Figure 7 provides some indication of t
asymptotic trend of the fingers as surface tension is suc
sively halved fromS5831024 to S5531025. The fixed
level is y50.01 so that the finger tips are very close to t
sink. As surface tension is decreased, the fingers devel
neck at abouty50.27. However, away from the neck, th
finger width changes very little. More precisely, as surfa
tension is reduced, the change in the finger width decrea
Table I gives the differenceD(S,S/2) between the width of
the finger corresponding to a surface tensionS and that cor-
responding toS/2 at three different levels. It is observed th
D(S,S/2) decreases as surface tension is reduced. The
gers are converging to an asymptotic shape. Table II s
gests that an asymptotic angle is selected for the wedge
touches the sink. The difference between consecutive an

n-
o

e

FIG. 8. Limiting behavior of the interface beforetc50.2842 for Am51.
This figure shows a close-up picture of the interface aroundx50 for a set of
surface tension values, decreasing from top to bottom, and plotted at
t50.2840. The zero-surface-tension solution is also shown.N54096 and
Dt5531025.

or
e

TABLE II. The angle of the wedge~in radiants! for a decreasing set of
surface tensions. The variation~third column! is the difference between
consecutive angles, corresponding to surface tensionsS and 2S.

S Wedge angle Variation

831024 0.674 59 ¯

431024 0.657 19 0.0174
231024 0.643 99 0.0132
131024 0.636 60 0.0074
531025 0.633 59 0.0030
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~corresponding to surface tensionsS and 2S) decreases a
surface tension is reduced. Note also that there is
asymptotic time at which the limiting wedge reaches
sink.

While the asymptotic trend of the wedge angle is cle
the limiting behavior of the interface in the vicinity of th
neck is not obvious. More precisely, we would like to fin
the form of the continuation solution selected in the limit
surface tension tends to zero for any fixed time pasttc but
before the time at which the limiting wedge reaches the s
As expected, beforetc , the interface converges to th
smooth zero-surface-tension solution asS˜0. This is illus-

FIG. 9. Close-up of the interface aroundx50 at t50.2857~just pasttc) for
Am51. The interfaces correspond to~a! S51025 and ~b! S5531026. N
58192 andDt5531026.
n
e

r,

k.

FIG. 10. The tangent angleu(a,t) versusa around the finger tip (a50) at
t50.2857 for Am51. The plots correspond to~a! S51025 and ~b! 5
31026. N58192 andDt5531026.

FIG. 11. The curvaturek(a,t) versusa around the finger tip (a50) for
Am51 andS5531026, at ~a! t50.2850 and~b! t50.2855.N58192 and
Dt5531026.



er
e
-

in
io

he
e

.

e

wn

e

2479Phys. Fluids, Vol. 11, No. 9, September 1999 Numerical study of Hele-Shaw flow with suction
trated in Fig. 8 which shows a close-up picture of the int
face for a set of decreasing surface tensions at a timt
50.2840) slightly beforetc . The zero-surface-tension solu
tion is also shown in Fig. 8.

We observe a very different behavior pasttc . Figure 9
presents close-up pictures of the interface finger develop
just pasttc . The interfaces correspond to the surface tens
valuesS5131025 and S5531026, plotted att50.2857.
Note that the width of the small finger is approximately t
same for both surface tensions. But a more pronounced n
with two corners can be observed forS5531026 in Fig.

FIG. 12. Collapse of the interface in the absence of surface tension~a!
Am50.8. The cusp is formed approximately attc50.3070. ~b! Am50.2.
The cusp is formed approximately attc50.3809. The computations wer
performed usingN52048 andDt5131025 in the Lagrangian frame.
-
(

g
n

ck

FIG. 13. Zero-surface-tension cusps and
3
2-power fitting curves for different

values of the viscosity Atwood ratio, shown at the approximate breakdo
time tc . ~a! Am51.0 at tc50.2842. ~b! Am50.4 at tc50.3745. ~c! Am

