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A numerical investigation of the long-time dynamics of two immiscible two-dimensional fluids
shearing past one another is presented. The fluids are incompressible and the interface between the
bulk phases is subjected to surface tension. The simple case of density and viscosity matched fluids
is considered. The two-dimensional Navier—Stokes equations are solved numerically with a fully
adaptivenonstiff strategy based on the immersed boundary method. Dynamically adaptive mesh
refinements are used to cover at all times the separately tracked fluid interface at the finest grid level.
In addition, by combining adaptive front tracking, in the form of continuous interface marker
equidistribution, with a predictor—corrector discretization an efficient method is introduced to
successfully treat the well-known numerical difficulties associated with surface tension. The
resulting numerical method can be used to compute stably and with high resolution the flow for
wide-ranging Weber numbers but this study focuses on the computationally challenging cases for
which elongated fingering and interface roll-up are observed. To assess the importance of the
viscous and vortical effects in the interfacial dynamics the full viscous flow simulations are
compared with inviscid counterparts computed with a state-of-the-art boundary integral method. In
the examined cases of roll-up, it is found that in contrast to the inviscid flow in which the interface
undergoes a topological reconfiguration, the viscous interface remarkably escapes self-intersection
and rich long-time dynamics due to separation, transport, and diffusion of vorticity is observed. An
even more striking motion occurs at an intermediate Weber number for which elongated
interpenetrating fingers of fluid develop. In this case, it is found that the Kelvin—Helmholtz
instability weakens due to shedding of vorticity and unlike the inviscid counterpart in which there

is indefinite finger growth the viscous interface is pulled back by surface tension. As the interface
recedes, thin necks connecting pockets of fluid with the rest of the fingers form. Narrow jets are
observed at the necking regions but the vorticity there ultimately appears to be insufficient to drain
all the fluid and cause reconnection. However, at another point, two disparate portions of the
interface come in close proximity as the interface continues to contract. Large curvature points and
an intense concentration of vorticity are observed in this region and then the motion is abruptly
terminated by the collapse of the interface.2@04 American Institute of Physics

[DOI: 10.1063/1.1788351

I. INTRODUCTION The simplest model to study the K-H instability consists
of two inviscid, immiscible, and irrotational density-matched

When two immiscible fluids shear past one another theyiuids separated by a sharp fluid interface across which there
become the source of the Kelvin-Helmholt¢-H) instabil- s 3 discontinuity in tangential velocity. Because the flow
ity, one of the most fundamental instabilities in incompressygricity is solely supported at the fluid interface this model

ible fluids. The free interface separating the o shearingg cqjjeq avortex sheetSignificant understanding of the K-H
fluids evolves dynamically driven by the K-H instability and g2ty dynamics forinviscid flows has been obtained

competing regularizing effects such as surface tension ar‘\%/ithin this model. For example, in the absence of surface

viscosity. The study of such a motion is of both fundamental . o
) ) . . tension, it is known that the vortex sheet develops square-
and practical interest. Mixing in the ocean and the

atmosphere as well as in engineering fluids, such fuels anﬁmt isolated singularities in its curvature, well before roll-up
emulsions, are believed to be induced by instabiliiesc@n occur. The first analytic evidence of this was provided by

of the K-H type and often these instabilities lead to Mooré® by using asymptotic analysis near equilibrium. Sub-
turbulence: sequently, Caflisch and Orellahextended Moore’s analysis

and found exact solutions to the approximate Moore’s equa-
Electronic mail- hdc@math.ucsb.edu tions with finite-time singularity development. Numerically,
PElectronic mail: roma@ime.usp.br evidence of Moore’s singularity has been provided by
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Krasnyf1 Meiron, Baker, and Orszasgand Shelle§/f0r apla- flow dynamics, it is essential that tension forces and geomet-
nar vortex sheet, and by Nie and BakeNitsche® and  ric quantities such as interfacial curvature be computed very
Sakajd for the axisymmetric geometry. Cowley, Baker, and accurately. At the same time, the flow must be well resolved
Tanveet’ demonstrated that Moore’s singularities are quiteglobally but due to the surface concentration of high vorticity
generic for two-dimensional vortex sheets and more recentland the sharp flow variations across the free surface, this can
Hou, Hu, and Zhan]j found that the same type of singularity be a daunting task. Furthermore, capturing the true regular-
is also present in a simplified model of a three-dimensionalizing effects of viscosity and surface tension for large We
sheet. and Reynolds number can be expected to be difficult due to
The presence of surface tension leads to a rich variety dhe underlying ill posedness of the inviscid We=
flow behavior as the study of Hou, Lowengrub, and Shéfiey Problem.
henceforth HLS, demonstrated for an inviscid vortex sheet. ~Because of the need to compute accurately interfacial
Particularly surprising dynamics occur for large and interme-duantities, it seems natural to employ a numerical method in
diate Weber numbers. The Weber number We provides which the fluid interface is explicitly tracked rather than
measure of the strength of the K-H instability relative to the ¢aPtured” on a fixed grid. Among the most popular front-
dispersive regularization of surface tension. For intermediatff@cking methods for multiphase flow, which use an Eulerian
We, the boundary integral simulations in Ref. 12 show th(_}c_;rld for the flgld flow together with a lower-dimensional gr|d
formation of elongating and interpenetrating fingers of fluid.®© track the interface, are the method developed by Glimm

4-16 ;
At much larger We, where there are many unstable scale_é‘,nd collaborators; ) 7the immersed boundary) method
the numerical study of HLSRef. 12 reveals that the |ntr0du<_:ed by Peskilf’ and the related mthod_ proppsed by
fluid interface rolls up into a spiral and its motion is Unverdi apd Tryggvasq}ﬁ One of the main d|ff|cult|es (.)f
later terminated by self-intersection of the fluid interfacefrom'tr"lekIng methods is the problem of coupling the fixed

forming trapped fluid droplets. Thus, while regularizing Eulerian grid for the fluid flow with the interface dynamics.

Moore’s singularity, surface tension leads yet to another type(z)ne approach is to use one-sided “ghost cell" extrapolation

. . . . around the front as done in Glimm’s method. An alternative,
of singularity formation, a large-scale topological one. Even.

N : " . implementationally easier, approach is to replace the shar
though pinching singularities are common in three- b y bp P P

dimensional3D) and axisymmetric free surface flows.g interface.by an int'erfa'lce of finite thickness, typically a few
jets the formation of these types of singularities in ’2D mesh points. In this diffused-interface approach, used by the

. . . immersed boundary and some closely related methods, inter-
flows is less common and somewhat surprising. This is be;

the 2D fl lack th imuthal surf tension f facial quantities such as tension forces, are spread continu-
cause the ows lack the azimuihal surtface tension orC%usly within the interface layer so that they can be prolonged
that is believed to play a crucial role in 3D fluid interface

to the fixed Eulerian grid. While conceptually simple, the
breakup. . : ; . .
) L , diffused-interface approach requires very high spatial resolu-
It is natural to ask how small but finite viscosity would

i - ; tion in a vicinity of the interface to allow the use of
affect the surface tension mediated K-H dynamics. In a re

. ) sufficiently thin layers and avoid excessive numerical diffu-
cent numerical study Tauber, Unverdi, and Tryggvason -

show that, just as in the case of the inviscid vortex sheet, Another well-known problem that has plagued front-

elongating fingers can develop in a sheared viscous interfage, cking methods for multiphase flows is the tension-induced
for intermediate We. The simulations in Ref. 13 also show,merical stifness® 2 Indeed, the spatial derivatives intro-
that there is separation and generation of a considerablg,ceq by interfacial tension forces and the excessive marker
amount of small-scale vorticity and increased interface thic"'(particl@ clustering characteristic of Lagrangian front track-
ness due to viscous diffusion. Unlike the inviscid case i”ing lead to prohibitively small time steps for explicit meth-
which the fingers continually grow, the viscous and vorticalygs. A partial remedy for this problem has been mesh redis-
effects eventually remove the driving instability and surfaceyipytion done by point insertion and deletion. This process
tension pulls the interface back. The motion as the interfac@as, however, the drawback of introducing strong artificial
contracts is complex and it is unclear whether or not it wouldsmoothing as a result of repeated interpolation. An effective
pinch off at longer times. The question of how viscous andajternative is to use a suitably chosen tangential velocity for
vortical effects affect the interfacial dynamics for much the interface markers to control their distribution. This idea is
larger We for which the the inviscid vortex sheet collapsesa key ingredient in the successful nonstiff boundary integral
during roll-up is also open. These two questions are the cemmethod developed by HL&Ref. 20 and has been used re-
tral themes of the numerical investigation of this presenicently to relax time-stepping in a hybrid level set-front track-
work. ing method for multiphase flows.

