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We consider the behavior of the Doi-Marrucci-Greco (DMG) model for nematic liquid crystalline
polymers in planar shear flow. We found the DMG model to exhibit dynamics in both qualitative and
quantitative agreement with experimental observations reported by Larson and Mead [Liq. Cryst.
15, 151 (1993)] for the Ericksen number and Deborah number cascades. For increasing shear rates
within the Ericksen number cascade, the DMG model displays three distinct regimes: stable simple
shear, stable roll cells, and irregular structure accompanied by disclination formation. In accordance
with experimental observations, the model predicts both +1 and +1/2 disclinations. Although +1
defects form via the ridge-splitting mechanism first identified by Feng, Tao, and Leal [J. Fluid
Mech. 449, 179 (2001)], a new mechanism is identified for the formation of +1/2 defects. Within
the Deborah number cascade, with increasing Deborah number, the DMG model exhibits a
streamwise banded texture, in the absence of disclinations and roll cells, followed by a monodomain
wherein the mean orientation lies within the shear plane throughout the domain. © 2007 American

Institute of Physics. [DOI: 10.1063/1.2424499]

I. INTRODUCTION

The potential for application of liquid-crystalline poly-
mers (LCPs)lf3 as a structural material relies upon the fact
that there is a high degree of alignment at both the molecular
and mesoscopic levels. The relative order within the material
is a strong function of its processing history. In fiber-
spinning flows, the flow is largely extensional and this en-
hances the natural tendency of the LCP to exist in an aligned
state. A result is the well-known Kevlar® fiber produced by
DuPont. Unfortunately, the processing of LCPs in other con-
figurations is limited by the fact that there is a propensity for
the formation and proliferation of orientational defects,
known as disclinations, especially in the shear-type flows
that are characteristic of most other polymer processing ap-
plications. The result in these cases is a material that is iso-
tropic at the mesoscopic level, with alignment confined to
small microdomains, and the intrinsic advantage of LCPs as
a structural material (which might otherwise offset its in-
creased cost compared to other polymeric materials) is lost.
Therefore, to realize the full potential of LCPs, we must
understand the processes by which disclinations are formed,
and the dependence of these processes on the flow condi-
tions. Because of the small-scale nature of the instabilities
that lead to defects in LCPs, the usefulness of macroscopic
experimental studies of such instabilities is limited. Reliance
is, therefore, placed on theory and numerical investigations
for detailed insight into the topological evolution of liquid-
crystalline systems. Mesoscale numerical investigations, in
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which a continuum description couples the microscale struc-
ture to the macroscopic stress, allow for qualitative predic-
tion of the effects of flow conditions on the formation of
disclinations.

Nematic LCPs exhibit both elastic and viscoelastic char-
acteristics when subjected to flow. Both elasticity and vis-
coelasticity in this class of materials emanate from the equi-
librium tendency for alignment in a uniform direction.
Elasticity is associated with the resistance to the formation of
spatial gradients in the mean molecular orientation, and is
generally known as Frank or gradient elasticiz‘y.4 Viscoelas-
ticity derives from flow-induced deviations in the degree of
alignment at each point from its equilibrium value. Corre-
sponding to these two manifestations of elastic effects, there
are two dimensionless measures of the shear rate for flows of
liquid-crystalline polymers. The first, known as the Ericksen
number” Er, is a ratio of the magnitude of viscous shear
stress to the elastic stress. The second is known as the Debo-
rah number’ De, and is the product of the shear rate and the
natural relaxation time for reestablishment of an equilibrium
orientation state. In real systems, the Ericksen number is
generally several orders of magnitude larger than the Debo-
rah number at any fixed shear rate. Although there have been
many experimental investigations of the behavior of LCPs in
planar shear ﬂow,ﬁ*13 the most comprehensive, in terms of
observations over a wide range of shear rates (and thus also
a wide range of Ericksen and Deborah numbers) is the study
of Larson and Mead'*'" in which a nematic liquid-crystalline
poly(y-benzyl-glutamate) (PBG) solution was subjected to
shear flows in torsional and planar cells. Larson and Mead"
observed that this LCP exhibited two distinct regimes when
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subjected to shear flow, which are now believed to be generic
to all LCPs. The two regimes are referred to as the Ericksen
number and Deborah number cascades.

The Ericksen number cascade corresponds to the regime
of shear rates where Er= (1) and De <1 and is character-
ized by instabilities that arise at low shear rates as a conse-
quence of the competition between the viscous stress im-
posed by the flow and long-range (gradient) elasticity. The
result at low to moderate Ericksen numbers is the formation
of banded patterns (i.e., a birefringent striped texture) ori-
ented either perpendicular to or along the flow direction, the
direction of which depends upon the initial mean molecular
orientation. As the shear rate is increased, this is followed by
increasingly complex time-dependent flows, and ultimately,
to the evolution of disclinations that proliferate with time and
lead to a polydomain structure in which the system is only
aligned in small microdomains but is isotropic on larger
length scales. During the whole series of flow types de-
scribed above, though the Ericksen number can achieve quite
large values, the Deborah number remains small. However,
as the shear rate is increased further, the Deborah number
reaches O(1) (and even larger) values, meaning that the time
scale characteristic of deformation by the flow (i.e., ') be-
comes comparable to (or smaller than) the relaxation time
scale of the polymer, and viscoelastic effects become impor-
tant. In this regime, as De is increased, the polydomain struc-
ture at first becomes increasingly refined, but eventually, at
high enough shear rates, viscoelasticity appears to stabilize
the system, the complex polydomain structure disappears
and there is again the visual appearance of bands (this time
oriented along the flow direction), followed at higher shear
rates by what is apparently a monodomain structure (i.e., no
birefringence). The latter series of transitions is the Deborah
number cascade.

The numerical investigation presented here, together
with the earlier study of Sgalari, Meiburg, and Leal,]4 is a
first step in the development of computational tools that can
be used to simulate the behavior of nematic LCPs in flow
using a specific molecular model for nematic LCPs.>! Be-
fore attempting more complex flows, it is important for us to
first verify that the molecular theory is capable of predicting
the onset and evolution of both types of disclinations (i.e.,
the thicks and thins) seen experimentally, and is capable of
qualitatively reproducing the Ericksen and Deborah number
cascades in a simple, two-dimensional shear cell. Several
previous numerical investigations have considered the shear-
flow behavior of nematic LCPs, using either molecular-based
models'"™" or phenomenologically based tensor models’* %
that account for both the local and nonlocal contributions to
the macroscopic stress (i.e., viscoelasticity and gradient elas-
ticity). However, these studies have been limited to one- or
two-dimensional flows between parallel plates wherein the
flow is either held fixed (i.e., decoupled calculations) or
coupled-flow calculations but with the polymer dynamics re-
stricted to the shear plane. The calculations reported here
consider the coupled-flow problem, in which the flow and
polymer dynamics are coupled via the macroscopic stress,
and are limited only in the sense that they assume a priori
that there are no spatial gradients in the flow direction.
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The neglect of spatial gradients along the flow direction
is only strictly valid for two limiting cases: (i) low Er
(De <« 1), where the ratio between the streamwise and span-
wise length scales emanating from the streamwise roll cells
that are known to occur is very large (see, for example, Fig.
7 in Ref. 11); and (ii) “large” Deborah number, De=1
(Er>> 1), which is known from experiments to coincide with
the reemergence of a banded pattern parallel to the flow di-
rection. Given that (ii) simply corresponds to the Deborah
number cascade, our simulations are not limited in this re-
gard. With regard to (i), since we neglect streamwise gradi-
ents, we cannot predict the banded texture perpendicular to
(and periodic along) the flow direction that is seen upon
startup in experiments. Also, the disclinations predicted by
the DMG model in these calculations must be interpreted as
fully aligned with the flow and of infinite extent. Therefore,
the model used in this investigation is inhibited from predict-
ing three-dimensional disclination structures such as the
closed-loop disclinations commonly observed in shear flow
for both small-molecule liquid crystals24 and LCPs.""" 1t is
important to note that these limitations should not imply that
the DMG model could not predict these phenomena via dif-
ferent boundary conditions™ or a fully 3D calculation—it is
simply unclear until such calculations have actually been
done.