50.2 at tc50.3807.~d! Am50.08 attc50.401 35. The computations wer
performed usingN52048 andDt5131025 in the Lagrangian frame.
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9~b!. Unfortunately, well-resolved computations for surfac
tensions smaller that this value are extremely difficult d
interface singular behavior and to growth of the round-o
error noise. Nevertheless, the nonsmooth transition obser
for the previous values of surface tension hints a possi
singularity formation in the limit. Indeed, a look at the tan
gent angleu(a,t) in Fig. 10 provides further indication of a
singularity scenario in the limit asS˜0. The two spikes inu
correspond to the finger neck. While the tangent an
changes smoothly around the finger tip, two small kinks o
served forS5531026 mark an almost discontinuous trans

FIG. 14. Evolution of the initially circular fluid blob pasttc , for S55
31025 and Am50.8. ~a! The interface plotted att50.3106, 0.3126, and
0.3136.~b! A close-up of the interface finger at the timest50.304, 0.3076,
0.3106, 0.3126, and 0.3136.N516384 andDt5231027 for the last stage
of the motion.
e
f
ed
le

le
-

tion in u at the finger neck. We useN58192 andDt55
31025 to resolve accurately bothu and the curvature for this
case. Figure 11 shows the curvature near the finger tip at
very close times forS5531026. There is a rapid growth of
the curvature at the neck. A comparison with the curvat
corresponding toS5531025 @Fig. 6~a!# shows the singular
trend of the interface limiting behavior. Although the n
merical evidence is somewhat limited and further study
required for smaller values of surface tension, we conject
that the neck will asymptote to corners in the limit asS
˜0.

FIG. 15. Evolution of the initially circular fluid blob pasttc , for S51
31025 and Am50.8. ~a! The interface plotted att50.312 22. ~b! A
close-up of the interface finger at the timest50.3080, 0.3111, and 0.312 22
N5327 68 andDt5131027 for the last stage of the motion.



n

s
o

r
A
e
o
A

e
e
-

A
k

he

c

nt
-
to
ls

f

b

2481Phys. Fluids, Vol. 11, No. 9, September 1999 Numerical study of Hele-Shaw flow with suction
B. Am<1: The effect of the surrounding-fluid viscosity

1. Zero-surface-tension cusp formation

Very little is known for the Hele-Shaw flow with suctio
when Am,1, i.e., for the two-phase~Muskat! problem, even
if surface tension is neglected. We first present a serie
computations for several Atwood ratios in the absence
surface tension. These computations forS50 are performed
in the Lagrangian frame as explained in Sec. IV A 1. Figu
12 shows the breakdown of the Hele-Shaw solution form

50.8 and Am50.2. The viscosity of the exterior fluid alon
does not prevent the formation of cusps in the interface. N
that the breakdown times occur later than that for them
51 flow. As a result, more interior fluid gets sucked as Am

decreases. Figure 13 presents close-up plots of the z
surface-tension cusps for Am51, 0.4, 0.2, and 0.08. As th
fitting curves demonstrate, the32-power cusp singularity ap
pears to be very generic. In all these cases the cusps
formed before the interface reaches the sink. However, asm

is reduced, the cusps develop closer and closer to the sin
may be thought that for sufficiently small Am the cusp sin-
gularity will be formed only when the interface touches t
sink. Nevertheless, at least for Am as small as 0.01, we find
no evidence of this. The cusp still forms before the interfa
reaches the sink. Apparently, only for Am50 the cusp occurs
right at the sink.

2. Surface tension and large viscosity ratio

We consider now the flow for Am50.8 with surface ten-
sion S5531025. Figure 14 shows the interface at differe
times as it evolves. Just as in the Am51 case, a finger de
velops pasttc and evolves into a wedge as it is drawn in
the sink. This particular value of surface tension was a
considered for Am51 ~see Fig. 5!. A comparison of these
two cases, Am51 and Am50.8, shows a smoothing effect o
the exterior-fluid viscosity on the interface. For Am50.8, the
finger has a less pronounced neck. The behavior resem

