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We develop an efficient dynamically adaptive mesh generator for time-dependent
problems in two or more dimensions. The mesh generator is motivated by the vari-
ational approach and is based on solving a new sebafinearelliptic PDEs for
the mesh map. When coupled to a physical problem, the mesh map evolves with the
underlying solution and maintains high adaptivity as the solution develops compli-
cated structures and even singular behavior. The overall mesh strategy is simple to
implement, avoids interpolation, and can be easily incorporated into a broad range
of applications. The efficacy of the mesh is first demonstrated by two examples of
blowing-up solutions to the 2-D semilinear heat equation. These examples show that
the mesh can follow with high adaptivity a finite-time singularity process. The focus
of applications presented here is however the baroclinic generation of vorticity in
a strongly layered 2-D Boussinesq fluid, a challenging problem. The moving mesh
follows effectively the flow resolving both its global features and the almost singular
shear layers developed dynamically. The numerical results show the fast collapse to
small scales and an exponential vorticity growthg 2001 Academic Press

Key Wordssemilinear heat equation, Euler singularity, Boussinesq flow, Rayleigh—
Bénard convection, moving mesh.

1. INTRODUCTION

How can we compute accurately the collapse to very small length scales and the r:
loss of regularity of a time-evolving solution? A solution-adaptive mesh is indispensal
for this task. There are many existing mesh-adaptive methods for this type of probile
Mesh adaptivity is usually in the form of local mesh refinements or through a bijective a
continuous mesh mapping. The adaptive mesh can also be static or dynamic (continuc
moving) [1, 3, 22, 33, 37, 39, 40, 44]. In local adaptive mesh refinement methods (see
[7]), an adaptive mesh is obtained by adding or removing points to achieve a desired I
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610 CENICEROS AND HOU

of accuracy. This allows a systematic error analysis. However, local refinement meth
require complicated data structures and fairly technical methods to communicate in
mation among different levels of refinements. In the mapping approach, the mesh po
are moved continuously in the whole domain to concentrate in regions where the solu
has the largest variations. Due to strong nonlinear coupling of the mesh map with the
derlying physical partial differential equation (PDR)priori error estimate is difficult to
obtain in this case. Nevertheless, it is possible to design mesh mappings that reflect clc
the solution’s geometry and regularity and that can be used to compute accurately fir
time singularity formation (see e.g. [12, 13]). These solution-adaptive mesh maps have
additional advantage of allowing the use of standard solvers as all the computations
performed in the logical domain using a uniform mesh. In this work, we propose a n
dynamically adaptive mesh generator of this type.

Our adaptive mesh is motivated by the variational approach and is based on sol\
a simple set ohonlinearelliptic PDEs for the mesh map. The overall mesh strategy i
cost efficient, easy to implement, and avoids interpolation. When coupled to a physi
problem, the mesh evolves with the physical solution and maintains high adaptivity
the solution develops complicated structures. As we demonstrate, the proposed mo
mesh can effectively be used to compute accurately multidimensional solutions that bl
up (become unbounded) in finite time as well as problems with complex and potentic
singular dynamics.

Important physical phenomena that develop dynamically singular or nearly singular sc
tions in fairly localized regions (e.g., shear flows, shocks, multiphase flows, focusing wav
etc.) abound. The numerical investigation of these problems requires extremely fine me:
to resolve accurately the large and often nearly singular solution variations in small regic
The use of well-refined uniform meshes becomes computationally prohibitive when deal
with systems in two or three dimensions. Developing an effective adaptive mesh strategy
these problems becomes necessary. However, because of complicated solution struc
and the global coupling of meshes at different length scales (especially for incompre
ible flows), it is very challenging to develop a robust and computationally stable adapt
mesh strategy. Particularly, a strategy with a mesh that can follow effectively the evoluti
of nearly singular layered solutions dynamically. In addition, it is important to compu
the potentially singular solutions without introducing excessive artificial diffusion throuc
frequent interpolations at different grid levels.

The design of our dynamically adaptive mesh was motivated by the fascinating and
open problem about whether a finite-time singularity can form out of smooth initial da
in inviscid and incompressible 3-D Euler flows. This is not just a mathematical questic
The finding and understanding of finite-time singularities may be crucial to explain sme
scale structures in viscous turbulent flows. In this work, we apply our new dynamica
adaptive mesh to investigate the production and concentration of vorticity in 2-D Boussin
convection of a strongly layered fluid. The governing equations of Boussinesq convect
are analogous to those of 3-D axi-symmetric Euler flow with swirl (see e.g. [42, 43]). /
previous numerical studies have shown [26, 28-30, 42, 43], the complex dynamics .
the rapid formation of small scales make this problem an extremely demanding test
any adaptive mesh technique. The numerical results presented here demonstrate the
adaptive mesh follows effectively the almost singular shear layers developed dynamic:
The numerical solution remains very stable throughout the computation and as the phy
solution becomes more singular, the adaptivity improves. Does the vorticity blow up in fin
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time? The computations reveal that it only grows exponentially for the initial conditior
we consider here. The importance of a nontrivial geometry for the potential singular
formation is supported by our numerics.

Traditionally, a mesh map is obtained as the solution to elliptic PDEs generated fror
variational principle in the physical space (see Section 2). Information about the underly
physical solution is built into the mesh PDESs. In contrast, here we turn to the computatio
space to seek a mesh in which the nearly singular physical solution is better behaved
localized). Using a variational principle in the computational space rather than inthe phys
domain as a guide, we propose a single setarfinearPDEs whose direct solution gives
an efficient adaptive mesh. The information about localized singular regions is effectiv
spread in the computational domain. The nonlinear elliptic equations we propose are, tc
best of our knowledge, a new mesh generator that, as we show here, is efficient, anc
generate a good quality mesh. It can be implemented easily with fast Poisson solvers &
minimum cost ofO(N) operations, wher&\ is the total number of grid points. Dynamic
adaptivity is obtained naturally by following the moving mesh idea of Huang and Russ
[33] which consists of solving alternately time-dependent flow equations associated with
mesh PDEs and the underlying physical equations. The overall result is a computation
efficient mesh that dynamically adapts to the complicated geometry of the time-varying :
nearly singular solution, increasing the compression ratio (uniform grid size over small
adaptive grid size) as a singularity is approached.

The paperis organized in two main parts. The first part (Sections 2—4) introduces our rr
strategy, demonstrates its efficiency in computing singular solutions, and provides a detz
guide about how to incorporate the dynamically adaptive mesh to compute time-depen
problems. Speciffically, in Section 2 we review the classical variational approach to me
generation. In Section 3, we introduce our adaptive mesh guided by a variational princi
The effectiveness of the proposed mesh is illustrated with two extreme static examples
with the application of the moving mesh to compute the finite-time blowing-up of solutiol
to the 2-D semilinear heat equation. The simple steps to implement the adaptive mesl
a time-dependent problem are reviewed in Section 4. The second part (Sections 5-
devoted to the application of the dynamically adaptive mesh to investigate the barocl
generation of vorticity and the collapse to small scales of a multilayered Boussinesq flt
The governing equations of Boussinesq convection are presented in Section 5 anc
numerical methodology for this problem is described in detail in Section 6. The numeri
results are presented in Section 7. Finally, some concluding remarks are given in Sectic

2. CLASSICAL VARIATIONAL MESH GENERATION

An adaptive mesh may be generated through a bijective map from a logical or compt
tional domain to the physical domain. Typically, the mesh map transforms a uniform me
in the logical space to cluster grid points at the regions of the physical domain where
solution has the largest gradients (see e.g. the books [35, 46]).

