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Numerical Study of Interfacial Problems with Small Surface
Tension

Hector D. Ceniceros and Thomas Y. Hou

ABSTRACT. This paper reviews some recent advances in developing stable and
efficient boundary integral methods for solving interfacial flows with surface
tension. Both spatial and temporal stability issues are discussed in detail. We
then use these highly accurate and stable methods to investigate the peculiar
regularization effect of small surface tension in overturning water waves, unsta-
bly stratified two-fluid interfaces, and Hele-Shaw flows. Several interesting and
surprising phenomena are revealed in the limit of small surface tension. This
paper is not intended to be a general survey of the subject and the discussion
is limited by both the taste and expertise of the authors.

1. Introduction

Surface tension plays a fundamental role in the development of several impor-
tant physical phenomena. Examples vary from materials science and engineering
applications such as pattern formation in crystal growth and dendritic solidification
to nonlinear phenomena in fluids such as capillary waves, droplet formation, finger-
ing instabilities in porous media, and the appearance of finite-time singularities to
name only a few.

Surface tension at an interface between two immiscible fluids arises from the
imbalance of their intermolecular cohesive forces. It is thus, an ever-present force
although it could be very small. But even very small surface tension can have
dramatic effects on the nonlinear evolution of a fluid or material (as in the case of
crystal growth ) interface. The numerical study of small surface tension has both
physical and mathematical implications. On the physical stand, it contributes to the
understanding of important observable phenomena. On the mathematical stand,
it provides valuable information about the structure and behavior of the solutions,
and about the dependence of the solutions on the small parameter. Last but not
least, the knowledge of the limiting behavior of the interface solutions as surface
tension tends to zero, constitutes a critical test to the validity of the simplified zero-
surface-tension modeling equations. This has a profound implication. Neglecting
seemingly small terms can lead to an unphysical model.
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Numerically, one can approach the investigation of interfacial evolution with
small surface tension with different techniques. For example, phase field mod-
els, volume-of-fluid methods, level set methods, front tracking, and boundary in-
tegral/element methods. Boundary integral methods outperform other numerical
methods when it comes to the accurate resolution of the small scale and often very
singular structures characteristic of surface tension effects. Our discussion here
focuses exclusively on boundary integral methods.

One of the advantages of using boundary integral methods is that it reduces
the two dimensional problem into a one dimensional problem involving quantities
along the interface only. Consequently, their use avoids the difficulty of differ-
entiating discontinuous fluid quantities across the fluid interface. However, nu-
merical simulations using boundary integral methods also suffer from the sensi-
tivity to numerical instabilities because the underlying problems are very singular
[LHC76, Rob83, Dol92]. Straight-forward discretizations may lead to numeri-
cal instabilities. It turns out that a certain compatibility is required between the
choice of the quadrature rule for the singular velocity integral and the choice of
the spatial derivative. This compatibility ensures that a delicate balance of terms
that holds on the continuous level is preserved on the discrete level. This balance is
crucial for maintaining numerical stability. A stability analysis by Beale, Hou, and
Lowengrub [BHL96] for a boundary integral method for two-dimensional water
waves reveals that certain Fourier filtering is needed to maintain the compatibility
condition at the discrete level. With this filtering, determined by the choices of
the quadrature rule and of the approximation for the spatial derivative, one can
prove stability of the boundary integral method for water waves [BHL96] and for
multi-fluid interfaces if surface tension is included [CH98].

While the spatial discretizations are proved to be stable and convergent, sta-
bility of the time discretization is very difficult to obtain in the presence of surface
tension. Surface tension introduces a large number of spatial derivatives through
the local curvature. If an explicit time integration method is used, these high order
derivative terms induce strong stability constraints on the time step. For example,
the time step stability constraint for the Hele-Shaw flows is given by At < Ch?,
where At is the time step, and h is the minimum particle spacing. These sta-
bility constraints are time dependent and become more severe by the differential
clustering of points along the interface.