FIG. 16. Tangent angleu(a,t) versus a around the finger tip att
50.312 22 forS5131025 and Am50.8. N5327 68 andDt51027.
of
f

e

te

ro-

are

. It

e

o

les

FIG. 17. Evolution of the interface for Am50.2 with different surface ten-
sions as it approaches the sink.~a! S5131022, ~b! S5131023, ~c! S
5131024, and~d! S5131025. N58192 andDt5531026.
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that of Am51 with much larger surface tension, except tha
the finger is thinner for Am50.8. However, the side inden-
tations of the finger neck do develop for smaller surface ten
sion as Fig. 15 demonstrates. The interface motion shown
this figure corresponds toS5131025. We useN532 768
andDt5131027 to resolve the last stage of the flow. Note
that the wedge angle is smaller than that corresponding
Am51. The formation of a corner at the finger tip can be
clearly appreciated in Fig. 16 which is a plot ofu around the
finger att50.312 22. At this time, the distance of the finger
tip to the sink is 931023. In addition to the discontinuity at
a50, we observe two abrupt changes inu corresponding to
the finger neck. This is analogous to the almost discontinu
ous transition inu observed for Am51 andS5531026 in
Fig. 10~b! and which we believe will lead to the formation of
pair of curvature singularities at the neck in the limit asS
˜0.

FIG. 18. Collapse of the interface for Am50.2 and S5131025. ~a!
Close-up of the finger tip att50.381 24. The distance of the tip to the sink
is 0.009 51. The dotted line curve corresponds to the zero-surface tensi
cusp at tc50.3809. ~b! Tangent angleu(a,t) near the interface tip (a
50) at t50.381 24. This computation ended withN532 768 andDt51
31027.
t
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to
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3. Surface tension and small viscosity ratio

The Hele-Shaw flow for small Atwood ratios differs sig
nificantly from the Am51 flow. Figure 17 shows the evolu
tion of the interface for Am50.2 as it approaches the sink fo
several values of surface tension. The interface develop
very thin finger whose width decreases with surface tens
Unlike the larger Am flows, for Am50.2 the zero-surface
tension cusp occurs already very close to the sink so
small surface tension acts very briefly pasttc . In the short
time interval fromtc to the time where the interface touche
the sink, the sink flow is dominant and the interface profile
similar to that with zero surface tension. The effect of sm
surface tension is to round slightly the tip of the thin finge
This is illustrated clearly in Fig. 18~a! where a close-up pic-
ture of the finger, for Am50.2 andS5131025, is shown as
the interface is about to collapse att50.381 24. We useN
532 768 andDt5131027 to resolve the interface motion
up to this time. The zero surface tension Am50.2 cusp is also
shown. Figure 18~b! is a plot of the tangent angleu(a,t)
around the finger tip. This plot suggests once more the
mation of a corner singularity at the finger tip as it touch
the sink. Note also that there are no signs of neck forma
for this case, as reflected inu.

Finally, we study the asymptotic behavior of the th
fingers for Am50.2 in the limit as surface tension tends
zero. Figure 19 provides a close-up of the fingers at
50.3800, just beforetc . As expected, the fingers converg
to the zero-surface-tension solution. To study the interf
asymptotic behavior pasttc we compare the fingers, for
decreasing set of surface tension values, when they rea
given fixed level close to the sink. This comparison is giv

on

FIG. 19. Limiting behavior of the interface beforetc50.3809 for Am

50.2. This figure shows a close-up picture of the interface aroundx50 for
a set of surface tension values, decreasing from top to bottom, and plott
time t50.3810. The zero-surface-tension solution is also shown.N54096
andDt5131025.
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in Fig. 20 for surface tension ranging fromS5131022 to
S5131025. The interfaces correspond to different tim
past tc . An asymptotic shape of the fingers is appare
Table III shows the converging trend of the finger widths
surface tension is decreased. Note that the asymptotic w
angle for Am50.2 is smaller than the angles observed
Am50.8 and Am51. The asymptotic angle decreases w
Am , apparently towards the zero angle of the Am50 cusp.

C. An analysis of numerical errors

As described in the beginning of this section, our co
putations are performed so that all the Fourier modes of
tangent angleu(a,t) are well resolved at all times. To
achieve this we successively double the number of point
as soon as the magnitude of the highest frequency mod
u(a,t) is greater than the filter level. The time-step sizeDt
is selected so that decreasing it further would not prod
any appreciable difference within plotting resolution in t
curvature of the interface.