Let us denote byx(&, ), y(&, nn)) the mesh map in two dimensions. Hete) are the
computational coordinates or inverse map. In the variational approach, this map is provi
by the minimizer of a functional of the following form:

1
Ele il = 5 [ [VETGTIVE + Vi G;1Vy] dxaly )
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whereG; andG; are given symmetric positive definite matrices called monitor function
andV = (%, aiy)T. Here2, denotes the physical domain. More terms can be added to tl
functional (1) to control other aspects of the mesh such as orthogonality (skewness)
mesh alignment with a given vector field [10, 11]. There are also adaptive meshes be
directly on a discrete variational principle [15, 16].

The variational mesh is determined by the Euler—Lagrange equations associated

E[¢, n]:
V- (Gi'VE) =0, V-(G;'Vp) = 0. @)

Specifically, ifu(x, y, t) is the solution at a given time of the underlying PDE we are
interested into solve for later times, then the monitor functions should depemndire of
the simplest choices of monitor functiongds = G, = wl, wherel is the identity matrix
andw > 0 is a weight function, for example = ,/1+ u2 + uf,. In this case, we obtain
Winslow's variable diffusion method [47]:

v . (1vg> =0 V. (1vn) = 0. ©)
w w

In one dimension, this reduces to de Bo@tgiidistribution principlg21],
X
wxe = C or /w(x)dx = &C, (4)
0

whereC is a constant. This means thatis equally distributed in an averaged (integral)
sense. But the choice ofis problem-dependent. For the interesting problem of the semilir
ear 1D heat equation, Budd, Huang, and Russell [13] have shown that, taking into accc
some scaling invariance of the solution, it is possible to select the equidistributed mc
tor function to accurately follow the finite time blow-up of the solution. Exploiting alsc
the solution scaling invariance, Budd, Chen, and Russell [12] have obtained an opti
monitor function for the radially symmetric nonlinear Setiiriger equation. A different
static method based on an iterative procedure on the Winslow map has been propose
Ren and Wang [44]. Their method does not tailor the monitor function to the proble
but relies instead on iteration and interpolation to statically redistribute the adaptive me
This appears to be successful in computing singularity formation for two 2-D probler
where the location of singularity is fixed. Another iterative redistribution method, but th
one dynamic, has been introduced recently by Li, Tang, and Zhang [36]. In contrast,
propose here an alternative efficient mesh generator obtained directly (without any it
tion or interpolation) from a new set of simple nonlinear PDEs. The dynamically adapti
mesh can effectively follow with high adaption the rapid dynamics of potentially singul;
solutions.

3. AN EFFICIENT ADAPTIVE MESH FROM THE COMPUTATIONAL DOMAIN

We shall present here an efficient mesh generator motivated by a variational princi
in the computational domain as opposed to the commonly used variational principle in
physical domain described in Section 2. The mesh generator we propose is then comb
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naturally with the moving mesh idea of Huang and Russell [33] to achieve dynamic ad
tivity. This idea consists of solving alternately time-dependent flow mesh PDEs and
underlying physical equations one time step at a time. This section is divided in four pa
the presentation of the mesh generator (the set of nonlinear elliptic equations), the mo
mesh equations, some guidelines on how to select the mesh monitor function, and ¢
of examples including the blowing-up of solutions to the semilinear 2-D heat equatic
These examples illustrate the efficiency of the adaptive mesh to accurately resolve sing
behavior.

3.1. A New Mesh Generator

For simplicity of the presentation we limit our discussion to the 1-D and 2-D cases |
our mesh generator generalizes straightforwardly to 3-D. To describe our approach, le
consider first a 1-D example and assume that we have given an underlying salgtjon
Our approach is motivated by the following observation of Ren and Wang [44] (which
the starting point of their iterative method): with a good adaptive m&sh = u(x(§)),
i.e., the function in the computational space should be “better behaved.” With this in mil
it is natural to look for the mesh may(¢) that minimizes a measure of the gradient

of v, say
r)?gl/gc./l + vZdg = rxrgp/ﬂcw/l + UZ(X(£))xZ d, )

where€; is the computational (logical) domain. The Euler-Lagrange equation associa
with this variational problem is

2 2
Ux X __ UthaXe (6)

/1 4+ u2x? : /1 4+ u2x?
x e £ XN

This is a nonlinear elliptic equation with a very stiff source term (right-hand side). No
that the source term contains a second-order derivative in the physical space. In prac
whenu is nearly singular, the extremely large nonlinear source term imposes a numer
constraint so severe that it makes the numerical solution of (6) computationally infeasil
Moreover, since the coefficient in the elliptic term (left-hand side) of (6) can be zero, t
equation is also degenerate.

Although Eq. (6) cannot be used in practice to generate a solution-adaptive mesl|
provides important information regarding the spreading of the singular regiongnfeed,
through numerical experiments we notice that both the elliptic and the source term contrit
tothe spreading afin the computational domain. However, by switching off the source terr
we observe that the elliptic term alone is sufficient to produce an effective spreading of
singular regions in the computational space. As a consequence, a candidate for a good
generator is obtained by setting to zero the right-hand side of (6) and by modifying
elliptic coefficient to avoid degeneracy:

1 2
T ] —o )

X
/14 udx?
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This equation has still a very singular coefficient. For computational purposes it is bette
replaceuy in the coefficient numerator by the smoother quaniity: = v:. Thus, we can
write our nonlinear mesh equation in the following simple form:

a
ﬁ(ng) =0 withw = /1+ u2xZ. 8)

Note that this equation has the same form as the 1-D Winslow equation (this will not be
case in 2-D) except that now the weight function involves the derivative in the computatiol
space. The mesh equation (8) generalizes naturally to higher dimensions and, unlike
classical mesh equations (2), maintains a very simple structure. For example in 2-D,
adaptive mesh generator becomes

V. Vx)=0, V. (wVy) =0, 9)

whereV’ = (%, %)T .andw = \/l.+ [V'ul? f':\s a particular choice of monitor function.
More generally we will take a monitor function of the form

w = /14 B2[V'ul2 + g2(u), (10)

whereg is a scaling constant arglu) is a function ofu chosen to reflect the leading order
dynamic growth rate of the time-dependent problem to be solved. We elaborate more
this but first some remarks about (9).

It is important to note that although the system (9) has the same form as that of the ler
functional method described in the book by Knupp and Steinberg [35] (Eq. (6.52) on p. 1.
the two systems are fundamentally different. The length functional equations are linear
uncoupled whereas the system (9) is nonlinear and coupled. Equations (9) are, to the
of our knowledge, a new mesh generator. In connection with the length functional line
equations Dvinsky [25] (see also [35]) has shown that folded grids can result for noncon
domains and thus there is the possibility that the mesh generator (9) could face the s
problem (e.g., for smooth). Nevertheless, in our experience with rectangular (convex
domains we have found that (9) produces smooth good quality meshes.