Numerical simulations of sheared flows including To conduct the numerical investigation of the long-time
viscous, vortical, and surface tension effects are quite chadynamics of a sheared interface, we develop a nonstiff fully
lenging. They require the solution of the incompressibleadaptive immersed boundary-type method that overcomes
Navier—Stokes equations in the presence of a free surfacthe aforementioned difficulties. This method marries the two
Because surface tension can play such a crucial role in theain approaches for mesh adaption, moving meshes
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(dynamic interfacial parametrizations as constructed in Refdl. THE GOVERNING EQUATIONS

12 and 20 and adaptive mesh refinemegVR), and com- A The viscous flow

bines them with an efficient predictor-corrector discretization

to remove the surface-tension-induced stability constraint for ~ We consider the flow of two immiscible, density and

the Weber numbers of interest. As a result, we obtain a robustScosity matched incompressible fluids separated by a

fully adaptive method with only a first-order Courant— sheared mterface_ subjected_ to co_nstant surface ten_smn. _The

Friedricks—Lewey(CFL) condition for a wide range of We- flow takes place in a two-dimensional channel, periodic in

ber numbers. We focus our investigation on Iong-timethe streamwise d|rect|qn and whose walls move in opposite

flow dynamics and on intermediate and large We flow ford're?tlons' The governing equanons are the mcpnjpressmle
Navier—Stokes equations which, treatingth the fluid inter-

which interface fingering and roll-up occur. To aSseS, o 54 the walls as masslésenersed boundariesan be
the importance of the viscous and vortical effects in the in—Written as

terfacial dynamics the full viscous flow simulations are
compared when appropriate with inviscid counterparts com-

E;ta(?_s%lth the boundary integral method deveIOpedp{au(x,t)+[u(x,t)- V]u(x,t)}+ v px,t)

Our numerical study begins with the investigation of the  _ sAu(x, 1) +(x,1) (1)
viscous and vortical effects on the roll-up motion for which ' Y
there is an interface collapse in the inviscid case. For smak, ux,t) =0, ()

but finite viscosity [Re=0(10%] we find that well past

the inviscid topological singularity time disparate parts of thewhereu(x,t) andp(x,t) are the velocity field and the pres-
interface come in close proximity during roll-up but the in- SU€, respectively, at each poiix,t) within the channel and
terface surprisingly escapes reconnection. Fixing We, we ex©r t=0. The mass density and the viscosity coefficient

amine the flow behavior as Re is increased and find evidencd € bﬁth a;gumfed to be constant. o oularl
that suggests a topological singularity will only occur The driving forcef(x, 1) in (1) cpntam;asmgu arly sup-
in the limit Re— o, for the initial data we consider. Follow- ported term due to surface tension which enforces the fol-

ing the study of the roll-up motion we look at the dynamicsIOWIng dynamicjump condition at the fluid interfack:
of the sheared interface at an intermediate Weber number —[p]p+ pf -[Vu+ Vu']p - A= - 7«, (3)
for which elongated interpenetrating fingers of fluid develop.

. . : - where[ -] denotes the jump across the interfageis the
We find that the Kelvin—Helmholtz instability weakens due Lr . - Jump ‘
. o ) e outward unit normal;r is the (constant surface tension co-
to shedding of vorticity and unlike the inviscid counterpart,

. hich th s indefinite f h the Vi efficient, andx is the local mean curvature. Far# 0, the
n-whic _t ere Is indefinite finger g.row_t , the V'Scous_velocity field u is continuous at the fluid interface, i.e.,
interface is pulled back by surface tension just as reported Ifu]-=0. Continuity of the velocity acrosg and incompress-

Ref. 13. T_hen a striking motion occurs as_ the_ interfacqbi”ty can be used to reduo@) to the Laplace—Young con-
recedes, thin necks connecting pockets of fluid with the resgjtion,

of the fingers form. Narrow jets are observed at the necking

regions but the vorticity there ultimately appears to be insuf-

ficient to drain all the fluid and cause reconnection. However, [plr= 7. (4)

at another point, two disparate portions of the interfaceinematically interfacial Lagrangian particles are only re-

come in close proximity as the interface continues to conquired to move with the normal velocity of the fluid; their

tract. Large curvature points and an intense concentration angential velocity can be arbitrarily chosen as we will dis-

vorticity are observed in this thinning region and then thecuss later.

motion is abruptly terminated by the collapse of the In the tradition of the immersed boundary method, the

interface. Finally, motivated by the suggestion of H{F&f.  walls are also modeled as infinitely thin massless immersed-

12) that the formation of thin jet may be the leading boundaries and as such they add a contributiof(ot). In

mechanism for topological reconnection in the 2D inviscidthe absence of any other external forces to drive the flow,

flow, we look at the dynamics of an isolated jet betweenf(X,t) is given by the singular distribution

two disjoint interfaces. In this case, for a special set of initial 7

conditions, we find that the increase of vorticity concen- f(X,t)=f7'—5(X—X(a,t))da

tration at necking points is sustained and becomes high | Ja

enough to drain the fluid and lead to a clear interface

collapse. +f Fw(a,t)o(x = X(a,t))de, 5
The rest of the paper is organized as follows. The w

governing equations are given in Sec. Il and a detailedvhere &(-) is the two-dimensional Dirac delta aridis the

description of the nonstiff fully adaptive method is provided unit tangent at the fluid interface. HeXga,t) represents a

in Sec. lll. The results of the numerical study are presentegarametrization at time of both the fluid interface(a e 1)

in Sec. V. Further discussion and concluding remarks arand the walls(a € W), with « being the Lagrangianparam-

given in Sec. VI. eter (marker label. The subscripts in the integrals denote
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integration on the fluid interfacg‘l”) and on the walls
("W). Assuming thatethersconnect wall to anchor points J+1
Xw(a,t) whose evolution in time is known in advance, the
force on the wallg~y is suitably modeled by —] \-\.

u
X v

Fw(a,t) = = Sa)[X(a,t) = Xw(at)], ae W, (6)

. . . . Ay As
whereS(«) is the stiffness defined on the link between wall \
and anchor points. Since lower and upper walls move in \

streamwise direction with uniform velocitiedJ;,0) and
(U,,0), U;>0>U,, respectively, the position of anchor ‘ . ‘
points at timet is given by A =1 ! i+l

Xwla,t) = Xw(a,0) +t(U;,0), t=0, i=1,2, a € W. FIG. 1. Typical Eulerian and Lagrangi@h®”) meshes.

(7

The motion of the anchor points imposes the desired move-
ment to wall points by “dragging” them through the fluid. Iy _ i(@’) +iK
Alternatively, this wall-fluid interaction can be also modeled o da\|Z,)) Wwe ™
with simple slip boundary conditions on fixed walls.
Finally, the immersed boundaries move with the localwhere y is the (unnormalizegl vortex sheet strength which
(continuous fluid velocity measures the discontinuity in the tangential component of
the fluid velocity. The complex interfacial velocity/, as-
ﬂx(a,t) = | u(x,Hox-X(at)dx, aclUW. (8) suming one-periodicity, is given by Birkhoff-Rott
at Q integral,

(13

We define the length scaleas the periodicity length of 1 1
the channel and the velocity scdle as the difference be- W(a,t) = —P_v_f y(a' t)cot ] Z(a,t) - Z(a’,1)]de’,
tween the horizontal velocities at the walls. The flow can be 2 0
described by two dimensionless groups, the Weber number (14)
We and the Reynolds number Re, given by

where P.V. stands for the principal value integral and the

2
We :p}‘U and Re :&, (9) asterisk in(12) denotes the complex conjugate. (tt2) and
T K (13), Ux(a,t) is an arbitrary tangential velocity that deter-
mines the frame or parametrization of the fluid interface. The
B. The inviscid vortex sheet model freedom in selecting , has been exploited by HLS to design

a class of efficienthonstiffboundary integral methods. Here

~ We consider two infinite two-dimensional layers of in- e il transfer this idea to the immersed boundary method
viscid, incompressible, irrotational, and immisible dens'ty'setting(see Sec. AL

matched fluids separated by a sharp interféaghose posi-
tion at timet is given in parametric form byX(a,t)
=(X(a,1),Y(a,t)), with a in [0,1]. At this fluid interface the
following boundary conditions are imposed:

The dimensionless Weber number is again given by
We=p\U?/ 7. In order to have equivalent Weber numbers for
both the viscous and the inviscid models we choose the ve-
locity scaleU for the inviscid vortex sheet to bdJ2, where