FIG. 20. Comparison of the interface finger for a sequence of surface
sions with Am50.2. From the outer curve inwards, the fingers correspon
the surface tension valuesS5131022, 131023, 131024, and 131025.
Each interface is plotted when the tip of the finger reaches the fixed l
y50.01 at x50. N58192 andDt5131026 for S5131022 and S51
31023. N516 384 andDt5231027 for S5131024 andS5131025.

TABLE III. Change in the finger widths as surface tension is decreased
Am50.2. The first column shows the height level at which the fingers
compared. Columns 2–4 give the differenceD(S,S/10) between the width
of the finger corresponding to a surface tensionS and that corresponding to
S/10.

y D(1022,1023) D(1023,1024) D(1024,1025)

0.04 0.011 48 0.004 45 0.001 74
0.03 0.009 14 0.003 77 0.001 48
0.02 0.006 138 0.002 874 0.001 218
t.
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e
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e

We now present a resolution study for the long-tim
computation that is most difficult to resolve. This is the cas
corresponding to Am51 andS5531025 for the 10% offset
initial data. In lack of an exact solution, we compare tw
different resolutions computed as follows. One computatio
starts with N51024 andDt5131024 and ends withN
516 384 andDt5231027. The other computation uses
twice the number of points and half the time step, i.e.,
starts with N52048 and Dt5531025, and ends with
32 768 points andDt51027. The number of digits in the
maximum difference between these two resolutions foru is
presented in Fig. 21. Up to the end, the computations agr
within at least 3 digits of accuracy foru. A similar resolution
study for Am50.2 andS5131025 gives a maximum differ-
ence of 2.831024 at t50.381 24.

By monitoring closely the spectrum of the solution at a
times, we verify the resolution in Fourier space and check f
signs of numerical instability and noise. The spectrum of th
vortex sheet strengthg at various times for Am51 and S
5531025 flow is shown in Fig. 22. The spectra appear fre
of any sign of numerical instability and noise pollution is
inappreciable.

Another useful check for the numerics is the conserv
tion of the first moment forAm51:

İ 5
d

dt E E
V(t)

z dx dy50, ~4.1!

whereV is the domain of the viscous fluid andz denotes the
complex position of the fluid particles. This identity can b
easily shown by noting that

İ 5E
G(t)

zU ds52ME
G(t)

z“p•n̂ ds, ~4.2!

n-
o

el

FIG. 21. The digits of accuracy inu versus time forS5531025 and Am

51 as reflected by the maximum difference between two computations w
different resolutions. One computation starts withN51024 andDt51
31024 and ends withN516 384 andDt5231027. The other computation
uses twice the number of points and half the time step, i.e, it starts withN
52048 and Dt5531025, and ends with 32 768 points andDt51
31027.
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where againG(t) is the free boundary,U is the normal ve-
locity, and we have usedU52M“p•n̂. Sincep and both
the real and imaginary part ofz are harmonic functions, a
Green’s identity implies that

E
G(t)

z“p•n̂ ds5E
G(t)

p“z•n̂ ds. ~4.3!

Moreover,puG5tk for Am51. Thus,

İ 52ME
G(t)

z“p•n̂ ds

52ME
G(t)

p“z•n̂ ds

52MtE
G(t)

k¹z•n̂ ds

5 iM tE
G(t)

use
iu ds5 iM tE

0

2p

eiu du50, ~4.4!

where we have usedk5us . Throughout all the computation
for Am51, u İ u remains of order 10212 or smaller.

D. Effect of offset shift

We consider now the effect of a shift in the position
the center of the initially circular blob. In Fig. 23, we com
pare a 20% offset sink@the blob center is (0,20.2) initially#
with a 10% offset sink@the blob center is (0,20.2) initially#,
with surface tensionS50.01 and Am51.0. Although the vis-
cous finger forms much earlier for the 20% offset case,
width and shape of the finger are unaffected by the of
shift. We now consider a similar comparison forS55
31025 and Am51.0. This is shown in Fig. 24. We find tha

FIG. 22. The spectrum ofg at various times forS5531025 and Am51.
e
t

the finger tips match very well and, thus, the correspond
solutions break down with the same corner angle. The ov
all development of the two fingers is qualitatively the sam
In particular, similar side indentations at the neck are form
and the fingers slightly bulge before becoming a wedge.

