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A numerical investigation of the long-time dynamics of two immiscible two-dimensional fluids
shearing past one another is presented. The fluids are incompressible and the interface between the
bulk phases is subjected to surface tension. The simple case of density and viscosity matched fluids
is considered. The two-dimensional Navier–Stokes equations are solved numerically with a fully
adaptivenonstiff strategy based on the immersed boundary method. Dynamically adaptive mesh
refinements are used to cover at all times the separately tracked fluid interface at the finest grid level.
In addition, by combining adaptive front tracking, in the form of continuous interface marker
equidistribution, with a predictor–corrector discretization an efficient method is introduced to
successfully treat the well-known numerical difficulties associated with surface tension. The
resulting numerical method can be used to compute stably and with high resolution the flow for
wide-ranging Weber numbers but this study focuses on the computationally challenging cases for
which elongated fingering and interface roll-up are observed. To assess the importance of the
viscous and vortical effects in the interfacial dynamics the full viscous flow simulations are
compared with inviscid counterparts computed with a state-of-the-art boundary integral method. In
the examined cases of roll-up, it is found that in contrast to the inviscid flow in which the interface
undergoes a topological reconfiguration, the viscous interface remarkably escapes self-intersection
and rich long-time dynamics due to separation, transport, and diffusion of vorticity is observed. An
even more striking motion occurs at an intermediate Weber number for which elongated
interpenetrating fingers of fluid develop. In this case, it is found that the Kelvin–Helmholtz
instability weakens due to shedding of vorticity and unlike the inviscid counterpart in which there
is indefinite finger growth the viscous interface is pulled back by surface tension. As the interface
recedes, thin necks connecting pockets of fluid with the rest of the fingers form. Narrow jets are
observed at the necking regions but the vorticity there ultimately appears to be insufficient to drain
all the fluid and cause reconnection. However, at another point, two disparate portions of the
interface come in close proximity as the interface continues to contract. Large curvature points and
an intense concentration of vorticity are observed in this region and then the motion is abruptly
terminated by the collapse of the interface. ©2004 American Institute of Physics.
[DOI: 10.1063/1.1788351]

I. INTRODUCTION

When two immiscible fluids shear past one another they
become the source of the Kelvin–Helmholtz(K-H) instabil-
ity, one of the most fundamental instabilities in incompress-
ible fluids. The free interface separating the two shearing
fluids evolves dynamically driven by the K-H instability and
competing regularizing effects such as surface tension and
viscosity. The study of such a motion is of both fundamental
and practical interest. Mixing in the ocean and the
atmosphere as well as in engineering fluids, such fuels and
emulsions, are believed to be induced by instabilities
of the K-H type and often these instabilities lead to
turbulence.1

The simplest model to study the K-H instability consists
of two inviscid, immiscible, and irrotational density-matched
fluids separated by a sharp fluid interface across which there
is a discontinuity in tangential velocity. Because the flow
vorticity is solely supported at the fluid interface this model
is called avortex sheet. Significant understanding of the K-H
instability dynamics forinviscid flows has been obtained
within this model. For example, in the absence of surface
tension, it is known that the vortex sheet develops square-
root isolated singularities in its curvature, well before roll-up
can occur. The first analytic evidence of this was provided by
Moore2 by using asymptotic analysis near equilibrium. Sub-
sequently, Caflisch and Orellana3 extended Moore’s analysis
and found exact solutions to the approximate Moore’s equa-
tions with finite-time singularity development. Numerically,
evidence of Moore’s singularity has been provided by

a)Electronic mail: hdc@math.ucsb.edu
b)Electronic mail: roma@ime.usp.br

PHYSICS OF FLUIDS VOLUME 16, NUMBER 12 DECEMBER 2004

1070-6631/2004/16(12)/4285/34/$22.00 © 2004 American Institute of Physics4285

Downloaded 26 Oct 2004 to 128.111.88.68. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp

http://dx.doi.org/10.1063/1.1788351


Krasny,4 Meiron, Baker, and Orszag,5 and Shelley6 for a pla-
nar vortex sheet, and by Nie and Baker,7 Nitsche,8 and
Sakajo9 for the axisymmetric geometry. Cowley, Baker, and
Tanveer10 demonstrated that Moore’s singularities are quite
generic for two-dimensional vortex sheets and more recently
Hou, Hu, and Zhang11 found that the same type of singularity
is also present in a simplified model of a three-dimensional
sheet.

The presence of surface tension leads to a rich variety of
flow behavior as the study of Hou, Lowengrub, and Shelley12

henceforth HLS, demonstrated for an inviscid vortex sheet.
Particularly surprising dynamics occur for large and interme-
diate Weber numbers. The Weber number We provides a
measure of the strength of the K-H instability relative to the
dispersive regularization of surface tension. For intermediate
We, the boundary integral simulations in Ref. 12 show the
formation of elongating and interpenetrating fingers of fluid.
At much larger We, where there are many unstable scales,
the numerical study of HLS(Ref. 12) reveals that the
fluid interface rolls up into a spiral and its motion is
later terminated by self-intersection of the fluid interface
forming trapped fluid droplets. Thus, while regularizing
Moore’s singularity, surface tension leads yet to another type
of singularity formation, a large-scale topological one. Even
though pinching singularities are common in three-
dimensional(3D) and axisymmetric free surface flows(e.g.,
jets) the formation of these types of singularities in 2D
flows is less common and somewhat surprising. This is be-
cause the 2D flows lack the azimuthal surface tension force
that is believed to play a crucial role in 3D fluid interface
breakup.

It is natural to ask how small but finite viscosity would
affect the surface tension mediated K-H dynamics. In a re-
cent numerical study Tauber, Unverdi, and Tryggvason13

show that, just as in the case of the inviscid vortex sheet,
elongating fingers can develop in a sheared viscous interface
for intermediate We. The simulations in Ref. 13 also show
that there is separation and generation of a considerable
amount of small-scale vorticity and increased interface thick-
ness due to viscous diffusion. Unlike the inviscid case in
which the fingers continually grow, the viscous and vortical
effects eventually remove the driving instability and surface
tension pulls the interface back. The motion as the interface
contracts is complex and it is unclear whether or not it would
pinch off at longer times. The question of how viscous and
vortical effects affect the interfacial dynamics for much
larger We for which the the inviscid vortex sheet collapses
during roll-up is also open. These two questions are the cen-
tral themes of the numerical investigation of this present
work.

Numerical simulations of sheared flows including
viscous, vortical, and surface tension effects are quite chal-
lenging. They require the solution of the incompressible
Navier–Stokes equations in the presence of a free surface.
Because surface tension can play such a crucial role in the

flow dynamics, it is essential that tension forces and geomet-
ric quantities such as interfacial curvature be computed very
accurately. At the same time, the flow must be well resolved
globally but due to the surface concentration of high vorticity
and the sharp flow variations across the free surface, this can
be a daunting task. Furthermore, capturing the true regular-
izing effects of viscosity and surface tension for large We
and Reynolds number can be expected to be difficult due to
the underlying ill posedness of the inviscid We=`

problem.
Because of the need to compute accurately interfacial

quantities, it seems natural to employ a numerical method in
which the fluid interface is explicitly tracked rather than
“captured” on a fixed grid. Among the most popular front-
tracking methods for multiphase flow, which use an Eulerian
grid for the fluid flow together with a lower-dimensional grid
to track the interface, are the method developed by Glimm
and collaborators,14–16 the immersed boundary(IB) method
introduced by Peskin,17 and the related method proposed by
Unverdi and Tryggvason.18 One of the main difficulties of
front-tracking methods is the problem of coupling the fixed
Eulerian grid for the fluid flow with the interface dynamics.
One approach is to use one-sided “ghost cell” extrapolation
around the front as done in Glimm’s method. An alternative,
implementationally easier, approach is to replace the sharp
interface by an interface of finite thickness, typically a few
mesh points. In this diffused-interface approach, used by the
immersed boundary and some closely related methods, inter-
facial quantities such as tension forces, are spread continu-
ously within the interface layer so that they can be prolonged
to the fixed Eulerian grid. While conceptually simple, the
diffused-interface approach requires very high spatial resolu-
tion in a vicinity of the interface to allow the use of
sufficiently thin layers and avoid excessive numerical diffu-
sion.