A (xU..,0) is the limiting fluid velocity asy—cc. The average
[ulr-n=0, (10) = S J T
value, y, of y over one period inx satisfies -/2=U,, and

[plr = 7, (19)
where[ -] denotes the jump across the interface and again i i "
7, and x are the pressure, the surface tension, and the me¢ (e i3 (1 i
curvature, respectively. The kinematic conditid®) is the et oot s
usual requirement that particles on the surface remain ther T s ] e T
Condition (11) is Laplace—Young condition introduced be-
fore. The tangential fluid velocity dt is usually discontinu- " o i i
ous and the model is called a vortex sheet. Introducing th: “ i i
complex position variabl&(a,t)=X(a,t)+iY(a,t), we can i -y 1
write a boundary integral formulation for the interface evo- “ o
lution equations in the dimensionless fotm, i . .
L] L]
a1z (ij=1:2) (i+1j-112)
a—Z:W* + iUA, (12)
ot |Za| FIG. 2. Location of coarse and fine variables.
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FIG. 3. We=200. Left column, Re=20 000, L7. Right column, inviscid shegtand (a’) t=0.70,(b) and(b’) t=1.0,(c) and(c’) t=1.41.

thus in dimensionless variables=—1. Note thaty is time Another common element of immersed boundary-type
invariant. We use this property to define the velocity of themethods is the use of singularly supportéti forces to con-
viscous fluid (Sec. Il A) at the channel wall as 4.  veniently account for the interfacial dynamic jump condi-
=¥ yl2=%1]2. tions. Numerically, these localized forces are spread over a
few mesh points by using a mollified approximation to the
distribution that retains the main weight on tiimmmerseq
interface. This results in a diffused-interface model in which
. A EULLY ADAPTIVE NONSTIEE NUMERICAL the.originally sharp fluid interface i§ replaced by transiti_on
METHOD regions of the order of the mesh size. Across these regions
sharp flow gradients and vorticity concentration typically oc-

Immersed boundary-type methods combine an Euleriagur- Consequently, to accurately compute flow quantities and
representation of the fluid flow with a Lagrangian “marker” to avoid numerical effects very high resolutiorustbe em-
evolution of the immersed interfaces, as shown schematPloyed around the immersed boundaries.
cally in Fig. 1. Tracking separately the location of the fluid To overcome the aforementioned difficulties associated
interface with a Lagrangian mesh allows accurate computawith Lagrangian tracking and the surface-tension-induced
tion of fluid interface position, geometric quantities, and in-stability constraint, and to efficiently resolve the flow in a
terfacial forces. However, as it is well known, Lagrangianvicinity of the fluid interface as well as globally we propose
front tracking suffers from excessive markgarticle) clus-  a fully adaptive nonstiff method. Our computational strategy
tering that leads to poor overall resolution and above alhas three main components: dynamically adaptive tracking
prohibitively small time steps. of the fluid interface in the form of marker equidistribution, a
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semi-implicit predictor-corrector time marching scheme, and  Typically, a time step to go from time levé! to time
adaptive mesh refinements to accurately resolve flow quarevel t"™! starts by employing(7) to move wall-anchor
tities, particularly in a vicinity of the interface. We describe points. After this, one performs the following steps.

next each of the three ingredients along with the spatial dis- (i) Predictor step From computed valuas, p"*?, and
cretization we employ. The complete algorithm is summa-X" for the velocity, pressure, and immersed boundary posi-
rized in Appendix A as a reference. The overall method istion, respectively, known from the previous time step, obtain
second-order accurate in space and time for smooth solutiogsedicted valuesi"t! and X1 for the new velocity field
but due to the interface smearing, characteristic of the IBand immersed boundary position at time=t"! by
method, it has only first-order spatial accuracy for sharp insolving

terface problems.

u*,l _ un Gpn—(llz) u u*,l + un
A. Relaxing the surface-tension-induced stability At * o ZL 2

constraint
n

1. Dynamic Lagrangian equidistribution ~[(u- V)u]"+ f_ (17)
p

Excessive marker clustering is a well-known problem in
tracking methods. The most common remedy to this problem
has been regridding or particle redistribution by point inser- um™ht-u” + Gpm21 _u toun + Gp™? (19)
tion and deletion. However, this approach has the drawback At p At ’
of introducing strong smoothing to the fluid interface as a
result of repeated interpolation. D.u™l1=0 (19)

In the context of boundary integral methods, H{Fef. '
20) have proposed a very effective alternative approach to
control particle distribution. The idea is to use the freedomin ~ X™*!-X" h?

> (UMb (x = X" + U, (x — XM)

selecting the tangential velocity of the interface markers to At )
control their distribution at all times. Indeed, kinematically
the markers are only required to move with the normal ve- + E(Uml, £+ UNEn) (20)
locity of the fluid. Thus(8) could be changed to 2 A AL
Xi(a,t) = f u(x)8(x = X(a,t))dx + Up(a, )t where
n
= U(a,t) + Up(a, b1, (15) fn= DaaX 21
IDaaX"

whereUx(a,t) is arbitrary and determines the frame or pa-
rametrization used to describe the interface. For example, and D, is the centered difference operatordn Note that,
can be found to cluster interface markers in a controlled faShas customary in projection methods, a provisiona| Ve|0city
ion in regions of high curvatuté or to keep the markers field u* is obtained from(17), and then, using18) and(19),
equidistributed. Here we opt for the latter as we expect thet js projected onto the divergence-free vector field space.
fluid interface to be gIobaIIy deformed. If the markers areG, andD are standard second-order finite difference Lap|ac-
equidistributed initially the following choice obl, keeps jan, gradient and divergence operators defined on a staggered
them equidistributed at all timed: grid and will be given in Sec. Ill B.
a (i) Corrector step Once predicted values are available,
Ua(a,t) == U(a,t) +f [SexkUn — (s,kUpy]de’, (16)  they are utilized to compute approximations to the nonlinear
0 and to the singular force terms &t"/? (using linear in-

whereU=U -, UT=U-f,sa=V/X2+Y2 is the arc-length met- terpolation) and another projection is performed to obtain
e corrected valuesi"'? and X"*12 as follows:

ric, x is the mean curvature, an@ stands for the spatial
mean over one spatial period. At the walls, we simply take U2 gn . GpM 2.1 u (u*'z + u”)

UAEO. ==

At p p 2
1/2),1
- wyuprens T

2. Predictor-corrector semi-implicit strategy p

We employ a semi-implicit strategy to remove the high- (22)
est order stability constraint in the equations of motion. We
write this nonstiff discretization in the form of an efficient uml2oyn  Gpmw22  yr2oyn  gpm2l
second-order predictor-corrector scheme which stems from a + = + , (23

. S T S T At p At p

general iterative implicit discretization. For simplicity, we
describe the scheme assuming a constant time stegnd
equal mesh spacingx=Ay=h. D -u™?=0, (24)
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FIG. 4. (Color online. Vorticity: We=200, Re=20 000, L4a) and(a’) t=0.70,(b) and(b’) t=1.0,(c) and(c’) t=1.41. Right column, flooded contour plot.
Left column, scaled sheet vorticity;,. X @ vs the Lagrangian marker.

XMl2_yn QL2 i n+(1/2,1- 1 i n+1,1 . n
R - _2 [Un+1’25h(X _ Xn+l,1) + Unéh(X _ Xn)] [(U Vv )U] 2{[(U Vv )U] + [(U Vv )U] }1
At 27 (26)
1 o .
+ E(UE\ 1,2fn 114 Ugtn)’ (25) fr+(1/2),1 = %(fn+1,l+ fn). (27
where The predicted force and tangent vector are computed by
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FIG. 5. We=200, Re=20000, L7, longer time dynami@s.t=2.0, (b) t=2.5,(c) t=3.2, and(d) t=3.8.

fril= A S TDAa’t‘Ir(1+l,15h(X_xrk1+l,l) in combination V\{ith the dynqmic equid?stributio_n removes
kel the time stepping constraint associated with surface
tension.
+ kz\:N Fivic on(x = XY, (28) Observe that in the predictor—corrector scheme
€

(17)«25), the Diracé distribution is approximated by a mol-
D. xmil Iified_version 6h. There are many p(7)ssible choices for this
il A“—, (29) function. Here, we choose Peskinds
IDaX™
whereAa is the mesh spacing in the parametrizing variable. Sn(Xi,1) = dn(x)dn(y;). (30
A standard second-order discretization is used to approxi-
mateU,, the added tangential velocitL6). U™ is com-
puted employingu™*? and X" and in the corrector step
UR''?is obtained usingi™2 and X1 0.25[1 + co{gﬂh)]/h for |2 < 2h,

The corrected values™2 andX™12 are the numerical dn(2) = 2 (31
solution at the end of the time step=t™!, i.e., u™? 0 for|Z=2h.
= un+1,2 and Xn+1:: Xn+1,2_

The predictor-corrector method17)—«29) originates  This choice ford,(x) provides good regularization properties
from the more general iterative scheme given in Appendix Baround the interface and it is motivated by a set of compat-
When iterated to convergence, the scheme corresponds to thality properties described by PeskihAlternative discreti-
(implicit) Crank—Nicolson discretization. zations can be found in Refs. 23 and 24.