Let us now go back to the monitor function (10). For simplicity consider the 1-D cas
Suppose for example tha¢x) is very localized with a large derivative and the computationa
and physical domains are the same, say [0, 1]. An optimal compression ratio would
obtained foramesh such that= O(||ul|«) because the localized physical region would be
spread completely in the computational domain [0, 1]. Using Eq. (8)wvith /1 + ﬂzug,
it can be shown that this is soAfis of order|| Uy || o || U? |-2. Before we address the dynamical
aspect of the adaptive mesh and provide some guideline on how to select the figrfotion
time-dependent problems, let us illustrate the effectiveness of the mesh generator (9)
the following two static examples.

EXAMPLE 1. Letu = ce ““®*+¥) with ¢ = 100 and solve (9) witly = /1 + B2|V'u2.
Note that||Vul|,lu?]| 5% = O(1) so we takes = 1. We use onlyN = 128 points. The
numerical method we employ to solve (9) is discussed in detail in the next section.

The functionu represented in the physical space, i.e., in theyj coordinates, is shown
in Fig. 1a. Note that(x, y) has a very sharp-function form and a uniform grid would
require thousands of points per dimension to resolve it. In the transfogmejigpaceu
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FIG. 1. u=ceo®¥? with c = 100. (a) Physical spaca(x, y) (top). (b) Computational spacett, ;) =
ux(, n), y(, m) (bottom).

has a much wider support, as Fig. 1b shows, and decays smoothly toward the computat
domain boundary. The adaptive mesh for the whole physical domain is shown in Fig.

There is a very high density concentration of grid points in the vicinity of the peak. Figure

gives a close-up of this region. The compression ratio, i.e., the ratio of the uniform grid s
and the smallest adaptive grid size, for this example is about 40.

EXAMPLE 2. Letu = e “®*¥) with ¢ = 100. Again,w = /1 + B2[V'uj2 but now
B =c as ||Vu|«|lu?|} = O(c). The functionu in the computational space, i.e.,
v(&, n) = u(x(&, n), y(&, n)) appears in Fig. 3a and the corresponding adaptive mesh f
the whole physical domain is shown in Fig. 3b. The mesh performs just as well as
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Example 1. In fact, the mesh distribution and the functions in the computational space I
the same for both examples. However, if we tgke 1 instead o8 = cthe mesh adaptivity
would be limited and will deteriorate @ss increased.

3.2. The Moving Mesh

While our adaptive mesh can effectively resolve very singular functions we still need
provide a mechanism for dynamically adjusting the mesh to possible rapid changes of til
dependent solutions. There are several methods to obtain a moving mesh (see e.g. [1, -
33, 37, 39, 40]). Here, we adopt the so-called moving mesh PDE approach [31-33] in wk
a time-dependent PDE is introduced to determine the motion of the mesh. Both the mo\
mesh PDE (MMPDE) and the underlying physical equations are solved simultaneou
or alternately. This approach has the advantage of avoiding interpolation between old
new grids which is necessary in the static methods. Interpolation may introduce too mi
numerical smoothing in problems in which the resolution of small scales is important a
thus, desirably, it should be avoided.

Recently Huang and Russell [33] have introduced a very robust class of MMPDEs deri
from the gradient flow equations associated with the mesh variational principle. Here,
apply the same idea directly to our proposed mesh equations (9).

A standard method to solve (9) is to consider the equations

X, =V - (wV'x), (11)
Yo =V (wV'y), (12)

wherer is an artificial time. Then, beginning with an initial guess, we march in “time” tc
steady state. Any discrete marching scheme to solve (11) and (12) can be regarded
iterative method to solve the nonlinear system (9).

At t = 0, we can find the solution to (11)-(12) up to steady state to obtain a mesh tl
adapts well to the initial data. With this initial adaptive mesh, the solutioan be updated
(using the underlying PDE) one time step. Then a new mesh is obtained using the upd
u in the monitor function. However, sina@ changes only very little in one time step,
it is not necessary to solve again (11) and (12) all the way to steady state. Besides,
initial mesh is already a very good initial guess. Thus, it is natural to march only one tir
step in (11) and (12) (or equivalently to do only one iteration) at a time. In other worc
taking r as the actual time, equations (11)-(12) are our MMPDESs. Therefore, we proce
solving the moving mesh and the underlying PDEs alternately one time step at a i
[33].

3.3. Selecting the Monitor Function for the Dynamic Mesh

As noted by Budd, Huang, and Russell [13] in the case of problems with finite-tin
blow-up, if the monitor function and the MMPDE are not chosen properly, the movin
mesh may not share the underlying solution rapid dynamics and can fail to adapt as
singularity is approached. We give next some guidelines on how to ggle¢he monitor
function (10) so that the adaptive mesh can follow even the fast dynamics encountered
finite-time singularity formation process.
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Let us illustrate the main idea with a well-known example of a problem with finite tim
blow-up: the semilinear heat equation

U =Au+ f(u) uix 0 =upxX)>0; xeq, (13)
where
f(u)
o — 00 asu— oo.

For definiteness let us concentrate on the two-dimensional casewitho, 1] x [0, 1]
and with homogeneous Dirichlet boundary conditions, ite= 0 on the boundary.
This equation is a simple model for combustion [5], and it is well known (see e.qg. [21
that if ug is sufficiently large then the solutianwill become unbounded in finite time.

To select the appropriate monitor function for this singular problem we note that as
solution to (13) grows, its dynamics are dictated by the nonlinear teun so that the
leading order growth rate of the solution gradientfigu), i.e, neglecting the diffusion
term

ALDY f'(uyvu. (14)
ot
To adapt efficiently, the dynamic mesh has to evolve at this rate which impliesthay ~
constant, wherédl is the Jacobian of the mesh transformation. Simple asymptotics inc
cate that) ~ w~! and thereforey(u) ~ f’(u) asu — oo. If f’(u) is nonsingular for the
range ofu being considered, we can simply chogge) = f’(u). The monitor function
becomes

w = /14 2(1)|V'ul2 + (f'(u))2. (15)

Note thatg(t) = || VU« llu?[| 7L is now time-dependent. We demonstrate the capability c
the mesh to capture the finite-time blowing-up of a solution to (13) and of a variant tt
equation with convection in the following two examples. The implementation details
the numerical methodology to include the dynamic mesh are addressed in the follow
section.

ExamMpPLE 3. In this example we consider Eq. (13) withiu) = 41+ u® and the
following initial condition

Uo(X, Y) = 20 sirf(2rx) sirf(ry). (16)

The initial condition has two humps along tkedirection. These humps grow rapidly
to collapse into a pair of spikes where the solution becomes unbounded. Figure 4 pres
the numerical solution @at= 0.00258 both in the physical and in the computational space
At this time, ||ul|., = 1.36 x 10’. Despiteu being so singular, with onlN = 128 in the
computational space, the adaptive mesh clearly resolves the blowing-up solution, maint
ing it smooth in the logical domain as Fig. 4b shows. A close-up of the mesh near one
the spikes is given in Fig. 5 where the scale of the extremely high compression can be n
clearly appreciated.
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FIG. 4. Numerical solution to the semilinear heat equation (13) wfittu) = 4/1+ u® at t = 0.00258
(a) Solution in the physical space (top) and (b) in the computational space (bottom)=ia26x 10, N = 128.