Another well-known problem that has plagued front-
tracking methods for multiphase flows is the tension-induced
numerical stiffness.19–21 Indeed, the spatial derivatives intro-
duced by interfacial tension forces and the excessive marker
(particle) clustering characteristic of Lagrangian front track-
ing lead to prohibitively small time steps for explicit meth-
ods. A partial remedy for this problem has been mesh redis-
tribution done by point insertion and deletion. This process
has, however, the drawback of introducing strong artificial
smoothing as a result of repeated interpolation. An effective
alternative is to use a suitably chosen tangential velocity for
the interface markers to control their distribution. This idea is
a key ingredient in the successful nonstiff boundary integral
method developed by HLS(Ref. 20) and has been used re-
cently to relax time-stepping in a hybrid level set-front track-
ing method for multiphase flows.22

To conduct the numerical investigation of the long-time
dynamics of a sheared interface, we develop a nonstiff fully
adaptive immersed boundary-type method that overcomes
the aforementioned difficulties. This method marries the two
main approaches for mesh adaption, moving meshes
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(dynamic interfacial parametrizations as constructed in Refs.
12 and 20) and adaptive mesh refinements(AMR), and com-
bines them with an efficient predictor-corrector discretization
to remove the surface-tension-induced stability constraint for
the Weber numbers of interest. As a result, we obtain a robust
fully adaptive method with only a first-order Courant–
Friedricks–Lewey(CFL) condition for a wide range of We-
ber numbers. We focus our investigation on long-time
flow dynamics and on intermediate and large We flow for
which interface fingering and roll-up occur. To assess
the importance of the viscous and vortical effects in the in-
terfacial dynamics the full viscous flow simulations are
compared when appropriate with inviscid counterparts com-
puted with the boundary integral method developed
by HLS.20

Our numerical study begins with the investigation of the
viscous and vortical effects on the roll-up motion for which
there is an interface collapse in the inviscid case. For small
but finite viscosity fRe=Os104dg we find that well past
the inviscid topological singularity time disparate parts of the
interface come in close proximity during roll-up but the in-
terface surprisingly escapes reconnection. Fixing We, we ex-
amine the flow behavior as Re is increased and find evidence
that suggests a topological singularity will only occur
in the limit Re→`, for the initial data we consider. Follow-
ing the study of the roll-up motion we look at the dynamics
of the sheared interface at an intermediate Weber number
for which elongated interpenetrating fingers of fluid develop.
We find that the Kelvin–Helmholtz instability weakens due
to shedding of vorticity and unlike the inviscid counterpart,
in which there is indefinite finger growth, the viscous
interface is pulled back by surface tension just as reported in
Ref. 13. Then a striking motion occurs as the interface
recedes, thin necks connecting pockets of fluid with the rest
of the fingers form. Narrow jets are observed at the necking
regions but the vorticity there ultimately appears to be insuf-
ficient to drain all the fluid and cause reconnection. However,
at another point, two disparate portions of the interface
come in close proximity as the interface continues to con-
tract. Large curvature points and an intense concentration of
vorticity are observed in this thinning region and then the
motion is abruptly terminated by the collapse of the
interface. Finally, motivated by the suggestion of HLS(Ref.
12) that the formation of thin jet may be the leading
mechanism for topological reconnection in the 2D inviscid
flow, we look at the dynamics of an isolated jet between
two disjoint interfaces. In this case, for a special set of initial
conditions, we find that the increase of vorticity concen-
tration at necking points is sustained and becomes high
enough to drain the fluid and lead to a clear interface
collapse.

The rest of the paper is organized as follows. The
governing equations are given in Sec. II and a detailed
description of the nonstiff fully adaptive method is provided
in Sec. III. The results of the numerical study are presented
in Sec. V. Further discussion and concluding remarks are
given in Sec. VI.

II. THE GOVERNING EQUATIONS

A. The viscous flow

We consider the flow of two immiscible, density and
viscosity matched incompressible fluids separated by a
sheared interface subjected to constant surface tension. The
flow takes place in a two-dimensional channel, periodic in
the streamwise direction and whose walls move in opposite
directions. The governing equations are the incompressible
Navier–Stokes equations which, treatingboth the fluid inter-
face and the walls as masslessimmersed boundaries, can be
written as

rH ]

]t
usx,td + fusx,td · ¹ gusx,tdJ + ¹ psx,td

= mDusx,td + fsx,td, s1d

= ·usx,td = 0 , s2d

whereusx ,td and psx ,td are the velocity field and the pres-
sure, respectively, at each pointsx ,td within the channel and
for tù0. The mass densityr and the viscosity coefficientm
are both assumed to be constant.

The driving forcefsx ,td in (1) contains a singularly sup-
ported term due to surface tension which enforces the fol-
lowing dynamicjump condition at the fluid interfaceG:

− fpgG + mn̂ · f=u + ¹ uTgG · n̂ = − tk, s3d

where f·gG denotes the jump across the interface,n̂ is the
outward unit normal,t is the (constant) surface tension co-
efficient, andk is the local mean curvature. FormÞ0, the
velocity field u is continuous at the fluid interface, i.e.,
fugG=0. Continuity of the velocity acrossG and incompress-
ibility can be used to reduce(3) to the Laplace–Young con-
dition,

fpgG = tk. s4d

Kinematically interfacial Lagrangian particles are only re-
quired to move with the normal velocity of the fluid; their
tangential velocity can be arbitrarily chosen as we will dis-
cuss later.

In the tradition of the immersed boundary method, the
walls are also modeled as infinitely thin massless immersed-
boundaries and as such they add a contribution tofsx ,td. In
the absence of any other external forces to drive the flow,
fsx ,td is given by the singular distribution

fsx,td =E
I
t

]t̂

]a
dsx − Xsa,tddda

+E
W

FWsa,tddsx − Xsa,tddda, s5d

where ds·d is the two-dimensional Dirac delta andt̂ is the
unit tangent at the fluid interface. HereXsa ,td represents a
parametrization at timet of both the fluid interfacesaP Id
and the wallssaPWd, with a being the Lagrangianparam-
eter (marker label). The subscripts in the integrals denote
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integration on the fluid interface(“I” ) and on the walls
(“W” ). Assuming thattethersconnect wall to anchor points
XWsa ,td whose evolution in time is known in advance, the
force on the wallsFW is suitably modeled by

FWsa,td = − SsadfXsa,td − XWsa,tdg, a P W, s6d

whereSsad is the stiffness defined on the link between wall
and anchor points. Since lower and upper walls move in
streamwise direction with uniform velocitiessU1,0d and
sU2,0d, U1.0.U2, respectively, the position of anchor
points at timet is given by

XWsa,td = XWsa,0d + tsUi,0d, t ù 0, i = 1,2, a P W.

s7d

The motion of the anchor points imposes the desired move-
ment to wall points by “dragging” them through the fluid.
Alternatively, this wall–fluid interaction can be also modeled
with simple slip boundary conditions on fixed walls.

Finally, the immersed boundaries move with the local
(continuous) fluid velocity

]

]t
Xsa,td =E

V

usx,tddsx − Xsa,tdddx, a P I ø W. s8d

We define the length scalel as the periodicity length of
the channel and the velocity scaleU as the difference be-
tween the horizontal velocities at the walls. The flow can be
described by two dimensionless groups, the Weber number
We and the Reynolds number Re, given by

We =
rlU2

t
and Re =

rlU

m
. s9d

B. The inviscid vortex sheet model

We consider two infinite two-dimensional layers of in-
viscid, incompressible, irrotational, and immisible density-
matched fluids separated by a sharp interfaceG whose posi-
tion at time t is given in parametric form byXsa ,td
=sXsa ,td ,Ysa ,tdd, with a in [0,1]. At this fluid interface the
following boundary conditions are imposed:

fugG · n̂ = 0, s10d

fpgG = tk, s11d

wheref·gG denotes the jump across the interface and againp,
t, andk are the pressure, the surface tension, and the mean
curvature, respectively. The kinematic condition(10) is the
usual requirement that particles on the surface remain there.
Condition (11) is Laplace–Young condition introduced be-
fore. The tangential fluid velocity atG is usually discontinu-
ous and the model is called a vortex sheet. Introducing the
complex position variableZsa ,td=Xsa ,td+ iYsa ,td, we can
write a boundary integral formulation for the interface evo-
lution equations in the dimensionless form,12

]Z

]t
= W* +

Za

uZau
UA, s12d

]g

]t
=

]

]a
SUAg

uZau D +
1

We
ka, s13d

whereg is the (unnormalized) vortex sheet strength which
measures the discontinuity in the tangential component of
the fluid velocity. The complex interfacial velocityW, as-
suming one-periodicity, is given by Birkhoff–Rott
integral,

Wsa,td =
1

2
P.V.E

0

1

gsa8,tdcotpfZsa,td − Zsa8,tdgda8,

s14d

where P.V. stands for the principal value integral and the
asterisk in(12) denotes the complex conjugate. In(12) and
(13), UAsa ,td is an arbitrary tangential velocity that deter-
mines the frame or parametrization of the fluid interface. The
freedom in selectingUA has been exploited by HLS to design
a class of efficient,nonstiffboundary integral methods. Here
we will transfer this idea to the immersed boundary method
setting(see Sec. III A 1).

The dimensionless Weber number is again given by
We=rlU2/t. In order to have equivalent Weber numbers for
both the viscous and the inviscid models we choose the ve-
locity scaleU for the inviscid vortex sheet to be 2U`, where
s±U` ,0d is the limiting fluid velocity asy→`. The average
value, ḡ, of g over one period ina satisfies −ḡ /2=U` and

FIG. 1. Typical Eulerian and Lagrangian(“P” ) meshes.

FIG. 2. Location of coarse and fine variables.
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thus in dimensionless variablesḡ=−1. Note thatḡ is time
invariant. We use this property to define the velocity of the
viscous fluid (Sec. II A) at the channel wall as ±U`

= 7ḡ /2= ±1/2.

III. A FULLY ADAPTIVE NONSTIFF NUMERICAL
METHOD

Immersed boundary-type methods combine an Eulerian
representation of the fluid flow with a Lagrangian “marker”
evolution of the immersed interfaces, as shown schemati-
cally in Fig. 1. Tracking separately the location of the fluid
interface with a Lagrangian mesh allows accurate computa-
tion of fluid interface position, geometric quantities, and in-
terfacial forces. However, as it is well known, Lagrangian
front tracking suffers from excessive marker(particle) clus-
tering that leads to poor overall resolution and above all
prohibitively small time steps.