The overall scheme introduced here is a variation of the It is well known, see for example Ref. 25, that the im-
implicit immersed boundary method proposed by Romamersed boundary setting produces small amplitude mesh-
Peskin, and Bergé?’. Besides the Lagrangian mesh adaption,scale oscillations in the interface position. When derivatives
a complete new feature, the main difference is in the mannesre computed from the interface position to obtain geometric
we compute the nonlinear term, here being fully implicit in quantities and tension forces, these oscillations are amplified
time. It is interesting to note that for the range of Weberby numerical differentiation and if left unattended could lead
numbers we tested, ¥0We, the predictor—corrector scheme to numerical instability. To eliminate the growth of the small

ere
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amplitude mesh-scale oscillations characteristic of immersethesh. The pressure is computed at the cell centers which are
boundary-based methods, we apply the fourth-ordemdexed by(i,j). The velocity is discretized at the cell edges
filter:2° as Ui =(Ui_1/2,j, Vi j-1s2)- Figure 1 shows the location of

1 the variables for a uniform mesh patch.

Xic = 36(~ Xicg + Wiy + 10K+ Xy = Xied) - (32) In what follows, time indices aF;e suppressed in favor of
The filter is applied every 10 time steps to the fluid interfaceclarity. For the velocity and pressure fields located as ex-
markers and every time step on the wall markers. The effeqgblained previously, the divergence and gradient operators are
of the filter on the numerical solution was tested with a resoapproximated by the second-order finite difference
lution study and by changing the frequency at which theoperators
filter was applied from every 10 to every 100 time steps. No

appreciable difference was found except for the more sensi- _ Uisa),j ~ Ui-1/2),j | Vij+(1/2) ~ Vij-(1/2)

tive case of zero surface tensi@iWe=«) and high Reynolds (D-u)i;= h + h ., (33

number.

B. Spatial discretization Go) = ( Pij = Pi-1j Pij~ pi,j—l) 34
(GP);, g £ (34)

In the projection method we use here, we place the nu-
merical approximations of the Eulerian variableg,andp;;, The discretization of the viscous terms(ib) is given by
in a staggered fashion on the computatiote@mposit¢  the five-point stencil

(L), = ( Uir1/2,j * Ui-@32,j + Yi-@2),i+1 + Yi-@),i-1 = Ai-@a)j Vij+ao +Vij-@r) * Visj-w2) * Vi-j-w2) ~ 4Ui,j—(1/2))
i~ h2 ’ h2 ’

(35

which can also be denoted ésu); ;=[(Lu)i_1/p;, (Lv)i j-1/2].
The nonlinear term,(u- V)u], is approximated by the nonconservative second-order centered s¢hemndéor example,
Ref. 27

Ui+1/2),j ~Yi-@32,) | — Ui-1/2),j+1 ~ Ui-(1/2),j-1 | — Vit1j~(1/2) ~ Vi-1,j-(1/2)
[(u- V)ulj; = {W—(m),j(T +Vi-112),] oh Ui j-112) oh
Vi j+(1/2) ~ Vi,j-(3/2
+ Ui,j—(1/2)<—2h )] , (36)
|
where with second- or third-order accuracy, and not from solving
the equations of the problem. The description of composite
- _Vi-an + Ui+ T Ui+ tUi-1-a2) grids is given in Ref. 28 in greater detail. Figure 2 shows an
=112 4 ’ interface between two successive refinement levels, and the
location of coarse and fine variables.
- Ui2/2) + Uim(w2)jo1 *+ Ui (u/,-1 + Uis(12) C_omposne grl_d .gen_eratlon depends orﬁa@]glng. step.
Uij-1/2 = . that is, on determining first the cells whose collection gives

4 the region where refinement is to be applied. Here, we mark

for refinement a neighborhood of all immersed boundary
C. Adaptive mesh refinements points (immersed boundary uniform coveringVe also flag

In the fully adaptive computational scheme, regions c)fpoints at Which .vorticity(in absolute valugis at' least 30%
the flow bearing special interest are covered by blockthe gllobal vqrt|C|ty maximum. Once the collection of flagged
structured grids, defined as a hierarchical sequence of nestetf!lS is obtained, grids in each level are generated by apply-
progressively finer levelgcomposite grids Each level is g the algorithm for point clustering due to Berger and
formed by a set of disjoint rectangular grids. Ghost cells ardRigoutsos’ Regridding is performed as often as an im-
employed around each grid, for all the levels, and underneatfersed boundary point gets “too close” to the interface of
fine grid patches to formally prevent the finite differencethe finest level.
operators from being redefined at grid borders and at interior It is important to comment that the refinement ratio is
regions which are covered by finer levels. Values defined irequal to 2, and that we employ multilevel-multigrid methods
these cells are obtained from interpolation schemes, usuallp solve for both the provisional vector fields'™ in the
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FIG. 6. (Color onling. Vorticity: We=200, Re=20 000, L7a) and(a’) t=2.0,(b) and(b’) t=2.5. Right column, flooded contour plot. Left column, scaled
sheet vorticityhsnesX @ Vs the Lagrangian marker.

parabolic step of the projection method, and for the pressurgace and the arc-length metri;;:\uxi+Yi which are vari-
pm™2m in its elliptic step(m=1,2). V cycles are employed ables more naturally related to the curvature. It also identifies
with one relaxation on each multigrid level, upwards andthe small scale terms that contribute to the surface-tension-
downwards. Detailed descriptions of the methodology tdnduced stiffness. The evolution equatioh?) in the new
solve for the pressure can be found in Refs. 23 and 30.  variables becomes

Projection methods on locally refined meshes, based on
cell centered discretizations of all variables, were first pro-

posed by Howelf* Minion32'33developed a second-ordsmp- S,
proximateprojection method that facilitated the implementa- g =(Ur+Un)a~ GaUn, (37
tion of the multilevel-multigrid methods. The projection
method we employ heféis based on Minion’s intermediate
projection step on locally refined staggered grids. -

= _[UNa + (UT + UA) aa]v (38)
IV. BOUNDARY INTEGRAL DISCRETIZATION FOR at s,

THE INVISCID SHEET

To solve numerically the vortex sheet equationswhereUy andU+ are the normal and tangential components
(12«14) we use the method introduced by HES® For  of the interfacial fluid velocity, respectively, and the particu-
completeness, we outline the method next. For a detailethr U, given by (16) is selected.
description the reader is referred to Refs. 12 and 20. The stiffness is hidden at the small spatial scale¥gf

The method is based on the reformulation of the equain the # equation. The leading order behaviorldf at small
tions of motion in terms of the tangent angldo the inter-  scales is given
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FIG. 7. (Color onling. Vorticity: We=200, Re=20 000, L7c) and(c’) t=3.2,(d) and(d’) t=3.8. Right column, flooded contour plot. Left column, scaled
sheet vorticityhsnesX @ Vs the Lagrangian marker.

1 implicit multistep method in Ref. 34. The principal value
Un(et) ~ EH[?’](“'U' (39 integral is approximated with the spectrally accurate

“ alternate-point trapezoidal rflend each spatial derivative
where H is the Hilbert transform. In the equidistributed and the Hilbert transform are Computed pseudospectra"y,
frames, is constant is space and the inviscid vortex sheef.e., using the discrete Fourier transform. The implementa-

equation of motion can be written as tion we use here has been tested and validated with several

ds 1 examples in Ref. 35 where also the convergence of the
d_ta :f 0,Upda’, (40) method was rigorously established.