ExAMPLE 4. We now consider a variant of Eq. (13) to include convection and with
different nonlinearity as follows:

Ut + coS (X 4+ 0.2))uuy = Au + 4u?. (17)

With the added nonlinear convection term, the above equation does not seem to have a
similar scaling. Although it is expected that without convection the solution would beha
similarly as thatin Example 3, more interesting dynamics will develop in the presence oft
particular convection. As Figure 6a shows, the convection makes the two maxima inter
At t = 0.02, the two peaks have already merged into one (noncircular) peak as seel
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FIG.5. Close-up of the mesh around one spike of the numerical solution to the semilinear heat equation
with f(u) = 4v/1+ u® att = 0.00258.

Fig. 6b. From this point on, the solution grows rapidly developing a concentrated elliptic
spike centered at (0.3, 0.5). Figure 7 presents the numerical solutioa 810436 when
|ullee =5 x 10%. Again the adaptive mesh maintains dynamically a smoothly resolve
solution in the computational space (Fig. 7b).

Note that we have not made use of any a priori information of the underlying solution
only incorporated the leading order dynamic growth rate into the monitor function. It shot
also be noted that although this monitor function appears to be optimal in the sense of
extremely high compression ratio achieved for this particular class of blow-up problem:
may not yield the optimal mesh in other situations. The selection of the monitor functior
problem-dependent and the scaling strategy presented here should be viewed as a gui
only. High compression comes at the expense of significant mesh deformation outside
most singular region and can affect largely the accuracy of the solution there. For sc
problems, for example the incompressible Boussinesq flow, we consider in the second
of this paper, the solution needs to be resolved accurately in the whole physical dom
In these cases, a compromise should be sought so that, while keeping good adaptivity
mesh does not deform excessively.

4. SIMPLE STEPS TO IMPLEMENT THE ADAPTIVE MESH

Following Huang and Russell [33], we use the alternate solution procedure to incorpol
our dynamically adaptive mesh to the numerical computation of initial value problen
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FIG.6. Numerical solution to the semilinear heat equation with convection (17). (a) Solutica 8101 and
(b) att = 0.02 N = 128&.

As pointed out in [33], this procedure makes it very easy to combine the adaptive m
computation with existing solvers for the underlying PDE. The implementation consists
two simple steps:

1. Express the underlying PDE in terms of the computational coordingtes (
2. Integrate in time alternately the MMPDEs and the transformed PDE.

Except for the computation of the mesh, which we explain in detail at the end of tt
section, the algorithm is as in [33]. However, for completeness we now describe e
step.
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Numerical solution to the semilinear heat equation (17%)-at0.0436 (a) Solution in the physical
space (top) and (b) in the computational space (bottom);uma% x 10°, N = 128,

4.1. Transforming the Underlying PDE

Assume that the underlying PDE is of the form

ur = f(t, X, ¥, U, Ux, Uy, Uxx, Uxy, Uyy), (X, y) € 2pandt > 0, (18)
with u satisfyingu(x, 0) = up(x) and appropriate boundary conditions. Herean be
vector-valued and thus (18) can be a system of physical PDEs. We first express (18) a

u - uXX - Uyy = f(t5 X, y’ u, u)(7 Uy, uXX7 qua Uyy), (19)

623
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where the * stands for the time derivative keepirgand n fixed. Note that we get
an additional convection term accounting for the mesh motion. Herg) (is the mesh
velocity.

Because both the mesh equations and the underlying PDE are solved in the computat
domain, the spatial derivatives in (19) need to be written in terms of the computatiol
variables using the following transformation formulas:

1
Uy = 3[(ynU)g — (Yeu),l,

1
Uy = SI=0GWe + W), ],

1
Unx = 5 [(J_lY,st)E — (I7MeYyUe — (I e YyUe), + (J_lygzun)n],
1

J [_(J_lxnynué)é + (‘J_lxéynun)é + (‘J_lxnyéué)ﬂ - (‘J_lxéyéun)n] ,

qu ==
1
Uy = 5 (37U ), — (A %eXgUp)e — (3 %e Xy Ue)y + (375U, |

where J = Xy, — X, Ye is the Jacobian of the coordinate (mesh) transformation. Onc
these formulas are substituted into the right-hand side of (19), the underlying PDE car
discretized and solved in time alternately with the MMPDEs.

4.2. The Alternate Solution Procedure

In its simplest form, this procedure can be described as follows [33]. Given the appro
mate physical solution" and the adaptive mest = (x", y") at a timet" = nAt:

1. Compute the monitor functiom” = w(x", y", u").

2. Compute the new mesti! by integrating the MMPDEs for one time step.

3. Compute the approximation of the physical solutidhi® by integrating for one
time step the transformed underlying PDE, using the new mésh and the mesh
velocity x.

At t = 0, the monitor functiorw = w(x°, y°, ug) is computed and the MMPDESs are
solved numerically to steady state to obtain a good initial adaptive mesh. To generate
initial mesh att = 0, one can use the uniform grid as the initial condition for the time
dependent mesh equation.

4.3. Solving the Mesh Equations

We now describe how to solve efficiently the MMPDEs (11) and (12). Note that this
a system of nonlinear elliptic equations and the elliptic coefficient is the monitor functic
w. Because high-order derivatives of the mesh map are hidden i straightforward
discretization of (11) and (12) fails because of a severe time step stability constraint
natural alternative would be the ADI method but it also fails in practical situations becat
of the strong nonlinearity. There is however a simple, efficient, and robust way to solve
mesh equations. This is the following semi-implicit discretization [24],

Xn+1 _xn

= aA X"+ V- (w"Vix") — aApx", (20)
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yn+l _ yn

= anLy™ + V) - (w"Viy") —aApy", (21)

wherea = maxw". Here A{ andVj, are the standard second-order approximations to tt
operatorsA’ andV’ (the Laplacian and the gradient with respect&on)), respectively.
Note that equations are solved in a square computational domain with a uniform grid. Tt
the adaptive mesh can be obtained with fast solvers at the cost of inverting a Laplacian
time step, i.e., iMD(N) operations withN being the total number of grid points.

Note also that the discretization of the mesh equations does not affect the accu
of the underlying physical solution in an analytical sense. In fact, it is common to use so
temporal or spatiamoothingon the monitor function or directly on the mesh mapy)
to obtain smoother meshes. As in [33], we apply the following low-pass filter four times
the monitor function:

wij < Wi + Te(wH-l,j + wi—yj + Wi j+1+ wij-1)

1
+ 1_6(wi—1,j—1 + Wi—1 41+ Wit1j-1 + Wit j+1)- (22)

4.4. The Numerical Method for the Semilinear Heat Equation

To solve the semilinear heat equation in conjuction with the adaptive mesh, we first w
it as

U= J"1V . (AV'U) + uxX + uyy + f(u), (23)

whereA is a positive definite matrix with the transformation coefficients for the Laplacia
anduy = J71(y,W: — (y:u),] and uy = J=—(x,U)s + (Xeu),]. On (23) we perform
the semi-implicit time discretization,

untl _ yn

= bA'UMT + J7IV' - (AV/U") — bA'U" 4 Uk 4 upy" + fU"), (24)

whereb = max% with p(A) being the spectral radius & The termbA’u™*! serves as
a majorizing preconditioner which can be inverted easily, just as in the discretization (.
and (21) for the mesh equations. The spatial discretization is standard second order
important thing to note is that solving the semilinear heat equation requires adaptive t
stepping as well. We reduckt according to the leading growth rate of the solution in the

form At = Ato/|| f'(U) || 0o-

5. BOUSSINESQ CONVECTION AND POTENTIAL SINGULARITY FORMATION

The Boussinesq equations are based on the observation that there are flows for whic
temperature varies little, and therefore the density varies little, yet in which the buoya
drives the motion. For a layer of this type of fluid, the dengitybeys the relation [23]

p = poll — a(T — To)], (25)

whereT denotes the temperaturke,is the constant coefficient of volume expansion, anc
po is the density afly, the temperature at the bottom of the layer. We assumeTthiat
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the highest temperature as in RayleigerBfd thermal convection experiments. Becaus
for a typical liquid (p — po)/po = «(To — T) < 1, the density variations are neglected
everywhere except in the buoyancy term. The motion of a layiewfcid Boussinesq fluid

is described by the equations

U+ U-Vu= —V<§ +gy) —ag(To — T)j, (26)
0

T +u-VT =0, (27)

V.u=0, (28)

whereu represents the velocity fielgh,is the pressurey is the gravitational constant, and
is the unit vector in the upward vertical direction. This type of flow is relevant to the study
atmospheric and oceanographic turbulence and in many other situations where stratifice
plays a significant role.

In 2-D, which is our case of interest, it is convenient to write this system of equatio
in the stream function-vorticity formulation. Lettirgy= To — T and taking the curl on
Eg. (26) we have the following system of scalar equations:

o +U- Vo = —gby, (29)
6 +u-Ve =0, (30)
—AY = w, (31)

w = vy — Uy (not to be confused with the monitor functian) is the vorticity andg =
ag is a scaled gravity constant. The stream functipndetermines the velocity =
(u,v) as

Uu=1y, v=—yx. (32)

It is well-known that the Boussinesq equations are similar to those describing 3-D a
symmetric Euler flows with swirl (nhonzero azimuthal velocity); see e.g. [42, 43]. Becau
of this analogy, Boussinesq convection provides, like the axi-symmetric flow, a comy
tationally feasible (two-dimensional) framework to investigate potential finite-time si
gularity formation, a mystery yet to be solved. Grauer and Sideris [29] were the first
explore the possibility of finite-time singularities in the axi-symmetric Euler flow. Thei
work has stimulated a very dynamic research in this direction (e.g. [14, 26, 28, 30,
42, 43)).

The problem is difficult. While short-time existence can be shown for sufficiently smoo
conditions, it is unclear if a solution can lose its regularity and become singular in fini
time. The key issue is the presence of a vorticity production mechanism, nargélyin
the Boussinesq equations. Following Beale, Kato, and Majda [4], E and Shu [26] show
if a singularity develops in the Boussinesq flow at a finite tirhesuch thatju(-, t*)||m +
16, t*)]lm = 400, then

t* t* ot
/ |w(-, t)]s dt = +00 and / |0x (-, S)|oo dS dt = +00, (33)
0 0Jo

where | f (-)|lm denotes the usual Sobolev m-norm arfd-)|,. = Mmaxcrz| f(X)]. It is
assumed tham > 2 and that the initial conditionsi(x, 0) and 6(x, 0) lie in H™(R?).
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In particular, this result tells us the minimum rate of self-similar blow-up if this occur
[26]:

0C, Dlos ~ - a_ (34)

*—t
C2

16x (-, D]oo ~
There are several numerical studies of possible singularity formation in 3-D Euler flo
and in 2-D Boussinesq convection [6, 8, 9, 18, 26, 28-30, 34, 42, 43]). While the stuc
differ in their conclusions, they all show that this is an extremely difficult problem bot
numerically and analytically. Vorticity production rapidly leads to the formation of sma
scales and the computations quickly run out of resolution. Thus, an adaptive mesh strate
absolutely necessary. The early computations of Pumir and Siggia [42] already use a sil
form of adaptive mesh via a coordinate transformation of a fixed type. However, their m
does not adjust to the geometry of the solution but mainly concentrates at the point where
vorticity is maximum. Outside this region, the flow is not well resolved and for an incon
pressible fluid it is essential to resolve the flow globally to avoid energy losses. Recer
Grauer, Marliani, and Germaschewski [28] have performed an outstanding computatio
a fully 3-D ideal incompressible flow using adaptive mesh refinements (AMR). Howev
one of the drawbacks of their method is the artificial numerical dissipation introduced
the frequent interpolation associated with the AMR technique.
The accurate computation of inviscid Boussinesq flow is thus challenging and constitt
a real demanding test for our dynamically adaptive mesh. Here, we explore an interes
scenario for the potential formation of a finite-time singularity by considering strong
layered convection in a channel.

6. IMPLEMENTATION DETAILS FOR BOUSSINESQ FLOW IN A CHANNEL

We now discuss a few implementation issues specific to the Boussinesq equat
(26)—(28) for a channel geometry. In this case, the flow is bounded by horizontal we
on the top and bottom of the layer, and it is assumed to be periodic in the horizor
direction.

As explained in Sections 3 and 4, initially the mesh equations have to be solved to ste
state but afterwards only for one time step at a time. Considering that the flow is p
odic in the horizontal direction we impos&é, n) — & to be periodic ing. The implicit
discrete mesh equations (20) and (21) are inverted by applying the Fast Fourier tr:
form (FFT) in &, and then using a tridiagonal solver on the resulting system. We ta
(1-D) uniform meshes as boundary conditions for the mesh map on the top and bot
walls. More general boundary conditions for the mesh can be obtained by solving col
sponding 1-D mesh equations. Our criterion for steady state is that consecutive iterat
differ by less than 10*°. The number of iterations to get to steady state varies dependil
on the smoothness of the initial data. This is a one-time overhead of our adaptive
method.

Once we write the Boussinesq equations in terms of the derivatives in the computatic
coordinategé, ) and transform the time derivative as in (19), we do a second-order cent
difference discretization in space. With some additional work, higher order discretizatic
are also feasible.
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To compute the flow velocityu, v) we need to solve first for the stream functignIn
the computational variablésandy, the stream function equation (31) becomes an elliptic
equation with variable coefficients. This equation is subjected to Dirichlet boundary cc
ditions (¥ = 0) on the top and bottom of the computational domain and periodic bounda
conditions in the horizontal direction. For this particular initial condition, vorticity remain:
to be zero on the top and bottom of the computational domain until the plume reaches
boundary. For this reason, we have applied zero vorticity boundary condition through
our computations.

We construct an efficient solver for the transformed stream function equation by prec
ditioning the Conjugate Gradient (CG) method with a robust multigrid method that us
matrix-dependent prolongation [48]. This particular multigrid handles efficiently the higl
contrast variable coefficients introduced by the mesh map. The CG method corrects loc
the solution to enforce the horizontal periodic boundary conditions. Our stopping criteri
for the CG method is that the maximum difference between consecutive iterations is |
than 10°®. The multigrid tolerance is set to 1Q Typically it takes one or two CG iterations
and the multigrid performs also one or two iterations every time it is called. ®hus,
effectively obtained ifD(N) operations per time step.

