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Abstract
A numerical investigation of the long-time dynamics of two immiscible two-dimensional flu-
ids shearing past one another is presented. The fluids are incompressible and the interface
between the bulk phases is subjected to surface tension. The simple case of density and
viscosity matched fluids is considered. The two-dimensional Navier-Stokes equations are
solved numerically with a novel fully adaptive non-stiff strategy based on the immersed
boundary method. Dynamically adaptive mesh refinements are used to cover at all times
the separately tracked fluid interface at the finest grid level. In addition, by combining
adaptive front tracking, in the form of continuous interface marker equi-distribution, with a
predictor-corrector discretization an efficient method is introduced to successfully treat the
well-known numerical difficulties associated with surface tension. The resulting numerical
method can be used to compute stably and with high resolution the flow for wide-ranging
Weber numbers but this study focuses on the computationally challenging cases for which
elongated fingering and interface roll-up are observed. To assess the importance of the vis-
cous and vortical effects in the interfacial dynamics the full viscous flow simulations are
compared with inviscid counterparts computed with a state-of-the-art boundary integral
method. In the examined cases of roll-up, it is found that in contrast to the inviscid flow
in which the interface undergoes a topological reconfiguration, the viscous interface remark-
ably escapes self-intersection and rich long-time dynamics due to separation, transport, and
diffusion of vorticity is observed. An even more striking motion occurs at an intermediate
Weber number for which elongated interpenetrating fingers of fluid develop. In this case,
it is found that the Kelvin-Helmholtz instability weakens due to shedding of vorticity and
unlike the inviscid counterpart in which there is indefinite finger growth the viscous interface
is pulled back by surface tension. As the interface recedes, thin necks connecting pockets
of fluid with the rest of the fingers form. Narrow jets are observed at the necking regions
but the vorticity there ultimately appears to be insufficient to drain all the fluid and cause
reconnection. However, at another point, two disparate portions of the interface come in
close proximity as the interface continues to contract. Large curvature points and an in-
tense concentration of vorticity are observed in this region and then the motion is abruptly

terminated by the collapse of the interface.
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I. INTRODUCTION

When two immiscible fluids shear past one another they become the source of the Kelvin-
Helmholtz (K-H) instability, one of the most fundamental instabilities in incompressible
fluids. The free interface separating the two shearing fluids evolves dynamically driven by
the K-H instability and competing regularizing effects such as surface tension and viscosity.
The study of such a motion is of both fundamental and practical interest. Mixing in the
ocean and the atmosphere as well as in engineering fluids such fuels and emulsions, are
believed to be induced by instabilities of the K-H type and often these instabilities lead to
turbulence!.

The simplest model to study the K-H instability consists of two inviscid, immiscible, and
irrotational density-matched fluids separated by a sharp fluid interface across which there
is a discontinuity in tangential velocity. Because the flow vorticity is solely supported at
the fluid interface this model is called a wvortex sheet. Significant understanding of the K-H
instability dynamics for inviscid flows has been obtained within this model. For example, in
the absence of surface tension, it is known that the vortex sheet develops square-root isolated
singularities in its curvature, well before roll-up can occur. The first analytic evidence of
this was provided by Moore? by using asymptotic analysis near equilibrium. Subsequently,
Caflisch and Orellana® extended Moore’s analysis and found exact solutions to the approx-
imate Moore’s equations with finite-time singularity development. Numerically, evidence of
the Moore’s singularity has been provided by Krasny?, Meiron, Baker, and Orszag®, and
Shelley® for a planar vortex sheet, and by Nie and Baker”, Nitsche®, and Sakajo? for the
axi-symmetric geometry. Cowley, Baker, and Tanveer!’ demonstrated that Moore’s singu-
larities are quite generic for two-dimensional vortex sheets and more recently Hou, Hu, and
Zhang!! found that the same type of singularity is also present in a simplified model of a
three-dimensional sheet.

The presence of surface tension leads to a rich variety of flow behavior as the study of
Hou, Lowengrub, and Shelley'?, henceforth HLS, demonstrated for an inviscid vortex sheet.
Particularly surprising dynamics occur for large and intermediate Weber numbers. The
Weber number We provides a measure of the strength of the K-H instability relative to
the dispersive regularization of surface tension. For intermediate We, the boundary integral

simulations in Ref. 12 show the formation of elongating and inter-penetrating fingers of fluid.



At much larger We, where there are many unstable scales, the numerical study of HLS!?
reveals that the fluid interface rolls up into a spiral and its motion is later terminated by self-
intersection of the fluid interface forming trapped fluid droplets. Thus, while regularizing
Moore’s singularity, surface tension leads yet to another type of singularity formation, a
large-scale topological one. FEven though pinching singularities are common in 3D and
axi-symmetric free surface flows (e.g. jets) the formation of these types of singularities in
2D flows is less common and somewhat surprising. This is because the 2D flows lack the
azimuthal surface tension force that is believed to play a crucial role in 3D fluid interface
break-up.

It is natural to ask how small but finite viscosity would affect the surface tension mediated
K-H dynamics. In a recent numerical study Tauber, Unverdi, and Tryggvason'® show that,
just as in the case of the inviscid vortex sheet, elongating fingers can develop in a sheared
viscous interface for intermediate We. The simulations in Ref. 13 also show that there is
separation and generation of a considerable amount of small-scale vorticity and increased
interface thickness due to viscous diffusion. Unlike the inviscid case in which the fingers
continually grow, the viscous and vortical effects eventually remove the driving instability
and surface tension pulls the interface back. The motion as the interface contracts is complex
and it is unclear whether or not it would pinch off at longer times. The question of how
viscous and vortical effects affect the interfacial dynamics for much larger We for which the
the invscid vortex sheet collapses during roll-up is also open. These two questions are the
central themes of the numerical investigation of this present work.

Numerical simulations of sheared flows including viscous, vortical, and surface tension
effects are quite challenging. They require the solution of the incompressible Navier-Stokes
equations in the presence of a free surface. Because surface tension can play such a crucial
role in the flow dynamics, it is essential that tension forces and geometric quantities such as
interfacial curvature be computed very accurately. At the same time, the flow must be well
resolved globally but due to the surface concentration of high vorticity and the sharp flow
variations across the free surface, this can be a daunting task. Furthermore, capturing the
true regularizing effects of viscosity and surface tension for large We and Reynolds number
can be expected to be difficult due to the underlying ill-posedness of the inviscid We = oo
problem.

Because of the need to compute accurately interfacial quantities, it seems natural to



employ a numerical method in which the fluid interface is explicitly tracked rather than
“captured” on a fixed grid. Among the most popular front-tracking methods for multi-phase
flow, which use an Eulerian grid for the fluid flow together with a lower-dimensional grid to
track the interface, are the method developed by Glimm and collaborators'* ', the Immersed
Boundary Method introduced by Peskin'?, and the related method proposed by Unverdi
and Tryggvason'®. One of the main difficulties of front-tracking methods is the problem of
coupling the fixed Eulerian grid for the fluid flow with the interface dynamics. One approach
is to use one-sided “ghost cell” extrapolation around the front as done in Glimm’s method.
An alternative, implementationally easier, approach is to replace the sharp interface by an
interface of finite thickness, typically a few mesh points. In this diffused-interface approach,
used by the Immersed Boundary and some closely related methods, interfacial quantities
such as tension forces, are spread continuously within the interface layer so that they can
be prolonged to the fixed Eulerian grid. While conceptually simple, the diffused-interface
approach requires very high spatial resolution in a vicinity of the interface to allow the use
of sufficiently thin layers and avoid excessive numerical diffusion.

Another well-known problem that has plagued front-tracking methods for multi-phase

19721 " Indeed, the spatial derivatives intro-

flows is the tension-induced numerical stiffness
duced by interfacial tension forces and the excessive marker (particle) clustering character-
istic of Lagrangian front-tracking lead to prohibitively small time steps for explicit methods.
A partial remedy for this problem has been mesh re-distribution done by point insertion and
deletion. This process has however the drawback of introducing strong artificial smoothing
as a result of repeated interpolation. An effective alternative is to use a suitably chosen
tangential velocity for the interface markers to control their distribution. This idea is a key
ingredient in the successful non-stiff boundary integral method developed by HLS?® and has
been used recently to relax time-stepping in a hybrid level set-front tracking method for
multi-phase flows??.