0
o 1 V. RESULTS
g gH[n] +P, (41) For high Reynolds numbers, we expect the initial K-H

“ instability to be well predicted by the linear stability analysis
gy 11 for the inviscid case. This is supported by the growth esti-
i Wes, Je +Q, (42)  mates based on viscous potential flow theory by Funada and

Josepho’.6 According to the inviscid linear stability analysis,
whereP represents lower-order terms at small spatial scaleghe dispersion relation gives instability for wave numbers
To remove the stiffness it is sufficient to discretize implicitly 0<|k| <We/4ar (see, for example Ref. 12Thus, for suffi-
the leading order i41) and (42) and treat the lower-order ciently small We(e.g., We=10 there would be no unstable
terms P and Q explicitly. We use the semi backward modes and the initially flat interface would undergo a simple
difference  formula (SBDPF  fourth-order  explicit/  wave-like motion as documented in Ref. 12 for the inviscid
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(a)

FIG. 8. We=200, Re=20000, L7, longer time dynami@.t=4.23 and(b) t=4.78.

sheet. We found the same type of motion for the correspond-  ¢(x,y) =y + 0.01 sin(2m(x +)), (45)
ing viscous interface. We do not report on this case here but
instead direct our attention to larger Weber numbers, Wéor (x,y) in our computational domaifc=[0,1] X[-1,1]

=50, 200, and 400. and with §, given by(31). Note that the zero level set gfis
precisely the initial curve specified i¢3). Given this vor-
A. Initial conditions ticity distribution, we first find thestream function(x) by

solving numericallywith standard second-order finite differ-

We focus on the initial conditions used by Kraér@nd ence the Poisson equation

by HLS (Ref. 12 in their study of an inviscid vortex sheet.
These initial conditions correspond to a perturbation of a flat A= - wp, (46)
sheet with a uniformly concentrated vorticity distribution.

The nonlinear motion of the inviscid vortex sheet with thesein Q- with periodic boundary conditions in the streamwise
initial conditions has been well studied both with and with-direction and Dirichlet homogeneous conditions in the

out surface tensiof®*? normal-wall direction. We then compute the initial velocity
The initial fluid interfaceX, is given in parametric form from ¢ via
by
iy
. . Uo(X) = + —(x), (47
Xo(@) = (a+ 0.01 sin(27ra),— 0.01 sin(27ar)) (43) ay
for 0<a=<1. We obtain the initial velocityuy,v,) from aé kY
supported vorticity with unit strength, vo(X) == &(X). (48)
wo(X,Y) = (X)), (44)  employing centered differences.
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FIG. 9. (Color online. Vorticity: We=200, Re=20 000, L7c) and(c’) t=4.23,
sheet vorticityhsnesX @ VS the Lagrangian market.

For the inviscid vortex sheet modél2) and (14) we
take the initial vortex sheet strength @#s—1 which corre-
sponds to the initial conditio44) and (45) in the limit as
h— 0.

B. Resolutions

The numerical experiments for the viscous flows we re
port on here use composite AMR meshes with six and sev

and L7, respectively. The finest level of L6 and L7, which
covers the immersed boundaries at all times, corresponds
the resolution equivalent to that of a 1022048 and 2048
X 4096 uniform mesh, respectively. The coarsest level corr
sponds to that of a 3264 uniform mesh and the refinement
ratio between consecutive levels is 2. The suppdrj of the

e
levels of refinement. We denote these AMR meshes by L

e_

Study of the long-time dynamics of a viscous vortex 4297
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(d)y and(d’) t=4.78. Right column, flooded contour plot. Left column, scaled

time step is varied adaptively based on tlime-dependent
condition||ull.At<h. Initially, the number of markerbl, on
the fluid interface is twice the number of grid points in the
horizontal direction, i.e.N,=2048 for L6 andN,=4096 for
L7. We doubleN, whenever the total length of the fluid
interface doubles. The interface position at the added points
is computed using linear interpolation. We tested this strat-
gy by comparing with computations that used a fixed, suf-
Sciently high N, (four times the number of grid points in the
orizontal directiom and found no appreciable difference in
fge numerical results.
The inviscid vortex sheet boundary integral computa-
tions are computed with 1024 equidistributed interfacial
markers and withAt=0.000 25.

C. We=200

mollified & function reduces accordingly when increasing the
numbers of refinement levels. For the range of Weber num- We consider first the flow corresponding to We=200.
bers considered, we find that the time-step size required foFhis case was studied in great detail by HIE®f. 12 for the
numerical stability of our method only requires satisfying ainviscid vortex sheet. For We=, Re=x the vortex sheet

linear (CFL) condition,||u]l..At<h, independent of We. Typi-
cally, At=0.0005 for L6 andAt=0.000 25 for L7 but the

corresponding to the initial conditioriéd3)—(45) develops the
Moore curvature singularity &t,=~0.37. For We=200 and
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FIG. 10. () Comparison of the We=200, Re=20 000 interface profiles fodashed-dottedand L7 (solid) resolutions(a) t=4.0 and(b) t=4.78.

0045 Re=x linear stability analysis gives 16 initially unstable
0.04 ts :jlslged modes and the fastest growing modésisl1. The numerical
0.035 study of HLS (Ref. 12 revealed that for We=200 surface
tension regularizes the Moore singularity and then the invis-
g 003 cid interface undergoes a roll up motion during which pinch-
é 0.025 ing is observed at the estimated tiye=1.427. The forma-
8 g2 tion of this topological singularity is surprising because it
s takes place in a pure planar motion where the azimuthal
0015 component of the surface tension force is absent. We exam-
0.01f 3 ine now how the presence of small but finite viscosity, Re
0.005 =20000, affects this highly nonlinear interfacial
dynamics.
O T . 28 s a5 4 a5 as Figure 3 offers a comparison between the visctaft
Time column and the inviscid(right column interface profiles.

FIG. 11. Time behavior of the smallest interfacial gap for L6 and L7 reso—The left column also dlsplays the L7 AMR composite mesh

lutions. We=200, Re=20000. The minimum is 10.75 and 26.6 finest gridStrUCture represented as patcligsdifferent shadescorre-
points for L6 and L7, respectively.
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FIG. 12. Inviscid vortex sheet, We=40@) t=0.50,(b) t=0.60,(c) t=0.70, and(d) t=0.82.

Downloaded 26 Oct 2004 to 128.111.88.68. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



Phys. Fluids, Vol. 16, No. 12, December 2004 Study of the long-time dynamics of a viscous vortex 4299

(a)

0.2

0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1

FIG. 13. Viscous interface Re=5000 and We =400, (&j.t=0.7,(b) t=1.0,(c) t=1.6,(d) t=2.3,(e) t=3.07, andf) t=3.5.

sponding to each level of refinement. The region shown
is only a portion of the actual computational dom@n 1] w(a,t) = hfinestj w(X,1) 8(x = X(a,t))dx. (49)
X [-1,1] for the viscous flow. The remeshing algorithm does @
not enforce symmetry and thus the AMR composite mesh is
generally not symmetric. The scaling factorhg,est has been introduced because the
At an early timet=0.70[Figs. 3a) and 3a')], already a initial, discretized, interfacial vorticity has the mesh-
significant difference between the viscous and the inviscidlependent value 0.5.es: Herehgneq=1/2048 for L7.
interfacial profiles can be observed at the center of the free As Fig. 4a) shows, att=0.70, a significant amount of
boundaries. The inviscid sheet has developed two fingergorticity has been shed off the interface giving rise to the
which are not yet formed in the viscous interface. The disformation of a pair of vortices, both with positive vorticity.
persive(capillary) waves running outward from the inviscid The interfacial vorticity, Fig. 4a’), shows maxima that are
sheet at=1.0 andt=1.41[Figs. 3b’) and 3c’)] are absent attained around the location of the points of maximum cur-
in the corresponding viscous profiles. For this Reynoldsvature and minima that take place in a neighborhood of the
number, viscous dissipation is suppressing these short wavdsterface center. As Figs.(d) and 4c) demonstrates, the
At t=1.41, close to the inviscid pinching time, the viscousvortex pair continues to significantly affect the finger devel-
interface is smooth and far from self-intersection. Howeverppment and the subsequent interfacial rollup.
outside the interface core region the inviscid and the viscous The evolution of the viscous interface for longer times,
interfaces coincide quite well up tg. well pastt, is depicted in Fig. 5. The fingers first widen and
An examination of the vorticity field of the sheared in- subsequently undergo much deformation during rollup pro-
terface, shown in Fig. 4, can help us understand the observeatiicing att=3.2 a neck and the onset of what appears to be
differences. Also appearing in Fig. 4 is the scaled interfaciatapillary waves. The dynamics of the corresponding vorticity
vorticity (right column: is shown in Figs. 6 and 7. Vorticity is predominantly shed
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0.03 f =400 interface profilédasheglatt=0.82.(b) Resolution comparison for L6
and L7 at final timet=3.5.
0.02}
0.01 . . . . .
comparison of the interfacial profiles for the adaptive L6 and
L7 resolutions at the late stage of the motion. Note that the

e 2 g 8 B support of the mollifieds function for L7 is half that of L6.
This is also so in the spreading of the init{@niform) vor-