Previous theoretical and numerical predictions of the on-
set and growth of roll ce:lls,26’27 and the resulting flow and
orientation structures, in shearing flows of nematic polymers
have been limited to the Leslie-Ericksen (LE) theory.zg’29 Be-
cause the LE theory is known to exhibit gradient elasticity
but no viscoelasticity, these predictions were therefore re-
stricted to the study of the Ericksen number cascade, i.e., to
the limiting case De— 0. In a recent study, Feng, Tao, and
Leal®’ carried out a numerical investigation of this cascade
using the LE theory. Their results demonstrated the onset of
the roll-cell formation, followed by destabilization of the roll
cells, and finally the formation of 1 disclinations. An initial
attempt to generalize these results by including viscoelastic
effects via the DMG model was carried out by Sgalari, Leal,
and Meiburg,14 following work by Feng, Sgalari, and Leal'®
to derive the constitutive equation corresponding to the
Marrucci-Greco extension of the Maier-Saupe Nematic
potential.15 As was demonstrated by Feng et al.,' in the limit
De— 0, the DMG theory reduces to the LE theory. Although
the simulations of Sgalari et al. showed promise that the
DMG model would capture the expected qualitative behavior
for both the Ericksen and Deborah number cascades, numeri-
cal issues limited both the range of parameters studied and
the accuracy of the simulations.

The present investigation extends the work of Sgalari
et al.™ Improved numerical methods have allowed for more
accurate solutions over a much wider range of parameters.
However, though the velocity field is 3D in the sense that all
three velocity components are nonzero, we have retained the
2D assumption of no spatial gradients in the flow direction.
In the present work, we show that computations carried out
at low De do largely reproduce the results found by Feng
et al.”’ using the LE model. More importantly, we show that
the DMG model does produce both +1 and +1/2 disclina-
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tions for large Er and small, but nonzero, values of De. Fur-
thermore, as De is increased, the flow is stabilized when
viscoelastic effects become strong enough, just as expected
qualitatively from the experimental observations of Larson
and Mead.""

Il. THEORY AND NUMERICAL METHOD
A. The DMG model

The model used in this study is an extension, due to
Marrucci and Greco' and Feng et al.,16 of the molecular
model first proposed by Doi,™ which treats the LCP as a
suspension of rigid rod-like molecules having an infinite
length-to-width ratio. The forces acting on the rods are hy-
drodynamic, Brownian, and intermolecular forces. The dy-
namics of the system of rods is described in terms of an
orientational distribution function ¢(u;r,z), which gives the
probability of finding a rod at position r with an orientation,
represented by the unit vector u, within the solid angle du at
time ¢ and is defined such that [ g¢(u;r,f)du=1, where S? is
the unit sphere in R

If translational diffusion is neglected and the number
density of the polymer molecules v is assumed not to vary in
space, the dynamic equation governing the distribution func-
tion ¢ may be written as’

‘9_‘/’+V.V¢p=—7€~(u>< K- uy)
ot
+D.R- [Rl//+ iRd’] m
r kT '

where R is the rotational operator, R=u X (d/du), which
corresponds to the gradient operator in rotational diffusion,
k=(Vv)T is the transpose of the velocity gradient, kg is the
Boltzmann constant, 7 is the absolute temperature, and ¢ is
the mean-field nematic potential. Following Doi,”” we use a
pre-averaged approximation for the rotational diffusivity D,
of the form

— D

D,=—5, 2

r (1 _ 52)2 ( )
where D, is the rotational diffusivity for an isotropic solution
having the same polymer concentration. S=[(3A:

A-1)/2]"? is the scalar order parameter, where A
=[gyuudu=(uu) is the second moment of the distribution
function. The colon represents the contraction operator, i.e.,
A:A=A;A;; with the summation convention, and uu is the
dyadic tensor product, i.e., (uu);=uu;. In effect, Eq. (2)
accounts for increased rotational diffusivity with increased
local order.

The extended Doi theory (which we refer to here as the
Doi-Marrucci-Greco theory) incorporates the Marrucci-
Greco potentialI5 to account for nonlocal elastic contribu-
tions analogous to the Frank elasticity contributions of the
Leslie-Ericksen theory; the mean-field molecular interaction
proposed by Marrucci and Greco couples the Maier-Saupe
excluded-volume potential33’34 to a nonlocal potential to ac-
count for long-range elastic interactions. The one-constant
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approximation of the Marrucci-Greco potential, analogous to
the K; =K, =Kj3; approximation for the Leslie-Ericksen
theory, is given by

3 e
by =— EUkBT<A+ £V2A>ZUU, (3)

where € is the correlation length scale for the distortional
elasticity interaction and U is a constant representing the
strength of interactions between molecules.

As was proposed by Doi and Edwards,” we represent
the polymer stress 7 as the sum of a viscous stress 7, and an
elastic stress 7.. The viscous stress remains the same as in
the original Doi theory because it is only a result of viscous
friction. The more complicated elastic stress contribution,
formulated by Feng et al.,' may be written as

T.= 3kaT{A -UA-A-A:Q)

Ue? ) )
= |A-V2A-Q:V?A

24

VA:(VA)T-VVA:A
L TR ]} )

where Q=[gyuuuudu=(uuuu) is the fourth moment of
the distribution function and the contraction operations
are defined as VA:(VA)T=(&Akllﬁxi)(z?Alk/&xj) and
VVA:A=(Ay! dx;9x;)Ay. The total stress is therefore

B ( vkyT
(vL¥)*\ 2D,

where (vL?)? is the crowdedness factor and S is an O(103)
Constant.3l

T=T.+

B. Closure approximation

Given that the stress tensor is only a function of the
second and fourth moments of ¢ (i.e., A and Q, respec-
tively), we choose to make some mathematical simplifica-
tions in deriving a closed system of equations representing
Egs.(1), (4), and (5) in terms of A. Following the Prager
procedure,” we multiply Eq. (1) by uu and integrate over
configuration space (i.e., the surface of a unit sphere), to
obtain a dynamic equation for the second moment tensor;

dA T _ I
E+V-VA=K~A+A-K -2K:Q-06D, A—g

D, U¢?

+6D,UA-A-A:Q)+

X(V’A-A+A-V’A-2V?A:Q), (6)

where I is the identity matrix. In order to obtain a closed
system for A, we approximate Q as a function of A. Such a
closure expression yields a closed system of equations [i.e.,
Eqgs. (4)—(6)] that can be coupled to the equations of motion
to describe the dynamics of a nematic liquid polymer under
an imposed flow.

In approximating Q, we have chosen to use the so-called
Bingham closure approximation.36 Numerical investigations
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by Feng et al.”’ suggest that the Bingham closure model is an
appropriate choice in simulating complex flows. Because it is
formulated using the simplifying assumption that the prob-
ability distribution function can be approximated in the form
of a Bingham distribution, the Bingham closure model is
only exact in the limit of weak flows where the viscous
torque on molecules is not sufficient to skew the orienta-
tional distribution, i.e., in the limit of low De. This limitation
results from the fact that the Bingham distribution is inher-
ently restricted to a description of the orientational distribu-
tion that exhibits axial symmetry (i.e., uniaxial, biaxial, or
triaxial symmetry). The model, therefore, cannot capture the
shear-induced wagging—to—flow-aligning transition that is
observed experimentally at high De.'" Instead, the Bingham
closure predicts a monotonic decrease in the wagging ampli-
tude. But, given that tumbling, not wagging, is considered to
be the source of disclinations and other defects in dynamic
LCP systems, this deficiency in the Bingham closure does
not inhibit its application in this context.

C. Governing equations

In making Egs. (4)-(6) dimensionless, we take the rela-
tive velocity V between the shearing plates to be the charac-
teristic velocity, and the plate separation H to be the charac-
teristic length. For the flow considered here, the appropriate
characteristic time is H/V. Based on this choice of charac-
teristic scales, the dimensionless constitutive equation and
equations of motion may be written as

oA 5
—+v-VA=K-A+A-KT—2K:Q—i(A-—)
ot De 3
U
+f—(A~A—A:Q)+ f2 —
De 2cSqur

X(V2A-A+A-V’A-2V?A:Q), (7)
v >
Re| —+v-Vv|=Vv-Vp+V.7, (8)

V.-v=0, 9

where f=4/9(1-A:A)72, c=vkgzT/27D, is the concentration
parameter, and the nondimensional polymeric stress is given
by

= kQ+—[A-UA A-A:Q)]
TN T pett T —
1 ) ) VA:(VA)"-VVA:A
———| VA A-Q:V?A +
Squr 4
(10)

The Reynolds number is defined as Re=pVH/n, with p and
7 being the density of the fluid and the constant solvent
viscosity, respectively. Typically, Re~103-10"* for sys-
tems similar to that which is considered here. We therefore
use the Stokes form of the momentum equation, i.e., Eq. (8)
with Re=0.
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The equilibrium value of the scalar order parameter S,
is determined via substitution of the equilibrium (i.e.,
uniaxial) form for the second moment tensor

I I
Aeq=Seq nn—g +§,

with n=(1 0 0)7, into the steady, homogeneous form of Eq.
(6).

The pressure and stress have been scaled by »V/H. Note
that dimensional analysis yields two characteristic param-
eters. The first is the Deborah number De, defined as

(11

De=—,

oD, (12)

which is a ratio of the molecular relaxation time scale to the
mean shear rate associated with the flow. The second is the
Ericksen number Er, which represents the ratio of viscous
stress to elastic stress,

nVH 24H?
Er= = T -De |,
K cUESs,

where K:ékaTUWqu is the elastic constant.'”” We point
out that although De appears explicitly in our expression for
the Ericksen number, given the length scale dependence of
Er (the length scale in this case being H), the two parameters
can be varied independently.

(13)

D. Choice of parameter values

A number of the model parameters were held constant
for this study, with the following values: 8=1000, (vL%)?
=2X%X10°% ¢=100, U=6, and €/H=8.5X1073. The value
used for the crowdedness parameter, (vL%)?, is typical of lyo-
tropic systems. For a discussion of representative values of c,
we refer the reader to the work of Feng and Leal.*® In brief,
¢ is proportional to the ratio of the zero-shear-rate viscosity
of the LCP solution to the viscosity of the solvent. Reported
values for ¢ range from O(10°) to O(10%), depending on the
solvent. However, since the polymeric stress scales with c,
which contributes to the stiffness of the governing systems of
equations, and because we consider Er and De spanning four
decades, we use a more conservative value of 100 in this
study. The value for the nematic strength parameter U was
chosen so that the DMG model exhibited dynamics that are
qualitatively consistent with the PBG solution used by
Larson and Mead."' Larson and Mead reported that the PBG
solution used in their investigations underwent a fumbling—
to—wagging transition at De~2, followed by a wagging—to—
flow-aligning transition at De=5. For the case of the unap-
proximated Doi theory,3 % which neglects gradient elasticity,
U=6 corresponds to these transition De values.”” Since vis-
coelasticity is the primary driving force behind the dynamics
of the model at high shear rates, where Er>1 and
De > (1), we chose U=6 for this investigation.

The nondimensional correlation length scale €/H was
chosen such that, for the parameter values given above,
Er/De=1000. Therefore, for the results presented here, the
only parameters that were varied in the present study were Er
and De. The ratio between the Ericksen and Deborah num-
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FIG. 1. Schematics of (a) the two-dimensional shear flow domain and (b)
the staggered-grid layout along the z direction. The flow field is bounded
along the spanwise direction by parallel plates separated a distance H and
along the wall-normal direction by periodic boundaries separated a distance
W. V is the relative velocity between the two plates. The velocity and con-
figuration tensor are defined on the regular grid, while the pressure is de-
fined at half-grid points.

bers in our calculations is approximately three orders of
magnitude lower than the estimated value for the experimen-
tal systems. This choice of Er/De was primarily a conse-
quence of computational limitations resulting from the fact
that we consider Er (and De) values spanning nearly four
decades and, although the parameters can be varied indepen-
dently, chose to hold the ratio Er/De fixed. Holding the ratio
Er/De fixed allows us to make direct comparison with the
work of Larson and Mead,]l wherein quantitative data were
collected over a range of shear rates for two different gap
widths. But, given that we only vary Er in our calculations,
the largest allowable value for Er/De is one for which the
solution can be adequately resolved for the largest Er con-
sidered in this study (Er=15000). Hence, Er/De=1000 used
in our simulations was determined using refinement studies.
A potential consequence of using a relatively low Er/De is
the inability to sufficiently separate the two distinct contri-
butions to the polymeric stress: gradient elasticity, the driv-
ing force behind the Ericksen number cascade; and vis-
coelasticity, which stabilizes the system during the Deborah
number cascade. In turn, we would be unable to sufficiently
resolve the two regimes. This, however, does not seem to be
the case for the calculations discussed here.

E. Discretization

As depicted in Fig. 1(a), the computational domain is a
rectangular region lying within a plane orthogonal to the
primary flow direction (i.e., the y,z plane) bounded by
two parallel plates at z=0,1 and periodic boundaries at
y=0,W/H. The relative velocity between the plates is given
as V, and, as previously stated, the characteristic length is
taken as H. The domain is discretized in y, the spanwise
direction, using a uniform grid spacing h. To cluster grid
points near the upper and lower domain boundaries, we uti-
lize the coordinate transformation™

ol )

|
- —r— = 14
T T ann(e) | (14)

where §k=%, k=1,...,N,, to generate a nonuniform grid
in z, the wall-normal direction. A value 6=2.0 was used for

the results presented in this work. A staggered grid is used,
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with respect to the z direction [see Fig. 1(b)], such that the
components of v and A are defined on the regular mesh, with
N, nodes, and the N,—1 pressure nodes are staggered at half-
grid points. The continuity constraint is enforced at the p
nodes, while the equations of motion and evolution equation
for the polymer configuration are solved at the (v,A) nodes.

As the texture length scale decreases with increasing val-
ues of the Ericksen number Er, the results presented in Sec.
IIT were obtained using grid spacings ranging from h=1/32
to 1/1024, where h:AyzAg. The mesh was refined until
there was no discernible difference in either the transient
structure or the time scales associated with the onset of the
initial roll cell instability and the ensuing director dynamics
for a given initial configuration. An adequate domain width
was chosen in a similar manner, with the additional con-
straint that the aspect ratio of the steady-state or transient roll
cells not vary beyond a given value of W/H.

To reduce the size of the numerical problem, albeit the
flow is still three-dimensional in the sense that all three com-
ponents of v are nonzero and we consider the general form
for A at each point, we assume that there are no gradients in
the streamwise direction x. Given the periodic boundary con-
ditions imposed at y=0, W/H, we use spectral collocation for
the flow and configuration components in the spanwise di-
rection. Derivatives with respect to the y direction are there-
fore evaluated efficiently via the fast Fourier transform.
Wall-normal derivatives are evaluated using a second-order
finite-difference formulation. The steady-Stokes form of Eq.
(8) is solved using the Uzawa biconjugate gradient
stabilized"’ method, the details of which are presented in a
previous paper.41 We integrate the evolution equation for the
polymer configuration (7) using the second-order Runge-
Kutta TVD scheme proposed by Shu and Osher.*”?

F. Boundary and initial conditions

No-slip conditions are imposed on the velocity compo-
nents at z=0,1,i.e., v..o1=(v, v, v,)"=(z 0 0)". With regard
to boundary conditions for the configuration tensor A, the
polymer configuration is anchored along the upper and lower
boundaries of the domain such that the A remains fixed in its
uniaxial form [i.e., Eq. (11), with n=(0 1 0)7]. Initial condi-
tions for the velocity components are those of linear shear
flow, where v(x,7=0)=(z 0 0)”. A random-phase perturba-
tion, with an O(107%) amplitude, is introduced into the poly-
mer configuration, which is initially defined such that the
mean orientation is along the y direction. These boundary
conditions are consistent with both the LE theory
analy56527’26 and experiments of Larson and Mead.'""!
Given an initial orientation along the y axis, these studies
found the earliest-observed instability to be roll cells accom-
panied by birefringent stripes oriented along the flow direc-
tion. If the initial mean orientation is along either the veloc-
ity gradient or flow directions, Larson and Mead reported
that the earliest instability observed was the formation of a
banded pattern oriented along the y axis and periodic along
the flow direction, followed at somewhat later times by the
roll-cell instability in the flow direction. As previously men-
tioned in Sec.I, since we neglect streamwise gradients in this
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FIG. 2. Steady-state (a) secondary flow vector field (v,,v,) and (b) director vector field d(x) and tip angle 6 scalar contour for Er=50 (De=0.05). Note: a
color animation showing the evolution of the system to this final state is available online.

study, even with the consideration of an initial orientation
along the velocity gradient or flow directions, our simula-
tions cannot capture the initial spanwise-oriented banded
pattern.

lll. RESULTS AND DISCUSSION

We have found that the DMG model exhibits dynamics
that are in qualitative agreement with both experimental'o’ll
and applicable theoretical and numerical investiga-
tions.”®**} As mentioned earlier, the only parameters varied
in our calculations are De and Er. Given that the ratio Er/De
is held constant, reference will primarily be made to changes
in the Ericksen number for the results presented here. In the
context of the LE theory, the average orientation, referred to
as the director, is described using the unit pseudovector n,
i.e.,, n and —n are energetically equivalent. For the DMG
theory, the average orientation can be associated with the
eigenvector representative of the largest eigenvalue of A. To
distinguish this difference between the two different models,
we describe the director using the unit pseudovector d.

A. Low to moderate shear rates, Er<=6000 (De=<6)

For the case of low to moderate shear rates, the polymer
and coupled fluid dynamics are primarily a function of the
contribution of gradient elasticity to the macroscopic stress.
Arguably, the effects of viscoelasticity are non-negligible as
De approaches and exceeds unity, but our results indicate
that the system dynamics and resulting structure are domi-
nated by the so-called Frank stress. For finite Er less than
approximately 6000 (De <6), the responses of the perturbed
system, in order of increasing Er, were as follows:

1. Stable simple shear,
stable roll cells, and

3. irregular structure
formation.

accompanied by disclination

Due to computational limitations, the range of Er listed for
each regime in the sections that follow has an associated
error of approximately 10%.

1. Stable simple shear, Er<40

For Ericksen values less than approximately 40, the sys-
tem exhibits stable simple shear with the average polymer
orientation along the spanwise direction, generally referred
as to the log-rolling configuration, throughout the flow
domain. Although there is an initial transient regime, dur-
ing which the director precesses about the y axis, the ampli-
tude of these rotations slowly decreases over time as
d— (010"

2. Stable roll cells, 40< Er<250

With increasing shear rate, the log-rolling configuration
observed at lower Er is no longer stable, and the numerical
perturbation introduced into the configuration field at the be-
ginning of the simulation gives rise to the formation of roll
cells via a mechanism associated with anisotropy of the vis-
cous stress for a sheared nematic.** The resulting flow struc-
ture is paired, counter-rotating vortices oriented along the
flow direction, and the director exhibits modulation in its
orientation, with respect to the computational plane (i.e., the
y-z plane), along the spanwise direction. An example of the
stable flow and orientation configurations, for Er=50, is pre-
sented in Fig. 2. The angle between the director and the y-z
plane, which we refer to here as the tip angle, is given as 6.
For Er=50, the (height-to-width) aspect ratio of the steady-
state roll-cell structure is AR=2.0, and the maximum value
of the steady-state secondary flow, relative to the primary
flow, is 0.012. The largest deviation of the director from the
computational plane |6|,,,, of approximately 60 degrees oc-
curs at the centers of the roll cells, where the magnitude of
the vorticity associated with the secondary flow reaches a
maximum. The evolution of the director orientation d, as a
function of strain units 7, within the center of a roll cell [at
(y,2)=(4.62,0.5) in Fig. 2] is presented in Fig. 3. As was
observed in the LE calculations of Feng et al..” a log-log
plot of the data presented in Fig. 3 shows that the growth of
the instability is exponential at the outset, but becomes linear
at a given strain, prior to reaching steady state. For Er=50,
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FIG. 3. Evolution of director components at (y,z)=(4.62,0.5), for Er=50
(De=0.05).

this transition in the growth rate occurs at 7= 80 strain units,
and steady state is reached at 7= 160 strain units.

With regard to their low shear rate results for an initial
orientation along the spanwise direction, Larson and Mead''
reported that a critical shear rate exists for which, after pro-
longed shearing, a banded texture appears in the form of
birefringent stripes oriented along the flow direction; the
banded texture undergoes refinement until it reaches a
steady-state spacing in 30—100 strain units; and there is a
monotonic decrease in the stripe spacing with increasing Er.
Using polarizing microscopy, Larson and Mead found the
banded texture to result from a periodic tipping of the mean
orientation away from the y direction, into and out of the
plane orthogonal to the flow direction (the y-z plane in our
calculations). In accordance with these experimental obser-
vations and the LE model predictions reported by Feng
et al.,27 we found that as the Ericksen number was increased,
there was a corresponding increase in the aspect ratio of the
resulting roll cells (1.75=AR=3.50); the director rotates
further away from the computational plane within roll-cell
vortices (50= 6,,,, =75 degrees); and there is an increase in
the rate at which roll cells form. Additionally, the director
configuration observed by Larson and Mead is precisely that
which was predicted by both the DMG theory in our calcu-

Phys. Fluids 19, 023101 (2007)

S 4

+1/2 -1/2

FIG. 4. Schematics of (a) 1-strength and (b) 1/2-strength disclinations ob-
served in calculations. The dot represents the defect core, and the lines are
the director vector field lines (i.e., lines drawn tangent to the vector field)
projected onto the computational domain. The strength and sign correspond
to the relative rotation of the director around a path encircling the
disclination.

lations and the LE theory in Larson’s linear stability
analysis,26 the earlier analysis of Manneville and
Dubois-Violette,” and the simulations performed by Feng
et al.

Quantitatively, the most relevant data for direct compari-
sons to experiment and the LE calculations are the critical Er
at which the system is unstable to roll-cell formation and the
scaling of the roll-cell aspect ratio as a function of Er. As the
material constants for the PBG solutions used by Larson and
Mead'”!! are not known, we are unable to compare the criti-
cal Er prediction of the DMG model with experimental data.
However, using the Leslie-Ericksen limiting form of the
polymeric stress'® and ay/2 as the characteristic viscosity,
we determined the Leslie viscosities for our calculations to
be (a;,a,a3,as,06)=(-10.8,-20.6,0.765,17.3,-2.58),
which are of the order of those of the “typical nematic poly-
mer” used in Larson’s analysis of the LE theory26 and the
simulations of Feng et al. It is, therefore, not surprising that
the critical Er at which the perturbed system is unstable to
roll-cell formation, Er=40, is comparable to the values re-
ported by Larson and Feng et al. Since pertinent data are still

15 25 35 45 55 65 75 85

101 (deg): 5

FIG. 5. (a) Secondary flow vector field (v,,v,) and (b) director vector field d(x) and tip angle magnitude |6] scalar contour for Er=500 (De=0.5) at 7=35

strain units.
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FIG. 6. Roll-cell splitting and propagation for Er=500 (De=0.5). (left) Secondary flow vector field (v,v,) and (right) director vector field d(x) and tip angle
magnitude | 6| scalar contour at (a) 7=40, (b) 7=45, and (c) 7=50 strain units. Note: a color animation showing the splitting process within the region shown

here is available online.

to be presented in the next two sections, we will postpone
our discussion of the scaling behavior of AR in our simula-
tions and comparison of the DMG model predictions to those
of the LE theory and Larson and Mead’s experimental data
until the end of Sec. III A.

3. Irregular flow and orientation structure
accompanied by disclination formation,
250=Er=6000

For Er greater than approximately 250, the regularity of
the structure observed for lower Er, where a single mode
(i.e., roll cells with a single aspect ratio) persists for an in-
definite period of time, yields to the intrinsic nonlinearity of
the model and the decrease in the elastic contribution to the
stress relative to the viscous stress. As the mean orientation
within the roll-cell vortices tips further toward the flow di-
rection with increasing Er, gradient elasticity can no longer
inhibit the temporal modulations, in the form of either wag-
ging or tumbling. These local fluctuations in the director field
lead to a breakdown of the regular roll-cell structure via a
mechanism we refer to here as roll-cell splitting, where
smaller “daughter cells” form as adjacent roll cells split
along the z direction. Given sufficiently high Er values, the
resulting irregular flow structure and its propagation through-
out the domain are accompanied by the formation of 1/2- and

1-strength orientational defects, depictions of which are pre-
sented in Fig. 4. As =1 disclinations were obtained by Feng
et al. using the LE model,”’ and given the fact that the DMG
model reduces to the LE model in the limit as De —0, we
“expect” to observe =1 disclinations with the DMG model.
Disclinations of strength 1/2, however, have not previously
been predicted in coupled-flow simulations.

As is the case for lower Er (i.e., 40 <Er=<250), the ini-
tial structure observed for Er within this regime is roll cells.
The distinct difference between this initial fransient structure
and the steady-state structure observed at lower Er is that
there is not a single roll-cell aspect ratio observed, but a
narrow distribution of aspect ratios. As a typical example of
the initial roll-cell structure seen within this regime, we
present the flow and orientation configurations for Er=500 at
7=35 strain units in Fig. 5; the dark vertical strips in Fig.
5(b) correspond to the region where the tip angle |6| —0
between adjacent roll cells. The maximum secondary flow
velocity, relative to the imposed boundary velocity, is 0.014,
and the largest deviation of the director from the computa-
tional plane ||, is 78.7 degrees. Although most roll cells
within the domain have an aspect ratio of approximately 5, it
is evident that 3.13=AR =15.88. With increased strain, as
can be seen in the series of snapshots of the secondary ve-
locity and director fields shown in Fig. 6, the cells having the
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FIG. 7. (a) Secondary flow vector field (v,,v,) and (b) director vector field d(x) and tip angle magnitude |6] scalar contour for Er=500 (De=0.5) at

7=143 strain units, just prior to the formation of the first 1 defect pair.

smallest aspect ratio (between 1.56<<y<2.16 in Figs. 5 and
6) undergo splitting at 7=40. The instability and correspond-
ing perturbation in the orientation field then propagate to the
left and right [see Fig. 6(c)] as once-stable roll cells and
daughter cells formed earlier in the process split to produce
vortices of various sizes and strengths.

As the instability initiated by roll-cell splitting propa-
gates throughout the computational domain, the irregularity
of the flow and orientation structure gives rise to the forma-

S Bl ol ol i i
(@ 038 1/;’” /////MS\:

[~/ A

. /’///////l*\\

7
A AR AR AR EREY
FEFA AR AN A
EERYERRRRSSSC 24
N IR S R SN NN Sl
N N N e
SN R 24
Fasan v
PN
SN
PN N\ AV -
LNawrew--

0.2 Srsseas -
2.5 275 3
y

0.6

0.4

€ 08~

SN SRR NN

161 (deg): 5 1525354555657585

tion of disclinations. For Er=700, we observed only the
formation of =1 disclination pairs, which are formed by the
same “ridge-splitting” mechanism first identified in simula-
tions using the Leslie-Ericksen model by Feng et al.”’ Dur-
ing this process, localized ridges form within the director
field, along which the director is oriented primarily in the
flow direction. Given the proper conditions, with regard to
the flow and director fields, the ridge splits to form a +1 pair
of disclinations in what is referred to as the escaped configu-
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FIG. 8. Initial disclination formation for Er=500 (De=0.5). (left) Secondary flow vector field (v,,v,) and (right) director vector field d(x) and tip angle
magnitude | 6| scalar contour at (a) 7=143, (b) 7=145, (c) 7=150, and (d) 7=154 strain units. The ellipses highlight the “ridge” structures from which the +1
defect pair originates (a) and, at a later time, annihilates via recombination (d). Crosses and squares indicate —1 and +1 disclinations, respectively. Note: a
color animation showing the dynamics of flow and director fields depicted in this sequence of images is available online.
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FIG. 9. (a) Secondary flow vector field (v,,v,) and (b) director vector field d(x) and tip angle magnitude |6] scalar contour for Er=1000 (De=1) at =60
strain units. Note: a color animation showing the evolution of the flow and microstructure representative of the data presented here is available online.

ration, wherein these disclinations have “escaped” a true ori-
entational singularity by rotating at their core into the flow
direction without any change in the degree of alignment. As
an example of the flow and microstructure just prior to the
formation of a 1 disclination pair, we show a snapshot of
the secondary flow and director fields for our Er=500 calcu-
lation at 7=143 strain units (the approximate time at which
the first defects were observed in this simulation) in Fig. 7.
The ellipses in Fig. 7(b) indicate regions containing the
aforementioned ridge configurations, as indicated by the
shrinking of the director field vector to a point in the ellipse
centers and the associated transition in the overlaid | 6| con-
tour from white along the ridge, where |6 =90 degrees, to
darkening shades of gray, indicating a decrease in ||, away
from the ridge. As alluded to above, the ridge structure does
not always lead to the development of disclinations. The
highlighted ridge at y=2.9 in Fig. 7(b) leads to the forma-
tion of a =1 pair of defects, the details of which will be
discussed below, while the ridge at y=~0.3 is gone within a
few strain units as the local orientation assumes that of the
surrounding field.

The series of snapshots presented in Fig. 8 shows the
evolution of the flow and director fields during the formation
and subsequent annihilation of the first-observed disclina-
tions for the Er=500 results. (The reader should note that
director field vectors in Fig. 8 have been plotted with a fixed
length, rather than their projected length in the y-z plane as
in previous figures, so as to emphasize the defect structure.)
As previously mentioned, the formation of +1 disclinations
is initiated by the appearance of a ridge structure [high-

lighted in the director field plot in Fig. 8(a) by an ellipse] at
7~ 143 strain units. At 7= 145 strain units, the ridge splits to
form a +1 pair of disclinations, as we can see by comparing
the director field in the right plot of Fig. 8(b) to the discli-
nation depictions presented in Fig. 4(a). Upon formation, the
disclinations move through the domain [Fig. 8(c)] via con-
vection, and after a given amount of time, which ranged
from 10 to 20 strain units for the results presented here, the
oppositely signed disclinations annihilate one another by re-
combining at 7= 154 strain units [Fig. 8(d)]. In this example,
it appears that since a large degree of tipping (which possibly
aids in the formation of the ridge structure) occurs at the cell
core, the disclination structure is a direct result of the rela-
tively high-strength vortex encompassing the region in which
the disclination pair resides. There is also a noticeable syn-
chronization between the flow and configuration fields as the
disclinations and encompassing roll cell propagate along the
spanwise direction within the domain, and the splitting of the
large roll cell occurs at approximately the same strain at
which the disclinations recombine. Although this coupling
between the flow and disclination dynamics, in which *1
disclination pairs originate in the core of relatively high-
strength roll cells, is quite common in this regime, we have
also observed defect formation via ridge-splitting in regions
bridging several vortices and in the regions between adjacent
vortices.