To conduct the numerical investigation of the long-time dynamics of a sheared inter-
face, we develop a non-stiff fully adaptive immersed boundary-type method that overcomes
the aforementioned difficulties. This novel method marries the two main approaches for
mesh adaption, moving meshes (dynamic interfacial parametrizations as constructed in
Refs. 12,20) and adaptive mesh refinements, and combines them with an efficient predictor-

corrector discretization to remove the surface tension-induced stability constraint for the



Weber numbers of interest. As a result, we obtain a robust fully adaptive method with only
a first order CFL condition for a wide range of Weber numbers. We focus our investigation
on long-time flow dynamics and on intermediate and large We flow for which interface fin-
gering and roll-up occur. To assess the importance of the viscous and vortical effects in the
interfacial dynamics the full viscous flow simulations are compared when appropriate with
inviscid counterparts computed with the boundary integral method developed by HLS?.

Our numerical study begins with the investigation of the viscous and vortical effects
on the roll-up motion for which there is an interface collapse in the inviscid case. For
small but finite viscosity (Re = O(10%)) we find that well past the inviscid topological
singularity time disparate parts of the interface come in close proximity during roll-up but
the interface surprisingly escapes reconnection. Fixing We, we examine the flow behavior
as Re is increased and find evidence that suggests a topological singularity will only occur
in the limit Re — oo, for the initial data we consider. Following the study of the roll-up
motion we look at the dynamics of the sheared interface at an intermediate Weber number for
which elongated interpenetrating fingers of fluid develop. We find that the Kelvin-Helmholtz
instability weakens due to shedding of vorticity and unlike the inviscid counterpart in which
there is indefinite finger growth the viscous interface is pulled back by surface tension just
as reported in Ref. 13 . Then a striking motion occurs; as the interface recedes, thin necks
connecting pockets of fluid with the rest of the fingers form. Narrow jets are observed at
the necking regions but the vorticity there ultimately appears to be insufficient to drain all
the fluid and cause reconnection. However, at another point, two disparate portions of the
interface come in close proximity as the interface continues to contract. Large curvature
points and an intense concentration of vorticity are observed in this thinning region and
then the motion is abruptly terminated by the collapse of the interface. Finally, motivated
by the suggestion of HLS'? that the formation of thin jet may be the leading mechanism for
topological reconnection in the 2D inviscid flow, we look at the dynamics of an isolated jet
between two disjoint interfaces. In this case, for a special set of initial conditions, we find
that the increase of vorticity concentration at necking points is sustained and becomes high
enough to drain the fluid and lead to a clear interface collapse.

The rest of the paper is organized as follows. The governing equations are given in
Section II and a detailed description of the non-stiff fully adaptive method is provided in

Section III. The results of the numerical study are presented in Section V. Further discussion



and concluding remarks are given in Section VI.

II. THE GOVERNING EQUATIONS
A. The Viscous flow

We consider the flow of two immiscible, density and viscosity matched incompressible
fluids separated by a sheared interface subjected to constant surface tension. The flow
takes place in a two-dimensional channel, periodic in the streamwise direction and whose
walls move in opposite directions. The governing equations are the incompressible Navier-
Stokes equations which, treating both the fluid interface and the walls as massless immersed

boundaries, can be written as:

p{ %u(x, t) + [u(x,t) - V]u(x,t) } + Vp(x,t) = pAu(x,t) +f(x,t), (1)
V-u(x,t) = 0, (2)

where u(x,t) and p(x,t) are the velocity field and the pressure respectively at each point
(x,t) within the channel and for ¢ > 0. The mass density p and the viscosity coefficient
are both assumed to be constant.

The driving force f(x, ¢) in (1) contains a singularly supported term due to surface tension

which enforces the following dynamic jump condition at the fluid interface I'
—[plp 4+ pir - [Vu+ VuT]r - i = —7k, (3)

where [-]r denotes the jump accross the interface, fi is the outward unit normal, 7 is the
(constant) surface tension coefficient, and « is the local mean curvature. For p # 0, the
velocity field u is continuous at the fluid interface, i.e. [u]r = 0. Continuitiy of the velocity

across [ and incompressibility can be used to reduce (3) to the Laplace-Young condition:

[plr = Tk. (4)

Kinematically interfacial Lagrangian particles are only required to move with the normal
velocity of the fluid; their tangential velocity can be arbitrarily choosen as we will discuss
later.

In the tradition of the immersed boundary method, the walls are also modeled as infinitely

thin massless immersed boundaries and as such they add a contribution to f(x,t). In
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the absence of any other external forces to drive the flow, f(x,¢) is given by the singular

distribution

f(x,t) = /IT g—zé(x — X(a, t)) da + /W Fy(o,t)d(x — X(a, 1)) dav, (5)
where §(-) is the two-dimensional Dirac delta and t is the unit tangent at the fluid interface.
Here X(a, t) represents a parametrization at time ¢ of both the fluid interface (o € I) and the
walls (v € W), with a being the Lagrangian parameter (marker label). The subscripts in the
integrals denote integration on the fluid interface (“I”) and on the walls (“W”). Assuming

that tethers connect wall to anchor points X («,t) whose evolution in time is known in

advance, the force on the walls F, is suitably modeled by
Fy(a,t) = =5(a) [X(a,t) = Xw(a,t)], a€eW, (6)

where S(«) is the stiffness defined on the link between wall and anchor points. Since lower
and upper walls move in streamwise direction with uniform velocities (Uy,0) and (Us,0),

U, > 0 > U,, respectively, the position of anchor points at time ¢ is given by
Xw(a,t) = Xyw(a,0) +t(U;,0), t>0, i=1,2, aeW. (7)

The motion of the anchor points imposes the desired movement to wall points by “dragging”
them through the fluid. Alternatively, this wall-fluid interaction can be also modeled with
simple slip boundary conditions on fixed walls.

Finally, the immersed boundaries move with the local (continuous) fluid velocity:

X, = /Qu(x, 16(x — X(o, 1)) dx, a €TUW. (8)

We define the length scale A as the periodicity length of the channel and the velocity
scale U as the difference between the horizontal velocities at the walls. The flow can be
described by two dimensionless groups, the Weber number We and the Reynolds number

Re, given by
. pAU?

T

pAU

We and Re = o 9)

B. The inviscid vortex sheet model

We consider two infinite two-dimensional layers of inviscid, incompressible, irrotational,

and immisible density-matched fluids separated by a sharp interface I' whose position at
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time ¢ is given in parametric form by X(o,t) = (X(«,t),Y (e, t)), with « in [0,1]. At this

fluid interface the following boundary conditions are imposed:

[plr = 75, (11)

where [-]Jr denotes the jump across the interface and again p, 7, and k are the pressure,
the surface tension, and the mean curvature respectively. The kinematic condition (10)
is the usual requirement that particles on the surface, remain there. Condition (11) is
Laplace-Young condition introduced before. The tangential fluid velocity at ' is usually
discontinuous and the model is called a vorter sheet. Introducing the complex position

variable Z(«,t) = X («,t) + 1Y (o, t), we can write a boundary integral formulation for the

interface evolution equations in the dimensionless form?!?:
07z Z,
— =W U 12
En + A A (12)
oy 0 (Uavy 1
—_ = = 17 v 13
ot O <|Za\ i We ' (13)

where + is the (unnormalized) vortex sheet strength which measures the discontinuity in the
tangential component of the fluid velocity. The complex interfacial velocity W, assuming

1-periodicity, is given by Birkhoff-Rott integral:
1 1
W(o,t) = 5PV, / (o 1) cot m(Z(a, £) — Z(a, 1))de! | (14)
0

where P.V. stands for the principal value integral and the asterisk in (12) denotes the complex
conjugate. In (12) and (13), Ua(a, t) is an arbitrary tangential velocity that determines the
frame or parametrization of the fluid interface. The freedom in selecting Uy has been
exploited by HLS to design a class of efficient non-stiff boundary integral methods. Here we
will transfer this idea to the immersed boundary method setting (see Section IIT A 1).