Another common element of immersed boundary-type
methods is the use of singularly supportedsdd forces to con-
veniently account for the interfacial dynamic jump condi-
tions. Numerically, these localized forces are spread over a
few mesh points by using a mollified approximation to thed
distribution that retains the main weight on the(immersed)
interface. This results in a diffused-interface model in which
the originally sharp fluid interface is replaced by transition
regions of the order of the mesh size. Across these regions
sharp flow gradients and vorticity concentration typically oc-
cur. Consequently, to accurately compute flow quantities and
to avoid numerical effects very high resolutionmustbe em-
ployed around the immersed boundaries.

To overcome the aforementioned difficulties associated
with Lagrangian tracking and the surface-tension-induced
stability constraint, and to efficiently resolve the flow in a
vicinity of the fluid interface as well as globally we propose
a fully adaptive nonstiff method. Our computational strategy
has three main components: dynamically adaptive tracking
of the fluid interface in the form of marker equidistribution, a

FIG. 3. We=200. Left column, Re=20 000, L7. Right column, inviscid sheet.(a) and sa8d t=0.70,(b) and sb8d t=1.0, (c) and sc8d t=1.41.
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semi-implicit predictor-corrector time marching scheme, and
adaptive mesh refinements to accurately resolve flow quan-
tities, particularly in a vicinity of the interface. We describe
next each of the three ingredients along with the spatial dis-
cretization we employ. The complete algorithm is summa-
rized in Appendix A as a reference. The overall method is
second-order accurate in space and time for smooth solutions
but due to the interface smearing, characteristic of the IB
method, it has only first-order spatial accuracy for sharp in-
terface problems.

A. Relaxing the surface-tension-induced stability
constraint

1. Dynamic Lagrangian equidistribution

Excessive marker clustering is a well-known problem in
tracking methods. The most common remedy to this problem
has been regridding or particle redistribution by point inser-
tion and deletion. However, this approach has the drawback
of introducing strong smoothing to the fluid interface as a
result of repeated interpolation.

In the context of boundary integral methods, HLS(Ref.
20) have proposed a very effective alternative approach to
control particle distribution. The idea is to use the freedom in
selecting the tangential velocity of the interface markers to
control their distribution at all times. Indeed, kinematically
the markers are only required to move with the normal ve-
locity of the fluid. Thus(8) could be changed to

X tsa,td =E usxddsx − Xsa,tdddx + UAsa,tdt̂

= :Usa,td + UAsa,tdt̂ , s15d

whereUAsa ,td is arbitrary and determines the frame or pa-
rametrization used to describe the interface. For example,UA

can be found to cluster interface markers in a controlled fash-
ion in regions of high curvature12 or to keep the markers
equidistributed. Here we opt for the latter as we expect the
fluid interface to be globally deformed. If the markers are
equidistributed initially the following choice ofUA keeps
them equidistributed at all times:20

UAsa,td = − UTsa,td +E
0

a

fsakUN − ksakUNlgda8, s16d

whereUT=U ·t̂, UT=U ·t̂, sa=ÎXa
2 +Ya

2 is the arc-length met-
ric, k is the mean curvature, andk·l stands for the spatial
mean over one spatial period. At the walls, we simply take
UA;0.

2. Predictor-corrector semi-implicit strategy

We employ a semi-implicit strategy to remove the high-
est order stability constraint in the equations of motion. We
write this nonstiff discretization in the form of an efficient
second-order predictor-corrector scheme which stems from a
general iterative implicit discretization. For simplicity, we
describe the scheme assuming a constant time stepDt and
equal mesh spacingDx=Dy=h.

Typically, a time step to go from time leveltn to time
level tn+1 starts by employing(7) to move wall-anchor
points. After this, one performs the following steps.

(i) Predictor step. From computed valuesun, pn−s1/2d, and
Xn for the velocity, pressure, and immersed boundary posi-
tion, respectively, known from the previous time step, obtain
predicted valuesun+1,1 andXn+1,1 for the new velocity field
and immersed boundary position at timet= tn+1 by
solving

u*,1 − un

Dt
+

Gpn−s1/2d

r
=

m

r
LSu*,1 + un

2
D

− fsu · = dugn +
fn

r
, s17d

un+1,1− un

Dt
+

Gpn+s1/2d,1

r
=

u*,1 − un

Dt
+

Gpn−s1/2d

r
, s18d

D ·un+1,1= 0, s19d

Xn+1,1− Xn

Dt
=

h2

2 o
x

sun+1,1dhsx − Xnd + undhsx − Xndd

+
1

2
sUA

n+1,1t̂n + UA
n t̂nd, s20d

where

t̂n =
DDaXn

iDDaXni
, s21d

and DDa is the centered difference operator ina. Note that,
as customary in projection methods, a provisional velocity
field u* is obtained from(17), and then, using(18) and(19),
it is projected onto the divergence-free vector field space.L,
G, andD are standard second-order finite difference Laplac-
ian, gradient and divergence operators defined on a staggered
grid and will be given in Sec. III B.

(ii ) Corrector step. Once predicted values are available,
they are utilized to compute approximations to the nonlinear
and to the singular force terms att= tn+s1/2d (using linear in-
terpolation) and another projection is performed to obtain
corrected valuesun+1,2 andXn+1,2 as follows:

u*,2 − un

Dt
+

Gpn+s1/2d,1

r
=

m

r
LSu*,2 + un

2
D

− fsu · = dugn+s1/2d,1 +
fn+s1/2d,1

r
,

s22d

un+1,2− un

Dt
+

Gpn+s1/2d,2

r
=

u*,2 − un

Dt
+

Gpn+s1/2d,1

r
, s23d

D ·un+1,2= 0, s24d
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Xn+1,2− Xn

Dt
=

h2

2 o
x

fun+1,2dhsx − Xn+1,1d + undhsx − Xndg

+
1

2
sUA

n+1,2t̂n+1,1+ UA
n t̂nd, s25d

where

fsu · = dugn+s1/2d,1 = 1
2hfsu · = dugn+1,1+ fsu · = dugnj,

s26d

fn+s1/2d,1 = 1
2sfn+1,1+ fnd. s27d

The predicted force and tangent vector are computed by

FIG. 4. (Color online). Vorticity: We=200, Re=20 000, L7.(a) andsa8d t=0.70,(b) andsb8d t=1.0, (c) andsc8d t=1.41. Right column, flooded contour plot.
Left column, scaled sheet vorticityhfinest3v vs the Lagrangian markera.
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fn+1,1= Dao
kPI

tDDat̂k
n+1,1dhsx − Xk

n+1,1d

+ o
kPW

FW,k
n+1,1dhsx − Xk

n+1,1d, s28d

t̂n+1,1=
DDaXn+1,1

iDDaXn+1,1i
, s29d

whereDa is the mesh spacing in the parametrizing variable.
A standard second-order discretization is used to approxi-
mateUA, the added tangential velocity(16). UA

n+1,1 is com-
puted employingun+1,1 and Xn and in the corrector step
UA

n+1,2 is obtained usingun+1,2 andXn+1,1.
The corrected valuesun+1,2 andXn+1,2 are the numerical

solution at the end of the time stept= tn+1, i.e., un+1

ªun+1,2 andXn+1
ªXn+1,2.

The predictor-corrector method(17)–(29) originates
from the more general iterative scheme given in Appendix B.
When iterated to convergence, the scheme corresponds to the
(implicit) Crank–Nicolson discretization.

The overall scheme introduced here is a variation of the
implicit immersed boundary method proposed by Roma,
Peskin, and Berger.23 Besides the Lagrangian mesh adaption,
a complete new feature, the main difference is in the manner
we compute the nonlinear term, here being fully implicit in
time. It is interesting to note that for the range of Weber
numbers we tested, 10øWe, the predictor–corrector scheme

in combination with the dynamic equidistribution removes
the time stepping constraint associated with surface
tension.

Observe that in the predictor–corrector scheme
(17)–(25), the Diracd distribution is approximated by a mol-
lified version dh. There are many possible choices for this
function. Here, we choose Peskin’sd,17

dhsxi,jd = dhsxiddhsyjd, s30d

where

dhszd = 50.25F1 + cosSP

2
z/hDG/h for uzu , 2h,

0 for uzu ù 2h.
6 s31d

This choice fordhsxd provides good regularization properties
around the interface and it is motivated by a set of compat-
ibility properties described by Peskin.17 Alternative discreti-
zations can be found in Refs. 23 and 24.

It is well known, see for example Ref. 25, that the im-
mersed boundary setting produces small amplitude mesh-
scale oscillations in the interface position. When derivatives
are computed from the interface position to obtain geometric
quantities and tension forces, these oscillations are amplified
by numerical differentiation and if left unattended could lead
to numerical instability. To eliminate the growth of the small

FIG. 5. We=200, Re=20 000, L7, longer time dynamics.(a) t=2.0, (b) t=2.5, (c) t=3.2, and(d) t=3.8.
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amplitude mesh-scale oscillations characteristic of immersed
boundary-based methods, we apply the fourth-order
filter:26

Xk ← 1
16s− Xk−2 + 4Xk−1 + 10Xk + 4Xk+1 − Xk+2d. s32d

The filter is applied every 10 time steps to the fluid interface
markers and every time step on the wall markers. The effect
of the filter on the numerical solution was tested with a reso-
lution study and by changing the frequency at which the
filter was applied from every 10 to every 100 time steps. No
appreciable difference was found except for the more sensi-
tive case of zero surface tensionsWe=`d and high Reynolds
number.

B. Spatial discretization

In the projection method we use here, we place the nu-
merical approximations of the Eulerian variables,ui j andpij ,
in a staggered fashion on the computational(composite)

mesh. The pressure is computed at the cell centers which are
indexed bysi , jd. The velocity is discretized at the cell edges
as ui j : =sui−s1/2d,j ,vi,j−s1/2dd. Figure 1 shows the location of
the variables for a uniform mesh patch.