After solving fory,, we compute the flow velocity from (32) using centered differences
The alternate solution time-marching procedure is then applied using a second order Ada
Bashforth method. The mesh velocity is also computed with second-order accuracy
x = (x"*1 — x"~1)/(2At). Thus, the overall method is second order both in space and tim
Higher order multistep or Runge—Kutta methods can be easily implemented.

To reduce the dispersive error inherent in centered differences, wé filteko separately
in & andn every time step using the following fourth-order filter [38]: < 1—16(—uj_2 +
4u;j_1 + 10uj + 4uj;1 — uj4o). This filter can effectively eliminate the small amplitude
mesh-scale oscillations without affecting the accuracy of the physical solution. The secc
orderfilteringu; < X(uj_1 + 2uj + uj1), whichis used frequently in the literature, seems
to introduce excessive numerical diffusion to the physical solution.

7. NUMERICAL RESULTS

We present in this section numerical results for Boussinesq convection without viscos
regularization using our dynamically adaptive mesh. Throughout the numerical experime
the scaled gravity constagtis taken to be 10. We begin by describing our initial conditions
which correspond to a multilayer fluid. We then examine the detailed time evolution of t
flow.

7.1. The Initial Conditions

As initial data we takev (x, 0) = 0 andf(x, 0) defining a stratified fluid with three con-
stantregionss, 6,, andd = (61 + 62)/2 connected by two thin layers in the following form:

02+ (0 — 62)Hs(0.5+ ys(x) —y) if y> 0.5,

5 . (36)
O1+ (0 — O Hs(y + Ys(x) —0.5) if y < 0.5,

0(x,y,0) ={

where

Ys(X) = 8 + € + e sin2r(x + 0.75), (37)
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FIG. 8. Initial temperature distribution shown in a filled contour (level set) plot.

andH;(x) is mollified Heaviside function given by [17]:

0 if X < =8,
Hs(X) = { (X4 8)/(28) + sin(x/8§)/(2r) if |X| <8, (38)
1 if X > 4.

Here, we také, = -1, 6, =1, andd = 0. By settingd = 0.025 ande = 0.04, we obtain
two thin symmetric layers saparating smoothly the three constant valdesiefeafter we
will refer to 6 as the temperature field.

Figure 8 shows the temperature distributioni at 0. The initial adaptive mesh is gen-
erated by solving to steady state equations (20) and (21) using the monitor func
w = /14 |V’8|2. We choose the scaling coefficiefit= 1 here to avoid excessive grid
deformation dynamically resulting from the global coupling nature of the incompres
ible flow. Figure 9 presents the initial adaptive mesh for a region covering the two ce
tral thin layers. The mesh shown was obtained udihg= 12& points but in all the
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FIG. 9. Initial adaptive mesh covering the central fluid layersifbe 128,
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TABLE |
Time Stepping History

Time interval At
0.0-0.5 10x 10*
05-0.6 50x10°
0.6 -0.7 25x 10°°
0.7-0.8 125x 10°°

computations that follow, we usd = 512 points in the whole computational domain
[0, 1] x [0, 1].

7.2. Flow Evolution and Small-Scale Structure Development

We now present the time evolution of the layered Boussinesq inviscid fluid with initi;
zero vorticity and temperature given by (36)—(38). Although for these particular conditior
the flow has four-fold symmetry, we do not use this property to achieve higher resolution
instead compute the solution in the whole domain1]0x [0, 1]. We takeN = 512 points,
andAt is reduced adaptively to comply with the CFL condition and for accuracy sake. V
start withAt = 1 x 10~% and end the computations witkt = 1.25 x 10°° . Table | gives
a detailed record of the time stepping we employ. Convergence runs usihgri®856 for
t < 0.4 were also performed confirming second-order accuracy. For the exact solutions,
maximum and minimum values éfare preserved in time. This provides a useful diagnostic
for the numerics. Our computations maintain the global extrensavathin three to four
digits for the majority of the computed time interval. All the computations were carried o
in a 450 MHz PC computer using double precision.

The time evolution of both the temperature and the vorticity fields is depicted in Figs.
and 11. Att = 0.5 (Figs. 10a and 10b), the initial = O central region of the fluid has
become a rounded bubble with a thin front. The vorticity field at this time is concentrat
into four small symmetric regions with alternate signs, producing a fast vertical convect
and squeezing the flow in at the center. The vorticity is zero outside the four small regic
While the maximum vorticity is attained at the steepest parts of the bupbid,, =
max|VO| > occurs at the thinnest section of the arms.tAt 0.6 (Figs. 10c and 10d),
the flow central region begins to evolve into two symmetric bubbles with a sharp ce
The maximum vorticity has almost doubled its value, from 36.21-at0.5 to 62.13 at
t =0.6.

A rapid transition then follows and the bubbles unfold into thermal plumes with a mus
room shape structure as Fig. 11a showst At0.7 the support of the vorticity is already
collapsing to the sides and the stem of the plumes (Fig. 11b) in extremely thin layers. Acr
these thin layers the vorticity field has a large and sharp variation. The maximum vortic
att = 0.7 is 135.34. In the axi-symmetric flow analogy, the thin vortical layers correspor
to vortex sheets in an incipient roll-up. At= 0.8 (Figs. 11c and 11d), the stem connecting
the two mushroom plumes which is almost collapsing encloses the region of maxim
vorticity (232.40 at this time).

Figure 12 gives a close-up of the dynamically adaptive mesh around one roll of the |
per thermal plume at = 0.8. The adaptive mesh is able to follow closely the fast flow
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FIG. 10. Temperature and vorticity filled contour plotstat= 0.5 andt = 0.6. (a) 6 att = 0.5, (b) » at
t =05, (c)6 att = 0.6, and (d)w att = 0.6. Ten contours (level sets) are shown in each plot. The vorticity
support is concentrated in four small symmetric regions among which the vorticity alternatestsign’s +).
Within each support region, the darker the area the larger the vorticity in absolute value.

dynamics maintaining good adaptivity in regions of complex geometry, even up to
very singular stage. In fact, as Table Il demonstrates, the more singular the solu
gets the higher the mesh compression ratio (uniform grid size to smallest adaptive
size). Att = 0.8 we obtain a compression ratio close to 9 giving an effective resolutic
corresponding to that of a 460Point uniform mesh. But any compression ratio is mean
ingless if the solution is not globally resolved as it is required in incompressible flows. C
adaptive mesh not only achieves high compression ratios but, as Fig. 12 demonstrates, i
covers all the most singular regions with a sufficiently spread fine grid. As a result, the
lution is effectively resolved globally even when it becomes extremely localized and nes
singular.

We now examine in more detail the latest stage of the fluid motion and the time |
havior of important flow quantities. Figure 13 gives a close-up of 10 vorticity contou
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FIG. 11. Temperature and vorticity filled contour plotstat 0.7 andt = 0.8. (a) 6 att = 0.7, (b) w at
t=0.7, (c)6 att = 0.8, and (d)w att = 0.8. Ten contours (level sets) are shown in each plot. The vorticity
support is concentrated in four small symmetric regions among which the vorticity alternatesisigns—{ +).
Within each support region, the darker the area the larger the vorticity in absolute value.

around the upper plume &= 0.8 in both the physical and the computational space. Th
physical length scale is so small that the contours appear to be collapsing at the s
and stem of the plume in Fig. 13a. However, in the computational space (Fig. 13b),
vorticity has a much wider support. As a result, the contours can be clearly distinguist
and found to be well resolved. The maximum of vorticity occurs on the stem at tl
point marked with a star in Fig. 13 and the minimum at the mirror image of this poin
Figure 14 presents a slice of the vorticitytat 0.8 through its maximum point both in the

physical and in the computational space. As Fig. 14a demonstrates that the vorticit
strongly concentrated in a narrow support and shows two extremely large and sharp sy
around the center. These spikes appear much smoother in the computational space as ¢
in Fig. 14b.