The dimensionless Weber number is again given by We = pAU?/7. In order to have
equivalent Weber numbers for both the viscous and the inviscid models we choose the velocity
scale U for the inviscid vortex sheet to be 2U,,, where (+Uy, 0) is the limiting fluid velocity
as y — oco. The average value, 7, of y over one period in « satisfies —5/2 = Uy, and thus in
dimensionless variables ¥ = —1. Note that 7 is time-invariant. We use this property to define

the velocity of the viscous fluid (Section IIA) at the channel wall as £U, = F7/2 = £1/2.
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III. A FULLY ADAPTIVE NON-STIFF NUMERICAL METHOD

Immersed boundary-type methods combine an Eulerian representation of the fluid flow
with a Lagrangian “marker” evolution of the immersed interfaces, as shown schematically
in Figure 1. Tracking separately the location of the fluid interface with a Lagrangian mesh
allows accurate computation of fluid interface position, geometric quantities, and interfacial
forces. However, as it is well-known, Lagrangian front-tracking suffers from excessive marker
(particle) clustering that leads to poor overall resolution and above all prohibitively small
time steps.

Another common element of immersed boundary-type methods is the use of singularly
supported (0) forces to conveniently account for the interfacial dynamic jump conditions.
Numerically, these localized forces are spread a few mesh points by using a mollified approx-
imation to the ¢ distribution that retains the main weight on the (immersed) interface. This
results in a diffused-interface model in which the originally sharp fluid interface is replaced
by transition regions of the order of the mesh size. Across these regions sharp flow gradi-
ents and vorticity concentration typically occur. Consequently, to accurately compute flow
quantities and to avoid numerical effects very high resolution must be employed around the
immersed boundaries.

To overcome the aforementioned difficulties associated with Lagrangian tracking and the
surface tension-induced stability constraint, and to efficiently resolve the flow in a vicinity
of the fluid interface as well as globally we propose a fully adaptive non-stiff method. Our
computational strategy has three main components: dynamically adaptive tracking of the
fluid interface in the form of marker equi-distribution, a semi-implicit predictor-corrector
time marching scheme, and adaptive mesh refinements to accurately resolve flow quantities,
particularly in a vicinity of the interface. We describe next each of the three ingredients
along with the spatial discretization we employ. The complete algorithm is summarized in
Appendix A as a reference. The overall method is second order accurate in space and time
for smooth solutions but due to the interface smearing, charecteristic of the IB method, it

has only first order spatial accuracy for sharp interface problems.
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A. Relaxing the surface tension-induced stability constraint
1. Dynamic Lagrangian equi-distribution

Excessive marker clustering is a well-known problem in tracking methods. The most
common remedy to this problem has been regridding or particle redistribution by point
insertion and deletion. However, this approach has the drawback of introducing strong
smoothing to the fluid interface as a result of repeated interpolation.

In the context of boundary integral methods, HLS?° have proposed a very effective alter-
native approach to control particle distribution. The idea is to use the freedom in selecting
the tangential velocity of the interface markers to control their distribution at all times.

Indeed, kinematically the markers are only required to move with the normal velocity of the

fluid. Thus (8) could be changed to:
Xi(a,t) = /u(x)é(x — X(a, t))dx + Ug(a, t)t =: U, t) + Ug(a, t)t, (15)

where Uy(a,t) is arbitrary and determines the frame or parametrization used to describe
the interface. For example, a U4 can be found to cluster interface markers in a controlled
fashion in regions of high curvature!? or to keep the markers equi-distributed. Here we
opt for the latter as we expect the fluid interface to be globally deformed. If the markers
are equi-distributed initially the following choice of U, keeps them equi-distributed at all
times?:

UA(a,t) = —UT(a,t) +/ [Sa/fUN_ < sakUn >]dala (16)
0

where Ur = U -t, Up = U-t, s, = /X2 + Y2 is the arc-length metric, & is the mean
curvature, and < - > stands for the spatial mean over one spatial period. At the walls, we

simply take Uy = 0.

2. Predictor-corrector semi-implicit strategy

We employ a semi-implicit strategy to remove the highest order stability constraint in the
equations of motion. We write this non-stiff discretization in the form of an efficient second
order predictor-corrector scheme which stems from a general iterative implicit discretization.
For simplicity, we describe the scheme assuming a constant time step At and equal mesh

spacing Az = Ay = h.
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Typically, a time step to go from time level * to time level t"*! starts by employing (7)

to move wall-anchor points. After this, one performs:

(1)

Predictor step

From computed values u”, p"~%, and X" for the velocity, pressure, and immersed

boundary position respectively, known from the previous time step, obtain predicted

n+1,1

values u and X" 5! for the new velocity field and immersed boundary position

at time ¢ = t"*! by solving

ul—u® Gp" i 4 ud4u” f"
=—L(———)— . "4 - 17
AL T, p( 5 )[(HV)U]+p, (17)
T G n+3,1 u®! — u” G n—3%
Tl it SN (18)
At p At P
D-u"th! =0, (19)
Xn—|—1,1 X" h2
=y (A X7 o+ wax- X) )
(20)
1 N N
+ U+ UG,
where
Iy DAaXn
t" = ——, (21)
[DaaX"|

and Dy, is the centered difference operator in a. Note that, as customary in projection
methods, a provisional velocity field u* is obtained from (17), and then, using (18)
and (19), it is projected onto the divergence-free vector field space. L, G and D are
standard second order finite difference Laplacian, gradient and divergence operators

defined on a staggered grid and will be given in Section IITB.

Corrector step

Once predicted values are available, they are utilized to compute approximations to

the nonlinear and to the singular force terms at ¢ = t"*2 (using linear interpolation)

and another projection is performed to obtain corrected values u™t"? and X" as

13



follows:

w?—w Gprth o wun L g
ST et e L (@)
n+1,2 _ ..n G n+1,2 *2 _ on G n+1,1
4 b A . (23)
At P At P
D -u"™? =0, (24)
Xn+1,2 —_ X" 2
~ — % (un+1,25h(x _ Xn+1,1) + un(;h(x _ Xn) )
. (25)
+ E(Uz+1,2£n+1’1 + szn) 7
where
n+i 1 n n
[(w- V)u""2" = o{[(w- V)u]* ™ + [(u- V)u]" }, (26)
1 1
fn—I—E,I — E(fn—l—l,l + fr ) ) (27)

The predicted force and tangent vector are computed by

00 = Aa Y Daldy M (x = X + T FREM S (x - XY, (28)
kel keW
grtil Dao X (29)
[DaeX 01|’
where A« is the mesh spacing in the parametrizing variable. A standard second order

discretization is used to approximate Uy, the added tangential velocity (16). UZ“’I is

computed employing u”*5! and X" and in the corrector step U2+1’2 is obtained using

u"t? and Xthl,

The corrected values u”™2? and X"*t1? are the numerical solution at the end of the

time step t = t", ie., u"t! ;= u*t1? and X" .= X2

The predictor-corrector method (17)—(29) originates from the more general iterative

scheme given in Appendix B. When iterated to convergence, the scheme corresponds to

the (implicit) Crank-Nicolson discretization.

The overall scheme introduced here is a variation of the implicit Immersed Boundary

Method proposed by Roma, Peskin, and Berger?3. Besides the Lagrangian mesh adaption, a

complete new feature, the main difference is in the manner we compute the non-linear term,

here being fully implicit in time. It is interesting to note that for the range of Weber numbers
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we tested, 10 < We, the predictor-corrector scheme in combination with the dynamic equi-
distribution removes the time stepping constraint associated with surface tension.

Observe that in the predictor-corrector scheme (17)-(25), the Dirac’s delta distribution
is approximated by a mollified version §,. There are many possible choices for this function.

Here, we choose Peskin’s delta!:

On(®; ;) = dp(i) di(y;) , (30)
where
0.25[1 +cos(Z z/h)]/h for |z| < 2h,
dn(2) = [ (3 2/h))/ 2| (31)
0 for |z| > 2h.

This choice for §,(x) provides good regularization properties around the interface and it is
motivated by a set of compatibility properties described by Peskin!”. Alternative discretiza-
tions can be found in Refs. 23,24.