FIG. 14. (a) We=400 and Re=5000a) Close-up of AMR mesh around the ticity. Neve.rth'eless,' this reso!ution gompari;on demopstrates

minimum width neck andb) time history of the neck width. that there is little difference in the interfacial dynamics for

L6 and L7 at this We. The comparison provides also evi-

dence that the L7 computations are well resolved. The time

pistory of the smallest interfacial gap computed for both L6

into the bulk phases from the regions of largest interfacial dL7 luti ) din Fig. 11. N hat b
curvature. In particular, due to this tearing and insufficient®” resolutions Is presented in Fig. 11. Note that because

production of vorticity at the necking region &t 3.2, Figs. _Of the @function spreading, a m‘”‘!“”m of four mesh points
7(c)=7(c"), the fluid there cannot be entirely drained. At is required to resolve a fluid region bounded _by interface
=3.8, Figs. Td)-7(d"), the sheared interface has an “eye” segments. Even, at the very last computed titwe4.78,

shape similar to that observed in the experiments of A,[_when the interface is highly stretched and some segments of
savapranee and GharlibAt this time, the interface has de- the interface are close to each other, there are over 26 finest

veloped two points of very high curvature, arousc=0.4 grid points to resolve the smallest gap in the L7 AMR
andx=0.6 and on which there is a significant accumulationmeSh'

of vorticity as Fig. 7d’) shows. However, the accumulation To continue exploring the possibility of finite-time

of vorticity at these points is not sustained as the free surfacBmChIng and to fgrther StUdY the VISCOUS foects, we now
continues to stretch. The interface at even longer time§°°k at the dynamics of the viscous interfacial flow as Re is

t=4.23 andt=4.78, is presented in Fig. 8 while the corre- Increased for a fixed We. We select now a larger Weber num-
sponding vorticity field is shown in Fig. 9. Shedding, trans-0€"» We=400, because based on the inviscid vortex sheet

. 2 . .
port, and diffusion of vorticity as well as dispersion due to computatloné, the rollup core is expected to be tighter and

interfacial tension lead to a convoluted interface but one orlihus thinner fluid - passagesnecking  regiorjs might

which there is no indication of an eventual topologicaldevelOp'

reconnection, at least over the times we have compute

Even a small viscosity appears to have prevente

pinching. Figure 12 depicts the evolution of the inviscid vortex
To assess the resolution of the L7 computations we comsheet for We=400. The motion presents the same generic

pare them with those obtained with L6. Figure 10 shows deatures as that for We=200 except that the length scale has

g). We=400
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FIG. 16. (Color online. Vorticity: We=400, Re=5000, L7a) and(a’) t=0.70,(b) and(b’) t=1.0,(c) and(c’) t=1.6. Right column, flooded contour plot.
Left column, scaled sheet vorticity;,.¥X @ vs the Lagrangian marker.

been reduced as evidenced by the smaller fingers, tighter. Re=5000
sheet core, and shorter capillary waves. The inviscid vortex

sheet self-intersects 8§~ 0.82 as reported by HLE Figure 13 presents the interfacial profile at different
We now look at the viscous flow dynamics for Reynoldstimes as well as the corresponding composite AMR mesh
numbers Re=5000, Re=10 000, and Re=20 000. structure in a region containing the interface.tAt0.7, Fig.

Downloaded 26 Oct 2004 to 128.111.88.68. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



4302 Phys. Fluids, Vol. 16, No. 12, December 2004 H. D. Ceniceros and A. M. Roma

(@)

0.05 T T T

0.25

025

-0.05 5 9 L
0 0.25 05 0.75 1 0 0.25 0.5 0.75 1

()
©)
0.05 T T T

0.25

0.25

-0.05 L i L
0 0.25 05 075 1 0 0.25 0.5 0.75 1

()

0.05 T T T

0.25

o
hw
o

0.25

-0.05 L L L
0 025 05 075 1 0 0.25 0.5 0.75 1

o

FIG. 17. (Color online. Vorticity: We=400, Re=5000, L7%a) and(a’) t=2.3,(b) and(b’) t=3.07,(c) and(c’) t=3.5. Right column, flooded contour plot.
Left column, scaled sheet vorticity,.X @ Vs the Lagrangian marker.

13(a), the free interface is vertical a=0.5 and there is yet site side of the interface &t=2.3 producing two necking
no formation of fingers. Pad}, wide and smooth fingers regions. The thinnest neck is formed approximately at 3.07,
develop, Fig. 1®), and the interface roll-ups into a wide Fig. 13e), reaching a value of 771073, 15.69 L7 finest
spiral. Each finger tip comes in close proximity to the oppo-grid mesh cells. The necking region then gradually opens up
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FIG. 18. Viscous interface Re=10 000 and We =400, (g t=0.7, (b) t=1.0,(c) t=1.6, (d) t=1.8, (e) t=2.28, and(f) t=2.5.

as the sheared interface continues to fbelf. 13f)]. Figure  Fig. 16c). The vorticity on these vortices subsequently
14(a) shows a close-up of the AMR mesh in the neckingdiffuses and weakens, as the series of pictures in Fig. 17
region att=3.07, when the minimum interfacial separation is show. Aroundt=2.3, Figs. 17a) and 17a’), when the two
achieved. The time history of the neck width appears in Fignecking regions develop, the vorticity on the interface seg-
14(b) where we can clearly see that the interface moves awagents bounding each neck has opposite signs creating effec-
from pinching fort>3.07. tively a jet in each of the narrow regions. As the fluid in

The pronounced viscous effects on the inviscid topologithese regions is drained, vorticity intensifies at the necking
cal singularity can be seen in Fig. (8 which presents a points until a minimum neck width is attained around
comparison of the viscous and inviscid interface profiles=3.07[Figs. 17b) and 17b’)]. The growth of vorticity then
around the inviscid collapse time,~0.82. Figure 1f)  saturates and the necking regions begin to operjRigs.
compares the L7 and L6 interfaces at the final tim&.5.  17(c) and 17c’)].

The two curves are indistinguishable from one another
within plotting resolution.

The vorticity field and the interfacial vorticity are shown 2. Re=10000
in Figs. 16 and 17. Note that very early in the dynamics at  Figure 18 presents the interface evolution for Re
t=0.7 the vorticity, initially concentrated on the interface, =10 000. There is now an earlier formation of the fingers and
has been diffused to a wide viscous layer around the centex tighter rollup core in comparison with the Re=5000 case.
[Fig. 16a)]. When the fingers develop, Fig. @9, the inter-  As the fingers roll necking regions develop and the width of
facial vorticity increases attaining maximum values at thethe regions decreases until a minimum value is reached at
finger tips. Vorticity is then shed off the tips into the bulk =2.28. After this, the bounding interface segments at the
fluid to give rise to the formation of two vortices as shown in neck separate as Fig. f8shows. The minimum neck width
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FIG. 20. (a) Comparison of the inviscidsolid) and the Re=10 000, We
=400 interface profilédasheglatt=0.82.(b) Resolution comparison for L6
and L7 at final timet=2.5.

Min Distance
o
o
w

0.02

0.01 1 3. Re=20000
0 . . . . Finally, we end the series of computations for We=400
1.3 ¥b L5 2 225 =b with the case Re=20 000. The interfacial profile at represen-

e tative times during the motion is shown in Fig. 23. Naturally,

a faster interfacial motion is observed for this increased Rey-
nolds number. The fingers are also thinner, show more defor-
mation [Figs. 23d)-23f)] than in the previous two cases,
and an even more compact inner core during rollup. The
is 5X 1073, 10.24 L7 finest grid cells. A close-up of the AMR minimum width of the necking regions occurs tat 1.81,
L7 mesh around the necking region &t2.28, when the Fig. 23e), reaching a value of 54 1072 or 10.46 L7 finest
minimum is reached, is shown in Fig. @ while Fig. 19b)  grid cells, but then the region gradually opens up as observed
presents a time history of the neck width. Note that thefor the two smaller Reynolds numbers. Figuré&@4provides
shapes of the fingers when the necking regions are formea close-up of the L7 AMR mesh in the vicinity of one of the
and when the minimum neck width is achieved are verynecking regions at=1.81 and the time history of the gap
similar to those observed for 5000. A comparison of the viswidth is shown in Fig. 2d). Note that the minimum neck
cous and inviscid interface profiles around the inviscid col-width is about the same as that observed for Re=10 000.
lapse time,t,~0.82, is given at Fig. 2@) and Fig. 2Qb)  They differ by less that one quarter of a mesh cell. One
compares the L6 and L7 resolutions on the interface at thevould expect that as the Reynolds number increases the neck
last computed timé=2.5. Again both resolutions give inter- width would decrease as observed when going from Re
facial profiles that coincide quite well. =5000 to Re=10 000. This could well be the case but unfor-
Figures 21 and 22 illustrate how vorticity is produced, tunately, even the L7 computations do not have the accuracy
diffused, and transported dynamically. We can observéo resolve the difference between the Re=10000 and Re
larger values of interfacial vorticity than those for 5000 =20 000 neck widths. What is clear, however, from Fig. 24 is
but the vorticity dynamics for both flows appears to bethat the interface is also escaping self-intersection for Re
very similar. Vorticity shed from the finger tig$igs. 2Xb) =20 000.
and 21b’)] leads to the formation of two vortices. Subse- As observed for the previous cases viscosity produces an
quently a jet is produced at each of the necking region®rder 1 effect on the finger formation and subsequent roll-up.
[Figs. 22a) and 22a’)] and the interfacial vorticity grows at Figure 2%a) shows a comparison of the inviscid and viscous
the necking points until the minimum neck width is attainedprofiles at the inviscid collapse time. A comparison of the L6
att=2.28. and L7 resolutions for the last computed time is given in Fig.