AN EFFICIENT DYNAMICALLY ADAPTIVE MESH 633

0.76

0.74

0.72

0.7

0.68

0.66

0.64

0.62

0.3 0.32 0.34 0.36 0.38 04 0.42 0.44 0.46 0.48

FIG. 12. Close-up of the adaptive mesh around one roll of the upper thermal plume @8. N = 512,

Is the maximum vorticity growing fast enough to develop a finite-time singularity
Figure 15 shows the growth in time of the maximum vorticity plotted in a semi-log scal
After a rapid transient stage at the beginning|., grows clearly exponentially (linear
behavior in the semi-log plot) up to= 0.5. Then the growth accelerates but still at a
seemingly exponential rate. Just befare- 0.7, the growth of the maximum vorticity,
which occurs on the sides of the plumes, begins to saturate. Soon after this, the maxir
vorticity shifts to the stem of the plumes and continues to grow for a short time befc
showing signs of saturation close te= 0.8. It is conceivable that the apparent satura:
tion is due to the very simple geometry of the flow in the vicinity of the maximum poin
This situation is analogous to that occurring when two parallel vortex tubes are pla
close to each other. The axial strain saturates as the core of the tubes greatly def
to avoid reconnection [2, 41, 45]. The importance of nontrivial geometry for potenti

TABLE I
Mesh Compression Ratios

Time Compression
0.0 4.34
0.5 5.53
0.6 6.41
0.7 7.44

0.8 8.83
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FIG. 13. \Vorticity contours in the upper plume &at= 0.8 in (a) the physical space and (b) the computational
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finite-time singularity development was suggested by Constantin, Majda, and Tabak |
for quasi-geostrophic flows and by Constantin, Fefferman, and Majda [19] for the 3-D Eu
equations.

The different phases of the flow can be also connected to the behavyiaé gf and of
the vorticity generating terndy | ... Figure 16 shows the growth in time of these quantities
Two phases stand out: the accelerated growttvéf,, fromt = 0.50 tot = 0.69 and the
apparent saturation beginningtat 0.75.

In summary, the time growth dfv| ., |V0|, and|0x|~ gives no indication of a finite-
time singularity development for the initial conditions we consider. But the numerics supp
the importance of the local geometry for potential singularity formation.
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FIG. 16. Growth of| V8|, and|6,|., in time.

8. CONCLUSIONS

We have presented in this work a new dynamically adaptive mesh generator for compu
time-dependent solutions that can develop singular or near singular behavior. The effic
mesh map is obtained as the solution of a set of simple nonlinear PDEs which can
solved at minimal cost. The overall dynamic mesh strategy is easy to implement, avc
interpolation, and can be used in conjunction with existing time-integration solvers.

Although the focus of application for the adaptive mesh here was the problem of invis
Boussinesq convection, we have also demonstrated with a pair of examples that the r
can effectively follow 2-D finite-time blowing-up behavior without losing its very high
adaptivity and thus capturing the singularity accurately.

Inviscid Boussinesq convection of an incompressible fluid is a challenging problem b
analytically and numerically. Because of the complex dynamic development of small sce
and the solution’s rapid loss of regularity, Boussinesq convection pushes any adaptive n
strategy to the limit. Our adaptive mesh follows the complex evolution of the almost singu
flow with very good adaptivity. Moreover, the numerical solution remains stable throug
out the entire computation. In the numerical study, we have found that the baroclinice
generated vorticity becomes highly localized in thin layers and its maximum appears tc
growing exponentially in time. Using the axi-symmetric flow analogy, the thin layers corr
spond to vortex sheets that roll up and form the envelope of thermal plumes. The maxin
vorticity ultimately develops in the stem of the plumes, a geometrically simple region tt
appears to lead to the saturation of the vorticity growth. This behavior supports the t
ory about the importance of a nontrivial geometry for the potential finite-time singulari
formation.

Atpresent, our adaptive mesh has notincorporated other mesh attributes such as skev
and orthogonality, that may be important in other applications. It seems plausible to inclt
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these additional properties, starting again by a variational principle in the computatio
domain with the corresponding extra terms as in [10, 11]. In general, the monitor funct
in the mesh generator should be problem-dependent as this function ultimately determ
the compression and deformation of the mesh.

Through numerical experience we have found that the mesh generator produces me
of good quality in rectangular domains. However, because the nonlinear mesh PDEs:s
have the same form as the linear PDEs of the length functional mesh [35], it is conceive
that our mesh generator may fail in some instances of nonconvex domain as is the cas
the length functional mesh [25].

It seems also natural to combine the adaptive mesh with upwinding or ENO solvers
free boundary problems, for example in conjunction with capturing schemes such as
Level Set Method. This is currently under investigation and will be reported elsewhere.

ACKNOWLEDGMENTS

The authors thank Xiao-Ping Wang for insightful conversations during the early stage of this work. We &
thank Bob Russell for a number of valuable comments and suggestions and for bringing to our attention impo
issues related to the performance of existing variational mesh generators and their historical development. Re:
was in part supported by National Science Foundation Grant DMS-9704976 and Army Research Office G
DAAD19-99-1-0141.

REFERENCES

1. S. Adjerid and J. E. Flaherty, A moving finite element method with error estimation and refinement -
one-dimensional time dependent partial differential equati®hsi J. Numer. AnaR3, 778 (1986).

2. C. Anderson and C. Greengard, The vortex ring merger problem at infinite Reynolds-nGovbenun. Pure
Appl. Math.42(8), 1123 (1989).

3. M. J. BainesMoving Finite Element§Claredon, Oxford, 1994).

4. J.T.Beale, T. Kato, and A. Majda, Remarks on the breakdown of smooth solutions for the 3D incompress
Euler equationsCommun. Math. Phy94, 61 (1984).

5. J. Bebernes and D. Eberiytathematical Problems from Combustion Thedxgplied Mathematical Sciences
(Springer-Verlag, New York, 1989).

6. J. B. Bell and D. L. Marcus, Vorticity intensification and transition to turbulence in the 3-dimensional Eul
equationsCommun. Math. Phy4472), 371 (1992).

7. M. J. Berger and P. Collela, Local adaptive mesh refinement for shock hydrodynan@ocenput. Phy82,

62 (1989).

8. M. E. Brachet, D. I. Meiron, S. A. Orszag, B. G. Nickel, R. H. Morf, and U. Frisch, Small-scale structure
the Taylor—Green vorteX, Fluid Mech.130, 411 (1983).

9. M. E. Brachet, M. Meneguzzi, A. Vincent, H. Politano, and P. L. Sulem, Numerical evidence of smoc
self-similar dynamics and possibility of subsequent collapse for 3-dimensional ideal Rows. Fluids A
4(12):2845 (1992).