It is well known, see for example?®, that the immersed boundary setting produces small
amplitude mesh-scale oscillations in the interface position. When derivatives are computed
from the interface position to obtain geometric quantities and tension forces, these oscilla-
tions are amplified by numerical differentiation and if left unattended could lead to numerical
instability. To eliminate the growth of the small amplitude mesh-scale oscillations charac-
teristic of immersed boundary-based methods, we apply the fourth order filter?®:

1
Xk — E(—Xk_g + 4X]C_1 + 10Xk + 4Xk+1 - Xk+2). (32)

The filter is applied every 10 time steps to the fluid interface markers and every time step
on the wall markers. The effect of the filter on the numerical solution was tested with a
resolution study and by changing the frequency at which the filter was applied from every 10
to every 100 time steps. No appreaciable difference was found except for the more sensitive

case of zero surface tension (/e = co) and high Reynolds number.

B. Spatial discretization

In the projection method we use here, we place the numerical approximations of the
Eulerian variables, u;; and p;;, in a staggered fashion on the computational (composite)

mesh. The pressure is computed at the cell centers which are indexed by (4, 7). The velocity
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is discretized at the cell edges as u;; := (u . Figure 1 shows the location of the

i~1,3 Vij-1)
variables for a uniform mesh patch.

In what follows, time indices are suppressed in favor of clarity. For the velocity and
pressure fields located as explained previously, the divergence and gradient operators are

approximated by the second order finite difference operators

Pij —Pi-15 Pij — Pij-1
(o = (PoTpens Puspon ), (34
The discretization of the viscous terms in (1) is given by the 5-point stencil
Uity,j + Uingj + Uimgjrt + Uimgj1 — dUiy
(Lw)i; = % )
Uity t Vi3 + Vit1-3 +Vi-1,-1 — iy

which can also be denoted as (Lu);; = ((Lu)i—1,5, (Lv)ij—1).
The nonlinear term, [(u - V)u], is approximated by the non-conservative second order

centered scheme (see for example®”)

Uijr1 5 — Uj—3 4 Us—1 4 — Uj—1 i
(g (g (BRI gy (bt b

_ U'—|—17'_1 — U'—l,'_l U', i1 _’U'y'_g
e 2)+%1(M)> ., (36)

where

Vij-3 T Vijri T Vi141 T V154

Vi-1,4 = 4 )
_ o Uimg Ui g1 Uiy o1t Uiy
Uij—y = 1 :

C. Adaptive mesh refinements

In the fully adaptive computational scheme, regions of the flow bearing special interest are
covered by block-structured grids, defined as a hierarchical sequence of nested, progressively
finer levels (composite grids). Each level is formed by a set of disjoint rectangular grids.

Ghost cells are employed around each grid, for all the levels, and underneath fine grid patches
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to formally prevent the finite difference operators from being redefined at grid borders and
at interior regions which are covered by finer levels. Values defined in these cells are obtained
from interpolation schemes, usually with second or third order accuracy, and not from solving
the equations of the problem. The description of composite grids is given in Ref. 28 in greater
detail. Figure 2 shows an interface between two successive refinement levels, and the location
of coarse and fine variables.

Composite grid generation depends on a flagging step, that is, on determining first the
cells whose collection gives the region where refinement is to be applied. Here, we mark for
refinement a neighborhood of all immersed boundary points (immersed boundary uniform
covering). We also flag points at which vorticity (in absolute value) is at least 30% the global
vorticity maximum. Once the collection of flagged cells is obtained, grids in each level are
generated by applying the algorithm for point clustering due to Berger and Rigoutsos®.
Regridding is performed as often as an immersed boundary point gets “too close” to the
interface of the finest level.

It is important to comment that the refinement ratio is equal to two, and that we employ
multilevel-multigrid methods to solve for both the provisional vector fields, u*™, in the
parabolic step of the projection method, and for the pressure p™t3™, in its elliptic step
(m = 1,2). V-cycles are employed with one relaxation on each multigrid level, upwards and
downwards. Detailed descriptions of the methodology to solve for the pressure can be found
in Refs. 23,30.

Projection methods on locally refined meshes, based on cell centered discretizations of all

131, Minion®?3% developed a second order approzimate

variables, were first proposed by Howel
projection method that fascilitated the implementation of the multilevel-multigrid methods.
The projection method we employ here?® is based on Minion’s intermediate projection step

on locally refined staggered grids.

IV. BOUNDARY INTEGRAL DISCRETIZATION FOR THE INVISCID SHEET

To solve numerically the vortex sheet equations (12)-(14) we use the method introduced
by HLS'?2°, For completeness, we outline the method next. For a detailed description the
reader is referred to Refs. 12,20.

The method is based on the reformulation of the equations of motion in terms of the
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tangent angle 6 to the interface and the arc-length metric s, = /X2 + Y2 which are vari-
ables more naturally related to the curvature. It also identifies the small scale terms that
contribute to the surface tension-induced stiffness. The evolution equation (12) in the new

variables becomes,

054

; Uz + Us)a — 82U, (37)
00 1

a - S_[UNa + (UT + UA)OQ], (38)

where Uy and Ur are the normal and tangential components of the interfacial fluid velocity
respectively and the particular Uy given by (16) is selected.
The stiffness is hidden at the small spatial scales of Uy, in the #-equation. The leading

order behavior of Uy at small scales is given by?°
1
Un(ont) ~ 5D (o1, (39)

where H is the Hilbert transform. In the equi-distributed frame s, is constant is space and

the inviscid vortex sheet equation of motion can be written as

ds‘“ / 0. Uyde!, (40)
P, 41

8t P 27'1[%] + (41)

oy 1 1

— 42

ot~ We s, foa + @, (42)

where P represents lower-order terms at small spatial scales. To remove the stiffness it is
sufficient to discretize implicitly the leading order in (41)-(42) and treat the lower order terms
P and @ explicitly. We use the SBDF fourth-order explicit/implicit multi-step method in
Ref.34. The principal value integral is approximated with the spectrally accurate alternate-
point trapezoidal rule® and each spatial derivative and the Hilbert transform are computed
pseudo-spectrally, i.e. using the discrete Fourier transform. The implementation we use here
has been tested and validated with several examples in Ref. 35 where also the convergence

of the method was rigorously established.

V. RESULTS

For high Reynolds numbers, we expect the initial K-H instability to be well predicted by

the linear stability analysis for the inviscid case. This is supported by the growth estimates
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based on viscous potential flow theory by Funada and Joseph®®. According to the inviscid
linear stability analysis, the dispersion relation gives instability for wave numbers 0 < |k| <
We/4m (see for example'?). Thus, for sufficiently small We (e.g. We = 10) there would be
no unstable modes and the initially flat interface would undergo a simple wave-like motion
as documented in Ref. 12 for the inviscid sheet. We found the same type of motion for the
corresponding viscous interface. We do not report on this case here but instead direct our

attention to larger Weber numbers, We = 50, 200, and 400.

A. Initial conditions

We focus on the initial conditions used by Krasny* and by HLS!? in their study of an
inviscid vortex sheet. These initial conditions correspond to a perturbation of a flat sheet
with a uniformly concentrated vorticity distribution. The nonlinear motion of the inviscid
vortex sheet with these initial conditions has been well studied both with and without surface
4,6,12

tension

The initial fluid interface X is given in parametric form by
Xo(a) = (a+ 0.01sin 27r, —0.01 sin 27 x) (43)

for 0 < a < 1. We obtain the initial velocity (ug,v¢) from a delta supported vorticity with

unit strength:

wo(,y) = on(¢(z,y)), (44)
é(z,y) = y+0.01sin27(z + y), (45)

for (z,y) in our computational domain Q¢ = [0, 1] x [—1, 1] and with §, given by (31). Note
that the zero level set of ¢ is precisely the initial curve specified by (43). Given this vorticity
distribution, we first find the stream function 1 (x) by solving numerically (with standard

second order finite differences) the Poisson’s equation
A = —wy, (46)
in Q)¢ with periodic boundary conditions in the streamwise direction and Dirichlet homoge-

neous conditions in the normal-wall direction. We then compute the initial velocity from )
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via

oY

uo(x) = +8_y(x)’ (47)
o

vo(x) = —%(X)a (48)

employing centered differences.
For the inviscid vortex sheet model (12)-(14) we take the initial vortex sheet strength as

v = —1 which corresponds to the initial condition (44) and (45) in the limit as h — 0.