Hou, Lowengrub, and Shelley [HLS94] have successfully removed the severe
stability constraint (stiffness) by designing an efficient semi-implicit scheme based
on a new reformulation of the problem. This reformulation employs a dynamic
change of variables from the Cartesian coordinates (z,y) to the interface tangent
angle and arclength metric. Using a small scale decomposition technique, one can
separate the leading order operators that contribute to the stiffness. Moreover, the
leading order singular terms are shown to be linear and have constant coefficients (in
space). Thus, a Crank-Nicholson type discretization can be used to eliminate the
stiffness of the time discretization. This reformulation greatly relaxes the stability
constraint. Many interfacial problems that were previously unobtainable are now
solvable using this method and new phenomena have been discovered.

In this paper, we apply this highly accurate and stable method to investigate
the effect of small surface tension for several important interfacial flows. The first
example is about the surface tension regularization effect for unstably stratified
two-fluid interfaces. Without any physical regularization, the interface is subject
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to the Rayleigh-Taylor instability and a curvature singularity may develop in finite
time (see, e.g. [DR81, BMOS&80]). Our numerical results indicate that surface
tension indeed regularizes the curvature singularity induced by the Rayleigh-Taylor
instability and the interface rolls up into a spiral. However, the roll-up is terminated
by the collision of the interface with itself, forming trapped bubbles of fluid at the
core of the spiral. This process of bubble formation through self-intersection of a
fluid interface has been observed by Hou, Lowengrub, and Shelley [HLS97] for a
vortex sheet. Such pinching singularity is commonly observed in 3-D liquid jets
where the azimuthal component of surface tension is believed to play an essential
role in the collapsing process. However, this component is completely absent in a
2-D interface, making the appearance of such pinching singularities very surprising.

Our second example deals with the effect of small surface tension on the gen-
eration and structure of capillary waves on the surface of overturning water waves.
The understanding of these short waves is important in the remote sensing of sea
surface because the fine structure associated with short wavelengths scatters elec-
tromagnetic radiation. The phenomenon of capillary waves has been studied ex-
tensively in the literature (see, e.g. [LH95, LH96, Cra70, Tul96]). By using
the stable spectrally accurate method discussed here, we are able to capture with
high accuracy not only up to the appearance of the capillary jump [LH96], but
also to follow the subsequent development of the small scale structure produced
by the capillaries. Our numerical study also reveals certain scaling behavior of the
capillary wavelength which agrees well with experimental observation [DQPW99|.
The small-surface-tension solution is found to converge strongly to the zero-surface-
tension solution.

Our third example is about the small surface tension limit of Hele-Shaw flows
with suction. It is well known from laboratory experiments [Pat81] that Hele-
Shaw flows with suction can develop long ‘fingers’ that encroach upon the viscous
fluid being sucked. In the absence of surface tension, such fingering is not observed.
Instead, solutions of the Hele-Shaw equations with suction are known to form finite-
time cusp singularities before the fluid interface reaches the sink [HLOS88, Ric72].

Here, we would like to investigate the limiting behavior of the small surface ten-
sion solution past the cusp singularity time t. of the zero-surface-tension solution.
Our computations show two surprising results. First, we find that an asymptotic
corner angle is selected at the finger tip as it reaches the sink in the limit as surface
tension tends to zero. This seems to be counter intuitive at first glance since one
may think the tip angle would decrease with decreasing surface tension. Secondly,
we find that the finger bulges and develops a neck singularity before it forms a
wedge at the sink. This neck appears at a height close to that of the zero-surface-
tension cusp. It is possible that the formation of this neck singularity is due to the
influence of the zero-surface-tension singularity, and this pair of neck singularities
may be responsible for the selection of the limiting wedge angle at the sink.