10. J. U. Brackhill, An adaptive grid with directional contrdl,Comput. Physl08 38 (1993).

11. J.U.Brackbilland J. S. Slatzman, Adaptive zoning for singular problems in two dimenkiG@asnput. Phys.
46, 342 (1982).

12. C.J.Budd, S. Chen, and R. D. Russell, New self-similar solutions of the nonlineadBdar equation with
moving mesh computation3, Comput. Physl52, 756 (1999).

13. C. J. Budd, W. Huang, and R. D. Russell, Moving mesh methods for problems with bl&¥AM,J. Sci.
Comput.17(2), 305 (1996).

14. R.E. Caflisch, Singularity formation for complex solutions of the 3D incompressible Euler equBtigaga
D 67(1-3), 1 (1993).



638 CENICEROS AND HOU

15
16

17.

18.
19.

20.

21.

22.

23.

24.
25.

26.
27.

28.

29.

30.

31

32.

33.

34.

35.
36.

37.

38.

39.
40.

41.
42.

. J. E. Castillo, A discrete variational grid generation met&édM J. Sci. Stat. Comput2, 454 (1991).

. J. E. Castilloand J. S. Otto, A practical guide to direct optimization for planar grid-genedimput. Math.
Appl.37(9), 123 (1999).

Y. C. Chang, T. Y. Hou, B. Merriman, and S. Osher, A level set formulation of Eulerian interface capturi
methods for incompressible fluid flond, Comput. Physl24, 449 (1996).

A. J. Chorin, The evolution of a turbulent vort€&ommun. Math. Phy83(4), 517 (1982).

P. Constantin, C. Fefferman, and A. J. Majda, Geometric constraints on potentially singular solutions for
3-D Euler equationsCommun. Part. Diff. EqQR1(3-4), 559 (1996).

P. Constantin, A. J. Majda, and E. G. Tabak, Singular front formation in a model for quasigeostrophic fl
Phys. Fluids6(1), 9 (1994).

C. de Boorzood Approximation by Splines with Variable Knots3pringer Lecture Notes Series (Springer-
Verlag, Berlin, 1973).

E. A. Dorfiand L. O’'C. Drury, Simple adaptive grids for 1-D initial value problein§omput. Phy$9, 175
(2987).

P. G. Drazin and W. H. Reid, Hydrodynamic stability. Cambridge monographs on mechanics and app
mathematics (Cambridge Univ. Press, New York, 1981).

T. Dupont, Private communication.

A. S. Dvinsky, Adaptive grid generation from harmonic maps on riemannian manijofdsmput. Phy<5,
450 (1991).

W. E and C.-H. Shu, Small-scale structures in Boussinesq conveeligs, Fluidsl, 49 (1994).

A Friedman and B. McLeod, Blow-up of Positive solutions of semilinear heat-equdtidiea Univ. Math.
J.34(2), 425 (1985).

R. Grauer, C. Marliani, and K. Germaschewski, Adaptive mesh refinement for singular solutions of
incompressible Euler equatioridhys. Rev. LetB0(19), 4177 (1998).

R. Grauer and T. C. Sideris, Numerical computation of 3D incompressible ideal fluids withPdwyisl, Rev.
lett. 67(25), 6511 (1991).

R. Grauer and T. C. Sideris, Finite time singularities in ideal fluids with sWinysica D88, 116
(1995).

W. Huang, Y. Ren, and R. D. Russel, Moving mesh methods based on moving mesh partial differer
equations)). Comput. Physl13 279 (1994).

W. Huang, Y. Ren, and R. D. Russel, Moving mesh partial differential equations (MMPDESs) based on
equidistribution principleSIAM J. Numer. AnaB1, 709 (1994).

W. Huang and R. D. Russell, Moving mesh strategy based on a gradient flow equation for two-dimensi
problemsSIAM J. Sci. Compu0(3), 998 (1999).

R. M. Kerr, Evidence for a singularity of the 3-dimensional, incompressible Euler equéiys,Fluids A
5(7), 1725 (1993).
P. Knupp and S. Steinberg, Fundamentals of Grid Generation (CRC Press, Boca Raton, FL, 1993).

R. Li, T. Tang, and P. Zhang, Moving mesh methods in multiple dimensions based on harmonic m:
J. Comput. Physin press.

G. Liao, F. Liu, C. de la Pena, D. Peng, and S. Osher, Level-set based deformation methods for adaptive
J. Comput. Phys159 103 (2000).

M. S. Longuet-Higgins and E. D. Cokelet, The deformation of steep surface waves on water I. A numer
method of computatiorRroc. R. Soc. Lond. B50(1976).

K. Miller and R. N. Miller, Moving finite elements §|IAM J. Numer. Anall8, 1019 (1981).

L. R. Petzold, Observations on an adaptive moving grid method for one-dimensional systems of pa
differential equationsAppl. Numer. Math3, 347 (1987).

A. Pumir and E. Siggia, Collapsing solutions to the 3-D Euler equatiRins. Fluids A2(2), 220 (1990).

A. Pumir and E. D. Siggia, Development of singular solutions to the axisymmetric Euler equBtigss,
Fluids A4(7), 1472 (1992).



43

44

45

46

47

48

AN EFFICIENT DYNAMICALLY ADAPTIVE MESH 639

. A. Pumir and E. D. Siggia, Finite-time singularities in the axisymmetric three-dimensional Euler equatio
Phys. Rev. Let68(10), 1511 (1992).

. W. Ren and X.-P. Wang, An iterative grid redistribution method for singular problems in multiple dimensiot
J. Comput. Physl59 246 (2000).

. M.J. Shelley, D.1. Meiron, and S. A. Orszag, Dynamic aspects of vortex reconnection of perturbed anti-par.
vortex tubes,). Fluid Mech.246, 613 (1993).

. J. F. Thompson, Z. U. A. Warsi, and C. W. Mastiumerical Grid GeneratiotfNorth-Holland, New York,
1985).

. A. Winslow, Numerical solution of the quasi-linear Poisson equation on a nonuniform trainagle me
J. Comput. Physl, 149 (1967).

. P. M. De Zeeuw, Matrix-dependent prolongation and restrictions in a blackbox multigrid sol@emput.
Applied Math.33(1), 1 (1990).



	1. INTRODUCTION
	2. CLASSICAL VARIATIONAL MESH GENERATION
	3. AN EFFICIENT ADAPTIVE MESH FROM THE COMPUTATIONAL DOMAIN
	FIG. 1.
	FIG. 2.
	FIG. 3.
	FIG. 4.
	FIG. 5.
	FIG. 6.
	FIG. 7.

	4. SIMPLE STEPS TO IMPLEMENT THE ADAPTIVE MESH
	5. BOUSSINESQ CONVECTION AND POTENTIAL SINGULARITY FORMATION
	6. IMPLEMENTATION DETAILS FOR BOUSSINESQ FLOW IN A CHANNEL
	7. NUMERICAL RESULTS
	FIG. 8.
	FIG. 9.
	TABLE I
	FIG. 10.
	FIG. 11.
	FIG. 12.
	TABLE II
	FIG. 13.
	FIG. 14.
	FIG. 15.
	FIG. 16.

	8. CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