B. Resolutions

The numerical experiments for the viscous flows we report on here use composite AMR
meshes with six and seven levels of refinement. We denote these AMR meshes by L6 and
L7 respectively. The finest level of L6 and L7, which covers the immersed boundaries at all
times, corresponds to the resolution equivalent to that of a 1024 x 2048 and 2048 x 4096
uniform mesh, respectively. The coarsest level corresponds to that of a 32 x 64 uniform mesh
and the refinement ratio between consecutive levels is 2. The support (4h) of the mollified
delta function reduces accordingly when increasing the numbers of refinement levels. For the
range of Weber numbers considered, we find that the time-step size required for numerical
stability of our method only requires satisfying a linear (CFL) condition, ||ul|At < A,
independent of We. Typically, At = 0.0005 for L6 and At = 0.00025 for L7 but the time
step is varied adaptively based on the (time-dependent) condition ||u||At < h. Initially,
the number of markers /N, on the fluid interface is twice the number of grid points in
the horizontal direction, i.e. N, = 2048 for L6 and N, = 4096 for L7. We double N,
whenever the total length of the fluid interface doubles. The interface position at the added
points is computed using linear interpolation. We tested this strategy by comparing with
computations that used a fixed, sufficiently high N, (4 times number of grid points in the
horizontal direction) and found no appreciable difference in the numerical results.

The inviscid vortex sheet boundary integral computations are computed with 1024 equi-

distributed interfacial markers and with A¢ = 0.00025.
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C. We=200

We consider first the flow corresponding to We = 200. This case was studied in great
detail by HLS'? for the inviscid vortex sheet. For We = oo, Re = oo the vortex sheet
corresponding to the initial conditions (43)-(45) develops the Moore curvature singularity
at ty = 0.37. For We = 200 and Re = oo linear stability analysis gives 16 initially unstable
modes and the fastest growing mode is & = 11. The numerical study of HLS'? revealed
that for We = 200 surface tension regularizes the Moore singularity and then the inviscid
interface undergoes a roll-up motion during which pinching is observed at the estimated
time ¢, ~ 1.427. The formation of this topological singularity is surprising because it takes
place in a pure planar motion where the azimuthal component of the surface tension force
is absent. We examine now how the presence of of small but finite viscosity, Re = 20000,
affects this highly nonlinear interfacial dynamics.

Figure 3 offers a comparison between the viscous (left column) and the inviscid (right
column) interface profiles. The left column also displays the L7 AMR composite mesh struc-
ture represented as patches (in different shades) corresponding to each level of refinement.
The region shown is only a portion of the actual computational domain [0,1] x [-1,1] for
the viscous flow. The remeshing algorithm does not enforce symmetry and thus the AMR
composite mesh is generally not symmetric.

At an early time, ¢t = 0.70 | Fig. 3(a) and (a’)], already a significant difference between
the viscous and the inviscid interfacial profiles can be observed at the center of the free
boundaries. The inviscid sheet has developed two fingers which are not yet formed in the
viscous interface. The dispersive (capillary) waves running outward from the inviscid sheet
at ¢t = 1.0 and ¢ = 1.41 [ Fig. 3(b’) and (c¢’)] are absent in the corresponding viscous
profiles. For this Reynolds number, viscous dissipation is suppressing these short waves. At
t = 1.41, close to the inviscid pinching time, the viscous interface is smooth and far from
self-intersection. However, outside the interface core region the inviscid and the viscous
interfaces coincide quite well up to t,,.

An examination of the vorticity field of the sheared interface, shown in Fig. 4, can help

us understand the observed differences. Also appearing in Fig. 4 is the scaled interfacial
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vorticity (right column):
wr(0,t) = hines / w(x, )3(x — X(a, 1)) dx. (49)
Q
The scaling factor hguest has been introduced because the initial, discretized, interfacial
vorticity has the mesh-dependent value 0.5/hgnes;- Here hgness = 1/2048 for L7.

As Fig. 4(a) shows, at t = 0.70, a significant amount of vorticity has been shed off the
interface giving rise to the formation of a pair of vortices, both with positive vorticity. The
interfacial vorticity, Fig. 4(a’), shows maxima that are attained around the location of the
points of maximum curvature and minima that take place in a neighborhood of the interface
center. As Fig. 4 (b)-(c) demonstrates, the vortex pair continues to significantly affect the
finger development and the subsequent interfacial roll-up.

The evolution of the viscous interface for longer times, well past ¢, is depicted in Fig. 5.
The fingers first widen and subsequently undergo much deformation during roll-up producing
at t = 3.2 a neck and the onset of what appears to be capillary waves. The dynamics of the
corresponding vorticity is shown in Figs. 6-7. Vorticity is predominantly shed into the bulk
phases from the regions of largest interfacial curvature. In particular, due to this tearing and
insufficient production of vorticity at the necking region at t = 3.2, Fig. 7(c)-(c’), the fluid
there cannot be entirely drained. At ¢ = 3.8, Fig. 7(d)-(d’), the sheared interface has an “eye”
shape similar to that observed in the experiments of Atsavapranee and Gharib!. At this
time, the interface has developed two points of very high curvature, around approximately
xz = 0.4 and z = 0.6 and on which there is a significant accumulation of vorticity as Fig. 7(d’)
shows. However, the accumulation of vorticity at these points is not sustained as the free
surface continues to stretch. The interface at even longer times, ¢t = 4.23 and t = 4.78,
is presented in Fig. 8 while the corresponding vorticity field is shown in Fig. 9. Shedding,
transport, and diffusion of vorticity as well as dispersion due to interfacial tension lead to
a convoluted interface but one on which there is no indication of an eventual topological
reconnection, at least over the times we have computed. Even a small viscosity appears to
have prevented pinching.

To assess the resolution of the L7 computations we compare them with those obtained
with L6. Fig. 10 shows a comparison of the interfacial profiles for the adaptive L6 and L7
resolutions at the late stage of the motion. Note that the support of the mollified delta
function for L7 is half that of L6. This is also so in the spreading of the initial (uniform)
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vorticity. Nevertheless, this resolution comparison demonstrates that there is little difference
in the interfacial dynamics for L6 and L7 at this We. The comparison provides also evidence
that the L7 computations are well resolved. The time history of the smallest interfacial gap
computed for both L6 and L7 resolutions is presented in Fig. 11. Note that because of the
delta function spreading, a minimum of 4 mesh points is required to resolve a fluid region
bounded by interface segments. Even, at the very last computed time, ¢ = 4.78, when the
interface is highly stretched and some segments of the interface are close to each other, there
are over 26 finest grid points to resolve the smallest gap in the L7 AMR mesh.

To continue exploring the possibility of finite-time pinching and to further study the
viscous effects, we now look at the dynamics of the viscous interfacial low as Re is increased
for a fixed We. We select now a larger Weber number, We = 400, because based on the
inviscid vortex sheet computations!?, the roll-up core is expected to be tighter and thus

thinner fluid passages (necking regions) might develop.

D. We =400

Figure 12 depicts the evolution of the inviscid vortex sheet for We = 400. The motion
presents the same generic features as that for We = 400 except that the length scale has
been reduced as evidenced by the smaller fingers, tighter sheet core, and shorter capillary
waves. The inviscid vortex sheet self-intersects at ¢, ~ 0.82 as reported by HLS'?.

We now look at the viscous flow dynamics for Reynolds numbers Re = 5000, Re = 10000,
and Re = 20000.