V. FURTHER DISCUSSION AND CONCLUSIONS

Surface tension regularizes the cusped Hele-Shaw fl
with suction. In the presence of small surface tension,
when the viscosity of the surrounding fluid is neglected
long finger develops after the zero-surface-tension singu
ity time. This finger evolves rapidly into a wedge as it a

FIG. 23. Comparison of finger widths for 10% and 20% offset sinks, w
S50.01 and Am51.0. The interface for the 10% offset initial data is plotte
at t50.301 418 and that for the 20% offset case is plotted att50.208 04.~a!
The two interfaces and~b! a close-up of the fingers.N58192 andDt51
31026 for the last stage of the motion.
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proaches the sink. The Hele-Shaw solutions for Am51 ap-
pear to generically break down by forming a corner at
wedge tip when the interface touches the sink.

As surface tension is decreased systematically, new
tures of the Hele-Shaw flow are discovered. The angle at
tip of the wedge converges to a selected asymptotic valu
the limit asS˜0. Moreover, for sufficiently small values o
surface tension, side indentations forming a neck develo
the top of the finger. As opposed to the predicted behavio
the crack model of Howisonet al.,2 the developing finger for
Am51 bulges after the zero-surface-tension cusp timetc .
The formation of the neck and the bulging of the finger a
intriguing phenomena that could be linked to the influence

FIG. 24. Comparison of finger widths for 10% and 20% offset sinks w
S5531025. The interface for the 10% offset initial data is att
50.291 806 and that for the 20% offset case is plotted att50.199 45.N
516 384 andDt5231027 for the last stage of the motion.
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the zero-surface-tension singularity for very small values
surface tension.

It could also be argued that this somewhat singular
havior is caused by the impact of a curvature-induced co
plex singularity. This so-called daughter singularity, who
concept was introduced by Tanveer,22 is generated by a zero
in the derivative of the conformal map that describes
Hele-Shaw flow. The daughter singularity is spawn by t
zero through the surface tension term, in the complex pl
outside the physical domain. The zero and the daughter
gularity travel with different speeds towards the physical d
main. Depending on the initial data, the daughter singula
may or may not impact the physical domain before the z
does. For the particular initial data that we use here,
daughter singularity would hit the physical domain well aft
the zero, i.e., much later thantc . The daughter singularity
impact time can be estimated by solving an ordinary diff
ential equation.22,23Since the neck formation and the bulgin
of the finger are observed aroundtc , we rule out the effects
of the daughter singularity for the particular flow we co
sider here.

The numerical evidence presented here also sugg
that the limiting solution asS˜0 is singular at the finger
neck, for any fixed time pasttc but before the asymptotic
time at which the wedge tip touches the sink. Unfortunate
well-resolved computations are difficult to achieve due to
rapid growth of the round-off level noise for very small su
face tension and to the singular interface behavior. Althou
further numerical study is required to compute effective
the limit, we believe that corners will develop at the fing
neck in the limit asS˜0. The vanishing surface tensio
solution selects a continuation solution pasttc in which the
zero-surface-tension cusp is split into a pair of corner sin
larities.

The viscosity of the exterior fluid alone does not preve
the formation of cusps. It only delays them. In the absence
surface tension, we observe generic3

2-power cusps just as in
the case of Am51. However, as the viscosity ratio Am is
decreased, we observe that the zero-surface-tension cusp
velop closer and closer to the sink. We find that even
values of Am as small as 0.01, the cusp singularity develo
before the interface reaches the sink. In the presence of
face tension and for large viscosity ratios, the interface e
lution is very similar to that of Am51 but with larger surface
tension. The viscosity of the exterior fluid has a smooth
effect on the flow and a thinner finger develops. The int
face behavior is significantly different for small viscosity r
tios. In this case, the zero-surface-tension cusp occurs
ready very close to the sink. Small surface tension o
rounds slightly the tip of the cusp before this part of t
interface rapidly accelerates to the sink. As a result, t
cusp-like fingers develop for small viscosity ratios. The
fingers appear to converge also to an asymptotic shap
surface tension is reduced. It is noted that the angle of
asymptotic wedges decreases with Am . We believe that this
angle will collapse to zero~a cusp! in the limit as Am˜0.
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