In what follows, time indices are suppressed in favor of
clarity. For the velocity and pressure fields located as ex-
plained previously, the divergence and gradient operators are
approximated by the second-order finite difference
operators

sD ·udi,j =
ui+s1/2d,j − ui−s1/2d,j

h
+

vi,j+s1/2d − vi,j−s1/2d

h
, s33d

sGpdi,j = Spi,j − pi−1,j

h
,
pi,j − pi,j−1

h
D . s34d

The discretization of the viscous terms in(1) is given by
the five-point stencil

sLudi,j = Sui+s1/2d,j + ui−s3/2d,j + ui−s1/2d,j+1 + ui−s1/2d,j−1 − 4ui−s1/2d,j

h2 ,
vi,j+s1/2d + vi,j−s3/2d + vi+1,j−s1/2d + vi−1,j−s1/2d − 4vi,j−s1/2d

h2 D ,

s35d

which can also be denoted assLudi,j =fsLudi−1/2,j ,sLvdi,j−1/2g.
The nonlinear term,fsu ·= dug, is approximated by the nonconservative second-order centered scheme(see, for example,

Ref. 27)

fsu · ¹ dugi,j < Fui−s1/2d,jSui+s1/2d,j − ui−s3/2d,j

2h
D + v̄i−s1/2d,jSui−s1/2d,j+1 − ui−s1/2d,j−1

2h
D,ūi,j−s1/2dSvi+1,j−s1/2d − vi−1,j−s1/2d

2h
D

+ vi,j−s1/2dSvi,j+s1/2d − vi,j−s3/2d

2h
DG , s36d

where

v̄i−s1/2d,j =
vi,j−s1/2d + vi,j+s1/2d + vi−1,j+s1/2d + vi−1,j−s1/2d

4
,

ūi,j−s1/2d =
ui−s1/2d,j + ui−s1/2d,j−1 + ui+s1/2d,j−1 + ui+s1/2d,j

4
.

C. Adaptive mesh refinements

In the fully adaptive computational scheme, regions of
the flow bearing special interest are covered by block-
structured grids, defined as a hierarchical sequence of nested,
progressively finer levels(composite grids). Each level is
formed by a set of disjoint rectangular grids. Ghost cells are
employed around each grid, for all the levels, and underneath
fine grid patches to formally prevent the finite difference
operators from being redefined at grid borders and at interior
regions which are covered by finer levels. Values defined in
these cells are obtained from interpolation schemes, usually

with second- or third-order accuracy, and not from solving
the equations of the problem. The description of composite
grids is given in Ref. 28 in greater detail. Figure 2 shows an
interface between two successive refinement levels, and the
location of coarse and fine variables.

Composite grid generation depends on aflagging step,
that is, on determining first the cells whose collection gives
the region where refinement is to be applied. Here, we mark
for refinement a neighborhood of all immersed boundary
points (immersed boundary uniform covering). We also flag
points at which vorticity(in absolute value) is at least 30%
the global vorticity maximum. Once the collection of flagged
cells is obtained, grids in each level are generated by apply-
ing the algorithm for point clustering due to Berger and
Rigoutsos.29 Regridding is performed as often as an im-
mersed boundary point gets “too close” to the interface of
the finest level.

It is important to comment that the refinement ratio is
equal to 2, and that we employ multilevel-multigrid methods
to solve for both the provisional vector fieldsu*,m in the
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parabolic step of the projection method, and for the pressure
pn+s1/2d,m, in its elliptic stepsm=1,2d. V cycles are employed
with one relaxation on each multigrid level, upwards and
downwards. Detailed descriptions of the methodology to
solve for the pressure can be found in Refs. 23 and 30.

Projection methods on locally refined meshes, based on
cell centered discretizations of all variables, were first pro-
posed by Howell.31 Minion32,33developed a second-orderap-
proximateprojection method that facilitated the implementa-
tion of the multilevel-multigrid methods. The projection
method we employ here23 is based on Minion’s intermediate
projection step on locally refined staggered grids.

IV. BOUNDARY INTEGRAL DISCRETIZATION FOR
THE INVISCID SHEET

To solve numerically the vortex sheet equations
(12)–(14) we use the method introduced by HLS.12,20 For
completeness, we outline the method next. For a detailed
description the reader is referred to Refs. 12 and 20.

The method is based on the reformulation of the equa-
tions of motion in terms of the tangent angleu to the inter-

face and the arc-length metricsa=ÎXa
2 +Ya

2 which are vari-
ables more naturally related to the curvature. It also identifies
the small scale terms that contribute to the surface-tension-
induced stiffness. The evolution equation(12) in the new
variables becomes

]sa

]t
= sUT + UAda − uaUN, s37d

]u

]t
=

1

sa

fUNa + sUT + UAduag, s38d

whereUN andUT are the normal and tangential components
of the interfacial fluid velocity, respectively, and the particu-
lar UA given by (16) is selected.

The stiffness is hidden at the small spatial scales ofUNa

in the u equation. The leading order behavior ofUN at small
scales is given by20

FIG. 6. (Color online). Vorticity: We=200, Re=20 000, L7.(a) andsa8d t=2.0, (b) andsb8d t=2.5. Right column, flooded contour plot. Left column, scaled
sheet vorticityhfinest3v vs the Lagrangian markera.
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UNsa,td ,
1

2sa

Hfggsa,td, s39d

where H is the Hilbert transform. In the equidistributed
frame sa is constant is space and the inviscid vortex sheet
equation of motion can be written as

dsa

dt
=E

0

1

ua8UNda8, s40d

]u

]t
=

1

2sa
2 Hfgag + P, s41d

]g

]t
=

1

We

1

sa

uaa + Q, s42d

whereP represents lower-order terms at small spatial scales.
To remove the stiffness it is sufficient to discretize implicitly
the leading order in(41) and (42) and treat the lower-order
terms P and Q explicitly. We use the semi backward
difference formula (SBDF) fourth-order explicit/

implicit multistep method in Ref. 34. The principal value
integral is approximated with the spectrally accurate
alternate-point trapezoidal rule6 and each spatial derivative
and the Hilbert transform are computed pseudospectrally,
i.e., using the discrete Fourier transform. The implementa-
tion we use here has been tested and validated with several
examples in Ref. 35 where also the convergence of the
method was rigorously established.

V. RESULTS

For high Reynolds numbers, we expect the initial K-H
instability to be well predicted by the linear stability analysis
for the inviscid case. This is supported by the growth esti-
mates based on viscous potential flow theory by Funada and
Joseph.36 According to the inviscid linear stability analysis,
the dispersion relation gives instability for wave numbers
0, uku ,We/4p (see, for example Ref. 12). Thus, for suffi-
ciently small We(e.g., We=10) there would be no unstable
modes and the initially flat interface would undergo a simple
wave-like motion as documented in Ref. 12 for the inviscid

FIG. 7. (Color online). Vorticity: We=200, Re=20 000, L7.(c) andsc8d t=3.2, (d) andsd8d t=3.8. Right column, flooded contour plot. Left column, scaled
sheet vorticityhfinest3v vs the Lagrangian markera.
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sheet. We found the same type of motion for the correspond-
ing viscous interface. We do not report on this case here but
instead direct our attention to larger Weber numbers, We
=50, 200, and 400.

A. Initial conditions

We focus on the initial conditions used by Krasny4 and
by HLS (Ref. 12) in their study of an inviscid vortex sheet.
These initial conditions correspond to a perturbation of a flat
sheet with a uniformly concentrated vorticity distribution.
The nonlinear motion of the inviscid vortex sheet with these
initial conditions has been well studied both with and with-
out surface tension.4,6,12

The initial fluid interfaceX0 is given in parametric form
by

X0sad = sa + 0.01 sins2pad,− 0.01 sins2padd s43d

for 0øaø1. We obtain the initial velocitysu0,v0d from a d
supported vorticity with unit strength,

v0sx,yd = dhsfsx,ydd, s44d

fsx,yd = y + 0.01 sins2psx + ydd, s45d

for sx,yd in our computational domainVC=f0,1g3 f−1,1g
and withdh given by(31). Note that the zero level set off is
precisely the initial curve specified by(43). Given this vor-
ticity distribution, we first find thestream functioncsxd by
solving numerically(with standard second-order finite differ-
ences) the Poisson equation

Dc = − v0, s46d

in VC with periodic boundary conditions in the streamwise
direction and Dirichlet homogeneous conditions in the
normal-wall direction. We then compute the initial velocity
from c via

u0sxd = +
]c

]y
sxd, s47d

v0sxd = −
]c

]x
sxd, s48d

employing centered differences.

FIG. 8. We=200, Re=20 000, L7, longer time dynamics.(a) t=4.23 and(b) t=4.78.
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For the inviscid vortex sheet model(12) and (14) we
take the initial vortex sheet strength asg=−1 which corre-
sponds to the initial condition(44) and (45) in the limit as
h→0.