1. Re = 5000

Figure 13 presents the interfacial profile at different times as well as the corresponding
composite AMR mesh structure in a region containing the interface. At t = 0.7, Fig. 13(a),
the free interface is vertical at x = 0.5 and there is yet no formation of fingers. Past ¢,, wide
and smooth fingers develop, Fig. 13(b), and the interface roll-ups into a wide spiral. Each
finger tip comes in close proximity to the opposite side of the interface at t = 2.3 producing
two necking regions. The thinnest neck is formed approximately at 3.07, Fig. 13(e), reaching

a value of 7.7 x 1073, 15.69 L7 finest grid mesh cells. The necking region then gradually
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opens up as the sheared interface continues to roll [Fig. 13(f)]. Figure 14(a) shows a close-up
of the AMR mesh in the necking region at ¢ = 3.07, when the minimum interfacial separation
is achieved. The time history of the neck width appears in Figure 14(b) where we can clearly
see that the interface moves away from pinching for ¢t > 3.07.

The pronounced viscous effects on the inviscid topological singularity can be seen
Fig. 15(b) which presents a comparison of the viscous and inviscid interface profiles around
the inviscid collapse time, ¢, ~ 0.82. Fig. 15(b) compares the L7 and L6 interfaces at the
final time ¢ = 3.5. The two curves are indistinguishable from one another within plotting
resolution.

The vorticity field and the interfacial vorticity are shown in Figs. 16 and 17. Note that
very early in the dynamics at ¢ = 0.7 the vorticity, initially concentrated on the interface,
has been diffused to a wide viscous layer around the center [Fig. 16(a)]. When the fingers
develop, Fig. 16(b), the interfacial vorticity increases attaining maximum values at the finger
tips. Vorticity is then shed off the tips into the bulk fluid to give rise to the formation of two
vortices as shown in Fig. 16(c). The vorticity on these vortices subsequently diffuses and
weakens, as the series of pictures in Fig. 17 show. Around ¢t = 2.3, Fig. 17(a)(a’), when the
two necking regions develop, the vorticity on the interface segments bounding each neck has
opposite signs creating effectively a jet in each of the narrow regions. As the fluid in these
regions is drained, vorticity intensifies at the necking points until a minimum neck width is
attained around ¢ = 3.07 [Fig. 17(b)(b’)]. The growth of vorticity then saturates and the
necking regions begin to open up [Fig. 17(c)(c’)].

2.  Re = 10000

Figure 18 presents the interface evolution for Re = 10000. There is now an earlier
formation of the fingers and a tighter roll-up core in comparison with the Re = 5000 case.
As the fingers roll necking regions develop and the width of the regions decreases until a
minimum value is reached at ¢ &~ 2.28. After this, the bounding interface segments at the
neck separate as Fig. 18(f) shows. The minimum neck width is 5 x 107% | 10.24 L7 finest
grid cells. A close-up of the AMR L7 mesh around the necking region at t = 2.28, when the
minimum is reached, is shown in Fig. 19(a) while Fig. 19(b) presents a time history of the

neck width. Note that the shapes of the fingers when the necking regions are formed and
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when the minimum neck width is achieved are very similar to those observed for 5000. A
comparison of the viscous and inviscid interface profiles around the inviscid collapse time,
t, ~ 0.82, is given at Fig. 20(a) and Fig. 20(b)compares the L6 and L7 resolutions on the
interface at the last computed time ¢ = 2.5. Again both resolutions give interfacial profiles
that coincide quite well.

Figures 21 and 22 illustrate how vorticity is produced, diffused, and transported dy-
namically. We can observe larger values of interfacial vorticity than those for 5000 but the
vorticity dynamics for both flows appears to be very similar. Vorticity shed from the finger
tips [Fig. 21(b)(b’)] leads to the formation of two vortices. Subsequently a jet is produced at
each of the necking regions [Fig. 22(a)(a’)] and the interfacial vorticity grows at the necking

points until the minimum neck width is attained at ¢ ~ 2.28.

3. Re = 20000

Finally, we end the series of computations for We = 400 with the case Re = 20000. The
interfacial profile at representative times during the motion is shown in Fig. 23. Naturally,
a faster interfacial motion is observed for this increased Reynolds number. The fingers are
also thinner, show more deformation [Fig. 23(d)(e)(f)] than in the previous two cases, and
an even more compact inner core during roll-up. The minimum width of the necking regions
occurs at t ~ 1.81, Fig. 23(e), reaching a value of 5.1 x 1072 or 10.46 L7 finest grid cells,
but then the region gradually opens up as observed for the two smaller Reynolds numbers.
Figure 24(a) provides a close-up of the L7 AMR mesh in the vicinity of one of the necking
regions at ¢ = 1.81 and the time history of the gap width is shown in Fig. 24(b). Note that
the minimum neck width is about the same as that observed for Re = 10000. They differ by
less that one quarter of a mesh cell. One would expect that as the Reynolds number increases
the neck width would decrease as observed when going from Re = 5000 to Re = 10000. This
could well be the case but unfortunately, even the .7 computations do not have the accuracy
to resolve the difference between the Re = 10000 and Re = 20000 neck widths. What is clear
however from Fig. 24 is that the interface is also escaping self-intersection for Re = 20000.

As observed for the previous cases viscosity produces an order one effect on the finger
formation and subsequent roll-up. Figure 25(a) shows a comparison of the inviscid and

viscous profiles at the inviscid collapse time. A comparison of the L6 and L7 resolutions for
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the last computed time is given in Fig. 25(b) where one can see that except at the points of
largest curvature, both interface profiles almost coincide within plotting resolution. Finally,
the vorticity dynamics is depicted in Fig. 26 and Fig. 27. Larger values of interfacial vorticity
are found and the pair of vortices at the bulk fluid are stronger that those for the smaller
Reynolds numbers. There are also significant amounts of vorticity shed off the interface
at late times during the motion as seen in Fig. 27(b)(c). This shed vorticity leads to an
increased deformation of the interface.

The dynamics of the three We = 400 cases we have considered are qualitatively similar
and as far as the computations show, there is no indication that finite-time pinching will

happen for these initial conditions at a finite Reynolds number.

E. We=50

We consider finally the case of an intermediate value of the Weber number, We = 50,
for which a contrasting type of motion is expected based on the inviscid sheet computations
reported by HLS'. Indeed, as HLS'? demonstrated, for We = 50 and the same initial data
we consider here, the vortex sheet does not roll-up. Instead the inviscid interface develops
interpenetrating fingers that grow monotonically in time. As the fingers grow they also thin
but there is no indication that a finite time interfacial collision will occur for this particular
We and initial data.

We now look at the effects of viscosity in this motion for Re = 20000. Figure 28 shows
the evolution of the sheared interface for Re = 20000 (left column) and contrasts it with that
of the corresponding inviscid vortex sheet (right column). Already at ¢ = 3.0, Fig. 28(a),
we can see a difference in the shape of the fingers. The viscous fingers have a more curved
tip, are slightly bulged at the center, and are wider than the inviscid ones. An incipient
“necking” in the sheared interface is observed at t = 4.0, Fig. 28(b). Instead of continuing
their lengthening in essentially the same inclined direction as in the inviscid case, the viscous
fingers bend upwards [Fig. 28(c)]. The lengthening then ceases shortly after ¢ = 5.0 and
the viscous fingers begin to retract. An examination of the vorticity can help to understand
the significant difference between the inviscid and viscous motions. Positive vorticity shed
from the finger tips is transported and diffused both into the interior and the exterior of the

fingers. The vorticity in the interior forms two round vortices as Fig. 29(a) shows. These
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positive vortices tear off some of the negative interfacial vorticity at the necking points. The
combined vorticity inside the necking regions increases the flux of fluid into the finger tips
on one side of the neck and decreases it on the opposite side. This leads to an asymmetry
in the finger tips and contributes to the bending of the fingers. As vorticity continues to be
shed from the leading edges of the interface, Fig. 29(c), the K-H weakens and surface tension
is able to stop the finger growth. The dynamic behavior up to this point is in accordance
with the results reported by Tauber, Unverdi, and Tryggvason'? for different data.