FIG. 19. (a) We=400 and Re=10000a) Close-up of AMR mesh around
the minimum width neck an¢b) time history of the neck width.
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FIG. 21. (Color onling. Vorticity: We=400, Re=10 000, L{a) and(a’) t=0.70,(b) and(b’) t=1.0,(c) and(c’) t=1.6. Right column, flooded contour plot.
Left column, scaled sheet vorticity;,.X @ Vs the Lagrangian marker.

25(b) where one can see that except at the points of largeshat those for the smaller Reynolds numbers. There are also
curvature, both interface profiles almost coincide within plot-significant amounts of vorticity which shed off the interface
ting resolution. Finally, the vorticity dynamics is depicted in at late times during the motion as seen in Figstb2and
Figs. 26 and 27. Larger values of interfacial vorticity are27(c). This shed vorticity leads to an increased deformation
found and the pair of vortices at the bulk fluid are strongerof the interface.

Downloaded 26 Oct 2004 to 128.111.88.68. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



4306 Phys. Fluids, Vol. 16, No. 12, December 2004 H. D. Ceniceros and A. M. Roma

0.08 T T T

025
0.04

-0.04

-0.25

~0.08 . " .
0 0.25 05 0.75 1 0 0.25 0.5 0.75 1
¢4
(©)
(o) 0.08 T . .
0.25
0.04 f

-0.04 |

@

-0.25

-0.08

=)

0.25 05 0.75 0.25 0.5 0.75 1

o

()
0.08 T T T

0.25
0.04

—-0.04

[

-0.25

-0.08 t . .
0 0.25 0.5 0.75 1

o

0.25 05 0.75

FIG. 22. (Color onling. Vorticity: We=400, Re=10 000, L{a) and(a’) t=1.8,(b) and(b’) t=2.28,(c) and(c’) t=2.5. Right column, flooded contour plot.
Left column, scaled sheet vorticity;,.X @ Vs the Lagrangian marker.

The dynamics of the three We=400 cases we have cor. We=50

sidered are qualitatively similar and as far as the computa- . , : .
. . N L o We consider finally the case of an intermediate value of
tions show, there is no indication that finite-time pinching

will happen for these initial conditions at a finite Reynoldsthe We*?er number, We=>50, for V\_/h'(_:h f”l contrasting type. of
number. motion is expected based on the inviscid sheet computations

Downloaded 26 Oct 2004 to 128.111.88.68. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



Phys. Fluids, Vol. 16, No. 12, December 2004 Study of the long-time dynamics of a viscous vortex 4307

(@)

o_zl—‘ww N S A : (b)

-0.2

0 0.25 0.5 0.75 1

(d)

0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1

FIG. 23. Viscous interface Re=20 000 and We=400, (ay t=0.7, (b) t=1.0,(c) t=1.3,(d) t=1.6, (e) t=1.81, and{f) t=2.24.

reported by HLS? Indeed, as HLSRef. 12 demonstrated, [Fig. 28c)]. The lengthening then ceases shortly after
for We=50 and the same initial data we consider here, the-5.0 and the viscous fingers begin to retract. An examination
vortex sheet does not rollup. Instead the inviscid interfacef the vorticity can help to understand the significant differ-
develops interpenetrating fingers that grow monotonically inence between the inviscid and viscous motions. Positive vor-
time. As the fingers grow they also become thin but there igjcity shed from the finger tips is transported and diffused
no indication that a finite-time interfacial collision will occur ik into the interior and the exterior of the fingers. The
for t\r/1\|/s partlﬁulakr Vtv?han(:fmltnal ?gta. ity in thi tion vorticity in the interior forms two round vortices as Fig.

€ nowlook at the efiects ot viscosity In this motion for 39(a) shows. These positive vortices tear off some of the
Re=20000. Figure 28 shows the evolution of the sheare o . . . .

negative interfacial vorticity at the necking points. The com-

interface for Re=20 00Qleft column) and contrasts it with . L : . .

that of the corresponding inviscid vortex shegght col- blned_ vo_rtmty |n5|.de the_neckmg regions increases the flux
umn). Already att=3.0, Fig. 28a), we can see a difference in of fluid |nt(_) the finger tlps on one _S|de of the neck and
the shape of the fingers. The viscous fingers have a morgecreases it on the opposite side. This leads to an asymmetry

curved tip, are slightly bulged at the center, and are widef the finger tips and contributes to the bending of the fin-
than the inviscid ones. An incipient “necking” in the shearedgers. As vorticity continues to be shed from the leading
interface is observed &t 4.0, Fig. 28b). Instead of continu-  edges of the interface, Fig. @9, the K-H weakens and sur-

ing their lengthening in essentially the same inclined direcface tension is able to stop the finger growth. The dynamic
tion as in the inviscid case, the viscous fingers bend upwardsehavior up to this point is in accordance with the results
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FIG. 25. (a) Comparison of the inviscidsolid) and the Re=20 000, We
=400 interface profilédasheg att=0.82.(b) Resolution comparison for L6
and L7 at final timet=2.24.
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o
N

in Fig. 31(c). The magnitude of the scaled interfacial vortic-
; ; ; ; ; ; ity at t=7.3 exceeds for the first time in all our computations
12 14 1.6Time 18 B 22 0.5, the initial uniform value.
Close-ups of the L7 AMR mesh around the two contrast-

FIG. 24. (3 We=400 and Re=20 00@a) Close-up of AMR mesh around INd regions are given in Fig. 32. The time history of the neck
the minimum width neck an¢b) time history of the neck width. width is provided in Fig. 3@) while Fig. 33b) compares the
behavior of the neck widtlabeled one-period ga@nd the
collapsing gap width(labeled periodic extension ggjbor
6.5<t=<7.3 measured in finest grid mesh cells.tAf7.3, the
. . collapsing gap has decreased to slightly less than four mesh
reported by Tauber, Unverdi, and TryggvaStfor different points. L7 resolution cannot resolve any further decrease and
data.. ) _ thus the L7 computations far>7.3 would be unphysical.

F|gure 30 present; the subsequent evolution of the VISNlevertheless, the indications that the motion is going to be
cous interface as the fingers recede. The corresponding V°§hortly terminated by the collapse of the interfaces are
ticity field and the scaled interfacial vorticity are plotted in strong. A similar collapsing event was observed by HLS
Fig. 31. This longer time dynamics is striking. The sheared(Ref' 12 for the inviscid vortex sheet at We=62.5. We
interface forms large pockets of fluid that, as the interfaceyno1d note that there is an appreciable difference between
contracts, develop thin neck&ig. 30b)]. As in We=400, the |6 and L7 time history curves in Fig. @. The two
the necks reach a minimum value, her¢-at7.1, after which  cyrves share similar shapes but there appears to be a time
the disparate interface segments of the neck begin to sepanift. As argued by Tauber, Unverdi, and Tryggvaé%)this
rate. As this occurs, a point of high curvature begins to ensug likely to be the result of using a diffused interface ap-
atx=0.6 and the periodically extended interface appears t®roach as we do here. The spreading of surface tension
collapse at this poinfFig. 30c)]. The plots of vorticity in  forces becomes particularly important when the K-H weak-
Fig. 31 contrast clearly two important events: first the forma-ens and the interface is pulled back. Since the surface tension
tion of a jet in each of the necking regiofisig. 31(b)] but  forces are spread out more on the coarser L6 mesh the effect
with insufficient strength to drain all the fluid and overcomeof surface tension is somewhat weaker. This results in a
the viscous layer, and second the large growth and concestightly slower motion than that observed for L7. The com-
tration of interfacial vorticity{Fig. 31(c’)] and a much stron- parison of the L6 and L7 interface profiles given in Fig. 34
ger jet as the interface is about to collapse. Note that a difand the time history curves are consistent with this
ferent vertical scale was used to plot the interfacial vorticityargument.
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FIG. 26. (Color online. Vorticity: We=400, Re=20 000, L7a) and(a’) t=0.70,(b) and(b’) t=1.0,(c) and(c’) t=1.3. Right column, flooded contour plot.
Left column, scaled sheet vorticity,. X @ vs the Lagrangian marker.

VI. DISCUSSION AND CONCLUDING REMARKS the development of thin jets as being perhaps the basic struc-

So far as can be discerned from the We=50 Rdure in the formation of a topological singularity for the 2D
=20 000 numerics, a topological singularity can occur in alnviscid vortex sheet motion. As seen in our numerical ex-
finite-viscosity 2D interfacial flow. HLRef. 12 identified ~ Periments the production and accumulation of vorticity has
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FIG. 27. (Color online. Vorticity: We=400, Re=20 000, L{a) and(a’) t=1.6,(b) and(b’) t=1.81,(c) and(c’) t=2.24. Right column, flooded contour plot.

Left column, scaled sheet vorticity,.X @ Vs the Lagrangian market.

to be sustained at the narrow jets to make reconnection of thdisjoint interfaces. To this end, we consider two symmetric
sheared interface possible. Motivated by these observationsterfaces whose initial positions are given in parametric
we now look at the dynamics of an isolated jet between twdorm by
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X1(@0) =(,0.09+0.01 cd@ma)), (50) Wo(X,Y) = = Sn(bax,Y)) + Sl bolx,y), (52)
X5(a,0) = (a,— 0.09 - 0.01 ca@wa)) (51)  Where
for 0= a=<1 and with initial vorticity distribution given by é1(x,y) =y —[0.09 + 0.01 comx)], (53)
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FIG. 29. (Color online. Vorticity: We=50, Re=20 000, L1a) and(a’) t=3.0,(b) and(b’) t=4.0,(c) and(c’) t=5.0. Right column, flooded contour plot. Left
column, scaled sheet vorticity;,.;X @ Vs the Lagrangian marker.
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FIG. 30. We=50 and Re=20000, L{@) t=6.5,(b) t=7.1, and(c) t=7.3.

do(x,y) =y +[0.09 + 0.01 co@mx)]. (54)

We take We=50 and Re=20 000. Figurg®5hows the jet
att=0 and att=1.1, a time close to pinching. This picture
also provides a resolution comparison of the L6 and L7 in-

Study of the long-time dynamics of a viscous vortex 4313

terface profiles. The profiles are indistinguishable within
plotting resolution. The L7 AMR mesh is displayed in Fig.
35b).

Figure 36 presents a time history of the intersheet dis-
tance for both the L6 and the L7 resolutions. At the last
computed time,t=1.1, the distance is 5.25h,.=5.03
X 1072 and 4.94X hypes=2.41x 1073 for L6 and L7, respec-
tively, with a clear indication of finite-time collapse. As Fig.
37 shows there is a strong concentration of vorticity at the
collapsing region. At=1.1 the scaled interfacial vorticity at
the necking points is greater than 0.8, even larger than the
maximum value observed for the previous We=50 pinching
case.

The numerical evidence presented here shows that on
one hand small but finite viscosity can remove the inviscid
topological singularity in a rolled-up interface and on the
other it provides strong support to the hypothesis that topo-
logical singularities can still happen for some intermediate
We. There are several questions still unresolved; for ex-
ample, the structure of this singularity and the conditions
under which it can occur in a 2D interfacial flow need to be
better understood. We hope that our findings can stimulate
more research in this direction.
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APPENDIX A: THE ALGORITHM

The computational scheme is a formally second-
order, pressure increment projection method. The core of the
time discretization is the predictor—corrector scheme
(17)«29), which as shown in Appendix B can be written as
a more general iteration method. With that in mind, we sum-
marize next the algorithm for the fully adaptive nonstiff
method.

To obtain (U™, X™Y) from the previous time step
known valuequ",X"), proceed as follows.

(1) Advance wall-anchor points usin@).
Consider thanitial guesses

y1.0= un,
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=7.1 andt=7.3.
DaaXk = Xie1 = Xy-1)/(2A0).
(i) Compute the nonlinear and the singular terms at half
o (12,02 0 ifn=0, time levels, by the averages
pn—(1/2) ifn=1, [(u- V)u]m@2mi- %{[(u .V )u]mimt
XML0Z yn +[(u- V)ul,
fono(vi?nl;or the iteration indexn varying from 1 to 2 do the F+(L2,m-1 = %(fn+l,m—l+fn)_

) . ) (iii ) Solve for the provisional velocity field"™ (projec-
(i) Spread forces from the Lagrangian to the Eulerianon parabolic step

mesh um-yn gprw2m-L
fn+1,m—1 =Aa E FE+l'm_l5h(X _ XE+l'm_1), At + p
IlUW
L _ u*,m+ u” fn+(l/2),m—l
whereFy*™ 1 is given by = 'U“|_<) “[(u- VyuJrw2amiy
Fn+l,m—1 p 2 p
“ O i (iv) Solve for the pressurg™*/2:m and for the velocity
Dad[DacXik ™™ T DacX ™) forkel, u™Lm (projection elliptic step usingu™™:
- SK(XEJrl'm_l - X\Tkl) for k W, un+l,m —-u" Gpn+(1/2),m u*,m_ un Gpn+(1/2),m—l
+ = + ,
and D, is the centered difference operatordni.e., At p At p
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FIG. 34. We=50 and Re=20 000. Resolution comparison(dagheg and
L7 (solid) at(a) t=6.0 and(b) the time the minimum neck width is attained.
-05
0 0.25 05 0.75 1

D- un+l,m =0.
FIG. 35. A pinching jet, We=50 and Re=2000@) t=0 (dasheg andt
(v) With the new Eulerian velocity fielgimim update  =1.1(solid) for both L6 and L7 resolutiongb) The AMR L7 composite
the immersed boundaries by grid and the sheets &&1.1.

Xn+1,m _ xn

At (4) Update the clockt™1=t"+At", and select a new time

L stepAt" based on the usudlirst-orde) CFL stability condi-
+ u”&h(x _ Xn)] + E(Ulr&+l,mfn+l,m—l tion.

- %22 [un+1,m5h(x _ Xn+1,m—1)
X

LU, This completes the algorithm.

where, for the fluid interfacd X" is computed from(16)
usingu™tm and X™1M1 and it is set to be identically zero

for the markers on the walls. _ o It is interesting to note that if the initial guesses
(vi) Apply the filtering procedure to wall points. If it is

APPENDIX B: GENERAL ITERATIVE SCHEME

time, apply it also to fluid interface points. umto=un, (B1)
(3) Check whether or not it is time to remesh, changing (12,0 = 0 ifn=0, (B2)
to a new composite grid. p"m 2 if n=1,
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FIG. 36. Time behavior of the jet’s intersheet distance for(tiésheg and
L7 (solid).

-0.05
058

08
0.6
0.4

0.2

hw
o

FIG. 37. (Color onling. Vorticity of the pinching jet at=1.1, We=50 and
Re=20000, L7.(a) Flooded contour plot of the vorticity field near the
pinching region andgb) scaled vorticity(whines) @long the uppegsolid) and
the lower sheetdashedl
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Xn+1,0:Xn (BS)

are considered, the predictor-corrector scheéti®—(29) is
just a particular case of the more general iteration

u*,m —u" Gpn+(1/2),m—1
+

At p
*,m n n+(1/2),m-1
- EL<u> _ [(U v )u]n+(1/2),m—1+ f—,
p 2 p
(B4)
un+1,m —u" G n+(1/2),m u*,m -y G n+(1/2),m-1
+ P = + P , (B5)
At p At p
D.-u™tm=0, (B6)
Xn+1,m _ Xn

v - %22 [un+l,m5n(x _ Xn+1,m—l)
X

+ Un5h(X _ Xn)] + %(Ugﬂ,mfml,m—l + U)r;fn)

(B7)

with iteration index varying from 1 to 2.
The nonlinear and singular force terms, at half time lev-
els, are given by the averages

[(u- V)u]"W2mL=2(y. V)umtmt
+[(u- V)ul, (B8)

+ _ 1en+
fn (1/2),m-1 — E(fn 1,m—l+fn), (Bg)
where, for arbitrary indicea andm, one has

frimi=As > Rt (x - Xpm). (B10)
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