B. Resolutions

The numerical experiments for the viscous flows we re-
port on here use composite AMR meshes with six and seven
levels of refinement. We denote these AMR meshes by L6
and L7, respectively. The finest level of L6 and L7, which
covers the immersed boundaries at all times, corresponds to
the resolution equivalent to that of a 102432048 and 2048
34096 uniform mesh, respectively. The coarsest level corre-
sponds to that of a 32364 uniform mesh and the refinement
ratio between consecutive levels is 2. The supports4hd of the
mollified d function reduces accordingly when increasing the
numbers of refinement levels. For the range of Weber num-
bers considered, we find that the time-step size required for
numerical stability of our method only requires satisfying a
linear(CFL) condition,iui`Dt,h, independent of We. Typi-
cally, Dt=0.0005 for L6 andDt=0.000 25 for L7 but the

time step is varied adaptively based on the(time-dependent)
conditioniui`Dt,h. Initially, the number of markersNb on
the fluid interface is twice the number of grid points in the
horizontal direction, i.e.,Nb=2048 for L6 andNb=4096 for
L7. We doubleNb whenever the total length of the fluid
interface doubles. The interface position at the added points
is computed using linear interpolation. We tested this strat-
egy by comparing with computations that used a fixed, suf-
ficiently highNb (four times the number of grid points in the
horizontal direction) and found no appreciable difference in
the numerical results.

The inviscid vortex sheet boundary integral computa-
tions are computed with 1024 equidistributed interfacial
markers and withDt=0.000 25.

C. We=200

We consider first the flow corresponding to We=200.
This case was studied in great detail by HLS(Ref. 12) for the
inviscid vortex sheet. For We=̀, Re=̀ the vortex sheet
corresponding to the initial conditions(43)–(45) develops the
Moore curvature singularity attM <0.37. For We=200 and

FIG. 9. (Color online). Vorticity: We=200, Re=20 000, L7.(c) andsc8d t=4.23,(d) andsd8d t=4.78. Right column, flooded contour plot. Left column, scaled
sheet vorticityhfinest3v vs the Lagrangian markera.
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Re=` linear stability analysis gives 16 initially unstable
modes and the fastest growing mode isk=11. The numerical
study of HLS (Ref. 12) revealed that for We=200 surface
tension regularizes the Moore singularity and then the invis-
cid interface undergoes a roll up motion during which pinch-
ing is observed at the estimated timetp<1.427. The forma-
tion of this topological singularity is surprising because it
takes place in a pure planar motion where the azimuthal
component of the surface tension force is absent. We exam-
ine now how the presence of small but finite viscosity, Re
=20 000, affects this highly nonlinear interfacial
dynamics.

Figure 3 offers a comparison between the viscous(left
column) and the inviscid(right column) interface profiles.
The left column also displays the L7 AMR composite mesh
structure represented as patches(in different shades) corre-

FIG. 10. (a) Comparison of the We=200, Re=20 000 interface profiles for L6(dashed-dotted) and L7 (solid) resolutions.(a) t=4.0 and(b) t=4.78.

FIG. 11. Time behavior of the smallest interfacial gap for L6 and L7 reso-
lutions. We=200, Re=20 000. The minimum is 10.75 and 26.6 finest grid
points for L6 and L7, respectively.

FIG. 12. Inviscid vortex sheet, We=400.(a) t=0.50,(b) t=0.60,(c) t=0.70, and(d) t=0.82.
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sponding to each level of refinement. The region shown
is only a portion of the actual computational domainf0,1g
3 f−1,1g for the viscous flow. The remeshing algorithm does
not enforce symmetry and thus the AMR composite mesh is
generally not symmetric.

At an early time,t=0.70[Figs. 3(a) and 3sa8d], already a
significant difference between the viscous and the inviscid
interfacial profiles can be observed at the center of the free
boundaries. The inviscid sheet has developed two fingers
which are not yet formed in the viscous interface. The dis-
persive(capillary) waves running outward from the inviscid
sheet att=1.0 andt=1.41 [Figs. 3sb8d and 3sc8d] are absent
in the corresponding viscous profiles. For this Reynolds
number, viscous dissipation is suppressing these short waves.
At t=1.41, close to the inviscid pinching time, the viscous
interface is smooth and far from self-intersection. However,
outside the interface core region the inviscid and the viscous
interfaces coincide quite well up totp.

An examination of the vorticity field of the sheared in-
terface, shown in Fig. 4, can help us understand the observed
differences. Also appearing in Fig. 4 is the scaled interfacial
vorticity (right column):

vIsa,td = hfinestE
V

vsx,tddsx − Xsa,tdddx. s49d

The scaling factorhfinest has been introduced because the
initial, discretized, interfacial vorticity has the mesh-
dependent value 0.5/hfinest. Herehfinest=1/2048 for L7.

As Fig. 4(a) shows, att=0.70, a significant amount of
vorticity has been shed off the interface giving rise to the
formation of a pair of vortices, both with positive vorticity.
The interfacial vorticity, Fig. 4sa8d, shows maxima that are
attained around the location of the points of maximum cur-
vature and minima that take place in a neighborhood of the
interface center. As Figs. 4(b) and 4(c) demonstrates, the
vortex pair continues to significantly affect the finger devel-
opment and the subsequent interfacial rollup.

The evolution of the viscous interface for longer times,
well pasttp is depicted in Fig. 5. The fingers first widen and
subsequently undergo much deformation during rollup pro-
ducing att=3.2 a neck and the onset of what appears to be
capillary waves. The dynamics of the corresponding vorticity
is shown in Figs. 6 and 7. Vorticity is predominantly shed

FIG. 13. Viscous interface Re=5000 and We=400, L7.(a) t=0.7, (b) t=1.0, (c) t=1.6, (d) t=2.3, (e) t=3.07, and(f) t=3.5.

Phys. Fluids, Vol. 16, No. 12, December 2004 Study of the long-time dynamics of a viscous vortex 4299

Downloaded 26 Oct 2004 to 128.111.88.68. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



into the bulk phases from the regions of largest interfacial
curvature. In particular, due to this tearing and insufficient
production of vorticity at the necking region att=3.2, Figs.
7(c)–7sc8d, the fluid there cannot be entirely drained. Att
=3.8, Figs. 7(d)–7sd8d, the sheared interface has an “eye”
shape similar to that observed in the experiments of At-
savapranee and Gharib.1 At this time, the interface has de-
veloped two points of very high curvature, around<x=0.4
andx=0.6 and on which there is a significant accumulation
of vorticity as Fig. 7sd8d shows. However, the accumulation
of vorticity at these points is not sustained as the free surface
continues to stretch. The interface at even longer times,
t=4.23 andt=4.78, is presented in Fig. 8 while the corre-
sponding vorticity field is shown in Fig. 9. Shedding, trans-
port, and diffusion of vorticity as well as dispersion due to
interfacial tension lead to a convoluted interface but one on
which there is no indication of an eventual topological
reconnection, at least over the times we have computed.
Even a small viscosity appears to have prevented
pinching.

To assess the resolution of the L7 computations we com-
pare them with those obtained with L6. Figure 10 shows a

comparison of the interfacial profiles for the adaptive L6 and
L7 resolutions at the late stage of the motion. Note that the
support of the mollifiedd function for L7 is half that of L6.
This is also so in the spreading of the initial(uniform) vor-
ticity. Nevertheless, this resolution comparison demonstrates
that there is little difference in the interfacial dynamics for
L6 and L7 at this We. The comparison provides also evi-
dence that the L7 computations are well resolved. The time
history of the smallest interfacial gap computed for both L6
and L7 resolutions is presented in Fig. 11. Note that because
of the d function spreading, a minimum of four mesh points
is required to resolve a fluid region bounded by interface
segments. Even, at the very last computed time,t=4.78,
when the interface is highly stretched and some segments of
the interface are close to each other, there are over 26 finest
grid points to resolve the smallest gap in the L7 AMR
mesh.

To continue exploring the possibility of finite-time
pinching and to further study the viscous effects, we now
look at the dynamics of the viscous interfacial flow as Re is
increased for a fixed We. We select now a larger Weber num-
ber, We=400, because based on the inviscid vortex sheet
computations,12 the rollup core is expected to be tighter and
thus thinner fluid passages(necking regions) might
develop.

D. We=400

Figure 12 depicts the evolution of the inviscid vortex
sheet for We=400. The motion presents the same generic
features as that for We=200 except that the length scale has

FIG. 14. (a) We=400 and Re=5000.(a) Close-up of AMR mesh around the
minimum width neck and(b) time history of the neck width.

FIG. 15. (a) Comparison of the inviscid(solid) and the Re=5000, We
=400 interface profile(dashed) at t=0.82.(b) Resolution comparison for L6
and L7 at final timet=3.5.
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been reduced as evidenced by the smaller fingers, tighter
sheet core, and shorter capillary waves. The inviscid vortex
sheet self-intersects attp<0.82 as reported by HLS.12

We now look at the viscous flow dynamics for Reynolds
numbers Re=5000, Re=10 000, and Re=20 000.

1. Re=5000

Figure 13 presents the interfacial profile at different
times as well as the corresponding composite AMR mesh
structure in a region containing the interface. Att=0.7, Fig.

FIG. 16. (Color online). Vorticity: We=400, Re=5000, L7.(a) and sa8d t=0.70,(b) and sb8d t=1.0, (c) and sc8d t=1.6. Right column, flooded contour plot.
Left column, scaled sheet vorticityhfinest3v vs the Lagrangian markera.
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13(a), the free interface is vertical atx=0.5 and there is yet
no formation of fingers. Pasttp, wide and smooth fingers
develop, Fig. 13(b), and the interface roll-ups into a wide
spiral. Each finger tip comes in close proximity to the oppo-

site side of the interface att=2.3 producing two necking
regions. The thinnest neck is formed approximately at 3.07,
Fig. 13(e), reaching a value of 7.7310−3, 15.69 L7 finest
grid mesh cells. The necking region then gradually opens up

FIG. 17. (Color online). Vorticity: We=400, Re=5000, L7.(a) and sa8d t=2.3, (b) and sb8d t=3.07,(c) and sc8d t=3.5. Right column, flooded contour plot.
Left column, scaled sheet vorticityhfinest3v vs the Lagrangian markera.
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as the sheared interface continues to roll[Fig. 13(f)]. Figure
14(a) shows a close-up of the AMR mesh in the necking
region att=3.07, when the minimum interfacial separation is
achieved. The time history of the neck width appears in Fig.
14(b) where we can clearly see that the interface moves away
from pinching fort.3.07.

The pronounced viscous effects on the inviscid topologi-
cal singularity can be seen in Fig. 15(a) which presents a
comparison of the viscous and inviscid interface profiles
around the inviscid collapse time,tp<0.82. Figure 15(b)
compares the L7 and L6 interfaces at the final timet=3.5.
The two curves are indistinguishable from one another
within plotting resolution.

The vorticity field and the interfacial vorticity are shown
in Figs. 16 and 17. Note that very early in the dynamics at
t=0.7 the vorticity, initially concentrated on the interface,
has been diffused to a wide viscous layer around the center
[Fig. 16(a)]. When the fingers develop, Fig. 16(b), the inter-
facial vorticity increases attaining maximum values at the
finger tips. Vorticity is then shed off the tips into the bulk
fluid to give rise to the formation of two vortices as shown in

Fig. 16(c). The vorticity on these vortices subsequently
diffuses and weakens, as the series of pictures in Fig. 17
show. Aroundt=2.3, Figs. 17(a) and 17sa8d, when the two
necking regions develop, the vorticity on the interface seg-
ments bounding each neck has opposite signs creating effec-
tively a jet in each of the narrow regions. As the fluid in
these regions is drained, vorticity intensifies at the necking
points until a minimum neck width is attained aroundt
=3.07[Figs. 17(b) and 17sb8d]. The growth of vorticity then
saturates and the necking regions begin to open up[Figs.
17(c) and 17sc8d].

2. Re=10 000

Figure 18 presents the interface evolution for Re
=10 000. There is now an earlier formation of the fingers and
a tighter rollup core in comparison with the Re=5000 case.
As the fingers roll necking regions develop and the width of
the regions decreases until a minimum value is reached att
<2.28. After this, the bounding interface segments at the
neck separate as Fig. 18(f) shows. The minimum neck width

FIG. 18. Viscous interface Re=10 000 and We=400, L7.(a) t=0.7, (b) t=1.0, (c) t=1.6, (d) t=1.8, (e) t=2.28, and(f) t=2.5.
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is 5310−3, 10.24 L7 finest grid cells. A close-up of the AMR
L7 mesh around the necking region att=2.28, when the
minimum is reached, is shown in Fig. 19(a) while Fig. 19(b)
presents a time history of the neck width. Note that the
shapes of the fingers when the necking regions are formed
and when the minimum neck width is achieved are very
similar to those observed for 5000. A comparison of the vis-
cous and inviscid interface profiles around the inviscid col-
lapse time,tp<0.82, is given at Fig. 20(a) and Fig. 20(b)
compares the L6 and L7 resolutions on the interface at the
last computed timet=2.5. Again both resolutions give inter-
facial profiles that coincide quite well.

Figures 21 and 22 illustrate how vorticity is produced,
diffused, and transported dynamically. We can observe
larger values of interfacial vorticity than those for 5000
but the vorticity dynamics for both flows appears to be
very similar. Vorticity shed from the finger tips[Figs. 21(b)
and 21sb8d] leads to the formation of two vortices. Subse-
quently a jet is produced at each of the necking regions
[Figs. 22(a) and 22sa8d] and the interfacial vorticity grows at
the necking points until the minimum neck width is attained
at t<2.28.

3. Re=20 000

Finally, we end the series of computations for We=400
with the case Re=20 000. The interfacial profile at represen-
tative times during the motion is shown in Fig. 23. Naturally,
a faster interfacial motion is observed for this increased Rey-
nolds number. The fingers are also thinner, show more defor-
mation [Figs. 23(d)–23(f)] than in the previous two cases,
and an even more compact inner core during rollup. The
minimum width of the necking regions occurs att<1.81,
Fig. 23(e), reaching a value of 5.1310−3 or 10.46 L7 finest
grid cells, but then the region gradually opens up as observed
for the two smaller Reynolds numbers. Figure 24(a) provides
a close-up of the L7 AMR mesh in the vicinity of one of the
necking regions att=1.81 and the time history of the gap
width is shown in Fig. 24(b). Note that the minimum neck
width is about the same as that observed for Re=10 000.
They differ by less that one quarter of a mesh cell. One
would expect that as the Reynolds number increases the neck
width would decrease as observed when going from Re
=5000 to Re=10 000. This could well be the case but unfor-
tunately, even the L7 computations do not have the accuracy
to resolve the difference between the Re=10 000 and Re
=20 000 neck widths. What is clear, however, from Fig. 24 is
that the interface is also escaping self-intersection for Re
=20 000.

As observed for the previous cases viscosity produces an
order 1 effect on the finger formation and subsequent roll-up.
Figure 25(a) shows a comparison of the inviscid and viscous
profiles at the inviscid collapse time. A comparison of the L6
and L7 resolutions for the last computed time is given in Fig.

FIG. 19. (a) We=400 and Re=10 000.(a) Close-up of AMR mesh around
the minimum width neck and(b) time history of the neck width.

FIG. 20. (a) Comparison of the inviscid(solid) and the Re=10 000, We
=400 interface profile(dashed) at t=0.82.(b) Resolution comparison for L6
and L7 at final timet=2.5.
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25(b) where one can see that except at the points of largest
curvature, both interface profiles almost coincide within plot-
ting resolution. Finally, the vorticity dynamics is depicted in
Figs. 26 and 27. Larger values of interfacial vorticity are
found and the pair of vortices at the bulk fluid are stronger

that those for the smaller Reynolds numbers. There are also
significant amounts of vorticity which shed off the interface
at late times during the motion as seen in Figs. 27(b) and
27(c). This shed vorticity leads to an increased deformation
of the interface.

FIG. 21. (Color online). Vorticity: We=400, Re=10 000, L7.(a) andsa8d t=0.70,(b) andsb8d t=1.0, (c) andsc8d t=1.6. Right column, flooded contour plot.
Left column, scaled sheet vorticityhfinest3v vs the Lagrangian markera.
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The dynamics of the three We=400 cases we have con-
sidered are qualitatively similar and as far as the computa-
tions show, there is no indication that finite-time pinching
will happen for these initial conditions at a finite Reynolds
number.

E. We=50

We consider finally the case of an intermediate value of
the Weber number, We=50, for which a contrasting type of
motion is expected based on the inviscid sheet computations

FIG. 22. (Color online). Vorticity: We=400, Re=10 000, L7.(a) andsa8d t=1.8, (b) andsb8d t=2.28,(c) andsc8d t=2.5. Right column, flooded contour plot.
Left column, scaled sheet vorticityhfinest3v vs the Lagrangian markera.
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reported by HLS.12 Indeed, as HLS(Ref. 12) demonstrated,
for We=50 and the same initial data we consider here, the
vortex sheet does not rollup. Instead the inviscid interface
develops interpenetrating fingers that grow monotonically in
time. As the fingers grow they also become thin but there is
no indication that a finite-time interfacial collision will occur
for this particular We and initial data.

We now look at the effects of viscosity in this motion for
Re=20 000. Figure 28 shows the evolution of the sheared
interface for Re=20 000(left column) and contrasts it with
that of the corresponding inviscid vortex sheet(right col-
umn). Already att=3.0, Fig. 28(a), we can see a difference in
the shape of the fingers. The viscous fingers have a more
curved tip, are slightly bulged at the center, and are wider
than the inviscid ones. An incipient “necking” in the sheared
interface is observed att=4.0, Fig. 28(b). Instead of continu-
ing their lengthening in essentially the same inclined direc-
tion as in the inviscid case, the viscous fingers bend upwards

[Fig. 28(c)]. The lengthening then ceases shortly aftert
=5.0 and the viscous fingers begin to retract. An examination
of the vorticity can help to understand the significant differ-
ence between the inviscid and viscous motions. Positive vor-
ticity shed from the finger tips is transported and diffused
both into the interior and the exterior of the fingers. The
vorticity in the interior forms two round vortices as Fig.
29(a) shows. These positive vortices tear off some of the
negative interfacial vorticity at the necking points. The com-
bined vorticity inside the necking regions increases the flux
of fluid into the finger tips on one side of the neck and
decreases it on the opposite side. This leads to an asymmetry
in the finger tips and contributes to the bending of the fin-
gers. As vorticity continues to be shed from the leading
edges of the interface, Fig. 29(c), the K-H weakens and sur-
face tension is able to stop the finger growth. The dynamic
behavior up to this point is in accordance with the results

FIG. 23. Viscous interface Re=20 000 and We=400, L7.(a) t=0.7, (b) t=1.0, (c) t=1.3, (d) t=1.6, (e) t=1.81, and(f) t=2.24.

Phys. Fluids, Vol. 16, No. 12, December 2004 Study of the long-time dynamics of a viscous vortex 4307

Downloaded 26 Oct 2004 to 128.111.88.68. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



reported by Tauber, Unverdi, and Tryggvason13 for different
data.

Figure 30 presents the subsequent evolution of the vis-
cous interface as the fingers recede. The corresponding vor-
ticity field and the scaled interfacial vorticity are plotted in
Fig. 31. This longer time dynamics is striking. The sheared
interface forms large pockets of fluid that, as the interface
contracts, develop thin necks[Fig. 30(b)]. As in We=400,
the necks reach a minimum value, here att<7.1, after which
the disparate interface segments of the neck begin to sepa-
rate. As this occurs, a point of high curvature begins to ensue
at x<0.6 and the periodically extended interface appears to
collapse at this point[Fig. 30(c)]. The plots of vorticity in
Fig. 31 contrast clearly two important events: first the forma-
tion of a jet in each of the necking regions[Fig. 31(b)] but
with insufficient strength to drain all the fluid and overcome
the viscous layer, and second the large growth and concen-
tration of interfacial vorticity[Fig. 31sc8d] and a much stron-
ger jet as the interface is about to collapse. Note that a dif-
ferent vertical scale was used to plot the interfacial vorticity

in Fig. 31(c). The magnitude of the scaled interfacial vortic-
ity at t=7.3 exceeds for the first time in all our computations
0.5, the initial uniform value.

Close-ups of the L7 AMR mesh around the two contrast-
ing regions are given in Fig. 32. The time history of the neck
width is provided in Fig. 33(a) while Fig. 33(b) compares the
behavior of the neck width(labeled one-period gap) and the
collapsing gap width(labeled periodic extension gap) for
6.5ø tø7.3 measured in finest grid mesh cells. Att=7.3, the
collapsing gap has decreased to slightly less than four mesh
points. L7 resolution cannot resolve any further decrease and
thus the L7 computations fort.7.3 would be unphysical.
Nevertheless, the indications that the motion is going to be
shortly terminated by the collapse of the interfaces are
strong. A similar collapsing event was observed by HLS
(Ref. 12) for the inviscid vortex sheet at We=62.5. We
should note that there is an appreciable difference between
the L6 and L7 time history curves in Fig. 33(a). The two
curves share similar shapes but there appears to be a time
shift. As argued by Tauber, Unverdi, and Tryggvason,13 this
is likely to be the result of using a diffused interface ap-
proach as we do here. The spreading of surface tension
forces becomes particularly important when the K-H weak-
ens and the interface is pulled back. Since the surface tension
forces are spread out more on the coarser L6 mesh the effect
of surface tension is somewhat weaker. This results in a
slightly slower motion than that observed for L7. The com-
parison of the L6 and L7 interface profiles given in Fig. 34
and the time history curves are consistent with this
argument.

FIG. 24. (a) We=400 and Re=20 000.(a) Close-up of AMR mesh around
the minimum width neck and(b) time history of the neck width.

FIG. 25. (a) Comparison of the inviscid(solid) and the Re=20 000, We
=400 interface profile(dashed) at t=0.82.(b) Resolution comparison for L6
and L7 at final timet=2.24.

4308 Phys. Fluids, Vol. 16, No. 12, December 2004 H. D. Ceniceros and A. M. Roma

Downloaded 26 Oct 2004 to 128.111.88.68. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



VI. DISCUSSION AND CONCLUDING REMARKS

So far as can be discerned from the We=50, Re
=20 000 numerics, a topological singularity can occur in a
finite-viscosity 2D interfacial flow. HLS(Ref. 12) identified

the development of thin jets as being perhaps the basic struc-
ture in the formation of a topological singularity for the 2D
inviscid vortex sheet motion. As seen in our numerical ex-
periments the production and accumulation of vorticity has

FIG. 26. (Color online). Vorticity: We=400, Re=20 000, L7.(a) andsa8d t=0.70,(b) andsb8d t=1.0, (c) andsc8d t=1.3. Right column, flooded contour plot.
Left column, scaled sheet vorticityhfinest3v vs the Lagrangian markera.
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to be sustained at the narrow jets to make reconnection of the
sheared interface possible. Motivated by these observations
we now look at the dynamics of an isolated jet between two

disjoint interfaces. To this end, we consider two symmetric
interfaces whose initial positions are given in parametric
form by

FIG. 27. (Color online). Vorticity: We=400, Re=20 000, L7.(a) andsa8d t=1.6,(b) andsb8d t=1.81,(c) andsc8d t=2.24. Right column, flooded contour plot.
Left column, scaled sheet vorticityhfinest3v vs the Lagrangian markera.

4310 Phys. Fluids, Vol. 16, No. 12, December 2004 H. D. Ceniceros and A. M. Roma

Downloaded 26 Oct 2004 to 128.111.88.68. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



X1sa,0d = sa,0.09 + 0.01 coss2padd, s50d

X2sa,0d = sa,− 0.09 − 0.01 coss2padd s51d

for 0øaø1 and with initial vorticity distribution given by

w0sx,yd = − dhsf1sx,ydd + dhsf2sx,ydd, s52d

where

f1sx,yd = y − f0.09 + 0.01 coss2pxdg, s53d

FIG. 28. We=50. Left column, Re=20 000, L7. Right column, inviscid sheet.(a) and sa8d t=3.0, (b) and sb8d t=4.0, (c) and sc8d t=5.0.
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FIG. 29. (Color online). Vorticity: We=50, Re=20 000, L7.(a) andsa8d t=3.0,(b) andsb8d t=4.0,(c) andsc8d t=5.0. Right column, flooded contour plot. Left
column, scaled sheet vorticityhfinest3v vs the Lagrangian markera.
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f2sx,yd = y + f0.09 + 0.01 coss2pxdg. s54d

We take We=50 and Re=20 000. Figure 35(a) shows the jet
at t=0 and att=1.1, a time close to pinching. This picture
also provides a resolution comparison of the L6 and L7 in-

terface profiles. The profiles are indistinguishable within
plotting resolution. The L7 AMR mesh is displayed in Fig.
35(b).

Figure 36 presents a time history of the intersheet dis-
tance for both the L6 and the L7 resolutions. At the last
computed time,t=1.1, the distance is 5.153hfinest=5.03
310−3 and 4.943hfinest=2.41310−3 for L6 and L7, respec-
tively, with a clear indication of finite-time collapse. As Fig.
37 shows there is a strong concentration of vorticity at the
collapsing region. Att=1.1 the scaled interfacial vorticity at
the necking points is greater than 0.8, even larger than the
maximum value observed for the previous We=50 pinching
case.

The numerical evidence presented here shows that on
one hand small but finite viscosity can remove the inviscid
topological singularity in a rolled-up interface and on the
other it provides strong support to the hypothesis that topo-
logical singularities can still happen for some intermediate
We. There are several questions still unresolved; for ex-
ample, the structure of this singularity and the conditions
under which it can occur in a 2D interfacial flow need to be
better understood. We hope that our findings can stimulate
more research in this direction.
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APPENDIX A: THE ALGORITHM

The computational scheme is a formally second-
order, pressure increment projection method. The core of the
time discretization is the predictor–corrector scheme
(17)–(29), which as shown in Appendix B can be written as
a more general iteration method. With that in mind, we sum-
marize next the algorithm for the fully adaptive nonstiff
method.

To obtain sun+1,Xn+1d from the previous time step
known valuessun,Xnd, proceed as follows.

(1) Advance wall-anchor points using(7).
Consider theinitial guesses

un+1,0= un,

FIG. 30. We=50 and Re=20 000, L7.(a) t=6.5, (b) t=7.1, and(c) t=7.3.
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FIG. 31. (Color online). Vorticity: We=50, Re=20 000, L7.(a) andsa8d t=6.5,(b) andsb8d t=7.1,(c) andsc8d t=7.3. Right column, flooded contour plot. Left
column, scaled sheet vorticityhfinest3v vs the Lagrangian markera.
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pn+s1/2d,0 = H0 if n = 0,

pn−s1/2d if n ù 1,
J

Xn+1,0= Xn.

(2) For the iteration indexm varying from 1 to 2 do the
following.

(i) Spread forces from the Lagrangian to the Eulerian
mesh

fn+1,m−1 = Da o
IøW

Fk
n+1,m−1dhsx − Xk

n+1,m−1d,

whereFk
n+1,m−1 is given by

Fk
n+1,m−1

= HtDDasiDDaXk
n+1,m−1i−1DDaXk

n+1,m−1d for k P I ,

− SksXk
n+1,m−1 − Xw,k

n+1d for k P W,
J

and DDa is the centered difference operator ina, i.e.,

DDaXk = sXk+1 − Xk−1d/s2Dad.

(ii ) Compute the nonlinear and the singular terms at half
time levels, by the averages

fsu · = dugn+s1/2d,m−1 = 1
2hfsu · = dugn+1,m−1

+ fsu · = dugnj,

fn+s1/2d,m−1 = 1
2sfn+1,m−1 + fnd.

(iii ) Solve for the provisional velocity fieldu*,m (projec-
tion parabolic step)

u*,m − un

Dt
+

Gpn+s1/2d,m−1

r

=
m

r
LSu*,m + un

2
D − fsu · = dugn+s1/2d,m−1 +

fn+s1/2d,m−1

r
.

(iv) Solve for the pressurepn+s1/2d,m, and for the velocity
un+1,m (projection elliptic step) usingu*,m:

un+1,m − un

Dt
+

Gpn+s1/2d,m

r
=

u*,m − un

Dt
+

Gpn+s1/2d,m−1

r
,

FIG. 32. Close-ups of the regions with the smallest interfacial gaps.(a) t
=7.1 andt=7.3.

FIG. 33. We=50 and Re=20 000. Time history of the minimum gap in(a)
the one-period interface and(b) the periodically extended interface.
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D ·un+1,m = 0.

(v) With the new Eulerian velocity fieldun+1,m update
the immersed boundaries by

Xn+1,m − Xn

Dt
=

h2

2 o
x

fun+1,mdhsx − Xn+1,m−1d

+ undhsx − Xndg +
1

2
sUA

n+1,mt̂n+1,m−1

+ UA
n t̂nd,

where, for the fluid interface,UA
n+1,m is computed from(16)

usingun+1,m andXn+1,m−1 and it is set to be identically zero
for the markers on the walls.

(vi) Apply the filtering procedure to wall points. If it is
time, apply it also to fluid interface points.

(3) Check whether or not it is time to remesh, changing
to a new composite grid.

(4) Update the clock,tn+1= tn+Dtn, and select a new time
stepDtn based on the usual(first-order) CFL stability condi-
tion.

This completes the algorithm.

APPENDIX B: GENERAL ITERATIVE SCHEME

It is interesting to note that if the initial guesses

un+1,0= un, sB1d

pn+s1/2d,0 = H0 if n = 0,

pn−s1/2d if n ù 1,
J sB2d

FIG. 34. We=50 and Re=20 000. Resolution comparison. L6(dashed) and
L7 (solid) at (a) t=6.0 and(b) the time the minimum neck width is attained.

FIG. 35. A pinching jet, We=50 and Re=20 000.(a) t=0 (dashed) and t
=1.1 (solid) for both L6 and L7 resolutions.(b) The AMR L7 composite
grid and the sheets att=1.1.
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Xn+1,0= Xn sB3d

are considered, the predictor-corrector scheme(17)–(29) is
just a particular case of the more general iteration

u*,m − un

Dt
+

Gpn+s1/2d,m−1

r

=
m

r
LSu*,m + un

2
D − fsu · ¹ dugn+s1/2d,m−1 +

fn+s1/2d,m−1

r
,

sB4d

un+1,m − un

Dt
+

Gpn+s1/2d,m

r
=

u*,m − un

Dt
+

Gpn+s1/2d,m−1

r
, sB5d

D ·un+1,m = 0, sB6d

Xn+1,m − Xn

Dt
=

h2

2 o
x

fun+1,mdhsx − Xn+1,m−1d

+ undhsx − Xndg +
1

2
sUA

n+1,mt̂n+1,m−1 + UA
n t̂nd

sB7d

with iteration index varying from 1 to 2.
The nonlinear and singular force terms, at half time lev-

els, are given by the averages

fsu · ¹ dugn+s1/2d,m−1 = 1
2hfsu · ¹ dugn+1,m−1

+ fsu · ¹ dugnj, sB8d

fn+s1/2d,m−1 = 1
2sfn+1,m−1 + fnd, sB9d

where, for arbitrary indicesn andm, one has

fn+1,m−1 = Ds o
k[IøW

Fk
n+1,m−1dhsx − Xk

n+1,m−1d. sB10d

1P. Atsavapranee and M. Gharib, “Structures in stratified plane mixing
layers and the effects of cross-shear,” J. Fluid Mech.342, 53 (1997).

2D. W. Moore, “The spontaneous appearance of a singularity in the shape
of an evolving vortex sheet,” Proc. R. Soc. London, Ser. A365, 105
(1979).

3R. Caflisch and O. Orellana, “Singular solutions and ill-posedness of the
evolution of vortex sheets,” SIAM J. Math. Anal.20, 293 (1989).

4R. Krasny, “A study of singularity formation in a vortex sheet by the point
vortex approximation,” J. Fluid Mech.167, 65 (1986).

5D. I. Meiron, G. R. Baker, and S. A. Orszag, “Analytic structure of vortex
sheet dynamics. Part 1. Kelvin–Helmholtz instability,” J. Fluid Mech.
114, 283 (1982).

6M. J. Shelley, “A study of singularity formation in vortex sheet motion by
a spectrally accurate vortex method,” J. Fluid Mech.244, 493 (1992).

7Q. Nie and G. R. Baker, “Application of adaptive quadrature to axi-
symmetric vortex-sheet motion,” J. Comput. Phys.143, 49 (1999).

8M. Nitsche, “Singularity formation in a cylindrical and spherical vortex
sheet,” J. Comput. Phys.173, 208 (2002).

9T. Sakajo, “Formation of curvature singularity along vortex line in axi-
symmetric, swirling vortex sheet,” Phys. Fluids14, 2886(2002).

10S. Cowley, G. R. Baker, and S. Tanveer, “On the formation of Moore
curvature singularities in vortex sheet,” J. Fluid Mech.378, 233 (1999).

11T. Y. Hou, G. Hu, and P. Zhang, “Singularity formation in 3D vortex
sheets,” Phys. Fluids15, 147 (2003).

12T. Y. Hou, J. S. Lowengrub, and M. J. Shelley, “The long-time motion of
vortex sheets with surface tension,” Phys. Fluids9, 1933(1997).

13W. Tauber, S. O. Unverdi, and G. Tryggvason, “The nonlinear behavior of

FIG. 36. Time behavior of the jet’s intersheet distance for L6(dashed) and
L7 (solid).

FIG. 37. (Color online). Vorticity of the pinching jet att=1.1, We=50 and
Re=20 000, L7.(a) Flooded contour plot of the vorticity field near the
pinching region and(b) scaled vorticitysvhfinestd along the upper(solid) and
the lower sheet(dashed).

Phys. Fluids, Vol. 16, No. 12, December 2004 Study of the long-time dynamics of a viscous vortex 4317

Downloaded 26 Oct 2004 to 128.111.88.68. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



a sheared immiscible fluid interface,” Phys. Fluids14, 2871(2002).
14J. Glimm, J. W. Grove, X.-L. Li, K. M. Shyue, Y. N. Zeng, and Q. Zhang,

“Three-dimensional front tracking,” SIAM J. Sci. Comput.(USA) 19, 703
(1998).

15J. Glimm, J. Grove, X.-L. Li, and D. C. Tan, “Robust computational al-
gorithms for dynamic interface tracking in three dimensions,” SIAM J.
Sci. Comput.(USA) 21, 2240(2000).

16J. Glimm, J. W. Grove, X. L. Li, W. Oh, and D. H. Sharp, “A critical
analysis of Rayleigh–Taylor growth rates,” J. Comput. Phys.169, 652
(2001).

17C. S. Peskin, “Numerical analysis of blood flow in the heart,” J. Comput.
Phys. 25, 220 (1977).

18S. O. Unverdi and G. Tryggvason, “A front-tracking method for viscous,
incompressible, multi-fluid flows,” J. Comput. Phys.100, 25 (1992).

19A. A. Mayo and C. S. Peskin, “An implicit numerical method for fluid
dynamics problems with the immersed elastic boundaries,” Contemp.
Math. 141, 261 (1993).

20T. Y. Hou, J. S. Lowengrub, and M. J. Shelley, “Removing the stiffness
from interfacial flows with surface tension,” J. Comput. Phys.114, 312
(1994).

21J. M. Stockie and B. R. Wetton, “Analysis of stiffness in the immersed
boundary method and implications for time-stepping schemes,” J. Com-
put. Phys.154, 41 (1999).

22H. D. Ceniceros, “The effect of surfactants on the formation and evolution
of capillary waves,” Phys. Fluids15, 245 (2003).

23A. M. Roma, C. S. Peskin, and M. J. Berger, “An adaptive version of the
immersed boundary method,” J. Comput. Phys.153, 509 (1999).

24K. M. Arthurs, L. C. Moore, C. S. Peskin, E. B. Pitman, and H. E. Layton,

“Modeling arteriolar flow and mass transport using the immersed bound-
ary method,” J. Comput. Phys.147, 402 (1998).

25G. Tryggvason, B. Bunner, A. Esmaeeli, D. Juric, N. Al-Rawahi, W.
Tauber, J. Han, S. Nas, and Y.-J. Jan, “A front-tracking method for com-
putations of multiphase flow,” J. Comput. Phys.169, 708 (2001).

26M. S. Longuet-Higgins and E. D. Cokelet, “The deformation of steep
surface waves on water I. A numerical method of computation,” Proc. R.
Soc. London, Ser. A350, 1 (1976).

27R. Peyret and T. D. Taylor,Computational Methods for Fluid Flow
(Springer, New York, 1990).

28M. J. Berger and P. Colella, “Local adaptive mesh refinement for shock
hydrodynamics,” J. Comput. Phys.82, 64 (1989).

29M. J. Berger and I. Rigoutsos, “An algorithm for point clustering and grid
generation,” IEEE Trans. Syst. Man Cybern.21, 1278(1991).

30A. M. Roma, Ph.D. thesis, Courant Institute of Mathematical Sciences—
New York University, 1996.

31L. H. Howell, Technical Report UCRL-JC-112327, 1993.
32M. L. Minion, Technical Report 95-002, 1995.
33M. L. Minion, “A projection method on locally refined grids,” J. Comput.

Phys. 127, 158 (1996).
34U. M. Ascher, S. J. Ruuth, and B. Wetton, “Implicit-explicit methods for

time-dependent pde’s,” SIAM(Soc. Ind. Appl. Math.) J. Numer. Anal.32,
797 (1995).

35H. D. Ceniceros and T. Y. Hou, “Convergence of a non-stiff boundary
integral method for interfacial flows with surface tension,” Math. Comput.
67, 137 (1998).

36T. Funada and D. D. Joseph, “Viscous potential flow analysis of Kelvin–
Helmholtz instability in a channel,” J. Fluid Mech.445, 263 (2001).

4318 Phys. Fluids, Vol. 16, No. 12, December 2004 H. D. Ceniceros and A. M. Roma

Downloaded 26 Oct 2004 to 128.111.88.68. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp


