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Abstract

Peristaltic pumping is a mechanism for transporting fluid or immersed par-
ticles in a channel by waves of contraction. It occurs in many biological
organisms as well as in several human designed systems. In this study, we in-
vestigate numerically the peristaltic pumping of an incompressible viscoelas-
tic fluid using the simple Oldroyd-B model coupled to the Navier-Stokes
equations. The pump’s walls are assumed to be massless immersed fibers
whose prescribed periodic motion and flow interaction is handled with the
Immersed Boundary Method. We utilize a new, highly efficient non-stiff
version of this method which allows us to explore an unprecedented range
of parameter regimes, nearly all possible occlusion ratios and Weissenberg
numbers in excess of 100. Our numerical investigation reveals rich, highly
concentrated stress structures and new, striking dynamics. The investigation
also points to the limitations of the Oldroyd B model, with a potential finite
time blow-up, and to the role of numerical regularization.
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1. Introduction

Peristalsis is the flow that takes places in a channel with flexible walls
due to a series of contraction or expansion waves along the walls. It is a
predominant mechanism of action in a variety of biological phenomena, from
earthworm mobility [25] to gastrointestinal [14] and esophageal transport [2].
Peristalsis is utilized in many mechanical fluid pumps, often because of its
ability to effectively transport highly viscous fluids and as well as immersed
particles. In both biological and mechanical systems, the fluid internal to
the pump may be non-Newtonian. Such is the case for peristalsis in the
oviduct [5] and uterus [18] where the transported biological fluid is highly
viscoelastic [17].

There are several analytical and numerical studies of peristalsis [27, 16,
15, 6, 24, 29, 13, 32, 11, 10, 36] with increasing emphasis on viscoelastic fluids.
We focus here on a model used by the recent investigations of Teran, Fauci,
and Shelley [32] and by Chrispell and Fauci [10]. The fluid model is based
on the Stokes [32] or Navier-Stokes [10] equations coupled with the simple
Oldroyd-B (OB) model and describes a dilute solution of flexible polymeric
molecules represented by Hookean dumbbells [4, 12, 19]. The Immersed
Boundary (IB) Method [21, 22] is employed to model the pump, as done
originally by Fauci [13]. In this IB setting, the pump’s walls are tethered
to anchor points which are set to a prescribed periodic motion to simulate
the waves of contraction and expansion. Teran, Fauci, and Shelley [32] and
Chrispell and Fauci [10] found that there is a marked difference between the
Newtonian and the non-Newtonian fluid pumping. In particular, the mean
flow rate is noticeably affected by viscoelastic effects. They also noted that
extremely strong normal stresses are generated at the pump’s constriction
as the amplitude of the peristaltic wave relative to the channel width (the
so called occlusion ratio) increases, even for moderate Weissenberg numbers
(the polymer relaxation time relative to the flow’s characteristic time scale).
These large normal stresses present a formidable computational challenge; to
accurately preserve the structure of the pump’s walls during their prescribed
periodic motion very stiff boundary forces must be employed. This induces a
severe time step restriction for explicit IB methods [31, 30]. Indeed, the use
of an explicit IB method in [32, 10] limited the parameter space ameanable
to simulation to a region consisting of only the first half of the possible occlu-
sion ratios and to Weissenberg numbers less or equal to 5. In this work, we
employ a novel semi-implicit IB method [8, 7] to make possible a computa-
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tional study that covers nearly all possible occlusion ratios and Weissenberg
numbers in excess of 100. Our numerical investigation reveals new, striking
dynamics which include highly localized stress structures, a potential finite
time blow-up, symmetry breaking transitions, and the emergence of a critical
occlusion ratio at which the ordering of the mean flow rate with respect to
the Weissenberg number is reversed.

The rest of this article is organized as follows. First, the model is de-
scribed in detail in the following section. Then, in Section 3, we present a
new numerical method coupling a viscoelastic fluid solver to a novel, highly
efficient semi-implicit version of the IB method, [8, 7]. Our numerical results
are presented and discussed in Section 4. Finally, some concluding remarks
are given in Section 5.

2. The Peristaltic Pump and Viscoelastic Fluid Models

We consider a peristaltic pump immersed in a periodic 2D domain Ω =
[0, 1] × [0, 1]. We model the peristaltic pump’s walls as two disconnected
sinusoidal curves [13, 32, 10]

X(t) =

{(
ξ,

1

2
+ d(ξ, t)

) ∣∣∣ξ ∈ [0, 1]

}
∪
{(

ξ,
1

2
− d(ξ, t)

) ∣∣∣ξ ∈ [0, 1]

}
, (1)

where
d(x, t) =

α

2π
[1 + χ sin 2π(ξ − t)]. (2)

Both the spatial and temporal period of the pump is fixed at 1. As time
progresses, the waves of peristalsis move from left to right, forcing the fluid
to flow to the right (in aggregate). The parameter χ represents the occlusion
ratio of the pump. The value χ = 0 corresponds to a straight channel, with
no waves of peristalsis, while χ = 1 correspond to a completely occluded
channel with the peaks of each sinusoidal curve meeting at some point along
the horizontal line y = 1/2. The parameter α controls the aspect ratio of the
channel. For this work we fix α = 1.5.

We model the interior and exterior of the valve as a dilute, incompress-
ible OB suspension [4]. The interaction between the valve and the fluid is
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captured via the IB Method. The continuous equations are then

Re

(
∂u

∂t
+ u · ∇u

)
= −∇p+∇2u + β∇ · S + f , (3)

∇ · u = 0, (4)

∂X

∂t
= u(X, t), (5)

S∇ = −We−1(S− I). (6)

Here f is a very stiff force acting on the immersed walls binding the current
configuration X to the desired prescribed position given by (1). In (3), Re is
the Reynolds number which is a measure of the viscous dissipation relative
to inertial forces. The dimensionless term β specifies the strength of the
viscoelastic force ∇ · S. Here, S is the deviatoric part of the viscoelastic
stress tensor and evolves according to the OB constitutive equation, given in
(6) [4]. S∇ denotes the upper convected derivative of S:

S∇ =
dS

dt
+ u · ∇S−∇u · S− S · ∇uT . (7)

We is the Weissenberg number and is defined as the ratio of the polymer
relaxation time and a characteristic time scale of the fluid. In the limit as
We → 0 the polymeric stress is fixed as the identity tensor I and the fluid
becomes Newtonian.

Finally, the product βWe can be interpreted as the ratio of the polymeric
viscosity to the solvent viscosity [32]. We fix βWe = 1

2
following [32]. We

choose the characteristic length scale to be 1, the width of our fluid domain
Ω and the characteristic time scale we also take it to be 1, the period of
the peristaltic pump. We fix the Reynolds number of our fluid at Re = 1.
Throughout this work the only fluid parameter we change is the Weissenberg
number We.

We discretize the pump’s walls X as a collection of NB immersed points
{Xj}. The position of these points is not directly prescribed, rather we
construct an artificial force to approximately constrain the immersed points
to their respective positions. For each point Xj, we define Tj to be the
desired target position. We then induce a force F on immersed points given
by

F = σ(T−X). (8)
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The stiffness coefficient σ is a numerical parameter. In the limit as σ → ∞
we exactly constrain X to the desired configuration. In practice, σ needs to
be a fairly large value. With our semi-implicit method we can use values of
σ multiple orders of magnitude larger than previously possible. For the large
values of χ and We explored in this work, we are required to take σ = O(106)
to maintain the structure of the pump. This large stiffness coefficient would
lead to prohibitively small time-steps for explicit methods. In our numerical
experiments our choice of σ reduces deviations in X from the target position
T to less than 0.0005 units, even when the normal polymeric stresses at the
pump’s walls rise to values of 1000 and more.

3. Numerical Methodology

We briefly overview the numerical method here. It is based on a semi-
implicit discretization of the Navier-Stokes equations given by

un+1 − un

∆t
+ un · ∇un = −Dhp

n+1 + Lhu
n+1 + f , (9)

Dh · un+1 = 0, (10)

Xn+1 −Xn

∆t
= S∗nun+1. (11)

Here a superscript n denotes a numerical approximation taken at the time
n∆t and ∆t is the timestep. The spatial operators Dh and Lh are the stan-
dard, second order approximations to the gradient and the Laplacian, respec-
tively. The convection term un · ∇un is handled separately via a third-order
essentially non-oscillatory (ENO) scheme [28]. The force F in (8) is defined
at the immersed boundary only and has to be spread onto the surrounding
Eulerian grid points. Likewise, the velocity field is not given at the immersed
boundary, so we must interpolate. To achieve this spreading and interpola-
tion we define the adjoint operators:

(SnG)(x) =
∑
s∈GB

G(s)δh(x−Xn(s))hB, (12)

(S∗nw)(s) =
∑
x∈GΩ

w(x)δh(x−Xn(s))h2, (13)

known as the spreading and interpolation operators, respectively. Here δh(x) ≡
dh(x)dh(y) is an approximation to the two-dimensional Dirac delta distribu-
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tion and dh is given by

dh(r) =

{
1
4h

(
1 + cos(πr

2h
)
)

if |r| ≤ 2h,

0 otherwise.
(14)

We refer to these operators as lagged because the interface configuration Xn

is used instead of the future configuration Xn+1.
Utilizing Sn and S∗n we now specify the form of f in (9):

f = σSn(Tn+1 −Xn+1) + βDh · Sn, (15)

which incorporates both the artificial force on the immersed points, as well
as the additional force coming from the polymeric stress. We thus consider
the polymeric stress fixed as we update the fluid. Once we have an updated
fluid velocity Un+1 we will then calculate an updated value for the stress
Sn+1.

We can eliminate un+1 from the equations (9)-(11) to arrive at a linear
system of the form [8, 7]

Xn+1 = σMn(Tn+1 −Xn+1) + bn, . (16)

We refer to this as the Lagrangian system. Mn is a linear operator acting on
a force distribution F and returning the resulting displacement of immersed
points due to the induced fluid flow from the spread force SnF. One impor-
tant observation if that bothMn and bn can be explicitly constructed in an
efficient manner, yielding a 2NB × 2NB matrix and 2NB vector respectively.
This construction is detailed in [8]. The resulting system can be rewritten
as a simple matrix inversion problem

(I + σMn)Xn+1 = σTn+1 + bn, . (17)

The matrix I + σMn is positive-definite and the linear system (17) can be
efficiently solved. Here we employ the conjugate gradient to obtain a nearly
optimal solver. Once we have solved (17) for the updated configuration Xn+1

we then calculate the updated fluid velocity via (9)-(10).
Finally, we must calculate the updated polymeric stress Sn+1. We use the

method of lines and consider the semi-discrete equation:

dS

dt
+ un+1 · ∇S = Dhu

n+1 · S + S ·Dh(u
n+1)T +

1

We
(I− S). (18)
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Here the convective term un+1 · ∇S is calculated via the third-order ENO
scheme, as is the convection in the momentum equation (9). We further
discretize in time via a second-order Runge-Kutta (RK) method [28]. If we
define the Euler update operator

E(S) = S + ∆t

[
Dhu

n+1 · S + S ·Dh(u
n+1)T +

1

We
(I− S)− un+1 · ∇S

]
,

(19)
then the RK update is given as Sn+1 = (Sn + E(E(Sn)))/2. It is important
to note that if E(·) is total variation diminishing (TVD) then so is the RK
method [28].

3.1. Summary of algorithm

Given Xn, un, Sn at time t = n∆t, a complete timestep may be summa-
rized as follows

1. Calculate the fluid matrix Mn and the explicit term bn.

2. Solve for the updated pump configuration Xn+1 via the matrix problem
(I + σMn)Xn+1 = σTn+1 + bn.

3. Calculate the updated fluid velocity un+1 via (9)-(10).

4. Calculate the updated polymeric stress Sn+1 via the second-order (TVD)
RK method, Sn+1 = (Sn + E(E(Sn)))/2.

4. Results

We summarize in this section the results of our numerical simulations.
We first provide evidence to validate the numerical methodology and then
proceed to examine the dynamics of the peristaltic pump model for occlusion
ratios and Weissenberg numbers.

A quantity of interest in the fluid transport is the total mass flux (flow
rate) across a specified vertical line x = x0,

Q(x0, t) =

∫ 0.5+d(x0,t)

0.5−d(x0,t)

u(x0, y)dy. (20)

More importantly is the mean flow rate, the average mass flux over one time-
period, given by

Θ(t) =
π

αχ

∫ t+1

t

Q(x0, t
′)dt′. (21)
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The constant π/(αχ) has been introduced to produce a normalized, dimen-
sionless mean flow rate such that Θ(t) ≡ 1 when χ = 1, regardless of whether
the fluid is Newtonian or viscoelastic. In this work, we take x0 = 0.5 and, as
mentioned above, we fix Re = 1 and βWe = 1/2. Initially, S = I in all our
simulations.

4.1. Resolution study and comparison to analytical results

We seek to validate our simulations through two approaches: by per-
forming a resolution and convergence study for the full system as well as by
comparing to an analytic formula for Θ valid for a Newtonian Stokes flow.

For the resolution and convergence study we consider the particular case
χ = 0.25 and We = 1. The flow is smooth for this low χ and We [32, 10]
and hence one can verify the theoretical order of convergence of the method.
To this end, we fix the time-step, ∆t = 0.00025, and run the simulation for
a range of N from 256 up to 2048. We consider the N = 2048 run as our
reference solution (“exact”) and compute the errors of the other simulations
in relation to this N = 2048 case. The results are displayed in Fig. 1. In
Fig. 1(a) we examine the difference in flow rate π

αχ
Q at time t = 1. We observe

less than a 1% relative error for N ≥ 1024. In Fig. 1(b) we consider the sup
(maximum) norm of the difference of the xx-component of the polymeric
stress (Sxx). In both cases, we observe a slightly better than first order
convergence, as expected [20].

Jaffrin [15] provides an asymptotic formula for the mean flow rate Θ valid
for a Newtonian Stokes flow (Re = 0 and We = 0):

ΘJ =
15χ2 + 2α2[4(1− χ2)5/2 + (7χ2 − 4)(1− χ2)]

χ[5(2 + χ2) + 6α2χ2(1− χ2)]
. (22)

This formula includes curvature corrections to the simpler relation Θ =
3χ2/(2 + χ2) of Jaffrin, Shapiro, and Weinberg [27].

In contrast to the Stokes case, the Navier-Stokes fluid has advection and
takes a finite amount of time (t < 1) to reach a steady state. We take t = 1
and calculate Θ for a full range of χ, from 0 up to 0.95. The comparison
of our numerical results to Jaffrin’s formula (22) is given in Fig. 2. We see
reasonably good agreement. However, for small to moderate occlusion ra-
tios, the Stokes flow results in [32] provide slightly better agreement with the
analytic formula. Based on numerical experience, we believe that in addi-
tion to the small difference caused by inertia (c.f. [10]), the main deviation
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from the analytic result might be attributed to the somewhat better volume
conservation of the explicit IB method. Importantly, however, explicit IB
simulations for the cases when χ ≥ 0.5 are impractical.

4.2. High occlusion ratio, χ=0.8

As the occlusion ratio of the peristaltic wave amplitude relative to the
channel’s width increases, the fluid generates progressively larger stresses
on the peristaltic pump. These stresses become so large that even at mid
range occlusion ratios (χ ≈ 0.5) and quite moderate Weissenberg numbers
(We ≈ 5) an explicit, accurate integration of the IB model ceases to be prac-
tical. In more detail, the high values of the stiffness constant σ which are
needed to maintain the structure of the pump and to enforce the given peri-
odic motion under high stresses are on the order of 106 or higher. These large
values become unattainable with an explicit integration of the IB equations
due to the induced, extremely small time-step constraint, even at modest
resolutions (N ≤ 256) [10]. This has limited previous (explicit) IB simula-
tions of peristaltic pumping of an OB fluid [32, 10] to the restricted region
in parameter space consisting of 0 ≤ χ ≤ 0.5 and 0 ≤ We ≤ 5. Indeed,
the time-step restriction of the explicit IB method becomes so severe that
Chrispell and Fauci [10] found it necessary to take a much smaller stiffness
constant (σ = 2000) to be able to afford stable simulations for χ = 0.5 and
We = 5 (no corresponding value of σ was reported in [32]). However, we
have found (also [9]) that values of σ much smaller than 106 are insufficient to
maintain the integrity of the pump for χ near 0.5 or higher and for We ≥ 5.
More precisely, the pump artificially “swells” due to extremely large normal
stresses if σ is not large enough and this “swelling” leads to a faux decrease
of the mean flow rate. This numerical problem underlies the fact that the
accurate computation for even moderate χ and We is a formidable challenge.

With our efficient, implicit IB methodology coupled to the robust scheme
for the polymeric stress equation and the use of high order upwinding, we
are able to compute reliably for nearly all the occlusion ratio range (0 ≤ χ <
1) and for We more than one order of magnitude of what was previously
possible. Throughout our computations we closely monitor the constriction
of the pump to ensure no artificial swelling is produced for the high occlusion
ratios and high Weissenberg numbers we consider.

As an illustration of the rich dynamics exhibited at high occlusion ratios
we now present simulation results for χ = 0.8 and We = 5. In Figs. 3
through 6, we plot the polymeric stress and the vorticity evolution over time,
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(a) Error of flow rate π
αχ |Q− Q̃|, m = −1.479.

(b) Error of maximum stress
∥∥∥Sxx − S̃xx∥∥∥

∞
, m = −1.800.

Figure 1: Spatial resolution study for decreasing values of h. Value specified is plotted
against h in a log-log plot. Variables with a tilde, �̃, refer to values coming from an
N = 2048 simulation. Lines are linear fits with specified slope m.
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Figure 2: Normalized mean flow calculated both via Jaffrin’s formula and numerical
simulation (Re = 1) for the full range of χ = 0 to χ = 1.

for N = 1024 and ∆t = 0.00025. We see first that Sxx, the xx component
of the polymeric stress, is largely concentrated in the pump’s constriction
(neck), attaining a peak value of 360 at time t = 0.5. Near t = 1.5, Sxx
becomes much more localized, into a nearly horizontal line, and grows rapidly
reaching a maximum value of 18000. Later (t = 4.5), this singly filamented
structure splits into two threads running through the pump’s neck. The two
additional components of the polymeric stress, Sxy and Syy, also develop
strong localized structures right after the neck, at the dilated part of the
pump, reaching peak values of 2400 and 6400, respectively.

The trace of S, tr(S) = Sxx+Syy, provides a measure of the mean-squared
elongation of the Hookean dumbbells in the OB model. Thus, a look at
Fig. 3 and Fig. 5 clearly identifies the filament-like areas where extremely
high polymer coil extension takes place. As noted in [32], the stress growth
at the pump’s constriction is initially produced by an extensional flow, as
the vorticity plot (Fig. 6 at t = 0.5) demonstrates. However, at t = 1.5 the
difference between the vorticity distribution of the Newtonian flow (Fig. 7)
and of the viscoelastic counterpart is striking. The localized structures of very
high stresses have evolved into two sharp layers adjacent to the inner surface
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Figure 3: Sxx for We = 5 and χ = 0.8 at times t = 0.5, t = 1.5, t = 4.5.

Figure 4: Sxy for We = 5 and χ = 0.8 at times t = 0.5, t = 1.5, t = 4.5.

Figure 5: Syy for We = 5 and χ = 0.8 at times t = 0.5, t = 1.5, t = 4.5.

Figure 6: Vorticity for We = 5 and χ = 0.8 at times t = 0.5, t = 1.5, t = 4.5.
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Figure 7: Vorticity for a pump with χ = 0.8 in a Newtonian flow at time t = 1.5.

of the walls. We compare the vorticity fields for two numerical resolutions
(N = 512 and N = 1024 with a corresponding ∆t = 0.128/N) and note that
the structure is qualitatively identical. Closer examination of the N = 512
plot reveals slightly less sharp interfaces, indicative of the greater numerical
dissipation (due to the ENO differentiation) at lower resolutions. We observe
similar results when we investigate the stress S.

It is remarkable that the observed layers of high stress effectively block
off the interior of the peristaltic pump where the vorticity is nearly zero.
Indeed, as Fig. 9 shows, the velocity field at the inner core of the pump is
nearly uniform and in the horizontal direction. Consequently, the viscoelastic
stresses have isolated a bolus of fluid that travels with the peristaltic wave.
As time progresses, up to t = 4.5, we see the formation of more filamented
stress structures closer to the walls as well as two threads of very high stress
in the interior of the pump, at the dilated section. The latter two delimit a
smaller inner core of nearly uniform flow.

An important observation is that the strong thin filament in Sxx at the
pump’s constriction, around t = 1.5, dissipates over time and is significantly
weaker at t = 4.5. To investigate if this dissipation is inherent to the ENO
advection scheme, we perform a resolution study focusing on ‖Sxx‖∞ over
the time interval (0, 1.5). More precisely, we look at the maximum norm
of Sxx along the horizontal line of symmetry, denoted as

∥∥S̄xx(t)∥∥∞ at time

t. First, in Fig. 10(a), we plot
∥∥S̄xx(t)∥∥∞ over time for values of N ranging
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Figure 8: A comparison of the vorticity for χ = 0.8 and We = 5 at time t = 1.5 for
N = 512 and N = 1024 on the left and right, respectively.

Figure 9: Velocity field for χ = 0.8 and We = 5 at time t = 1.5.
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from N = 256 to N = 2048 (∆t = 0.128/N). We see that there is a fast,
nearly exponential growth of this quantity, that levels off near t = 1.5. As
N increases, so does the maximum stress. We analyze this dependence in
Fig. 10(b) where we plot

∥∥S̄xx(t)∥∥∞ at t = 1.25 versus logN . We observe

that
∥∥S̄xx(1.25)

∥∥
∞ grows almost exactly proportional to logN , yielding the

approximate formula ∥∥S̄xx(1.25)
∥∥
∞ ≈ 5286 logN. (23)

It is unclear if the relationship (23) persists for arbitrarily large N but
if this were the case, then it would be evidence for a finite time blow-up
singularity in the OB model which is being regularized numerically by the
high order ENO upwinding. To provide additional verification, we attempt
to fit an exponential time growth model of the form CNe

βN t to
∥∥S̄xx(t)∥∥∞

over the time interval (0.36, 0.70). For N = 2048, the best fit is given by
C = 10, β = 7.68. The fit is qualitatively good, as seen in Fig. 11(a). We
proceed to compute the best fit for various values of N and investigate the
sequence {βN}. In Fig. 11(b), we plot βN with respect to logN and notice
a distinct linear trend. A linear fit yields βN ≈ 0.3533 logN . We thus again
see an unbounded growth as N → ∞. This uncontrolled behavior for the
exponent clearly points in the direction of a potential finite-time singularity
in the polymeric stress.

Numerical evidence for such a finite time blow-up in an OB fluid has
been provided by Thomases and Shelley using a four-roll mill type of back-
ground forcing [35]. Much earlier, Rallison and Hinch [26] elucidated this
unphysical behavior of the OB model due to the infinite extensibility of the
macromolecule coils. It is interesting to note, however, that the seemingly un-
bounded stress growth occurs in a highly concentrated region which appears
to collapse to a line. Thus, as argued in [26], the gigantic but highly localized
stresses are unable to arrest the extensional flow causing the unbounded coil
elongation.

It is important to emphasize the specific regularizing role of the ENO dif-
ferentiation in the OB model. If simple, first order upwinding were employed
to discretize the advection terms in the polymeric stress equation [Eq. (6)]
it would be equivalent to using centered differences with the addition of the
diffusion term h

2
LhS ≈ h

2
∇2S, where Lh is the standard second order ap-

proximation of the Laplacian. As pointed out recently by Thomases [33],
the addition of O(h)∇2S diffusion seems to be sufficient to maintain a finite
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(a)
∥∥S̄xx(t)

∥∥
∞ over the time interval (0, 1.5) for various values of N .

(b)
∥∥S̄xx(t)

∥∥
∞ at time t = 1.25, plotted against logN , as N varies

from 256 to 2048. Dashed line is a linear fit with slope m = 5286

Figure 10: Resolution study of the sup norm of the stress component Sxx along the
horizontal line of symmetry, denoted as

∥∥S̄xx(t)
∥∥
∞ at time t.
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(a)
∥∥S̄xx(t)

∥∥
∞ over the time interval (0.36, 0.70) for N = 2048.

Matched fit is the exponential curve 10e7.68t.

(b) βN (◦) and CN (�) with respect to logN . The solid line is a
linear fit with slope m = 0.3533.

Figure 11: Time behavior of
∥∥S̄xx(t)

∥∥
∞ for χ = 0.8 and We = 5.
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polymer coil extension and stress. However, the diffusion provided by the
term h

2
LhS could be excessive for practical resolutions. The ENO scheme,

which uses upwinding plus a high order correction employing a sliding sten-
cil, provides a much smaller and localized regularization. In particular, we
capture much sharper interfaces in the stress when using ENO as opposed to
upwinding.

4.3. High Weissenberg number

As the Weissenberg number increases, the viscoelastic effects on the flow
become more pronounced. Large stresses and normal forces on the walls of
the peristaltic pump are generated, even for moderate values of We. These
forces in turn require large stiffness constants σ to properly maintain the
prescribed shape and motion of the walls in the IB model. Previous inves-
tigations employing the same model [32, 10] have been limited to We ≤ 5.
Here, we are able to investigate for much higher Weissenberg numbers, in
excess to 100.

We begin by considering the case We = 55 and χ = 0.5. In Figs. 12
through 15, we plot the polymeric stress and the vorticity evolution over
time, for N = 1024 and ∆t = 0.00025. Unlike the We = 5 and χ = 0.8
case, the stress components Sxx and Sxy at early times (t = 1.4) display
doubly-peaked concentrated structures. There is also a new region of strong
polymer elongation (as measured by tr(S)) near the center of the dilated part
of the pump (see Fig. 14 ). By t = 8.4, the polymeric stress components have
evolved into multi-layered structures conforming to the shape of the pump’s
walls. The vortex pair at the pump’s constriction (Fig. 15) has also been
deformed by the strong stresses in that area. As time progresses, however,
the multi-layered structures merge into smooth, simple regions as observed
at t = 18.9. It is conceivable that this smoothing transition is due to an
accumulation of the numerical dissipation inherent to the ENO advection
scheme.

4.4. Mean flow rate behavior

An important question is how the normalized mean flow rate Θ responds
to changes in χ and We. In Fig. 16, we plot Θ at time t = 15 and t = 50 for
different values of χ and We in the ranges 0 ≤ χ ≤ 0.75 and 0 ≤ We ≤ 105.

At t = 15 [Fig. 16(a)], we observe a simple monotonic growth of Θ as χ
increases for We = 1 and We = 2. For the larger We, there is a somewhat
oscillatory change at high occlusion ratios, in the range 0.6 ≤ χ ≤ 0.75. We
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Figure 12: Sxx for We = 55 and χ = 0.5 at times t = 1.4, t = 8.4, t = 18.9.

Figure 13: Sxy for We = 55 and χ = 0.5 at times t = 1.4, t = 8.4, t = 18.9.

Figure 14: Syy for We = 55 and χ = 0.5 at times t = 1.4, t = 8.4, t = 18.9.

Figure 15: Vorticity for We = 55 and χ = 0.5 at times t = 1.4, t = 8.4, t = 18.9.
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note that our observed monotonic behavior of Θ for 0 ≤ χ ≤ 0.5 and for
all the considered Weissenberg numbers is in contrast to the marked flow
decrease near χ = 0.5 reported in [32] for We = 2 and We = 5. However,
in [10] a simple monotonic behavior for We = 2 was also observed and only
a mild decrease in Θ for We = 5 as χ approached 0.5. As pointed out above,
we have found that this flow decrease is largely due to an artificial swelling
of the pump when the stiffness constant σ in the IB model is not sufficiently
large to withstand the enormous stresses generated by the flow for increased
values of χ and We.

The simple monotonic growth of Θ for We = 1 and We = 2 is maintained
at t = 50 [Fig. 16(b)] for all the examined occlusion ratios, 0 ≤ χ ≤ 0.75.
However, the χ-dependence of Θ is qualitatively very different for higher We
and for 0.5 ≤ χ ≤ 0.75. First, there is a critical occlusion ratio χc ≈ 0.475
after which the monotonic increase of Θ with We is essentially reversed (with
the exception of We = 105 for the largest two occlusion ratios). Moreover,
the mean flow rate appears to converge in We to a nearly flat curve for χc ≤
χ < 0.7 before increasing toward the expected value of 1 as χ → 1. Indeed,
there is little difference between the We = 55 and the We = 105 curves. This
could be indicative of a dominant effect of numerical regularization (via the
ENO scheme) as computations for We = 105 for higher resolutions become
unstable.

To try to understand the pronounced deviation from the Newtonian case,
we look at the time dependence of Θ. For We ≤ 5, it appears that a quasi-
steady state is eventually reached and, as reported in [32, 10], it takes a
time of about 3We to attain that regime. For higher We, we find that
the situation is substantially different and quite more complex. Figure 17
displays the time behavior of Θ for χ = 0.4 and χ = 0.6. At the smaller
occlusion ratio [Fig. 17(a)], the mean flow for We = 5 has little variation
over time, consistent with previous results. However, for We ≥ 25 both
small amplitude oscillations at the order of the pump’s period as well as
sizable longer time scale variations are observed. In particular, there is no
apparent quasi-steady state for We = 55 and We = 105 up to t ≤ 150.
Nevertheless, for We = 25 there is a near plateau from approximately t = 70
to t = 120 and after which Θ undergoes a noticeable decrease. This type
of transition also occurs for We = 5 at the higher occlusion ratio χ = 0.6
[Fig. 17(b)]. The flow appears to reach and maintain a quasi-steady value of
Θ for about 50 periods (from t = 20 to t = 70) but then has a sudden drop
at time t = 70. This surprising mean flow rate transition takes place soon
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after we begin to observe a loss of symmetry in the flow. Figure 18 shows
the extent to which the vorticity field has become asymmetric for We = 5
and χ = 6 at t = 150. We believe that this symmetry breaking transition
is due to elastic flow instabilities excited by asymmetric perturbations of
the flow variables (introduced, for example, by the matrix approximation of
the flow-structure interaction operator). Asymmetric flow transitions have
been observed experimentally in a dilute solution of flexible polymers [1]
as well as in numerical simulations of the OB model [23, 37, 3, 34]. They
are associated with strong extensional flows that produce large polymer coil
elongations which is precisely the case for the peristaltic pump at sufficiently
high Weissenberg numbers and large occlusion ratios.

5. Conclusions

We presented a numerical investigation of peristaltic pumping of a vis-
coelastic fluid using the simple OB model coupled to the Navier-Stokes equa-
tions. Using a fast and non-stiff IB method we were able to explore, for the
first time, parameter regimes that include nearly the entire range of occlu-
sion ratios and Weissenberg numbers in excess of 100. Rich, time-dependent
stress structures and striking new flow behaviors emerged. The investiga-
tion also pointed to the limitations of the OB model (potential finite time
blow-up) and to the role numerical regularization plays.

Our study reveals that for large occlusion ratios and moderate to large
Weissenberg numbers (e.g. χ = 0.8 and We = 5), the polymeric stress devel-
ops highly concentrated, filamented structures. At the pump’s constriction,
an unbounded polymer coil elongation along the line of symmetry can oc-
cur due to a strong extensional flow. This eventually leads to a finite time
singularity in the the solution as the mesh size goes to zero. However, at a
finite resolution the high order ENO upwinding employed in the polymeric
stress equation is sufficient to obtain a smooth solution for long times. In
this long-time solution, we observe vorticity layers around the inner part of
the pump’s walls which at some time effectively isolate a bolus of fluid that
travels with the peristaltic wave.

As the Weissenberg number increases our numerical simulations show
that the flow becomes highly time-dependent with complex dynamics. This
is reflected in the behavior of the mean flow rate Θ. After 15 time periods,
we see a nearly monotonic growth of Θ with χ for We ≤ 5 and 0 ≤ χ ≤ 0.75
and an increase in Θ with We for fixed χ. Several periods later, there is
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(a) Normalized mean flow rate versus χ at t = 15.

(b) Normalized mean flow rate versus χ at t = 50.

Figure 16: Normalized mean flow rate for various values of We and χ.
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(a) χ = 0.4

(b) χ = 0.6

Figure 17: Mean flow Θ over time for various values of We. Top and bottom plot
are for χ = 0.4 and χ = 0.6 respectively.
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Figure 18: Velocity field for χ = 0.8 and We = 5 at time t = 1.5.

an emergence of a critical χc at which the ordering in We is reversed (flow
decreases with increasing We) and the mean flow rate appears to converge
in We to a nearly flat curve for χc ≤ χ < 0.7. Moreover, for moderate We,
we are able to observe a symmetry breaking transition after which there is a
decrease in Θ and the flow migrates from one quasi-steady state to another.

Future work will focus on the three-dimensional flow where preliminary
results suggest new behaviors. In 3D, it is also possible to study a plethora
of novel asymmetrical pump geometries, including cork-screw like shapes.
Preliminary results also suggest interesting differences when the OB fluid is
replaced with a FENE-P fluid to maintain finite coil extensibility.
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