Our last example is on the singular perturbation of surface tension for Hele-
Shaw problems. A natural conjecture is that the small-surface-tension solution
would converge to the zero-surface-tension solution as surface tension tends to
zero, provided that the zero-surface-tension solution is smooth (see e.g. [HLO88]).
However, the asymptotic theory of Tanveer [Tan93] and Siegel, Tanveer, and
Dai [STD96] suggests that the small surface tension limit could be singular for
certain initial data even if the limiting zero-surface-tension solution is perfectly
smooth. This possibility is quite surprising.
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The numerical investigation of this question is very challenging. Since the zero-
surface-tension problem is ill-posed, the numerical solution is extremely sensitive
to noise for small surface tension [DS93, STD96]. We overcome this difficulty
by using (i) a compact parametrization of the interface, (i) a scaled equation for
the perturbed quantity to factor out the small surface tension coefficient, and (iii)
very high precision arithmetic. Using these techniques, we are able to compute
accurately for extremely small values of surface tension. Our computations show
convincingly that the small surface tension limit is indeed singular for certain initial
data. The reason is that surface tension can introduce a new complex singularity at
t = 07 which could subsequently impinge the physical domain at a time when the
zero-surface-tension solution is still analytic. The impact of this so-called daughter
singularity is to cause an indentation in the interface which subsequently evolves
into a bulged finger. We also find that surface tension defines a length scale of the
finger width.

All these calculations demand stable and highly accurate numerical methods.
We also need to be extremely careful in controlling the noise effect to compute
accurately the small surface tension limit and to capture the singular behavior of the
solution. Although boundary integral methods are not general-purpose methods,
they are especially suited for these types of challenging problems where extremely
high resolution is needed. Grid-based methods, on the other hand, could have a lot
of difficulties in achieving the same resolution. In addition, the inherent numerical
diffusion or other artificial numerical regularizations could overshadow the small
surface tension effect. In this sense, boundary integral methods provide an edge
over other methods for accurate solution of this type of problems.

The rest of this paper is divided as follows. In Section 2, we describe the evo-
lution equations of a fluid interface corresponding to two-fluid flows, water waves,
and Hele-Shaw flows. The equations are presented in a boundary integral represen-
tation. Then, in Section 3, we discuss the stability of boundary integral methods
for spatial discretizations. The technique to remove the surface tension induced
stiffness is reviewed in Section 4. The four examples of numerical computations of
interfacial flows with small surface tension are presented in Section 5.

2. General two-fluid interfaces

In this section, we provide the evolution equations in a boundary integral rep-
resentation of three important examples of interfacial flows: water waves, stratified
two-fluid interfacial flows, and Hele-Shaw flows. In the presence of small surface
tension, intriguing and fascinating phenomena develop dynamically in this type of
flows. The understanding of these phenomena has a fundamental impact in many
physical and engineering applications. For example, capillary waves produced by
surface tension are considered one of the key mechanisms for wave breaking and
for the onset of turbulence. Moreover, the understanding of the fine scale struc-
ture generated by capillary waves is important in the remote sensing of the sea
surface. On the other hand, stratified interfacial flows have been used as models
to understand mixing of fluids, separation of boundary layers, generation of sounds
(in bubbly flows), and coherent structures in turbulence models. Finally, theoret-
ical and numerical studies of Hele-Shaw flows have received renewed interests and
increasing attention in recent years because of the rich phenomena in the physical
solutions and the potential applications in pattern formation and materials science.



NUMERICAL STUDY OF INTERFACIAL PROBLEMS WITH SMALL SURFACE TENSION 67

2.1. Stratified two-fluid interfaces. We first consider the motion of general
two-fluid interfacial flows in two space dimensions. The fluid on each side of the
interface is assumed to be inviscid, incompressible, and irrotational. We denote
the fluid quantities above the interface with the subscript 2 and those below the
interface with subscript 1. In each fluid, the flow satisfies the Euler equations

pil0nu; + (0; - V)w] = —Vp; — pigi, i=1,2,

where p;, u;, and p are the density, velocity, and pressure respectively. The constant
g is the gravity acceleration. The incompressibility and irrotationality constraints
imply that V-u; = 0 and V x u; = 0. At the interface, which we denote by T,
we impose the Laplace-Young boundary condition which relates a pressure jump to
the curvature of the interface x by

Pllr = 7x,

where [p]|r denotes the jump of pressure across the interface I' and 7 is the surface
tension coefficient. The normal velocity is assumed to be continuous across the
interface. The tangential velocity at the interface in general is not uniquely defined
since it may have a jump discontinuity across the interface. At any time t, we
represent the interface parametrically by (z(a,t),y(a,t)), where a is a Lagrangian
variable. The interface governing equation can be put in a convenient form by
introducing the complex position variable z(«,t) = z(a,t) + iy(a,t). Of special
interest is the case when the interface is a periodic perturbation of the flat interface,
ie. z(a,t) = a+ s(a,t), where s(a, t) is a 27-periodic function of a. Then, taking
the tangential velocity to be the average of the limiting velocities above and below
the interface, the interface evolves according to the so-called Birkhoff-Rott equation
Z 1 (" 1
(2.1) % =357 @) cot 5x(0) = =l

where we have used the periodic structure in s. Here, zZ denotes the complex
conjugate of z. The above integral should be understood as the Cauchy principal-
value integral. The variable « is the unnormalized vortex sheet strength, whose the
evolution equation can be obtained from the Euler equations in both sides of the
interface [BMO82]:

dry d’z 1 72
2.2 — =24 9 RFa Y\ T3 et o
(2.2) o <Re{dt2z }+88 <|Za|2 +9ya | + Sk

where A = (p1 — p2)/(p1 + p2) is the Atwood number and S = 7/(p1 + p2) is a
scaled surface tension parameter. The curvature k is given by

_ TalYaa — Laala
(z3 +y2)3/2

Equation (2.2) is a Fredholm integral equation of the second kind for dy/dt. An
important feature of this formulation is that it has a globally convergent Neumann
series [BMO82]. As a result, the integral equation for dvy/d¢ can be solved effec-
tively by iteration. Equations (2.1) and (2.2) completely determine the motion of
the interface.
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2.2. Water wave equations. In the special case of water waves, we have
p1 = 0. The above derivation needs to be modified. Only the Bernoulli equation
in the fluid region is needed to obtain an evolution equation for the potential. The
first boundary integral method for water waves was proposed by Longuet-Higgins
and Cokelet [LHC76] who used a single layer representation. This gives rise to a
Fredholm integral equation of the first kind for g—i, which determines the normal
velocity of the interface. The disadvantage of this approach is that the matrix
associated with a Fredholm integral of the first kind is usually not well-conditioned
and the number of iterations required increases rapidly with the number of the
mesh points. The double layer representation introduced by Baker, Meiron, and
Orszag [BMO82], on the other hand, does not have this disadvantage. Following
[BMO&82], we obtain a system of evolution equations given by:

(23) z = ﬁ _7; 'y(a')cot%(z(a) —z(a'))da' + 2220(2) =u — v,
QY 6 = S0+ ) - gy,
(25) ¢a = 1+Re (% /:r'y(a')cot%(z(a)—z(a'))da') .

Here ¢ is the velocity potential and again 7 denotes the vortex sheet strength.
Equations (2.3)-(2.5) completely determine the motion of the system. Like the two-
fluid interface problem, the integral equation for v is a Fredholm integral equation
of second kind which has a globally convergent Neumann series. Thus, v can be
solved efficiently by fixed point iteration.

2.3. Hele-Shaw flows. A closely related problem is the Hele-Shaw flow which
describes a viscosity dominant creeping flow confined between two closely-spaced
plates. The theoretical study in the West begins with Saffman and Taylor [ST58].
They found a family of exact self-similar finger-like solutions for the interface in a
channel geometry without surface tension. Subsequent works have mostly focused
on the role of surface tension in the selection of the finger width. Significant progress
has been achieved in understanding steady states and their linear stability ( see
[Pel88] for a review). The dynamical behavior of Hele-Shaw flows has received a
lot of interests inspired by the complex patterns formed by an expanding bubble.
However, there are still many mysteries regarding the selection mechanism of finger
widths for small surface tension.

Consider an interface I' which separates two Hele-Shaw fluids of different vis-
cosities and densities in a radial geometry. The velocity in each fluid is given by
Darcy’s law, together with the incompressibility constraint:

2

u]:—@Vp], VU]ZO, for]:1,2
Here b is the gap of the Hele-Shaw cell, 115, p;, and p; are the viscosity, pressure, and
density on each side of the fluid interface. Nonlinearity comes through the boundary
conditions. We impose again the Laplace-Young boundary condition which states
that surface tension causes a jump in the pressure across the interface proportional
to the local mean curvature. In addition, the normal velocity should be continuous
at the interface.
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We assume that there is a point sink (or a source) at the origin, inside a fluid
blob. For large distances away from the sink, the velocity field tends to the simple
radial flow:

(2.6) u(x)%Q%, as |x| = oo.

Here, @ is the suction rate (or pumping rate respectively) which is assumed constant
and negative (positive).

Again, we represent the interface by the complex position variable z(a,t) =
z(a,t) + iy(a,t). Unlike the fluid interface case, here we assume z(a,t) to be
2m-periodic in «. This implies that the interface I' is a close curve. Denote the
complex conjugate velocity by W(a,t) = u(a,t) — iv(a,t). This interface velocity
can be represented by a boundary integral plus the sink contribution. Following
[TA83, DS93], we can derive a boundary integral formulation given by:

1 1 [ y(a',t)
27z = ———+— | — 1T gy
27z z(a, t) * o /0 2(a,t) — z(a', ) “
Za(ayt) | za(at) /2“ (1)
2.8 = 24,Re (-2 — = —dda' |+ 8
(28) v nite ( z(a, t) T o o z(a,t) —2(a,t) @)+ Sa
where A, = (1 — p2)/(p1 + p2) is the viscosity Atwood ratio and S = %T is a

scaled surface tension parameter. We nondimensionalize the equations of motion
by taking the initial blob radius to be 1 and by setting ) = —1.

3. Stability of boundary integral methods

In this section, we review some stability issues of boundary integral methods
for interfacial flows. We use the water wave problem as an example to illustrate the
main ideas. The complete stability analysis of the boundary integral method for
water waves was performed by Beale, Hou, and Lowengrub [BHL96]. Ceniceros
and Hou analyzed the more general two-fluid interfacial flow with surface ten-
sion [CH98].

Numerical methods can be readily derived from the boundary integral formu-
lation of water waves by choosing a discretization for the principal-value integral
and for the spatial derivative. A classical discretization for the integral is the point
vortex method introduced by Rosenhead [Ros32], while a popular choice for the
derivative is the cubic spline approximation. However, numerical simulations us-
ing boundary integral methods are known to be sensitive to numerical instabilities
[LHC76, Rob83, Dol92]. This includes some of the existing boundary integral
methods. In order to avoid numerical instability, a certain compatibility between
the choice of quadrature rule for the singular integral and the discrete derivatives
must be satisfied. This compatibility ensures that a delicate balance of terms that
holds on the continuous level is preserved on the discrete level. This point will be
further illustrated below.

Let z;(t) be the numerical approximation of z(aj,t), where a; = jh, h =
27 /N and N is the number of discrete points on the interface. ¢;(t) and ~;(t)
are defined similarly. To approximate the velocity integral, we use the alternating
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point trapezoidal rule:

N/2
T 1 1
/ (') cot 5(2’((1]-) — z(a))da' ~ Z i, cot §(z] — zp)2h .
T k=—N/2+1
(j — k) odd

The advantage of using this quadrature is that the approximation is spectrally
accurate(see, e.g. [She92]). Let us denote by Dp the discrete derivative opera-
tor. It is convenient for the analysis to define Dj, through its spectrum property:

—

(Dy),, = ikp(kh) where the over-caret stands for the Fourier transform and p is
some nonnegative even function. The specific form of p(kh) depends on the ap-
proximation. For example, we have p(kh) = 3sin(kh)/(kh(2 + cos(kh))) for the
cubic spline approximation and p(kh) = 1 for the pseudo-spectral derivative.

Now we can present our numerical algorithm [BHL96] for the water wave
equations (2.3)-(2.5) as follows:

N/2

dz; 1 1 Vi )
(3.1 d_t] = 1 Z i, cot §(z](-p) - z,ip))2h + ﬁ = uj — vy,
k=—N/2+1 h=j
(j — k) odd
do; 1
(3.2) d—tj = 5( ? + UJQ-) — 9Y; »
N/2
33) Dud; = 2 4 Re(Lh% L 0o
(3.3) Do, = 5 + Re o Z g CO 2(,2]. 27) ,
k=—N/2+1
(j — k) odd

where z(?) denotes a Fourier filtering applied on z and defined as z(?) = a + s(®)

—

with (s()), = 3p(kh). The filtered quantity 2(?) in (3.1) and (3.3) is to balance
the high frequency errors introduced by Dj;. This will become apparent in the
discussion of stability below.

Theorem 1[BHL96]. Assume that the water wave problem is well-posed and
has a smooth solution in C™%2 (m > 3) up to time T. Then if D;, corresponds to
a r-th order derivative approzimation, we have for 0 < h < ho(T)

(3.4) 12(t) = 2(x Dl < C(T)R" .
Similar convergent results hold for ¢; and ;. Here ||z||% = Ejvzl |z;|?h .

3.1. Discussion of stability analysis. Here, we discuss some of the main
ingredients in the stability analysis of the scheme given by (3.1)-(3.3). We will
mainly focus on linear stability. Once linear stability is established, nonlinear sta-
bility can be obtained relatively easily by using the smallness of the error and an
induction argument. The reader is referred to [BHL96] for details.

The goal is to derive evolution equations for the errors 2;(t) = z;(t) — z(ay, t),
etc., and to estimate their growth in time. To simplify the stability analysis, we
expand the periodic sum into an infinite sum over the whole line, i.e.

N/2

1 1
- Z Yk cot —(z](-p) - z,(cp))Qh = Z Tk o= W;.
2 2 (p _ _(p)
k=—N/2+1 (j — k) odd %j 2k
(j — k) odd
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Let us now define

: v(a)
(3.5) W;: =W, — 2h.
J J y _%:Odd z(aj)(p) _ Z(Ckk)(p)

W, can be written as the sum of linear terms in Z; and 4; plus nonlinear terms.
We find that

; h Vi
36 W, = =~
J i y zk):odd Z(Oéj)(p) — z(ak)(P)

S Waw) (3" — 5

(2(a)t) = z(a) )

- 5+ nonlinear terms.
1
(j — k) odd

Next, we use the Taylor expansion for the singular kernel to obtain the most singular
contributions and write
1 1

37 = + f aj,0) ,

D o)~ 2(on)  za(ap)ey —a) | IO
where f is a smooth function. Thus, the leading order contribution to the first term
in (3.6) is (2izq) "' Hpj, where Hp, is the discrete Hilbert transform defined as

. 1 Ve
3.8 Hyp(v;) = — ——2h .
(338) e T
(j — k) odd

The remaining term involving the smooth kernel f becomes a smoothing operator
A_; of order one, i.e., DpbA_1 = Ag and A_1 Dy, = Ay, where Ay denotes a bounded
operator form [P to [P. Similarly, the most important contribution to the second
term in (3.6) is —7(2iz3)_1Ah(z§p)), where A}, is defined as follows:

iy o 1 fi— fu
. An(fi) = — E —=<= _2h.
(3 9) h(fJ) ﬂ-(j_k) » (Oéj — Oék)22

Denote by H and A the corresponding continuous operators for Hy, and A, respec-
tively, i.e.

1) =7 [ L, a =2 [FO

T a—ao

It is easy to verify using integration by parts that
(3.10) A(f) = H(Dof) ,

where D, is the continuous derivative operator. Our analysis indicates that a
similar compatibility condition must be satisfied among the discrete operators Hy,
Ay, and Dy to maintain numerical stability, i.e.

(3.11) An(2:) = HpDn(z:) ,

for Z satisfying 20 = /z'\N/2 = 0. Unfortunately, many existing boundary inte-
gral methods violate this compatibility condition, and consequently are subject to
numerical instability.

An important question is how to modify our discretization to obtain a stable
method. One way to do this is to introduce appropriate Fourier filtering in the
approximations of the velocity integral as we have done in (3.1) and (3.3). By
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doing this, we can ensure that a variant of the compatibility condition (3.11) is
satisfied:

(3.12) Mn(2\7) = HuDu(%) .

We can verify this from the spectrum properties of Hy, and Ay, and the definitions of
Dy, and the p filtering. With this modified compatibility condition, we can obtain
stability of our boundary integral method.
To complete our stability analysis, we need to make use of the following proper-

ties of the discrete Hilbert transform: (i) H? = —1I , (ii) Ay (2\?)) = H,Dy(2), (iii)
the commutator, [Hy,, f] = Hy f — f Hy, is a smoothing operator, i.e. [Hy, f](2(?)) =
A_1(2) for smooth f. Following the linear well-posedness analysis, we can derive
an error equation for Z; as follows (see [BHL96))

Ti L1 iH)DAE, + Ao(2) + At () + O(RT)

dt - Za(aj) h hi'j 0\<j —1\@Pj5 )

where Fj = ¢; —u(a;)i; —v(a;)g;. At this point, it is essential to project the error
equation into the local tangent and normal vectors of the underlying interface,
z(a, t). In this local coordinate, the error equations are greatly simplified and the
stability analysis becomes apparent. Alternatively, the local tangent angle to the
interface has also been shown [CH98| to be a natural variable for the stability
analysis, specially in the presence of surface tension.

Denote by Z]N and ZJT the normal and tangential components of Z;, with respect
to the underlying interface z(a;,t) and let i be the outward unit normal. We
further make the following change of variables d; = 27 + H, 2. We obtain after
some simplification that

dé; . )
(313) d—tJ = Afl(Fj) + Ao(Zj),
3.14 ay L DuF + AL (F) + A (:
(3.14) . m wWDpFj+ A_1(Fj) + Ao(%)),
dF; N ) )
(3.15) - = —c(ay, )z + A-1(Z5), cla,t) = (ug,ve + g) - A,

where equation (3.15) is obtained by performing error analysis on Bernoulli equation
and by using the Euler equations. In this form it is clear that only the normal
component of Z; is important. This is consistent with the physical property of
interfacial dynamics. The leading error equations now become so simple that an
energy estimate can be easily carried out. Note that Hy D), is a positive operator
with a Fourier symbol p(kh)|k|. The discretization is stable if the water wave
problem is well-posed, i.e., the sign condition c¢(a,t) > 0 is satisfied. We refer to
[BHL96] for details.

Generalization of the above stability analysis to 3-D interfacial flows proves
to be quite challenging due to the non-removable branch point singularity in the
3-D boundary integral kernel. Nevertheless, substantial progress has been made
recently by Beale [Bea98] and by Hou and Zhang [HZa, HZb] in designing stable
3-D boundary integral methods for water waves. These analyses also shed new
light into the 2-D interface problems. Since these stabilized methods are quite
sophisticated, we will omit their discussion here.
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4. