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Abstract

We propose new high order accurate methods to compute the evolution of axi-symmetric
interfacial Stokes flow. The velocity at a point on the interface is given by an integral over
the surface. Quadrature rules to evaluate these integrals are developed using asymptotic
expansions of the integrands, both locally about the point of evaluation, and about the
poles, where the interface crosses the axis of symmetry. The local expansions yield
methods that converge to the chosen order pointwise, for fixed evaluation point. The
pole expansions yield corrections that remove maximal errors of low order, introduced
by singular behaviour of the integrands as the evaluation point approaches the poles. An
interesting example of roundoff error amplification due to cancellation is also addressed.
The result is a uniformly accurate 5th order method. Second order, pointwise fifth order,
and uniform fifth order methods are applied to compute three sample flows, each of which
presents a different computational difficulty: an initially bar-belled drop that pinches in
finite time, a drop in a strain flow that approaches a steady state, and a continuously
extending drop. In each case, the fifth order methods significantly improve the ability to
resolve the flow. The examples furthermore give insight into the effect of the corrections
needed for uniformity. We determine conditions under which the pointwise method is
sufficient to obtain resolved results, and others under which the corrections significantly
improve the results.

Keywords: singular integrals, boundary integral methods, complete elliptic integrals,
axi-symmetric interfacial Stokes flow.

1. Introduction

Boundary integral methods are an efficient choice to compute the motion of interfaces
bounding different regions of fluid, such as a vortex sheet, the boundary of drops and
bubbles, the surface of water-waves, or the surface of a solid object such as an airplane.
The methods apply when the fluid bounded by the interface is modelled using linear
governing equations, for example by potential flow, obtained in the inviscid limit of the

Email addresses: nitsche@math.unm.edu (M. Nitsche), hdc@math.ucsb.edu (H. D. Ceniceros),
ainolk@math.ucsb.edu (A. L. Karniala), shadi@math.unm.edu (S. Naderi)

Preprint submitted to Elsevier April 14, 2010



Navier-Stokes equations, or by Stokes flow, obtained in the limit of zero inertial forces
in which viscosity dominates. In both of these cases, the (nonlinear) fluid velocity can
be expressed as an integral along the interface, thus reducing the problem to a lower
dimensional one. Under the further assumption of planar or axial symmetry the problem
reduces to a one-dimensional one. This feature makes it possible to achieve, at least in
principle, the high resolution necessary to investigate small scale phenomena that occur
for example during coalescence and break-up of bubbles or in the presence of surfactants.

Our interest here is in boundary integral simulations of closed interfaces in axisym-
metric Stokes flows. Related work, not exclusively axisymmetric, include studies of the
deformation and breakup of drops and bubbles in an external flow (see, e.g., Stone and
Leal, 1989; Manga and Stone, 1993; Stone, 1994; Pozrikidis, 1998; Davis, 1999; Cristini
et al., 1998; Sierou and Lister, 2003; Bazhlekov et al., 2004b; Lister et al., 2008; Eggers
and du Pont, 2009) of coalescence (Zinchenko et al., 1997; Nemer et al., 2004; Yoon et al.,
2007) of drop evolution in the presence of surfactants (Eggleton et al., 1999; Siegel, 2000;
Eggleton et al., 2001; Bazhlekov et al., 2004a), and applications to multiphase flow, as
discussed in Blawzdziewicz (2007). For axisymmetric flow, the basic numerical approach
was first described by Youngren and Acrivos (1976), Acrivos (1983) and Rallison (1984).
Since then significant progress has been made in the extensions of the boundary integral
formulation and on the development of more accurate and efficient methods, as reviewed
by Pozrikidis (1992, 2001). Unfortunately, evaluating the axisymmetric line integrals is
computationally expensive, and standard high order quadratures cannot be applied due
to the integrands’ intricate singular structure.

Our goal in this work is to analyze the integrals in axi-symmetric Stokes flow, and
develop higher order quadrature rules for them. The integrals describe the velocity at
a point on the interface. To begin, we find asymptotic expansions of the integrands
about the singularity at the point of evaluation. Guided by the work of Sidi and Israeli
(1988), these expansions yield systematically higher order modifications to the trape-
zoidal rule. Within this framework, we show that the popular “desingularized” trape-
zoidal rule (Davis, 1999) is second order accurate. The asymptotic analysis also shows
that the leading order desingularization is only advantageous for the single layer potential
but there is no apparent gain for the double layer potential.

We test the accuracy of the resulting quadratures on a simple example and find two
issues that must be addressed. (1) The high order approximations are quickly overshad-
owed by the amplification of round-off errors that occurs when highly singular terms in
the double layer potential are subtracted from each other. We identify these terms and
combine them in a suitable way to remedy the problem. (2) The modified trapezoid ap-
proximations converge pointwise at the specified rate, that is, for fixed evaluation point,
but they do not converge uniformly. The maximal errors near the poles are of second
order, and as a consequence the accuracy degrades around that region. This singular
behaviour is an artifact of the axi-symmetric coordinate system and is similar to the one
observed previously in axi-symmetric interfacial Eulerian flows (Nitsche, 1999, 2001).
Closely following this earlier work, we obtain asymptotic approximations to the present
integrands near the poles and identify the low order terms in the error. These terms serve
as corrections to the pointwise convergent method. They can essentially be precomputed
and are added at minimal (O(1)) computational cost per timestep. The end result is
a new, uniformly fifth order quadrature rule that adds little overhead to the commonly
used second order approximations and thus can attain a given accuracy for a fraction of
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the computational cost. We note that in principle, the procedure described here can be
used to obtain rules of arbitrarily uniformly high order.

We then apply the second order, the pointwise fifth order and the uniform fifth order
methods to compute the evolution of three sample fluid flows, each of which presents a
different computational difficulty. We show that in each case, the higher order methods
significantly improve the ability to resolve the flow. The examples also illustrate the effect
of the corrections required for uniformity of the high order methods. In certain cases,
with resolutions used in practice, the low order error terms of the pointwise method are
so small that the fifth order corrections do not impact the results. In other examples,
the corrections significantly improve the results.

The paper is organized as follows. In §2, we briefly describe the boundary integral
formulation for the motion of one drop in axi-symmetric Stokes flow and discuss the
desingularization. In §3, we construct pointwise high order quadratures, address roundoff
error amplification, and derive the pole corrections necessary for uniform fifth order
accuracy. In §4, we apply the second order and fifth order rules to compute the evolution
of three sample interfacial flows, and evaluate their relative performance. The results
are summarized in §5. The appendices give all the necessary information to compute
the corrections to 5th order and to determine their effect. The corrections can also
be obtained directly from the corresponding author, after which the implementation is
simple, consisting of a small change to the trapezoid rule.

2. Governing Equations

2.1. The boundary integral formulation

We consider a drop of fluid with viscosity µd surrounded by a fluid of viscosity µe

and affected by an external flow field u∞. Neglecting inertia terms (Stokes flow) and
assuming constant surface tension σ, the velocity u at a point x0 on the surface S of
the drop can be written in the following boundary integral representation (Rallison and
Acrivos, 1978)

u(x0) =
2

1 + λ
u∞(x0) −

σ

µe(1 + λ)
us(x0) +

1 − λ

1 + λ
ud(x0), (2.1)

where λ = µd/µe and us and ud are the single and double layer boundary integral
contributions to the interfacial velocity, respectively. Their Cartesian components uj,
j = 1, 2, 3 are given by

us
j(x0) =

1

4π

∫

S

Gij(x − x0)ni(x)κ(x) dS(x), (2.2a)

ud
j (x0) =

1

4π
PV

∫

S

Tijk(x − x0)nk(x)ui(x) dS(x), (2.2b)

where

Gij(x) =
δij

r
+

xixj

r3
, (2.2c)

Tijk(x) = −6
xixjxk

r5
, (2.2d)
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Figure 1: Sketch showing (a) axi-symmetric surface S with outward normal n, symmetry-axis y, and
azimuthal angle Φ, (b) crossection C in the x − y plane, with poles labeled by α = 0, π.

are the free space Green’s function (Stokeslet tensor) and the associated stress tensor,
respectively, δij is the Kronecker delta, r = ‖x‖, κ = ∇ · n is the sum of the principal
curvatures, and n is the outward unit normal. The summation convention over repeated
indices is used, and the symbol PV in (2.2b) denotes the principal value of the singular
integral.

For nonzero surface tension σ, (2.1) is nondimensionalised using the radius R of
the initial bubble as the characteristic length scale, and U = σ/µe as the characteristic
velocity. In addition, u∞ is nondimensionalized by U∞ = GR, where G is a characteristic
strain rate of the external flow. That is, we introduce dimensionless velocities u′ = u/U
and u∞′ = u∞/U∞, and then drop the primes, to obtain the dimensionless equations

u(x0) =
2Ca

1 + λ
u∞(x0) −

1

1 + λ
us(x0) +

1 − λ

1 + λ
ud(x0). (2.3)

where Ca = µeGR/σ is a capillary number that measures viscous forces relative to
surface tension forces. For zero surface tension σ, the single layer contribution vanishes
and the nondimensional equations, obtained using R and any characteristic velocity U ,
are u(x0) = 2

1+λu∞(x0) + 1−λ
1+λud(x0). In all our examples hereon we consider σ > 0,

that is, (2.3).
This paper concerns axisymmetric flows with no swirl. In this case, the integration

with respect to the angular variable φ (see figure 1a) can be performed analytically to
reduce the boundary integrals (2.2) to line integrals over a curve C. This curve, shown
in figure 1b, is the crossection of S with the x-y plane, where y is the axial coordinate
and x ≥ 0 is the radial coordinate. The curve at time t is parametrized by

C : (x(α, t), y(α, t)) , 0 ≤ α ≤ π .

Throughout this work, we assume the surface intersects the axis of symmetry, with the
endpoints α = 0, π corresponding to the poles, that is, the points were r = 0.

The velocity at a point α = αj on C is u(αj , t) = (u(αj , t), v(αj , t)) where u, v are
the radial and axial components, respectively. Their single and double layer components
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(2.2) reduce to the line integrals

us(αj , t) = −
1

4π

∫ π

0

Hus(α, αj , t)κ(α, t)dα, (2.4a)

vs(αj , t) = −
1

4π

∫ π

0

Hvs(α, αj , t)κ(α, t)dα, (2.4b)

ud(αj , t) =
1

4π

∫ π

0

Hud
1 (α, αj , t)u(α, t) + Hud

2 (α, αj , t)v(α, t)dα, (2.4c)

vd(αj , t) =
1

4π

∫ π

0

Hvd
1 (α, αj , t)u(α, t) + Hvd

2 (α, αj , t)v(α, t)dα, (2.4d)

where

Hs(α, αj , t) = M1(x, xj , y − yj)ẏ(α, t) − M2(x, xj , y − yj)ẋ(α, t), (2.5a)

Hd
l (α, αj , t) = Ql1(x, xj , y − yj)ẏ(α, t) − Ql2(x, xj , y − yj)ẋ(α, t), (2.5b)

and l = 1, 2. Here x = x(α, t), y = y(α, t), xj = x(αj , t), yj = y(αj , t) and the dot
stands for differentiation with respect to α. The absence of superscript u, v in (2.5ab)
and througout the rest of this paper implies that the equation holds for both the u and
the v components. The functions M and Q depend in an intricate way on the complete
elliptic integrals of the first and second kind and are provided in Pozrikidis (1992, §2.4).
We list them in Appendix A in a form that we find more convenient to our purposes.
The curvature κ is

κ =
ẏ

x
√

ẋ2 + ẏ2
+

ẋÿ − ẏẍ

(ẋ2 + ẏ2)3/2
. (2.6)

Note that the integrals in (2.4cd) are no longer singular and do not require evaluation in
the principal value sense. Summary derivations of these results can be found in Pozrikidis
(1992) and Zapryanov and Tabakova (1999).

2.2. The integrands

Each of the integrands in (2.4) is a function of α, αj , and t which we denote generically
by G(α, αj , t). For αj 6= 0, π, these functions have integrable logarithmic singularities at
α = αj . Using expansions of the complete elliptic integrals about α = αj and Mathe-
matica, we find that

G(α, αj , t) = G̃(α, αj , t) +

∞∑

k=0

ck(αj , t) (α − αj)
k log |α − αj |, (2.7)

where G̃ is smooth. For the single layer, c0 6= 0 and thus the integrand is unbounded (but
integrable) at α = αj . The double layer is more regular with c0 = 0. The asymptotic
form (2.7) of the integrands and the modified Euler-Maclaurin formula of Sidi and Israeli
(1988) are the central building principle for the high order quadrature rules we propose
in this work.

For αj = 0, π, the integrands are smooth, with ck = 0 for all k. For completeness, the
integrands obtained by taking the limit of G(α, αj , t) as αj → 0, π are listed in Appendix
B.
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2.3. Leading order desingularization

An approach commonly taken in previous numerical studies is the following. For
the single layer, the identity

∫ π

0
Hs(α, αj , t)dα = 0, which follows from incompressibil-

ity (Pozrikidis, 1992), is used to rewrite

us(αj , t) = −
1

4π

∫ π

0

Hus(α, αj , t)[κ(α, t) − κ(αj , t)]dα, (2.8a)

vs(αj , t) = −
1

4π

∫ π

0

Hvs(α, αj , t)[κ(α, t) − κ(αj , t)]dα. (2.8b)

This removes the leading order singular term of the integrands in (2.4ab). That is, the
integrands in (2.8ab) are of the asymptotic form (2.7) with c0 = 0 instead of 6= 0. The
higher order logarithmic terms remain.

In previous work, this desingularization has the effect of increasing the order of con-
vergence of the methods used from O(h log h) to second order, uniformly over the whole

interface. This will follow from our analysis below. For the quadrature rules we propose
here, using (2.8ab) simplifies the implementation mainly because the new integrands have
less singular behavior at the poles. This will be described in § 3.3.

A similar procedure is also commonly used for the double layer components. It is
possible to use another flow identity to rewrite

ud(αj , t) =

∫ π

0

[Hd
1 (α, αj , t)u(α, t) − Hd′

1 (α, αj , t)u(αj , t)]

+[Hd
2 (α, αj , t)v(α, t) − Hd′

2 (α, αj , t)v(αj , t)] dα,

(2.9)

and similarly for vd. The formulas for H ′ are given by Davis (1999). However, due to
the orientational dependence of the integrand, H 6= H ′. Using Mathematica, we find
that the new integrands (2.9) are no less singular than the original ones (2.4cd). Both
are bounded, of the form (2.7) with c0 = 0. As a result, no gain is achieved using this
formulation. Thus, in this work we extract the leading order singular term in the single
layer only, but not in the double layer. The resulting integrands in each case, denoted
by G througout the rest of this paper, are given by

Gs(α, αj , t) = Hs(α, αj , t)[κ(α, t) − κ(αj , t)], (2.10a)

Gd(α, αj , t) = H1
d(α, αj , t)u(α, t) + H2

d(α, αj , t)v(α, t), (2.10b)

where both Gs and Gd are of the form (2.7) with c0 = 0.
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3. Quadrature rules

3.1. Pointwise approximations

Sidi and Israeli (1988) showed that for any function of the form (2.7),

∫ b

a

G(α, αj , t)dα = h

N∑

k=0

k 6=j

”G(αk, αj , t) + hG̃(αj , αj , t) + c0(αj , t)h log
h

2π

+
m∑

k=2

k even

νkck(αj , t)h
k+1 +

m∑

k=1

k odd

γk

[∂kG

∂αk
(b, αj , t) −

∂kG

∂αk
(a, αj , t)

]
hk+1

+ O(hm+2).

(3.1)

for any integer m ≥ 0. Here αk = a + kh, k = 0, . . . , N , is a uniform partition of [a, b] of
meshsize h = (b−a)/N . The double prime on the summation indicates that the first and
last summands are weighted by 1/2. The constants appearing in (3.1) relevant to our
discussion below are γ1 = −1/12, γ3 = 1/720, and ν2 = −0.06089691411678654156....

Equation (3.1) is a modified Euler-Maclaurin formula with which one can approximate
the integrals to arbitrarily high order. By truncating the sum on the right hand side at
any desired point, one obtains a quadrature rule of known order, T [G]h[a,b], and moreover,
with a known expansion for the approximation error, which we denote throughout by

E[G]h[a,b] =

∫ b

a

G(α, αj , t)dα − T [G]h[a,b] (3.2)

However, note that since all terms in the sum (3.1), in particular all ck and ∂kG/∂αk,
depend on αj (and t), so does the error, and the order of convergence therefore applies
only pointwise, for fixed αj . We will see below that the maximum error over all j does
not necessarily decrease with the same order.

We remark that Sidi and Israeli (1988) also considered more general principal value
integrals of functions with singularities such as 1/(α−αj), but those are not relevant to
our present discussion.

3.1.1. Pointwise 2nd order approximation

As an example, consider the approximation

T2[G]h[0,π] = h
N∑

k=0

k 6=j

”G(αk, αj , t) + hG̃(αj , αj , t) (3.3)

to compute the single and double layer velocities. Since after desingularizing the single
layer, c0(αj , t) = 0, it follows from (3.1) that the pointwise approximation error is O(h2).
This simple trapezoidal rule has been employed for many years in boundary integral com-
putations of Stokes flows (Davis, 1999; Pozrikidis, 2001), where G̃(αj , αj , t) is commonly
evaluated by interpolation.

We remark that without the single layer desingularization, the trapezoidal rule (3.3)
would be O(h log h). More significantly however is the impact the desingularization has
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on the coefficients ck, ∂kG/∂kα in the error. As will follow from our results in §3.3, the
desingularization sufficiently smooths the behaviour of the coefficients so that all terms
in the error are uniformly bounded in αj ,

max
0≤j≤N

E2[G]h[0,π](αj , t) ≤ c(t)h2 . (3.4)

This would not be the case if, instead of desingularizing, one would find c0 6= 0 and
use the first 3 terms in (3.1) to approximate the more singular integral. The commonly
used trapezoidal rule (3.3) therefore requires the single layer desingularization to yield
uniformly second order results.

3.1.2. Pointwise 5th order approximation

We are interested in a higher order approximation and consider here the 5th order
rule:

T5[G]h[0,π] = h

N∑

k=0

k 6=j

”G(αk, αj , t) + hG̃(αj , αj , t) + c0(αj , t)h log
h

2π

+ ν2c2(αj , t)h
3 +

3∑

k=1

k odd

γk

[∂kG

∂αk
(π, αj , t) −

∂kG

∂αk
(0, αj , t)

]
hk+1 .

(3.5)

with corresponding error

E5[G]h[a,b] =
m∑

k=4

k even

νkck(αj , t)h
k+1 +

m∑

k=5

k odd

γk

[∂kG

∂αk
(π, αj , t) −

∂kG

∂αk
(0, αj , t)

]
hk+1

+ O(hm+1).

(3.6)

for any integer m ≥ 4. To implement quadrature (3.5), one needs the coefficients c2

of the integrands G, the values G̃(αj , αj , 0), and their first and third derivatives at the
endpoints. The corresponding values for Guv

s and Guv
d are given in Appendix C. Here,

all the required derivatives of x, y and κ are evaluated spectrally.
As a test, we apply (3.5) to compute the single and double layer components of the

velocity of a sample interface at a fixed time t = 0, given by

x(α, 0) = sin(α), (3.7)

y(α, 0) = − cos(α) + ǫ cos2(α), (3.8)

with ǫ = 0.15, and no external flow, Ca = 0.
Note that unless λ = 1, the double layer contribution turns (2.4cd) into a coupled

system of Fredholm integral equations of the second type for the velocity components. As
λ → 0, the corresponding eigenvalues tend to 0 and the system becomes singular. This
problem can be addressed using Wielandt’s deflation algorithm (see e.g., Davis, 1999). In
the applications in §4, we use λ > 0 and solve the discrete linear system using GMRES.
However, throughout §3, in order to more clearly separate the contributions to the error
arising from the integration of Gs and from that of Gd, we integrate Gd using a specified
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Figure 2: Approximation error E5[G]h
[0,π]

vs. αj , using h = π/N , N = 32, 64, 128, 256, 512, 1024, for G

equal to (a) Gus, (b) Gvs, (c) Gud, (d) Gvd, as given in (2.10) with u(α) = sinα, v(α) = cos α.

(u, v) in the right hand side of (2.4cd). Specifically, we set u(α) = sin α, v(α) = cosα in
the integrand, chosen so that they satisfy the correct symmetries about the axis, and we
report on the errors in integrating Gs, Gd for these predetermined u and v.

We apply quadrature (3.5) with h = π/N , N = 32, 64, 128, 256, 512, 1024, 2048, and
approximate the integration error by

E5[G]h[0,π] ≈ T5[G]
π/2048
[0,π] − T5[G]h[0,π]. (3.9)

The error is shown in figure 2, as a function of αj . Figures (a,b) show the errors for Gus,
Gvs. Figures (c,d) show the errors for Gud, Gvd where the functions u, v in the integrand
are replaced by known functions, as described above.

As expected, for any fixed value of αj the errors can be confirmed to decrease as h5

until roundoff error dominates the results. However, two unexpected observations can
be made.

1. Roundoff Error. Even though the computations are made in double machine preci-
sion, the double layer velocities exhibit unacceptably large roundoff errors of order
10−7 in figure 2(c) and somewhat smaller, of order 10−10, in figure 2(d). We note
that these large errors are not caused by an inaccurate evaluation of the complete
elliptic integrals F (k) and E(k), as k → 0. These integrals are computed accurately
and quickly using the algorithm of Bulirsch (1965). (An alternative is to compute
them using expansions for F (k) and E(k) to desired order, as in Lee and Leal
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Figure 3: Maximal approximation error near the axis, maxαj≈0,π

˛

˛

˛
E5[G]h

[0,π]
(αj)

˛

˛

˛
for (a) Gus, (b) Gvs,

(c) Gud and (d) Gvd, as given in (2.10) with u(α) = sinα, v(α) = cos α. The data (+) and lines with
the indicated slopes (—) are shown.

(1982)). As we will see, the large roundoff errors are instead the result of delicate
linear combinations of highly singular terms.

2. Loss of accuracy near the poles αj = 0, π. Even though the error decays pointwise
as O(h5), the error shown in figure 2 deteriorates near the poles, αj = 0, π. The
maximum error appears to occur near the poles (after disregarding roundoff errors),
and seems to decay more slowly than the error away from the poles. Indeed, the
maximum error occurs at j = 1 and j = N − 1. That is, it does not occur at a
fixed value of αj , but at αj = h and π − h. To find its decay rate, figure 3 plots
the maximum errors near the poles as a function of h (+) and a line (—) with the
indicated slope. The data is well approximated by the lines, showing that instead
of O(h5), the maximum errors are 4th order for Gus, 3rd order for Gvs and Gvd,
and 2nd order for Gud. Thus the 5th order approximation T5 (3.5) is not uniformly
of 5th order, but apparently of 2nd order only. This should be disturbing and put
in question the high order accuracy of the solution after long-time computations of
the interface evolution.

In the remainder of §3, we explain the origin of these two problems and how to over-
come them, and present a uniformly 5th order accurate quadrature. In §4, we investigate
the effect of these errors on long-time computations of interface evolution.

3.2. Removing roundoff error

To find the source of the roundoff error amplification apparent in figures 2(cd), we
have to look closely at the intricate, singular structure of Gud and Gvd. We refer to the
functions listed in Appendix A for this purpose.

Gud and Gvd are functions of Qik’s. The functions Qik in turn, are a sum of terms
proportional to the integrals I5j . For example,

Qu
11 = −6x[x3I51 − x2xj(I50 + 2I52) + xx2

j (I53 + 2I51) − x3
jI52]. (3.10)

The Q’s and the I’s are singular at α = αj , equivalently, at (x, y) = (xj , yj) or k = 1,
where k is as defined in Eq. (A.3). As noted in Appendix A, (A.6), the I’s appearing in
the right hand side of (3.10) behave as

I5j ∼ Fsing =
8

3c5(1 − k2)2
∼

1

(α − αj)4
as k → 1, or equivalently, α → αj (3.11)
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However the Q’s, appearing in the left hand side of sample equation (3.10), are less
singular. Using Mathematica, we find that

Qik ∼
1

α − αj
as α → αj . (3.12)

This shows that analytically the large singular components in I5j cancel by subtraction.
Performing this operation in finite machine precision leads to large loss of digits of accu-
racy and a consequently large roundoff error. (We remark that even though the Qik all
are singular as in (3.12), the combination Ql1ẏ − Ql2ẋ given in (2.5b) that defines the
Stokes flow integrands is less singular, as in (2.7).)

To remedy the roundoff error amplification problem, we extract the singular compo-
nent from I and compute

I ′ij = Iij − Fsing . (3.13)

This is done by first removing the singular component from E5/2:

E′
5/2 = E5/2 −

2

3(1 − k2)2
(3.14)

and then writing

I ′50 =
4

c5
E′

5/2, (3.15)

I ′51 =
4

c5
a
[
bE′

5/2(k) − E3/2(k) +
2

3(1 − k2)

]
, (3.16)

etc. The functions Qik are then computed by replacing the Ijk by I ′jk and reorganizing
the components containing Fsing . For example, Q11 is computed as follows:

Qu
11 = −6x[x3I ′51 − x2xj(I

′
50 + 2I ′52) + xx2

j (I
′
53 + 2I ′51) − x3

jI
′
52

+ (x − xj)
3Fsing ],

(3.17)

and similarly for the other Qik’s.
The reduction in roundoff error is thus obtained by replacing the factor multiplying

Fsing , which is x3 − 3x2xj + 3xx2
j − x3

j , by (x − xj)
3. A simple MATLAB experiment

illustrates the difference between the two (see also Van Loan, 2000, §1.4.3). Figures
4(a,b) plot y = (x − 1)3 and y = x3 − 3x2 + 3x − 1 respectively, vs. x − 1, computed
in MATLAB. While the graph in (a) is monotonic, the graph in (b) has roundoff error
of order 10−15 introduced by cancellation. This error is small, but is amplified by the
large values of the factor Fsing . For example, if x = 1, x − xj = 0.01 and y = yj , then
Fsing ≈ 1.1 × 109 and the errors of order 10−15 are amplified to be of order 10−6. This
illustrates how fast Fsing grows as (x, y) → (xj , yj), and amplifies the small numerical
error between (x − xj)

3 and x3 − 3x2xj + 3xx2
j − x3

j .
The result of the proposed change in the computation of the Q’s is shown in Figure 5.

The figure shows the errors obtained after replacing (3.10) by (3.17) and similarly for all
other Q’s. (It also includes the removal of large errors near the poles described in the
next section.) Notice that the roundoff error noise in the double layer integrals has been
reduced from 10−7 (figures 2 cd) to 10−13 (figures 5 cd). While the noise is still larger
than that in the single layer integrals (figures 5 ab), it is sufficiently low for the method
to be used in practical applications that require high accuracy.
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3.3. Removing loss of accuracy near poles

The degeneracy of the error near the poles is similar to the one observed for axisym-
metric vortex sheets in Eulerian flows (Baker et al., 1984; de Bernadinis and Moore, 1987;
Pugh, 1989; Nie and Baker, 1998; Nitsche, 1999, 2001) and Darcian flows (Ceniceros and
Si, 2000). It is caused by the unbounded behaviour of the derivatives of G at the poles
and the coefficients ck as αj → 0, π. For example, using arguments similar to those in
Nitsche (1999, 2001), one can show that

cud
k ∼

1

αk−1
j

, as αj → 0. (3.18)

Substituting this expression into (3.5) and (3.6) with αj = h it is clear that the term
c2(αj , t)h

3 as well as all other terms involving ck(αj , t) are of order O(h2). Equation
(3.18) also explains why the error is largest when j = 1. We remark that without the
single layer desingularization the behaviour of all coefficients at the poles is more singular,
and would yield maximal errors of order O(h). For this reason the simple trapezoidal
rule T2 requires the desingularization to be uniformly of second order.

One goal of this paper is to obtain a uniformly accurate 5th order approximation for
the integrals of G. We achieve this by finding a pole correction to the proposed quadrature
(3.5) using the ideas developed in Nitsche (1999, 2001) for inertial vortex sheets. The
corrections are obtained using sufficiently good approximations B of the integrands G
that capture the singular behaviour of G at the poles. These approximations are obtained
using Taylor series expansions. We then approximate

∫
G =

∫
(G − B) +

∫
B ≈ T5[G − B] +

∫
B = T5[G] + E5[B] (3.19)

Since G−B is less singular than G the integral
∫
(G−B) is computed more accurately. It

turns out that the corrections E5[B] can be essentially precomputed and added to T5 at
minimal cost per timestep. This, in a nutshell, is the main idea of this section. Some of
the details necessary to understand the method are given next, and all values necessary
to implement it are given in the appendices. The corrections and a sample code can also
be obtained by emailing the corresponding author.

To approximate G near the left endpoint we use Taylor series about α, αj ≈ 0. The
symmetry of the interface across the axis implies that

x(α, t) = ẋ0(t)α +
x
...

0(t)

6
α3 + O(α5),

y(α, t) = y0(t) +
ÿ0(t)

2
α2 + O(α4), (3.20)

κ(α, t) = κ0(t) +
κ̈0(t)

2
α2 + O(α4),

with similar expansions for x(αj , t), y(αj , t), and κ(αj , t). We expand the functions
M(x, xj , ξ) and Q(x, xj , ξ), where ξ = y − yj, about the base point p = (ẋ0α, ẋ0αj , 0).
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For example,

M(x, xj , ξ) = M(p) +
∂M

∂x
(p)

(x
...

0(t)

6
α3 + . . .

)
+

∂M

∂xj
(p)

(x
...

0(t)

6
α3

j + . . .
)

+
∂M

∂ξ
(p)

( ÿ0(t)

2
(α2 − α2

j) + . . .
)

(3.21)

+
∂2M

∂ξ2
(p)

( ÿ2
0(t)

8
(α2 − α2

j )
2 + . . .

)

+
∂2M

∂ξ∂x
(p)

( ÿ0(t)x
...

0(t)

12
(α2 − α2

j)α
3 + . . .

)
+ . . . .

We then substitute these expansions into the integrands (2.10) and obtain the approxi-
mations near the left endpoint. The approximations near the right endpoint are obtained
similarly. The number of terms needed in the Taylor expansions is determined by the de-
sired order of accuracy and the dependence of derivatives of M, Q on αj . For uniform 5th
order quadratures, we need 4th order approximations of G. Furthermore, we observed
that the kth derivatives of M and Q behave as O(1/αk

j ) and O(1/αk+1
j ), respectively.

These observations determine the number of terms needed. For example, 4th order ap-
proximations of G require 14 terms in the expansion of Q11. In principle, following this
script one can find arbitrarily high order approximations, as needed to obtain higher
order uniform quadratures.

The results, obtained with Mathematica, are that

Gus = B l,us(α, αj , t) + O(α5, α5
j), (3.22a)

Gvs = B l,vs(α, αj , t) + O(α4, α4
j), (3.22b)

Gud = B l,ud(α, αj , t) + O(α5, α5
j ), (3.22c)

Gvd = B l,vd(α, αj , t) + O(α4, α4
j ), (3.22d)

where

B l,us(α, αj , t) = α3
jb

l,us
1 (t)Bus

1 (η), (3.23a)

B l,vs(α, αj , t) = α2
jb

l,vs
1 (t)Bvs

1 (η), (3.23b)

B l,ud(α, αj , t) = αjb
l,ud
1 (t)Bud

1 (η) + α3
j

6∑

k=2

bl,ud
k (t)Bud

k (η), (3.23c)

B l,vd(α, αj , t) = α2
j

2∑

k=1

bl,vd
k (t)Bvd

k (η), (3.23d)

and η = α/αj . The approximations of G near the right endpoint are identical, except
that at all places in (3.23) α and αj are replaced by α − π and αj − π, respectively,
and superscripts l are replaced by r. The functions bl(t), br(t) and B(η) are given
in Appendix D. The functions bl(t), br(t), depend on derivatives of x, y, κ, u, v at the
endpoints. Details of these functions will be important to understand the impact of the
corrections in applications, and will be discussed later, in §4.
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What is notable in the approximations (3.23) is that the coefficients bk(t) are inde-
pendent of j and the functions Bk(η) are independent of time. This implies that the
corrections E[B] can basically be precomputed. The terms E[Bk] can be precomputed
at time t = 0, and at each timestep, the corrections can be found solely by computing
the coefficients bk(t) at a cost of O(1).

Some small details remain to be explained. For convenience, we compute the inte-
gration error E[B] in (3.19) over an interval proportional to αj of the form [0, Lαj]. We
choose L = 10, which is sufficiently large to cover the range in which B approximates G
well. Following the outline (3.19) we obtain

∫ π

0

Gdα ≈ T5[G]h[0,π] + E[Bl]h[0,10αj ]
. (3.24)

The numbers E[B] are the pole corrections to our original approximation. Since for any

function f(α, αj , t), E[f ]h[0,10αj]
= αjE[f ]

1/j
[0,10] it follows that

E[Bl,us]h[0,10αj ]
= α4

jb
l,us
1 (t)E[Bus

1 ]
1/j
[0,10], (3.25a)

E[Bl,vs]h[0,10αj ]
= α3

jb
l,vs
1 (t)E[Bvs

1 ]
1/j
[0,10], (3.25b)

E[Bl,ud]h[0,10αj ]
= α2

jb
l,ud
1 (t)E[Bud

1 ]
1/j
[0,10] + α4

j

6∑

k=2

bl,ud
k (t)E[Bud

k ]
1/j
[0,10], (3.25c)

E[Bl,vd]h[0,10αj ]
= α3

j

2∑

k=1

bl,vd
k (t)E[Bvd

k ]
1/j
[0,10]. (3.25d)

Note that for αj = h (j=1), the corrections (3.25a-d) are O(h4), O(h3), O(h2) and
O(h3), respectively, in agreement with the numerical results in figure 3.

The time-independent factors E[Bl
k]

1/j
[0,10] are precomputed at t = 0. Since the inte-

gration interval for B was chosen proportional to αj , these factors depend only on j and
not on h, and can conveniently be precomputed once for all meshes to be used.

Finally, to obtain uniformity near the right endpoint we need to add corrections at
the right, using the functions Br given by (3.23), as described earlier. Both left and right
corrections are incorporated into the final approximation, which we label T5u, as follows:
∫ π

0

Gdα ≈ T5u[G] = T5[G]h[0,π] + w1(αj)E5[B
l]h[0,10αj ]

+ w2(αj)E5[B
r]h[π−10αj ,π] (3.26)

where the weights w1 and w2 are positive functions that equal one at the left or right
endpoint, are smooth, and vanish sufficiently fast away from that endpoint. Details
of these functions are not critical, but for smoothness we have chosen either w1 =
cos8(

αj

2 )/(sin8(
αj

2 ) + cos8(
αj

2 )) and w2 = sin8(
αj

2 )/(sin8(
αj

2 ) + cos8(
αj

2 )) or a rescaled
Erfc function as proposed in (Boyd, 1996, Eq. (22)), when faster decay away from the
endpoint is needed. The Erfc function decays smoothly from 1 to 0 over a finite interval.

All values ck, B̃k(αj , αj , t), and derivatives of Bk needed to compute E[Bk] are given
in Appendix E for the single layer, as illustration. The numbers E[Bk]1/j are computed
in quadruple precision to reduce the effect of roundoff error.

The resulting approximation error after including the corrections, E5u[G]h[0,π], is plot-
ted in figure 5 as a function of αj . Observe that the large errors near the poles have
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Figure 6: Maximal approximation error maxαj∈[0,π/2]

˛

˛

˛
E5u[G]h

[0,π]
(αj)

˛

˛

˛
vs. h, for G equal to (a) Gus,

(b) Gvs, (c) Gud, (d) Gvd, as given in (2.10) with u(α) = sinα, v(α) = cos α. The data (+) and lines
with the indicated slopes (—) are shown.

been eliminated. To confirm that the approximation is now uniformly 5th order, figure
6 plots the maximal error as a function of h on a log-log scale (+) together with a line of
slope 5 (—). Comparison with figure 3 shows the improvement obtained with the pole
corrections. The data in figure 6 confirms that the corrected method T5u is uniformly of
fifth order.

4. Computing the interface evolution

4.1. Numerical Method

This section applies the quadrature rules developed in §3 to compute the evolution of
three sample flows. For the computations, we found it convenient to use the arclength-
tangent angle framework proposed by Hou, Lowengrub, and Shelley (1994), which is
briefly described next.

Note that the evolution of the interface x(α, t) is uniquely determined by its normal

velocity. That is, for an interface tracked by Lagrangian particles marked by α, the
tangential velocity of these particles does not alter the interface position, it only alters
the position of the marker particles along the interface. With this in mind, given initial
conditions, the interface x(α, t) is determined by

∂x

∂t
= u + T s , (4.1)

where u(α, t) is given by (2.4), s(α, t) is the unit tangent vector to the sheet, and T (α, t)
can be chosen arbitrarily.

If T = 0, the Lagrangian particles generally accumulate near isolated points on the
interface, which in certain cases impacts the numerical stability of the discretization.
Following Hou et al. (1994), we instead choose T so as to control where and when the
Lagrangian marker particles accumulate. For simplicity, here we choose T so that the
particles remain equally spaced in arclength. Alternative choices are possible, see for
example Hou et al. (1994, Appendix) and Nitsche and Steen (2004).

To proceed, it is convenient to rewrite equations (4.1) in terms of the tangent angle
θ(α, t) and the relative spacing between points sα, where s(α, t) is arclength. Here and
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below, the subscripts α and t denote partial differentiation with respect to that variable.
The variables θ and sα are related to x and y by

xα = sα cos θ , yα = sα sin θ , (4.2)

where x(0, t) = 0 and y(0, t) = y0(t). In the equal arclength case the relative spacing
between points is constant in α, and thus sα = L(t)/π, where L is the length of the
curve in the crossection. Using these variables, Hou et al. (1994) showed that (4.1) is
equivalent to

Lt = −

∫ π

0

θ′αU dα′ , θt =
π

L
(Uα + θαT̃ ) , (y0)t = v(0, t) , (4.3)

where U = u · n, n is the outward unit normal, and T̃ (α, t) = αLt/π +
∫ α

0 θ′αU dα′. The

relation to T is that T̃ = u · s + T .
The numerical method used in the following sections consists of discretizing the in-

terface by N + 1 points uniformly spaced in the Lagrangian variable α, θj(t) ≈ θ(αj , t),
where αj = jh, h = π/N , j = 0, . . . , N , with total length L(t) and intersecting the axis
at (0, y0(t)). The variables L, θj and y0 satisfy a system of ordinary differential equations
obtained by approximating all derivatives in (4.3) spectrally and all integrals to 6th order
using the modified trapezoidal rule. The velocity u is computed either to second order
with T2 (3.3), to pointwise fifth order with T5 (3.5), or to uniform fifth order with T5u

(3.26). For λ 6= 1, the Fredholm integral equation for u is solved using GMRES (Frayssé
et al., 2003) with a prescribed residual tolerance of 10−13. The system is integrated in
time using the 4th order Runge Kutta method. Here, the initial condition must satisfy
that sα be constant.

4.2. Finite time Pinchoff

The first example consists of the initial condition

θj(0) = αj +
(2

3
+ 5a

)
sin(2αj) +

( 1

12
+ 4a

)
sin(4αj) + a sin(6αj) (4.4)

with L(0) = π and y0(0) such that y0 = −yn for symmetry, in zero external flow, u∞ = 0,
and with viscosity ratio λ = 0.1. Equation (4.4), proposed by Almgren (1996), describes
a dumbbell for an approximate range of values 0.016 ≤ a ≤ 0.099. We choose a = 0.09.
Note that by prescribing initial values for θj , L and y0 (instead of x and y) the initial
condition is implicitely equally spaced in arclength.

Figure 7 shows the solution at a sequence of times 0 ≤ t ≤ 0.82, computed with the
uniform fifth order rule T5u, using N = 2048 and ∆t = 0.000625 sufficiently small that
the temporal discretization error is smaller than the spatial one. For these parameters,
the execution time was 1.4 hrs on a 2.4 Ghz desktop. The arrow in figure 7(a) indicates
the direction of increasing time. The interface, which evolves solely based on its initial
curvature distribution, appears to pinch at two symmetric points. Figure 7(b) shows a
closeup near the upper pinchoff point. The minimum radius near this point is shown
in figure 8 as a function of time. Figure 8(a) plots the result using the parameters of
figure 7. It shows that after an initial time, the radius approaches zero almost linearly
in time, indicating finite time pinchoff. The smallest radius computed with N = 2048 is
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Figure 7: Evolution of the dumbbell-shaped bubble (4.4) with a = 0.09, Ca = 0, and λ = 0.01, computed
using T5u with N = 2048 points. The solution is shown at times t =0.0:0.1:0.7, 0.74, 0.77, 0.79:0.01:0.82.
(a) The arrows indicate the direction of motion as time increases. (b) Closeup near pinchoff.
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N = 2048 (—), N = 1024 (− −−), N = 512 (−.). The dotted line shown on t ∈ [0.821, tc], tc = 0.8258
is obtained by a linear least squares fit of the N = 2048 data over t ∈ [0.76, 0.81].
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Figure 9: Closeup of solutions near pinchoff time computed with (a) N = 512, (b) N = 1024, using the
2nd order method (- - -) and the uniformly 5th oder method (—), at times ranging from the smallest to
the largest times indicated in the figures.

rmin = 0.0005 and the corresponding maximal curvature is κmax = 1800. Figure 8(b)
shows a closeup of the results computed with N = 2048 (—), 1024 (- - -), 512 (-.). The
three data sets appear almost linear, and overlap closely with each other, until toward
the last times, when the lower resolution data begin to oscillate.

We estimate the pinchoff time by approximating the N = 2048 data by a least squares
linear polynomial over the interval [0.76,0.81]. This line is plotted in figure (b) over a
small time-interval t ∈ [0.822, tc], where tc = 0.8258 is the time at which it crosses
the t-axis. The line agrees with the data over the interval of approximation to within
×10−5, and cannot be distinguished visually from it at this scale, which is why it is only
plotted on a small time interval near tc. By varying the domain used for the least squares
approximation and comparing linear and quadratic approximations, we estimate that tc
approximates the pinchoff time within ±0.0002. This figure thus indicates finite time
pinchoff and the accuracy obtained with the fifth order method at the given resolutions.

Figure 9 compares the results using different methods. It plots the solution at a
sequence of times near pinchoff using the second order quadrature T2 (- - -) and the
uniformly fifth order quadrature T5u (—), with N = 512 in figure (a) and N = 1024 in
figure (b). The last times shown in each case are those times past which the second order
method no longer converges. It shows that the differences between the two methods
increases significantly as t → tc, and suggests that for a given meshsize, the higher order
method resolves the solution near pinchoff significantly better.

To more accurately compare the methods, figures 10(a,b,c) plot the maximal l2 errors
in the position at times t = 0.1, 0.4, and 0.7, respectively, vs h = π/N , where N = 128,
256, 512, 1024. The errors are obtained by comparing the solution to the fifth order
results with N = 2048. The lines have the indicated slopes. They show that the fifth
order method converges as O(h5) at all times, and that the errors are much smaller than
the ones with the second order method.

The maximal errors shown in figure 10 increase in time. For the second order method,
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Figure 11: Maximal errors in the position x + iy vs time, using the 2nd order method (- - -) and the
uniformly 5th oder method (—). Two curves are shown for each method, obtained with N = 512 and
N = 1024 respectively. (b) is a closeup of (a).

the errors increase slightly, and the O(h2) terms become dominated by O(h3) terms in
figure 10(c). This can be understood by investigating the pointwise second and third
order terms in the error, as given in (3.1). The second order terms are those containing
first derivatives of G at the endpoints. These derivatives are given in equations (C3, C7,
C11, C15) and depend on 0th derivatives of curvature and velocities. The third order
term in (3.1) is the one containing c2, which, as listed in (C2, C6, C10, C14), depends
on second derivatives of curvature. Since higher derivative grow faster as the curvature
grows near pinchoff, the third order terms soon dominate the second order ones. For the
fifth order method, the errors remain O(h5) throughout, but increase significantly due
to the increasing curvature and its derivatives.

The time evolution of the error is more clearly shown in figure 11, which plots the
maximal error using N = 512 and N = 1024 as a function of time, for all times before
GMRES no longer converges. Figure 11(a) shows that the error increases as pinchoff is
approached. The difference between the two methods decreases on a logarithmic (but not
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T5 (- - -) and the uniformly 5th oder method T5u (—), at (a) t = 0.1, (b) t = 0.4, (c) t = 0.7. The
four curves shown for each method correspond to N = 128, 256, 512, and 1024, and are computed by
comparing to the uniformly 5th order approximation with N = 2048.

on a linear) scale. However, as shown in the closeup in figure 11(b), for equal resolution
N , the fifth order method is still about 50 times more accurate at the time the second
order method breaks down. It furthermore solves the equations for longer times. Thus
the fifth order method more accurately resolves the solution at times more closely to
pinchoff, as was already indicated in figure 7.

To determine the effect of the local corrections required for uniformity, figure 12
compares the pointwise and uniform fifth order methods. Figures (abc) plot the l2
error in the computed position as a function of α/π, using N = 128, 256, 512, 1024, at
a sequence of times t = 2, 6 and 10, respectively. The error without corrections (using
T5) is shown as the dashed curve, the error with corrections (using T5u) is shown as the
solid curve. Initially, the corrections improve the error near the boundary. But at the
present resolutions the degeneracy at the axis is small, and the maximum error, which
occurs away from the axis, is the same for both methods. As time increases the difference
between the two methods decreases, until at t = 10 there is no difference on the whole
domain. Thus, in this case the corrections required in theory for uniformity do not affect
the maximum error in practice. This can be understood by investigating the coefficients
bk(t) multiplying the constants E[B](j), given in Appendix D. Notice that unlike the
values of c2 or ∂G/∂α, the coefficients bk(t) depend on derivatives of the curvature and
velocities at the endpoints only. As the dumbbell evolves the curvature at the endpoint
approaches a constant, and the endpoint velocities decay to zero. Thus in this application
the corrections are relatively small and decrease in time, and would only be significant at
much higher resolutions than the ones we used. This example illustrates how the specific
form of the bk’s can be used to determine whether or not the corrections are needed to
improve the results in a given applications.

In summary, this example of finite time pinchoff is significantly better resolved by the
fifth order method. However, the pole corrections required in theory for uniformity are
negligible since the flow velocities and curvature changes at the poles vanish.
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Figure 13: Evolution of initially spherical bubble in the strainfield (4.6) with λ = 0.01, Ca = 0.20, using
the uniform 5th order method with N = 2048 points, at times t = 0 : 2 : 30.

4.3. Steady Bubbles in a Strainflow

For our next example, we consider a case in which the changes in the curvature at
the poles do not vanish in time. The example is the initially spherical bubble

θj(0) = αj , L(0) = π , y(0) = −1 , (4.5)

in the axisymmetric strain field (see Youngren and Acrivos, 1976),

2Ca

1 + λ
u∞ =

Ca

1 + λ
(−x, 2y) . (4.6)

Taylor (1934) reported experimental results in which a drop is placed in a flow produced
by four counter-rotating rollers. He found that for strain rates less than a critical value,
Ca < Cacr(λ), the drops first elongate and then approach a steady state. This was
also observed in time-dependent numerical simulations by Rallison and Acrivos (1978).
Pozrikidis (1998) computed the time-dependent evolution as well and found some steady
states using a more general background strainfield. Eggers and du Pont (2009) recently
found steady solutions numerically by solving time-independent equations iteratively
with Newton’s method. They found stable and unstable steady states as well as critical
capillary numbers for a range of values of λ. Our goal here is to investigate the perfor-
mance of the three methods T2, T5, T5u to compute the time evolution of the drop, as
illustrated by one sample case.

In these simulations it is important that volume be well conserved, since any small
errors in the volume are quickly amplified by the background strain flow. Volume con-
servation can be achieved either by using extremely small timesteps or by specifying
the length L at each time so that the current volume equal the initial volume, 4π/3.
We found that with this latter approach the results converged significantly faster under
timestep refinement. We therefore used this method to compute L(t) instead of solving
the ordinary differential equation (4.3) for Lt explicitely.

Figure 13 plots the solution for λ = 0.01 and Ca = 0.20, computed with T5u using
N = 1024 and ∆t = 0.005, at a sequence of times t = 0 : 2 : 30. The computed bubble
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Q is the maximum curvature (rκ), the maximum y-coordinate (ry), and deformation (rD), vs. time.

stretches and appears to approach a steady state. However, it is difficult to determine
whether the solution is truly near a steady state since at all times shown in the figure,
indeed at any time, the time-dependent solution is changing. This becomes increasingly
difficult the closer Ca is to Cacr.

To obtain more conclusive evidence of convergence to a steady state, we consider
the maximum curvature κmax, the maximal axial coordinate ymax, and the deformation
D = xmax/ymax. These quantities, generically denoted by Q(t), are plotted in 14(a) vs
time. The slope dQ/dt decreases in time. However, this is not sufficient to conclude
convergence or to predict the steady state value. Instead, we consider each of these
quantities as a series of changes

Qj = Q0 +

j−1∑

k=0

∆Qk (4.7)

where Qj = Q(j∆t) and ∆Qk = Qk+1 − Qk, and wish to determine wether the series
converges to a finite steady state value. Figure 14(b) plots the ratios r(k) = ∆Qk+1/∆Qk

and shows that for all three quantities, this ratio converges to a common value < 1. This
shows that the three series converge geometrically for sufficiently large times.

Based on extensive simulations varying Ca and the mesh resolution we found the
ratios r(k) plotted in figure 14(b) to be a stronger indicator of convergence than the
information plotted in figures 13 and 14(a). For example, if the resolution is not sufficient,
or if Ca > Cacr, these ratios are the first to depart from a constant common limiting
value. Conversely, the fact that all three curves converge to the same value is a strong
indicator that the solution is converging towards a steady state, and that it is well
resolved. The ratios are thus a good basis on which to compare different methods.

However, the ratios r(k) depend on the timestep used. This is illustrated in fig-
ure 15(a), which plots the ratio ry using data sampled at different time intervals ∆t =
0.005, 0.01.0.02, as indicated. The timestep-dependence is revealed by the following cal-
culation. Note that the limiting value of the ratio r can be used to approximate the
steady state values. Assuming that for k ≥ j, r(k) = r is constant, then the steady state
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∆t = 0.02, 0.01, 0.005, as indicated. (b) Quantity ∆t
1−r(k)
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values are

Q∞ = Qj +
∞∑

k=j

∆Qk = Qj + ∆Qj

∞∑

k=0

rk = Qj +
∆Qj

1 − r

= Qj +
∆Qj

∆t

∆t

1 − r
≈

dQ

dt

∆t

1 − r

(4.8)

Assuming further that Q and dQ/dt have converged at tj , it follows that

∆t

1 − r
= constant + O(∆t) (4.9)

To illustrate, figure 15(b) plots the quantity ∆t/(1 − r) using the data spaced at time
intervals ∆t = 0.005, 0.01, 0.02, and shows that the three curves collapse onto one. Thus,
this timestep-independent quantity is a better characterization of the solution, which
converges to a steady state as t increases if ∆t/(1 − r) > 1.

Figure 16 (a) and (b) plot the computed values of ymax, and the corresponding values
∆t/(1 − ry), for the second order method T2 (- - -) and the fifth order methods T5, T5u

(—) with N = 256 and 512, as indicated. The second order results quickly depart from
the limiting values. This departure is evident at a larger scale in figure 16(b). The fifth
order results on the other hand have almost converged in N and in time, thus making it
possible to accurately determine the steady state using only moderate resolutions. These
results show that even for this case of moderate curvatures, much is gained by using the
fifth order methods over the second order one.

Figures 17(abc) compare the maximal errors in the position x+ iy, obtained with the
three methods at t = 2, 6 and 10, respectively. The results using T2 are of second order
and increase slightly in time. The results using T5 and T5u differ slightly in this case.
Thus, unlike the results in figure 10, here the corrections in T5u improve the maximal
error at early times.

Note that at the present resolutions the uncorrected method T5 has maximal errors
of 4th order, and not of second order as may be expected. Again, this can be understood
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by examining the coefficients bk(t) of the corrections. According to Appendix D, the
maximal second order term in the error is given by

bud
1 h2E[Bud]j=1 =

v0ÿ
2
0

ẋ0|ẋ0|
h2E[Bud]j=1 . (4.10)

Since v0 is small and vanishes in these steady state flows, the second order term in the
error is negligible. Similarly, all other factors bud

k and bvd
k depend on pole velocities

and its derivatives and are negligible. On the other hand, the 4th and 3rd order terms
with coefficients bus

k and bvs
k respectively depend on the κ′′

0(t) which is large, even in this
moderate example. Thus one would expect maximal errors of 3rd or 4th order, consistent
with the results in figures (a) and (b). However, as time increases the pole curvature
grows, and higher derivatives of the curvature grow faster than lower ones. As a result,
the fifth order terms in the error, which depends on higher curvature derivatives, grow and
soon dominate the maximal error. Thus in this case the pole corrections are insignificant
after some time, not because curvature and derivatives are small, but because they are
large.

Note that for sufficiently high resolution, the corrections will improve the error. How-
ever, such resolutions appear to be much larger than the ones needed in practice to resolve
the curve. Moreover, if the resolution is insufficient to compute the corrections accurately,
they worsen the result. This is the reason why in figure 17(c) the uncorrected results at
low resolutions are slightly better than the corrected results.

In summary, in this example, the fifth order methods are a significant improvement
over the second order method, and enable approximating the steady state with moderate
resolutions. The corrections however become insignificant relative to higher order terms
in the error as the derivatives at the pole grow, and moreover, they become difficult to
compute.

4.4. Continuously Extending Drops

For our last example we consider a case in which the pole velocities do not vanish.
In such a case the second order error terms in T5 and the corresponding corrections in
T5u could possibly be more significant.

We consider the initial spherical drop (4.5) with λ = 10, in the external strainfield
(4.6) with Ca = 0.4. This capillary number is larger than the critical value, which for
λ = 10 is Cacr ≈ 0.095 and therefore, the drop is not expected to reach a steady state.
Figure 18 shows the evolution at uniformly increasing times t = 0 : 1 : 13, computed with
T5u and N = 2048, ∆t = 0.005. Indeed, the solution does not approach a steady state but
instead, it continuously extends in the background strainfield. Since the external velocity
increases as |y| increases, the drop stretches increasingly fast. As we will explain later,
these results are surprisingly difficult to compute, even though the interface is perfectly
smooth at all times and maximal curvatures increase only moderately fast.

First, we determine the relative magnitude of the various order error terms in T5.
Figure 19 plots the evolution of the largest 2nd, 3rd and 4th order terms in (3.25),
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Figure 18: Evolution of initially spherical bubble in the strainfield (4.6) with λ = 10, Ca = 0.40, at
times t = 0 : 1 : 13, computed using the uniformly 5th order method with N = 2048, ∆t = 0.005.

obtained with j = 1, for n = 128. That is, it shows

d2(t) = h2
∣∣bud

1 (t)E[Bud
1 ]1

∣∣ (4.11)

d3(t) = h3 max
( ∣∣bvs

1 (t)E[Bvs
1 ]1

∣∣ ,
∣∣

2∑

k=1

bvd
k (t)E[Bvd

k ]1
∣∣
)

(4.12)

d4(t) = h4 max
( ∣∣bus

1 (t)E[Bus
1 ]1

∣∣ ,
∣∣

6∑

k=2

bud
k (t)E[Bud

k ]1
∣∣
)

. (4.13)

The figure shows that, indeed, initially the 2nd order term, which depends on v0, is larger
than the others. However, as the drop stretches and derivatives of x, y grow, so do the
higher order terms. As a result, after short time the third order term dominates, and
around t = 8 the fourth order term dominates. It follows that even though the maximal
error in T5 is O(h2) at all times, the second order term dominates the error only in a
small initial time interval, whose length grows as N increases.

The corrections in T5u remove the low order error terms in T5 shown in figure 19, and
the effect of this is shown in figure 20. Figure 20 compares the results using T2, T5 and
T5u. It plots the maximal curvature vs time, for several resolutions ranging from N = 128,
increasing by factors of 2 until N = 2048, as indicated. Figure 20(a) is obtained with T2,
figure 20(b) with T5, and figure 20(c) with T5u. These figures illustrate the numerical
difficulty in computing the flow. For any method and any set of parameters N and
∆t, the results follow the same pattern: as the drop stretches, the maximum curvature
increases slowly, but suddenly it becomes unbounded and the computations break down.
For example, the second order solution in figure 20(a) with N = 2048 breaks down
around t = 5. Notice that at this time the solution plotted in figure 18 is smooth and
the maximal curvatures are small, ≈ 4, giving no indication of any numerical difficulties.
The breakdown time is practically independent of the timestep used, which we varied
between ∆t = 0.2 and ∆t = 0.0025. Rallison and Acrivos (1978) also observed that for
any case with Ca > Cacr, their numerical solutions break down in finite time. They
attributed this to a numerical instability related to the physical instability leading to the
“bursting” solutions that Taylor (1934) observed experimentally.

As shown in figure 20, the breakdown time depends on the spatial resolution N , albeit
in an unusual nonmonotonic fashion. For the second order results in figure (a), the break-
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Figure 19: Largest 2nd, 3rd and 4th order corrections (3.25), d2(t), d3(t), d4(t).

down time decreases as N increases from 128 to 2048, which could be misinterpreted
as a finite time singularity in the exact solution. For the pointwise fifth order results
in figure (b), the breakdown time decreases for low N , but increases as N increases
past 1024, giving the first indication of convergence as N → ∞ at larger times. For the
uniform fifth order results in figure (c), the breakdown time begins to increase already
sooner, past N = 512. Notice also that the results in (c) solve the equations to largest
times.

Based on these results, we expect the solution to exist for large and possibly all times,
and we expect that it can be computed with sufficiently fine resolution. Furthermore,
the exact solution appears to be stable to arbitrarily small perturbations. The fact that
discretization error is sufficient to induce a rapid departure from it indicates that the
exact solution is unstable to finite perturbations, and agrees with the observations of
Rallison and Acrivos (1978) and Taylor (1934).

In summary, our results show that in this example: (i) Solutions to the discrete
system for fixed N exist for finite time only. (ii) As N increases, the convergence is non-
monotonic. N needs to be sufficiently large, N > Nc until convergence in N is observed.
(iii) The value Nc past which the methods converge is smallest for our corrected uniform
fifth order method. Furthermore, for fixed N > Nc, the corrected method approximates
the exact solution for longer times. For the second order method, on the other hand, Nc

is not even reached in our simulations.
Thus, in the example presented in this section, the corrected uniform fifth order

method is a significant improvement over both the second and the pointwise fifth order
methods, since it converges faster and for longer times than the alternatives.

5. Summary

This paper concerns the computation of the integrals that appear in axisymmetric
interfacial Stokes flow with no swirl. We analyze a set of quadrature rules of arbitrarily
large pointwise rate of convergence, based on (3.1). We use asymptotic approximations
near the poles to show the existence of low order terms in the maximum quadrature
error, and we construct a uniformly fifth order quadrature based on identifying the low
order terms. We then apply three methods, namely the popular second order method,
the pointwise fifth order method and the uniformly fifth order method, to compute the
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evolution of three sample flows. The examples give insight into the performance of the
various methods in practice.

Our main findings are:

• Pointwise convergent methods of arbitrary high order all have a low second order
term in the maximum error. Asymptotic approximations about the pole are used
to identify and remove the low order terms.

• Specific formulas for a uniformly convergent 5th order method are given. With a
given table of precomputed values, the method is easily implemented at no addi-
tional cost per time step.

• In the three applications presented, much is gained by using fifth order over second
order accurate methods to compute the interface evolution. In particular, with
equal spatial resolution, the fifth order methods

◦ resolve finite time pinchoff better and to times closer to pinchoff;

◦ resolve the solution near steady states better, giving significantly more accu-
rate estimates of the steady state values;

◦ simulate a continuously extending bubble accurately to longer times.

• The corrections needed to obtain uniformly 5th order errors are sometimes, but
not always, significant in practice. Their significance can be deduced from their
explicit representation given in Appendix D.

◦ If the derivatives at the endpoints are small, the low order corrections may
be much smaller than the higher order terms. In this case the corrections are
not needed and the pointwise 5th order method equals the uniform 5th order
method in accuracy. Examples of this scenario are the pinching bubble and
low curvature steady states.

◦ If derivatives at the endpoints are large, with even larger derivatives of higher
order, the low order corrections may be smaller than the higher order terms,
and thus not significant. In this case as well, the pointwise 5th order method
equals the uniform 5th order method in accuracy. Examples of this scenario
are steady states bubbles with high curvature on the axis.

◦ For moderate values of endpoint curvatures and velocities the corrections im-
prove the accuracy of the simulations. In the continuously extending bubble,
this gain results in accurate solutions for longer times before instability sets
in.
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Appendix A. Functions M and Q

Mu
1 (x, xj , ξ) = x[I11 + (x2 + x2

j )I31 − xxj(I30 + I32)], (A.1a)

Mu
2 (x, xj , ξ) = xξ(xI31 − xjI30), (A.1b)

Mv
1 (x, xj , ξ) = xξ(xI30 − xjI31), (A.1c)

Mv
2 (x, xj , ξ) = x(I10 + ξ2I30), (A.1d)

Qu
11(x, xj , ξ) = −6x[x3I51 − x2xj(I50 + 2I52) + xx2

j (I53 + 2I51) − x3
jI52], (A.1e)

Qu
12(x, xj , ξ) = −6xξ[(x2 + x2

j )I51 − xxj(I50 + I52)], (A.1f)

Qu
21(x, xj , ξ) = Qu

12, (A.1g)

Qu
22(x, xj , ξ) = −6xξ2(xI51 − xjI50), (A.1h)

Qv
11(x, xj , ξ) = −6xξ(x2

jI52 + x2I50 − 2xxjI51), (A.1i)

Qv
12(x, xj , ξ) = −6xξ2(xI50 − xjI51), (A.1j)

Qv
21(x, xj , ξ) = Qv

12(x, xj , ξ), (A.1k)

Qv
22(x, xj , ξ) = −6xξ3I50, (A.1l)

with

I10 =
4

c
F (k), (A.2a)

I11 =
4

c
a[bF (k) − E(k)], (A.2b)

I30 =
4

c3
E3/2(k), (A.2c)

I31 =
4

c3
a[bE3/2(k) − F (k)], (A.2d)

I32 =
4

c3
a2[b2E3/2(k) − 2bF (k) + E(k)], (A.2e)

I50 =
4

c5
E5/2(k), (A.2f)

I51 =
4

c5
a[bE5/2(k) − E3/2(k)], (A.2g)

I52 =
4

c5
a2[b2E5/2(k) − 2bE3/2(k) + F (k)], (A.2h)

I53 =
4

c5
a3[b3E5/2(k) − 3b2E3/2(k) + 3bF (k) − E(k)], (A.2i)

where

k2 =
4xxj

ξ2 + (x + xj)2
, (A.3)

and a = 2/k2, b = (2 − k2)/2, c2 = (x + xj)
2 + ξ2. Here, F and E are the complete

elliptic integrals of the first and second kind, respectively:

F (k) =

∫ π/2

0

dθ√
1 − k2 sin2 θ

, E(k) =

∫ π/2

0

√
1 − k2 sin2 θdθ , (A.4)
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and

E3/2 =
E(k)

1 − k2
, E5/2(k) =

2(2 − k2)

3(1 − k2)2
E(k) −

F (k)

3(1 − k2)
. (A.5)

Notice that a and b are functions of k only, with a → 2 and b → 1/2 as k → 1. Using this
formulations of Ijk (which differs from slightly from the formulations in Lee and Leal
(1982)) it is easy to see that the most singular contributions to I3j and I5j at k = 1,
which comes from the E3/2 and the E5/2 terms, respectively, are

I3j ∼
4

c3

1

1 − k2
, I5j ∼

8

3c5

1

(1 − k2)2
. (A.6)

This fact is used in Section 3.2.

Appendix B. Integrands for αj = 0, π

The limits of the integrands in (2.10a)-(2.10b) as αj → 0, π are found by expanding
M and Q about xj = 0 using known expansions of F (k) and E(k) about k = 0 to be

Gu
s (α, αjend, t) = 0, (B.1)

Gv
s(α, αjend, t) =

2πxκ

(x2 + ξ2)3/2
[ẏxξ − ẋ(2ξ2 + x2)], (B.2)

Gu
d(α, αjend, t) = 0, (B.3)

Gv
d(α, αjend, t) = −

12πxξ

(x2 + ξ2)5/2
(ux + vξ)(xẏ − ξẋ), (B.4)

where jend = 0 or n, and x = x(α), y = y(α), ξ = y(α) − yjend. The values and
derivatives of Gv

s at the endpoints, needed to implement the quadrature rule (3.5), are:

Gv
s(0, 0, t) = −2πκ0|ẋ0| ,

d

dα
Gv

s(0, 0, t) = 0 ,
d3

dα3
Gv

s(0, 0, t) = 0,

Gv
s(π, 0, t) = 0 ,

d

dα
Gv

s(π, 0, t) = −
4πκnẋ2

n

|ξ|
,

d3

dα3
Gv

s(π, 0, t) = (B.5)

−
4πẋn

|ξ|3
[
3κ̈nẋnξ2 − κn

(
6ẋ3

n − 4x
...

nξ2 + 6ẋnξÿn

)]
,

Gv
s(π, π, t) = 2πκn|ẋn| ,

d

dα
Gv

s(π, π, t) = 0 ,
d3

d3α
Gv

s(π, π, t) = 0,

Gv
s(0, π, t) = 0 ,

d

dα
Gv

s(0, π, t) = −
4πκ0ẋ

2
0

|ξ|
,

d3

dα3
Gv

s(0, π, t) = (B.6)

4πẋ0

|ξ|3
[
− 3κ̈0ẋ0ξ

2 + κ0

(
6ẋ3

0 − 4x
...

0ξ
2 − 6ẋ0ξÿ0

)]
,
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where ξ = yn − y0. Similarly, the values for Gv
d are:

Gv
d(0, 0, t) = 0 ,

d

dα
Gv

d(0, 0, t) = 0 ,
d3

dα3
Gv

d(0, 0, t) = 0,

Gv
d(π, 0, t) = 0 ,

d

dα
Gv

d(π, 0, t) =
12πvnẋ2

n

ξ|ξ|
,

d3

dα3
Gv

d(π, 0, t) = (B.7)

=
12πẋn

ξ3|ξ|

[
3ẋnξ

(
2u̇nẋn + v̈nξ

)
− vn

(
15ẋ3

n − 4x
...

nξ2 + 12ẋnξÿn

)]
,

Gv
d(π, π, t) = 0 ,

d

dα
Gv

d(π, π, t) = 0 ,
d3

d3α
Gv

d(π, π, t) = 0,

Gv
d(0, π, t) = 0 ,

d

dα
Gv

d(0, π, t) = −
12πv0ξẋ

2
0

|ξ|3
,

d3

dα3
Gv

d(0, π, t) = (B.8)

12πẋ0

ξ3|ξ|

[
3ẋ0ξ

(
2u̇0ẋ0 − v̈0ξ

)
+ v0

(
15ẋ3

0 − 4x
...

0ξ
2 − 12ẋ0ξÿ0

)]
,

where, as above, ξ = yn − y0.

Appendix C. Relevant coefficients of G(α, αj , t)

This appendix lists all the coefficients ck of G and its derivatives at the endpoints
needed to implement the pointwise 5th order quadrature T5, given in (3.5). For Gu,s(α, αj , t),
αj 6= 0, π, the values are:

G̃u,s(αj , αj , 0) = 0, (C.1)

cu,s
2 = −κ̈j ẏj −

2κ̇j

xj
(ẋj ẏj + ÿjxj), (C.2)

dGu,s

dα
(0, αj , t) =

2π(κ0 − κj)ẋ
2
0xjξ

[x2
j + ξ2]3/2

, ξ = y0 − yj, (C.3a)

dGu,s

dα
(π, αj , t) =

2π(κn − κj)ẋ
2
nxjξ

[x2
j + ξ2]3/2

, ξ = yn − yj, (C.3b)

d3Gu,s

dα3
(0, αj, t) =

πẋ0xj

[x2
j + ξ2]7/2

[
(κ0 − κj)

[
12ẋ0ÿ0(x

4
j − x2

jξ
2 − 2ξ4)

+ 9ẋ3
0(x

2
j − 4ξ2)ξ + 8x

...

0(x
2
j + ξ2)2ξ

]

+ 6κ̈0ẋ0(x
2
j + ξ2)2ξ

]
, ξ = y0 − yj ,

(C.4a)

d3Gu,s

dα3
(π, αj , t) =

πẋnxj

[x2
j + ξ2]7/2

[
(κn − κj)

[
12ẋnÿn(x4

j − x2
jξ

2 − 2ξ4)

+ 9ẋ3
n(x2

j − 4ξ2)ξ + 8x
...

n(x2
j + ξ2)2ξ

]

+ 6κ̈nẋn(x2
j + ξ2)2ξ

]
, ξ = yn − yj ,

(C.4b)
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For Gv,s, αj 6= 0, π, the values are :

G̃v,s(αj , αj , 0) = 0, (C.5)

cv,s
2 = κ̈jẋj +

κ̇j

xj
(ẋ2

j + 2xj ẍj − ẏ2
j ), (C.6)

dGv,s

dα
(0, αj , t) = −

2π(κ0 − κj)ẋ
2
0(x

2
j + 2ξ2)

[x2
j + ξ2]3/2

, ξ = y0 − yj , (C.7a)

dGv,s

dα
(π, αj , t) = −

2π(κn − κj)ẋ
2
n(x2

j + 2ξ2)

[x2
j + ξ2]3/2

, ξ = yn − yj, (C.7b)

d3Gv,s

dα3
(0, αj, t) =

πẋ0

[x2
j + ξ2]7/2

[
(κ0 − κj)

[
− 8x

...

0(x
2
j + ξ2)2(x2

j + 2ξ2)

− 3ẋ3
0(x

4
j + 8x2

jξ
2 − 8ξ4)

+ 12ẋ0ÿ0(−x4
j + x2

jξ
2 + 2ξ4)ξ

]

− 6κ̈0ẋ0(x
2
j + ξ2)2(x2

j + 2ξ2)
]

, ξ = y0 − yj ,

(C.8a)

d3Gv,s

dα3
(π, αj , t) =

πẋn

[x2
j + ξ2]7/2

[
(κn − κj)

[
− 8x

...

n(x2
j + ξ2)2(x2

j + 2ξ2)

− 3ẋ3
n(x4

j + 8x2
jξ

2 − 8ξ4)

+ 12ẋnÿn(−x4
j + x2

jξ
2 + 2ξ4)ξ

]

− 6κ̈nẋn(x2
j + ξ2)2(x2

j + 2ξ2)
]

, ξ = yn − yj ,

(C.8b)

For Gu,d, αj 6= 0, π, the values are :

G̃u,d(αj , αj , 0) =
−2vjẋj ẏj(ẏj(ẋ

2
j + ẏ2

j ) − 2xj(ẍj ẏj − ẋj ÿj)

xj(ẋ2
j + ẏ2

j )2

+
2uj(ẏj(2ẋ4

j + 3ẏ4
j ) + ẋ2

j ẏj(2xj ẍj + 5ẏ2
j ) − 2xj ẋ

3
j ÿj)

xj(ẋ2
j + ẏ2

j )2

(C.9)

cu,d
2 =

3

4x3
j

(
ẏj(−4v̇jxj ẏj + 3vjẋj ẏj − 6vjxj ÿj)

+ uj(2ẋ2
j ẏj + 2xj ẍj ẏj + 5ẏ3

j − 2xj ẋj ÿj)
) (C.10)

dGu,d

dα
(0, αj, t) =

−12π(v0 − vj)ẋ
2
0ξ

2xj

(x2
j + ξ2)

5/2
, ξ = yj − y0, (C.11a)

dGu,d

dα
(π, αj , t) =

−12π(vn − vj)ẋ
2
nξ2xj

(x2
j + ξ2)

5/2
, ξ = yj − yn, (C.11b)
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d3Gu,d

dα3
(0, αj , t) =

6πxj ẋ0

(x2
j + ξ2)5

[
2
(
3x2

j u̇0ÿ0 − ξ2(3ẋ0v̈0 + 4x
...

0∆v)
)

+
6ẋ0ξ(2x2

j − 3ξ2)

x2
j + ξ2

(ẋ0u̇0 − 2∆vÿ0)

+
15ẋ3

0ξ
2∆v

(x2
j + ξ2)2

(
− 3x2

j + 4ξ2)
]

ξ = y0 − yj , ∆v = v0 − vj ,

(C.12a)

d3Gu,d

dα3
(π, αj , t) =

6πxj ẋn

(x2
j + ξ2)5

[
2
(
3x2

j u̇nÿn − ξ2(3ẋnv̈n + 4x
...

n∆v)
)

+
6ẋnξ(2x2

j − 3ξ2)

x2
j + ξ2

(ẋnu̇n − 2∆vÿn)

+
15ẋ3

nξ2∆v

(x2
j + ξ2)2

(
− 3x2

j + 4ξ2)
]

ξ = yn − yj , ∆v = vn − vj .

(C.12b)

For Gv,d, αj 6= 0, π, the values are :

G̃v,d(αj , αj , 0) =
−2ẏj(uj ẋj + vj ẏj)(ẋ

2
j ẏj − 2xj ẍj ẏj + ẏ3

j + 2xj ẋj ÿj)

xj(ẋ2
j + ẏ2

j )
2

, (C.13)

cv,d
2 =

3ẏj

4x3
j

(
4u̇jxj ẏj − 5ujẋj ẏj + vj ẏ

2
j + 6ujxj ÿj

)
(C.14)

dGv,d

dα
(0, αj , t) =

12π(v0 − vj)ẋ
2
0ξ

3

(x2
j + ξ2)

5/2
, ξ = yj − y0, (C.15a)

dGv,d

dα
(π, αj , t) =

12π(vn − vj)ẋ
2
nξ3

(x2
j + ξ2)

5/2
, ξ = yj − yn, (C.15b)

d3Gv,d

dα3
(0, αj , t) =

6πξẋ0

(x2
j + ξ2)5

[
2
(
− 3x2

j u̇0ÿ0 + ξ2(3ẋ0v̈0 + 4x
...

0∆v)
)

+
6ẋ0ξ(3x2

j − 2ξ2)

x2
j + ξ2

(−ẋ0u̇0 + 2∆vÿ0)

+
15ẋ3

0ξ
2∆v

(x2
j + ξ2)2

(
5x2

j − 2ξ2)
]

ξ = y0 − yj , ∆v = v0 − vj ,

(C.16a)
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d3Gv,d

dα3
(π, αj , t) =

6πξẋn

(x2
j + ξ2)5

[
2
(
− 3x2

j u̇nÿn + ξ2(3ẋnv̈n + 4x
...

n∆v)
)

+
6ẋnξ(3x2

j − 2ξ2)

x2
j + ξ2

(−ẋnu̇n + 2∆vÿn)

+
15ẋ3

nξ2∆v

(x2
j + ξ2)2

(
5x2

j − 2ξ2)
]

ξ = yn − yj , ∆v = vn − vj .

(C.16b)

For αj = 0, π the function Gu
s (α, αj , t) = 0. The function Gv

s(α, αj , t) given by (2.8b)

is smooth, so c0 = c2 = 0 and G̃v
s(αj , αj, t) = Gv

s(αj , αj , t). For αj = 0, the derivatives
at the endpoints are:

Gv
s
′(0, 0, t) = 0 , Gv

s
′′′(0, 0, t) = 0 , Gv

s
′(π, 0, t) = −

4πκnẋ2
n

|y0 − yn|
, (C.17a)

Gv
s
′′′(π, 0, t) =

4πẋn

|yn − y0|3

[
− 3κ̈nẋn(y0 − yn)2

+ κn

(
6ẋ3

n − 4x
...

n(y0 − yn)2 − 6ẋnÿn(y0 − yn)
)]

.

(C.17b)

For αj = π, the derivatives at the endpoints are

Gv
s
′(π, π, t) = 0 , Gv

s
′′′(π, π, t) = 0 , Gv

s
′(0, π, t) = −

4πκ0ẋ
2
0

|y0 − yn|
, (C.18a)

Gv
s
′′′(0, π, t) =

4πẋ0

|y0 − yn|3

[
− 3κ̈0ẋ0(y0 − yn)2

+ κ0

(
6ẋ3

0 − 4x
...

0(y0 − yn)2 + 6ẋ0ÿ0(y0 − yn)
]

.

(C.18b)

Appendix D. Approximating functions B(α, αj , t)

This appendix lists the functions bl(t) and B(η) in the approximation (3.22,3.23) of
G near the left pole. Throughout it, η = α/αj and k2 = 4η/(1 + η)2. The functions
br(t) are obtained from the formulas for bl(t) by replacing the subscript 0 by n.

bl,us
1 (t) =

κ̈0ẋ0ÿ0

|ẋ0|
, Bus

1 (η) =
η

2
(1 − η2)

[
3(1 + η)E(k) −

(
1 + 3η2

1 + η

)
F (k)

]
(D.1)

bl,vs
1 (t) =

κ̈0ẋ
2
0

|ẋ0|
, Bvs

1 (η) = −2η
η2 − 1

1 + η
F (k) (D.2)
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bl,ud
1 (t) =

v0ÿ
2
0

ẋ0|ẋ0|
, Bud

1 (η) = −3η
[
(1 + η)E(k) + (1 − η)F (k)

]
, (D.3)

bl,ud
2 (t) =

u̇0

ẋ0|ẋ0|

[4

3
x
...

0ÿ0 +
5

2

ÿ3
0

ẋ0
−

1

3
y
....

0ẋ0

]
, Bud

2 (η) = η(1 + η)
[
(1 + η2)E(k) − (1 − η)2F (k)

]
,

(D.4)

bl,ud
3 (t) =

v0x
...

0ÿ
2
0

ẋ2
0|ẋ0|

, Bud
3 (η) =

η

6

[
(1 + η)(23 + 5η2)E(k) + (1 − η)(1 + 5η2)F (k)

]
,

(D.5)

bl,ud
4 (t) =

v0ÿ0y
....

0

ẋ0|ẋ0|
, Bud

4 (η) = −
η

6

[
5(1 + η + η2 + η3)E(k) + (1 − η)(1 + 5η2)F (k)

]
,

(D.6)

bl,ud
5 (t) =

v̈0ÿ
2
0

ẋ0|ẋ0|
, Bud

5 (η) = −
3η3

2

[
(1 + η)E(k) + (1 − η)F (k)

]
, (D.7)

bl,ud
6 (t) =

v0ÿ
4
0

ẋ3
0|ẋ0|

, Bud
6 (η) =

5

8
η(1 + η)

[
(7 + η2)E(k) − (1 − η)2F (k)

]
. (D.8)

bvd
1 (t) =

u̇0ÿ
2
0

ẋ0|ẋ0|
, Bvd

1 (η) = −3η
[
(1 + η)E(k) + (η − 1)F (k)

]
, (D.9)

bvd
2 (t) =

v0ÿ
3
0

ẋ2
0|ẋ0|

, Bvd
2 (η) = −3η(1 + η)E(k). (D.10)

Appendix E. Relevant coefficients of Bu,v
s

The functions B
u/v,s/d
k are all of the form

Bk(η) = B̃k(η) +

∞∑

l=1

ck,j (η − 1)j log |η − 1|. (E.1)

Here, we list the coefficients and derivatives necessary to compute E5[B], using (3.5), for
the single layer only, as examples. The results are obtained with Mathematica. All real
numbers are rounded to as many digits as listed.

cu,s
1,2 = −5 , B̃u,s

1 (1) = 0 ,
dBu,s

1

dη
(0) = π/2 ,

d3Bu,s
1

dη3
(0) = −27π/4, (E.2)

dBu,s
1

dη
(10) = 15.70828565 ,

d3Bu,s
1

d3η
(10) = 0.00003929, (E.3)

cv,s
1,2 = 2 , B̃v,s

1 (1) = 0 ,
dBv,s

1

dη
(0) = π ,

d3Bv,s
1

dη3
(0) = −9π/2, (E.4)

dBv,s
1

dη3
(10) = −62.8325457383,

d3Bv,s
1

dη3
(10) = −0.0000841112. (E.5)
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