Figure 30 presents the subsequent evolution of the viscous interface as the fingers recede.
The corresponding vorticity field and the scaled interfacial vorticity are plotted in Fig. 31.
This longer time dynamics is striking. The sheared interface forms large pockets of fluid
that, as the interface contracts, develop thin necks [Fig.30(b)]. As in We = 400, the necks
reach a minimum value, here at t & 7.1, after which the disparate interface segments of the
neck begin to separate. As this occurs, a point of high curvature begins to ensue at x ~ 0.6
and the periodically extended interface appears to collapse at this point [Fig. 30(c)]. The
plots of vorticity in Fig. 31 contrast clearly two important events: first the formation of a jet
in each of the necking regions [Fig. 31(b)] but with insufficient strength to drain all the fluid
and overcome the viscous layer and second the large growth and concentration of interfacial
vorticity [Fig. 31(c’)] and a much stronger jet as the interface is about to collapse. Note
that a different vertical scale was used to plot the interfacial vorticity in Fig. 31(c). The
magnitude of the scaled interfacial vorticity at ¢ = 7.3 exceeds for the first time in all our
computations 0.5, the initial uniform value.

Close-ups of the L7 AMR mesh around the two contrasting regions are given in Fig. 32.
The time history of the neck width is provided in Fig. 33(a) while Fig. 33(b) compares the
behavior of the neck width (labeled one-period gap) and the collapsing gap width (labeled
periodic extension gap) for 6.5 < t < 7.3 measured in finest grid mesh cells. At ¢t = 7.3,
the collapsing gap has decreased to slightly less than 4 mesh points. L7 resolution cannot
resolve any further decrease and thus the L7 computations for £ > 7.3 would be unphysical.
Nevertheless, the indications that the motion is going to be shortly terminated by the collapse
of the interfaces are strong. A similar collapsing event was observed by HLS'? for the inviscid
vortex sheet at We = 62.5. We should note that there is an appreciable difference between
the L6 and L7 time history curves in Fig. 33(a). The two curves share similar shapes but

there appears to be a time-shift. As argued by Tauber, Unverdi, and Tryggvason'?, this is

27



likely to be the result of using a diffused interface approach as we do here. The spreading
of surface tension forces becomes particularly important when the K-H weakens and the
interface is pulled back. Since the surface tension forces are spread out more on the coarser
L6 mesh the effect of surface tension is somewhat weaker. This results in a slightly slower
motion than that observed for L.7. The comparison of the 1.6 and L7 interface profiles given

in Fig. 34 and the time history curves are consistent with this argument.

VI. DISCUSSION AND CONCLUDING REMARKS

So far as can be discerned from the We = 50, Re = 20000 numerics, a topological singu-
larity can occur in a finite-viscosity 2D interfacial low. HLS!? identified the development of
thin jets as being perhaps the basic structure in the formation of a topological singularity for
the 2D inviscid vortex sheet motion. As seen in our numerical experiments the production
and accumulation of vorticity has to be sustained at the narrow jets to make reconnection of
the sheared interface possible. Motivated by these observations we now look at the dynamics
of an isolated jet between two disjoint interfaces. To this end, we consider two symmetric

interfaces whose initial positions are given in parametric form by

Xi(,0) = (o, 0.09+ 0.01cos(27cr)), (50)
Xy (e, 0) = (o, —0.09 — 0.01 cos(27me)), (51)

for 0 < a < 1 and with initial vorticity distribution given by

wo(:c,y) = _5h(¢1(x’y)) +5h(¢2(x’y))7 (52)
where

é1(z,y) = y — (0.09 4 0.01 cos(27z))), (53)

do(z,y) = y+ (0.09 + 0.01 cos(27x))). (54)

We take We = 50 and Re = 20000. Figure 35(a) shows the jet at ¢ = 0 and at ¢ = 1.1,
a time close to pinching. This picture also provides a resolution comparison of the L6 and
L7 interface profiles. The profiles are indistinguishable within plotting resolution. The L7
AMR mesh is displayed in Fig. 35(b).
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Figure 37 presents a time history of the inter-sheet distance for both the L6 and the L7
resolutions. At the last computed time, ¢ = 1.1, the distance is 5.15 X Agpest = 5.03 x 1073
and 4.94 X hgpest = 2.41 x 1072 for L6 and L7 respectively with a clear indication of finite-
time collapse. As Fig. 36 shows there is a strong concentration of vorticity at the collapsing
region. At t = 1.1 the scaled interfacial vorticity at the necking points is greater than 0.8,
even larger than the maximum value observed for the previous We = 50 pinching case.

The numerical evidence presented here shows that on one hand small but finite viscosity
can remove the inviscid topological singularity in a rolled-up interface and on the other
it provides strong support to the hypothesis that topological singularities can still happen
for some intermediate We. There are several questions still unresolved; for example the
structure of this singularity and the conditions under which it can occur in a 2D interfacial
flow need to be better understood. We hope that our findings can stimulate more research

in this direction.
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APPENDIX A: THE ALGORITHM

The computational scheme is a formally second order, pressure increment projection

method. The core of the time discretization is the predictor-corrector scheme (17)—(29),
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which as shown in Appendix B can be written as a more general iteration method. With
that in mind, we summarize next the algorithm for the fully adaptive non-stiff method.
To obtain (u™*!, X"*!) from the previous time step known values (u*, X"), proceed as

follows:

1. Advance wall-anchor points using (7).

Consider the initial guesses

un—|—1,0 — un,

0 if n=0,
pveoif n>1,
Xn—|—1,0 = X"

pn—|—%,0

2. For the iteration index m varying from 1 to 2 do:
e Spread forces from the Lagrangian to the Eulerian mesh

n+1l,m—1 __ n+1,m—1 n+1,m—1
f = A« E F, On(x — X, )
TUW

Lm—1 .. .
where F} "1™ 1 is given by

TDAq (||DAaXZ+1’m_1||_1DAaXZ+1’m_1) for k € I,

F;H“l,mfl
— S (X — X for k € W,

and Dj, is the centered difference operator in «, i.e.,
DAan = (Xk+1 - Xk_l)/(QAO!).
e Compute the nonlinear and the singular terms at half time levels, by the averages

(o V)ur = [ V)] [ V),
fn-l—%,m—l — %(f”+1’m_1+f")_

e Solve for the provisional velocity field u*™ (projection parabolic step)

*mo__ u'ﬂ G.pn+%’m71 /’L u*vm + un X fﬂ"‘%,m*l
=" (——— — ) — u,vun-}-E,m—l :

At O ()~ [ Wyt

u
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e Solve for the pressure p"*2™, and for the velocity u™**™ (projection elliptic step)

using u™™:

un+1,m —u” Gp’rH-%,m usm —u” Gpn-l-%,m—l
+ = +
At P At P

D-u"tl™ = 0.

e With the new Eulerian velocity field u®*™ update the immersed boundaries by

Xn—l—l,m X" h2
S = TN (w0t (x X 4wt (x - X))

At 2
]. ~ -~
+ 5(U'Z+1,mtn—|—1,m—1 + Uztn) ’
where, for the fluid interface, U3 "™ is computed from (16) using u™*™ and

Xnthm=1 and it is set to be identically zero for the markers on the walls.

e Apply the filtering procedure to wall points. If it is time, apply it also to fluid

interface points.
3. Check whether or not it is time to remesh, changing to a new composite grid.

4. Update the clock, "™ = t" + At", and select a new time step At" based on the usual
(first order) CFL stability condition.

This completes the algorithm.

APPENDIX B: GENERAL ITERATIVE SCHEME

It is interesting to note that if the initial guesses

u"tl =y, (B1)
L 0 if n=020,

prho = | (B2)
ptTz if n>1,

XM = X" (B3)
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are considered, the predictor-corrector scheme (17)—(29) is just a particular case of the more

general iteration

u*:m — un G_pn'i'%:m_l /1/ u*,m + uTL L fn-f—%,mfl
=L(————) —[(u-V)u"temt 4 = B4
N T, ; ()~ [(w-V)u] 2 (B4)

un+1,m —u® Gpn-l-%,m s — u” Gpn+%,m_1
= B5
AL Y. (B5)
D.uim =, (B6)
XrHim _xn o p2

(un+1,m5h(x _ Xn+1,m—1) + un(sh(x _ Xn)) )
X (B7)
1 - -
+ 5(U';L-H,mtn—|—1,m—1 + Uztn) ’

At 2

with iteration index varying from 1 to 2.

The nonlinear and singular force terms, at half time levels, are given by the averages

(- V)u]rrim=t = %{[(H-V)u]”“’m‘le[(u-V)u]"}, (B8)
frremTl = %(f"“’m‘l—kf"), (BY)

where, for arbitrary indices n and m, one has

Ll = As Y R IG (x - XpThY) (B10)

ke ITUW
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LIST OF FIGURE CAPTIONS

Figure 1. Typical Eulerian and Lagrangian (“e”) meshes.

Figure 2. Location of coarse and fine variables.

Figure 3. We = 200. Left column, Re = 20000, L7. Right column, inviscid sheet. (a) and
(") t =10.70, (b) and (b’) t = 1.0, (c) and (¢’) t = 1.41.

Figure 4. Vorticity: We = 200, Re = 20000, L7. (a) and (a’) ¢ = 0.70, (b) and (b’)
t = 1.0, (c) and (¢’) t = 1.41. Right column, flooded contour plot. Left column, scaled

sheet vorticity hgness X w versus the Lagragian marker «.

Figure 5. We = 200, Re = 20000, L7, longer time dynamics. (a) ¢t = 2.0, (b) t = 2.5, (c)
t=3.2,and (d) t = 3.8.

Figure 6. Vorticity: We = 200, Re = 20000, L7. (a) and (a’) ¢t = 2.0, (b) and (b’) ¢t = 2.5.
Right column, flooded contour plot. Left column, scaled sheet vorticity Agpess X w versus

the Lagragian marker o.

Figure 7. Vorticity: We = 200, Re = 20000, L7. (c) and (¢’) t = 3.2, (d) and (d’) ¢t = 3.8.
Right column, flooded contour plot. Left column, scaled sheet vorticity Agpess X w versus

the Lagragian marker .
Figure 8. We = 200, Re = 20000, L7, longer time dynamics. (a) ¢t = 4.23 and (b) ¢ = 4.78.
Figure 9. Vorticity: We = 200, Re = 20000, L7. (c) and (¢’) t = 4.23, (d) and (d’) t = 4.78.

Right column, flooded contour plot. Left column, scaled sheet vorticity Agpess X w versus

the Lagragian marker .

Figure 10. (a) Comparison of the We = 200, Re = 20000 interface profiles for L6
(dashed-dotted) and L7 (solid) resolutions. (a) ¢ = 4.0 and (b) ¢ = 4.78.
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Figure 11. Time behavior of the smallest interfacial gap for L6 and L7 resolutions.
We = 200, Re = 20000. The minimum is 10.75 and 26.6 finest grid points for L6 and L7,

respectively.

Figure 12. Inviscid vortex sheet, We = 400. (a) t = 0.50, (b) ¢t = 0.60, (c) ¢t = 0.70, and (d)
t =0.82.

Figure 13. Viscous interface Re = 5000 and We = 400, L7. (a) t = 0.7, (b) t = 1.0, (c)
t =16, (d) t = 2.3, (e) t = 3.07, and (f) ¢ = 3.5.

Figure 14. (a) We = 400 and Re = 5000. (a) Close-up of AMR mesh around the minimum
width neck and (b) time history of the neck width.

Figure 15. (a) Comparison of the inviscid (solid) and the Re = 5000,We = 400 interface
profile (dashed) at t = 0.82. (b) Resolution comparison for L6 and L7 at final time ¢ = 3.5.

Figure 16. Vorticity: We = 400, Re = 5000, L7. (a) and (a’) ¢t = 0.70, (b) and (b’) t = 1.0,
(c) and (¢’) t = 1.6. Right column, flooded contour plot. Left column, scaled sheet vorticity

hanest X w versus the Lagragian marker o.

Figure 17. Vorticity: We = 400, Re = 5000, L7. (a) and (a’) ¢t = 2.3, (b) and (b’) t = 3.07,
(c) and (c¢’) t = 3.5. Right column, flooded contour plot. Left column, scaled sheet vorticity

hanest X w versus the Lagragian marker o.

Figure 18. Viscous interface Re = 10000 and We = 400, L7. (a) t = 0.7, (b) t = 1.0, (c)
t=1.6, (d) t =18, (e) t = 2.28, and (f) t = 2.5.

Figure 19. (a) We = 400 and Re = 10000. (a) Close-up of AMR mesh around the minimum
width neck and (b) time history of the neck width.

Figure 20. (a) Comparison of the inviscid (solid) and the Re = 10000, We = 400 interface
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profile (dashed) at ¢ = 0.82. (b) Resolution comparison for L6 and L7 at final time ¢ = 2.5.

Figure 21.Vorticity: We = 400, Re = 10000, L7. (a) and (a’) ¢t = 0.70, (b) and (b’) t = 1.0,
(c) and (¢’) t = 1.6. Right column, flooded contour plot. Left column, scaled sheet vorticity

hgnest X w versus the Lagragian marker a.

Figure 22. Vorticity: We = 400, Re = 10000, L7. (a) and (a’) t = 1.8, (b) and (b’) t = 2.28,
(c) and (¢’) t = 2.5. Right column, flooded contour plot. Left column, scaled sheet vorticity

hgnest X w versus the Lagragian marker a.

Figure 23. Viscous interface Re = 20000 and We = 400, L7. (a) t = 0.7, (b) t = 1.0, (¢)
t=13,(d) ¢t=16, () t = 1.81, and (f) t = 2.24.

Figure 24. (a) We = 400 and Re = 20000. (a) Close-up of AMR mesh around the minimum
width neck and (b) time history of the neck width.

Figure 25. (a) Comparison of the inviscid (solid) and the Re = 20000, We = 400 interface
profile (dashed) at t = 0.82. (b) Resolution comparison for L6 and L7 at final time ¢ = 2.24.

Figure 26. Vorticity: We = 400, Re = 20000, L7. (a) and (a’) t = 0.70, (b) and (b’)
t =1.0, (c) and (¢’) t = 1.3. Right column, flooded contour plot. Left column, scaled sheet

vorticity hgnest X w versus the Lagragian marker o.

Figure 27. Vorticity: We = 400, Re = 20000, L7. (a) and (a’) ¢t = 1.6, (b) and (b’)
t = 1.81, (¢) and (c¢’) t = 2.24. Right column, flooded contour plot. Left column, scaled

sheet vorticity hgpess X w versus the Lagragian marker «.

Figure 28. We = 50. Left column, Re = 20000, L7. Right column, inviscid sheet. (a) and
(a’) t = 3.0, (b) and (b’) t = 4.0, (c) and (c¢’) ¢t = 5.0.

Figure 29. Vorticity: We = 50, Re = 20000, L7. (a) and (a’) t = 3.0, (b) and (b’) ¢t = 4.0,
(c) and (c’) t = 5.0. Right column, flooded contour plot. Left column, scaled sheet vorticity
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hgnest X w versus the Lagragian marker a.
Figure 30. We = 50 and Re = 20000, L7. (a) t = 6.5, (b) t = 7.1, and (c) t = 7.3.
Figure 31. Vorticity: We = 50, Re = 20000, L7. (a) and (a’) t = 6.5, (b) and (b’) t = 7.1,

(c) and (c¢’) t = 7.3. Right column, flooded contour plot. Left column, scaled sheet vorticity

hgnest X w versus the Lagragian marker a.

Figure 32. Close-ups of the regions with the smallest interfacial gaps. (a)t = 7.1 and ¢t = 7.3.

Figure 33. We = 50 and Re = 20000. Time history of the minimum gap in (a) the

one-period interface and (b) the periodically extended interface.

Figure 34. We = 50 and Re = 20000. Resolution comparison. L6 (dotted) and L7 (solid)
at (a) t = 6.0 and (b) the time the minimum neck width is attained.

Figure 35. A pinching jet, We = 50 and Re = 20000. (a) ¢t = 0 (dotted) and ¢ = 1.1 (solid)
for both L6 and L7 resolutions. (b) The AMR L7 composite grid and the sheets at ¢ = 1.1.

Figure 36. Vorticity of the pinching jet at ¢t = 1.1, We = 50 and Re = 20000, L7. (a)
Flooded contour plot of the vorticity field near the pinching region and (b) scaled vorticity

(whiiness) along the upper (solid) and the lower sheet (dashed).

Figure 37. Time behavior of the jet’s inter-sheet distance for L6 (dashed) and L7 (solid).
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