For Er=700, we observed the formation of both +1 and
+1/2 disclination pairs. As was the case for lower Er, where
we observed only +1 disclinations, the initial structure is roll
cells. This is followed by the breakdown of the regular roll-
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FIG. 10. Disclination formation for Er=1000 (De=1). (left) Secondary flow vector field (v,,v,) and tip angle magnitude |6] scalar contour and (right) director
vector field d(x) and order parameter S scalar contour at (a) 7=358, (b) 7=60, (c) 7=61, and (d) 7=63 strain units. The three-armed symbols and circles in (c)
and (d) indicate the —1/2 and +1/2 disclinations, respectively. Note: a color animation of the system dynamics depicted in the sequence of images presented

here is available online.

cell structure via the splitting instability at a strain that de-
creases with increasing Er. However, in this case, as the
roll-cell splitting instability propagates throughout the do-
main, in addition to +1 defect pairs generated via the ridge-
splitting mechanism, we observe +1/2 and —1/2 disclina-
tions. As an example of the flow and microstructure during
the formation of a pair of +1/2 defects, we show the second-
ary flow and director fields for Er=1000 at 7=60 strain units
in Fig. 9, the strain at which we first observe 1/2-strength
defects during this simulation. The respective maxima in
the secondary velocity and tip angle magnitude are
|V]ee=0.015 and |#] =90 degrees. The region in which we
observed the +1/2 pair of disclinations is indicated by a
rectangle in the lower right corner of Fig. 9(b).

The details of the mechanism by which +1/2 disclina-
tion pairs form can be discerned from Fig. 10, in which we
show an example of the evolution of the secondary flow and
director and order parameter fields during disclination forma-
tion from our Er=1000 simulation. At 7=358 strain units
[Fig. 10(a)], a localized twist develops in the director field,
originating at approximately (y,z)=(3.14,0.22) (the region
indicated by the ellipse). This is accompanied by a reduction
in the local order parameter S from the equilibrium value of
0.74 to a minimum value of 0.54. At 7=60 strain units,
curvature (i.e., twist) in the director field #*6/dz*> along
y=3.14 continues to increase, as indicated by the narrowing

of the dark band in the || contour in the left plot in Fig.
10(b), and the continued strain results in a further reduction
in the local minimum value of § to 0.43. As the amount of
stored elastic energy KJ6/ dz* increases, the localized region
becomes susceptible to an instability that lowers the distor-
tional energy at the expense of the energy required for the
creation of a defect; specifically, for this case, a +1/2 discli-
nation pair that forms just after Fig. 10(b). Following the
formation of the defect pair, S reaches local minimum values
of 0.34 and 0.25, respectively, at the cores of the +1/2 and
—1/2 disclinations [which can be identified by comparison of
the highlighted regions in the director field shown in Fig.
10(c) to the depictions of the +£1/2-disclination structures in
Fig. 4(b)]. It may be noted that there is an abrupt change in
the director orientation along y=3.1 at the core of each dis-
clination where the director goes from being oriented along
the y direction above and below the disclination pair to a
nearly flow-aligning orientation between them. There is also
a noticeable perturbation in the secondary flow field in the
vicinity of the +1/2 disclination and increase in dv./dz be-
tween the two defects as the +1/2 disclination moves up-
wards toward the center of the domain while the —1/2 dis-
clination remains stationary. These transitions in the director
orientation and changes in the flow brought about by the
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FIG. 11. (a) Secondary flow vector field (v,,v,) and (b) director vector field d(x) and tip angle magnitude |6] at 7=39 strain units for Er=2000. The
three-armed symbols and circles indicate the —1/2 and +1/2 disclinations, respectively. Note: a color animation showing the evolution of the flow and

microstructure is available online.

strong coupling between the flow and microstructure become
more pronounced upon formation of the final defect structure
[Fig. 10(d)].

For Er=1500, we observed the formation of +1 and
+1/2 disclinations prior to the breakdown of the initial roll-
cell structure. For 1500 < Er <4500, the defect structures ob-
served at the earliest time (i.e., the least amount of strain) are
+1/2 disclinations that form near the upper and lower do-
main boundaries in the convergent region between adjacent
roll cells. A typical example of a solution exhibiting such a
structure is presented in Fig. 11, wherein we show a snapshot
of the velocity and director fields for Er=2000 at 7=39 strain
units. Referring to Fig. 11(a), one can see that, although
some vortices have undergone splitting, the overall roll-cell
structure remains relatively intact. In considering the magni-
tude of the tip angle | 6|, the director orientation is primarily
along the flow direction within the roll cells, where
|6] =80 degrees, but is subject to large gradients along the
spanwise direction between adjacent cells, where |6] — 0. In
convergent regions near the upper and lower boundaries of
the domain, there is an increase in the curvature of the direc-
tor field with increased strain as was observed at lower Er.
As before, these localized regions become susceptible to an
instability that lowers the distortional energy at the expense
of the energy required for the creation of a +1/2 pair of

disclinations. In this case, however, the —1/2 disclination
remains stationary near the wall as the +1/2 moves toward
the center of the domain between the adjacent roll cells. At
large strain, we also observe +1 defect pairs which form via
the ridge-splitting mechanism and exhibit dynamics that do
not differ, qualitatively, from those seen in solutions for
lower Er.

For 4500 =Er=6000 within this regime, although the
first-observed defect structure is still +1/2 defect pairs,
which form near the upper and lower domain boundaries, the
low-order cores from which the defects originate are not lo-
calized to small regions, but, rather, span the entire gap
height between adjacent roll cells. This results in stationary
1/2-strength defects, of alternating sign, along the upper and
lower domain boundaries. As was observed for lower Er val-
ues, upon formation of the +1/2 pair of disclinations, the
director orientation between the defects assumes an orienta-
tion that coincides with the flow axis, thereby forming ridges
that extend across the entire gap height between adjacent roll
cells, wherein the tipping angle magnitude |#| modulates be-
tween approximately 90 degrees at the ridge “peaks” and 75
degrees in the cores of roll cells along the y direction. With
increased strain, +1 defects emanate from either end of the
ridges as a result of the same ridge-splitting mechanism ob-
served at much lower Er values. In Fig. 12, we show a snap-
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FIG. 12. (a) Secondary flow vector field (v,,v,) and tip angle magnitude |6] scalar contour and (b) order parameter S scalar contour for Er=5000 (De=5) at
7=28 strain units. Note: a color animation showing the evolution of the flow and microstructure is available online.

shot of the secondary velocity, tip angle magnitude, and or-
der parameter fields for Er=5000 at 7=28 strain units, just
following formation of the initial +1/2 defects [as is evident
from the small dark dots along the upper and lower bounds
of the domain in Fig. 12(b)] and prior to the formation of the
first-observed =1 disclination pairs. Although many vortices
have undergone splitting, the overall roll-cell structure
initially remains intact [see Fig. 12(a)]. The maximum sec-
ondary flow velocity, relative to the base flow, is 0.011,
[6],,0x=90 degrees, and 0.34=S5=0.78. The ridges from
which 1 disclination pairs are continually produced coin-
cide with the low-order bands that span the height of the gap
in Fig. 12(b), wherein S drops from its equilibrium value of
0.74 to approximately 0.43.

In Fig. 13, we present an example of the dynamics of the
flow and director fields during the formation of the initial
+1/2 defect pair and subsequent production of the +1 defect
pairs between adjacent roll cells. In comparing Figs. 13(a)
and 13(b), we see that the initial structure observed is roll
cells and a modulation in the director field about the compu-
tational plane along the y direction [Fig. 13(a)]. The dark
stripes along y=0.53, 0.61, and 0.70 in the order parameter
contour in Fig. 13(a) highlight the low-order cores that give
rise to the formation of +1/2 disclination pairs [Fig. 13(b)]
as ridges form between adjacent roll cells. As the director
wags between the compression and extension quadrants of
the shear plane, ridge-splitting occurs at the ends of the ridge
to create a +1 pairs of disclinations [Fig. 13(c)]. As is indi-

cated by the fact that the subsequent +1 pair of disclinations
in Fig. 13(d) have low-order cores, ridge-splitting leads to
low-order defect pairs when the director lies within the com-
pression quadrant during the splitting process and the es-
caped configuration when the director is oriented within the
extension quadrant. As +1 pairs of disclinations are continu-
ally generated between adjacent roll cells, defects annihilate
via recombination in the compression regions [e.g., the +1
defect pair at y=0.6 in Fig. 13(d)], but remain somewhat
stationary in the extension regions. This process continues,
forming up to as many as four =1 disclination pairs propa-
gating inward from the upper and lower domain boundaries,
until the irregularity of the flow structure and polymer dy-
namics is such that there is little discernible structure within
the domain.

4. Disclination predictions versus experiment
and the predictions of the LE theory

In considering the mechanisms by which disclinations
form and the local orientation structure in the vicinity of
disclination cores, we are limited by the fact that there are no
available experimental data that provide details of the micro-
structure at such small scales. Hence, we can only provide
qualitative comparisons between predictions of the DMG
model and experimental observations. Comparisons with
previous theoretical predictions are also limited, since the
most comprehensive of these are based on the LE model,
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FIG. 13. Early-stage disclination formation for Er=5000 (De=>5). (left) Secondary flow vector field (v,,v,) and tip angle magnitude | 6| scalar contour and

(right) director vector field d(x) and order parameter S scalar contour at (a) 7=9,

(b) =16, (c) 7=27, and (d) 7=31 strain units. The three-armed symbols and

circles indicate the —1/2 and +1/2 disclinations, respectively. The crosses and squares indicate the —1 and +1 disclinations, respectively. Note: a color
animation of the process depicted in this sequence of images is available online.

which neglects viscoelasticity, and is thus intrinsically re-
stricted from predicting the formation of 1/2-strength de-
fects. Comparison of our results to those of Feng et al.” in
the context of the mechanisms of disclination formation, is
limited to that of +1 disclinations. Given that the DMG
model reduces to the LE model as De — 0, it is not surprising
that the =1 disclination pairs observed at relatively low Er
form by the same ridge-splitting mechanism that was first
identified by Feng et al. Given the complexity that the solu-
tion exhibits for moderate to high Er, it is, however, some-
what surprising that this mechanism was universal through-

out our calculations. With regard to the life span of +1
defects, there is also quantitative agreement between the pre-
dictions of the DMG and LE models.

Although the +1/2 disclination mechanism cannot be
validated against available experimental or numerical data, a
promising feature of the 1/2-strength defects observed in our
calculations is their location. Larson and Mead' reported
that defects usually originate and reside between adjacent
roll cells. In accordance with Larson and Mead’s observa-
tions, whether between daughter cells formed during the roll-
cell splitting process (Er= 1500) or along the domain bound-
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FIG. 14. Spacing of (strain-averaged) birefringent stripes, scaled by the gap
width, versus scaled Er for the experimental observations of Larson and
Mead,"" our DMG model results, and LE theory results reported by Feng
et al.”’ The line represents the predictions of the linear stability analysis of
the LE theory?ﬁ

aries between adjacent roll cells (1500=<Er=6000), +1/2
disclinations were generally found to originate and reside
between roll cells. For Er= 1500, there is an apparent dis-
crepancy between the predictions of the DMG theory and the
experimental observations of Larson and Mead for the case
of +1 disclination pairs, in the sense that these form at the
core of the roll cells instead of between them. However, for
1500 <Er=6000, 1-strength defects were found to originate
between adjacent roll cells.

5. Evaluation of steady-state band spacing
predictions for low to moderate Er

Given the uncertainty of the material parameters for the
PBG solutions used in the experimental systems and differ-
ences between those used in our calculations and those used
in the LE calculations, quantitative comparisons between the
steady-state band spacing predictions of the DMG model and
the experimental data reported by Larson and Mead'' and the
numerical results of Larson’® and Feng et al.*” will be based
on the ratio Er/Er., where Er; is the Ericksen value for
which the perturbed system becomes unstable to the forma-
tion of roll cells. For quantitative comparison of the pre-
dicted steady-state band spacing, we calculate the birefrin-
gence pattern in the same manner as was employed by
Sgalari et al. “In Fig. 14, we present the steady-state spacing
of birefringence stripes, scaled by the gap width, as a func-
tion of the scaled Ericksen number Er/Er; for the experi-
mental observations of Larson and Mead, our DMG model
results, LE model results reported by Feng et al., and the
prediction of Larson’s LE theory stability analysis. For
Er/Er.; =6, where an irregular flow and orientation struc-
ture persists, band-spacing values are those associated with
the dominant wave number of the birefringence pattern, as
determined from the strain-averaged power spectrum gener-
ated using FFTs after the solution reached a quasistationary
state. As is evident from the data presented in Fig. 14, there
is good quantitative agreement between the steady-state band
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FIG. 15. (a) Secondary flow vector field (v,,v,) and tip angle magnitude ||
scalar contour at 7=35 strain units and (b) director components d; and order
parameter S as a function of strain units 7 at (y,z)=(0.26,0.25) for Er
=10000 (De=10). Note: a color animation showing the evolution of the
flow and tip angle is available online.

spacing predicted by the DMG model and the experimental
values over a large range of Ericksen values.

B. High shear rates, Er=10000(De=10)

As we continue to increase Er (and De), the initial roll-
cell structure becomes increasingly transitory, and the irregu-
lar flow patterns and microstructure that develop give rise to
a preponderance of the 1/2- and I-strength disclinations and
eddies of decreasing sizes and strengths, characteristic of di-
rector turbulence.**™*” This refinement continues until, at
Er=10000(De = 10), the solution exhibits neither disclina-
tions nor roll cells. The system does, however, retain some
structure along the spanwise direction that has the visual ap-
pearance of stripes. Specifically, there is a modulation in the
mean orientation away from the shear plane along the y axis;
the angle between the director and shear plane is given as ¢
(not to be confused with 6, the angle between d and the y-z
plane). As an example of the striped texture observed at high
shear rates, we present a snapshot of the secondary flow and
banded structure associated with the modulation in the direc-
tor field for Er=10000 (De=10) at 7=35 strain units in Fig.
15(a), where the maximum secondary velocity magnitude is
0.009 and, away from the upper and lower domain bound-
aries, 0<|¢| <35 degrees. This solution is representative of
the quasistationary state (quasistationary in the sense that the
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FIG. 16. (a) Secondary flow vector field (v,,v,) at 7=35 strain units and (b)
director components d; and order parameter S as a function of strain units 7
at (y,z)=(1.00,0.50) for Er=12500 (De=12.5).

general structure persists for the entire duration of our simu-
lation, up to 7=100 strain units) reached at approximately
7=25 strain units. Although in regions in which the director
orientation is almost parallel to the shear plane, as indicated
by the white vertical bands in the || contour in Fig. 15(a),
the director exhibits wagging, the director orientation re-
mains relatively stationary in regions highlighted by dark
vertical bands, where |6’| =5 degrees, after the solution
reaches (quasi)steady state [cf. Fig. 15(b)].

The dynamics and structure described above are pre-
cisely those reported by Larson and Mead'" that correspond
to the transition between the Ericksen and Deborah number
cascades, wherein the system is stabilized by viscoelasticity
and the texture refinement associated with gradient elasticity
subsides and there is the reappearance of a striped texture
similar to that observed at low shear rates within the Erick-
sen number cascade. As verified by Larson and Mead using
polarizing microscopy, the banded pattern resulted from
modulations in the mean orientation away from the shear
plane along the y axis. We should note that, although the
orientation structure was not investigated, similar high-shear-
rate banded structures have also been reported by Guido,
Frallicciardi, Grizzuti, and Marlrucci,48 for aqueous solutions
of HPC (hydroxypropylcellulose), and Tan and Berry,13 for
solutions of PPTA [poly(1,4-phenylene terephthalamide)].

As we further increase Er (and De), although the span-
wise length scale of the banded structure does not exhibit a
dependence on Er, the amplitude of the modulation in ¢
decreases until, at Er= 12000(De = 12), the director at each
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FIG. 17. Eigenvalue data versus strain units for Er=2000 simulation.

material point in the domain lies within the shear plane.
Henceforth, we refer to this transition as the “shear-aligning”
transition. In Fig. 16, we show an example of the secondary
flow for Er=12500 (De=12.5) at 7=35 strain units, where
the maximum secondary velocity magnitude is 0.002, and
the evolution of the director components and order parameter
at (y,z)=(1.00,0.50), an arbitrarily chosen point within the
domain. We should note that the unapproximated Doi
theory30 exhibits flow-aligning, where the director assumes a
steady-state orientation along the flow axis, for De of this
magnitude. As is highlighted by the dynamics of the director
and order parameter in Fig. 16(b), the Bingham closure ap-
proximation simply predicts wagging, where the director os-
cillates about a fixed angle, with an amplitude that decreases
monotonically with increasing De. This deficiency in the clo-
sure approximation used in our calculations does not, how-
ever, limit the model’s ability to capture the shear-aligning
transition observed experimentally by Larson and Mead."!

IV. CONCLUSION

As a summary of the findings of our investigation, for
planar shear flow, the DMG model was found to exhibit dy-
namics in both qualitative and quantitative agreement with
experimental observations reported in the literature for the
so-called Ericksen number and Deborah number cascades.
Within the Ericksen number cascade, where the dominant
contribution to the stress is that of gradient elasticity, for

Free energy, F

1 1 1 1
50 100 150 200
Strain units, T

FIG. 18. Free-energy eigenvalue data versus strain units for Er=2000 simu-
lation. The free energy F has been scaled by vkzTA, where A is the dimen-
sionless area of the computational domain.
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FIG. 19. (a) Secondary flow vector field (v,,v,) and (b) director vector field d(x) and tip angle magnitude |6] at 7=200 strain units for Er=2000.

increasing shear rates, the DMG model displayed three re-
gimes: stable simple shear, stable roll cells, and irregular
structure accompanied by disclination formation. For in-
creasing shear rates within the Deborah number cascade,
where viscoelasticity is the dominant stress contribution, the
DMG model exhibits two regimes: a streamwise banded
structure, in the absence of roll cells and disclinations, and
shear alignment, where the mean orientation lies within the
shear plane throughout the domain.

The DMG model was found to predict both 1- and
1/2-strength disclinations. The formation of +1/2 defects is
a response of the system to an imposed curvature along ei-
ther a localized region, as was observed in our low Er cal-
culations, or delocalized regions such as the low-order re-
gions between adjacent roll cells observed at moderate Er
values. Similarly, +1 disclination pairs either formed from
localized ridges, resulting in an escaped configuration, or
emanated from the ends of large-scale ridges via the same
ridge-splitting mechanism identified by Feng et al”’ using
the Leslie-Ericksen model. Given that the DMG model re-
duces to the LE model as De — 0, it is not surprising that the
+1 disclination pairs observed at relatively low Er form by
the same ridge-splitting mechanism that was first identified
by Feng et al. Disclinations of strength +1/2, however, have
not previously been predicted in flow simulations, and thus
may be seen as a major accomplishment for both the
DMG model of LCPs and the computational procedures de-
veloped in this work. It is somewhat surprising that the
mechanisms by which +1 and +1/2 disclination pairs formed
was universal throughout the entire region of the Er-De pa-
rameter space explored in our investigation, particularly

given the complexity that the solution exhibits for moderate
to high Er.

In conclusion, we have verified that the DMG molecular
theory for LCPs is capable of predicting the onset and evo-
lution of both types of disclinations seen experimentally, and
is capable of qualitatively reproducing the Ericksen and
Deborah number cascades in a simple, two-dimensional
shear cell. Additionally, the results have validated the com-
putational tools developed in this study. We are therefore
prepared to extend this investigation to fully three-
dimensional calculations so as to fully explore the predictive
capabilities of the DMG theory.
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APPENDIX: NUMERICAL CHALLENGES

As is the case for viscoelastic flow calculations in gen-
eral, two issues must be addressed when choosing an inte-
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gration scheme: stability and preservation of the positive
definiteness of the configuration tensor A. In addition to con-
cerns associated with numerical stability, which are defined
in terms of the standard CFL constraints on the allowable
time step, in simulating the dynamics of polymeric fluids, the
discretized form of the governing equations can become ill-
posed if the accuracy of the method cannot ensure that the
positive definiteness of A is maintained. Therefore, in sur-
veying the literature, one finds this to be the leading topic
addressed in simulating non-Newtonian flows. Given the
complex (nonlinear) form of the governing equation for the
dynamics of A (7), we have restricted ourselves to the use of
an explicit integration scheme. In considering integration
schemes, we found that the explicit Euler or standard
second- and third-order Runge-Kutta methods™® required the
use of unreasonably small time steps [(O(107°) or smaller].
This constraint was alleviated by using the second-order
Runge-Kutta TVD scheme proposed by Shu and Oscher,
which inherently limits the growth of grid-level oscillations.
For the results presented in this work, 107*=Ar=1073. To
highlight the fact that we maintain the positive-definiteness
of A, we show the strain evolution of the minimum and
maximum eigenvalues of A, \;, and .., respectively, and
=3 Nimax for our Er=2000 calculation in Fig. 17. With re-
gard to the eigenvalues, it is clear that they are all positive,
and the sum 37 \,=1. The second-order tensor A, which is
symmetric, therefore remains positive-definite throughout
the simulation.

The stability of the solution can also be monitored by
considering the evolution of the system’s free energy F,
which, in the context of the DMG theory, can be written as

F=f V|:kBT<1n ¢(u;r)>+%<¢MG(U;r)> dA, (A1)
A

where the domain area A is scaled by H?. For the Bingham

closure approximation, y(u;r) takes the form™®
1

Y(u;r) = Z exp(u-T-u), (A2)

where Z=[gexp(u-T-u)du and the symmetric tensor T is

defined such that its eigenvectors and those of the second

moment A are coaligned. The free energy, evaluated using

the Bingham closure approximation and the nematic poten-
tial proposed by Marrucci and Greco (3), is therefore

3 I
F= kaTf [T:A -Inz- ZU(A + aV%):A]dA - F,,

(A3)

where F is the equilibrium value of the free energy in the
absence of flow and spatial gradients. Since the entropic con-
tribution, T:A-In Z, cannot be expressed analytically in
terms of A, it is calculated using a fitting function generated
in a manner similar to that used to calculate the components
of the fourth moment Q for the Bingham closure approxima-
tion. In Fig. 18, we show the evolution of the nondimen-
sional free energy, where the free energy F is scaled by
vkgTA, for our Er=2000 calculation. As a result of the im-
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posed shear, the free energy increases monotonically until
7237 strain units, when the formation of the first +1/2 pair
of disclinations alleviates stresses imposed by distortions in
the director field. With increasing strain, the free energy con-
tinues to increase, exhibiting modulations as defects form
and annihilate and the director field is continually perturbed,
until a quasistationary state is reached at 7= 105 strain units.
Ultimately, it is bounded, further highlighting the fact that
the solution remains accurate for the duration of the simula-
tion. In conclusion, as an example of the complexity of the
flow and microstructure that develops in our calculations, we
show a snapshot of the secondary flow and director field for
Er=2000 at 7=200 strain units in Fig. 19.
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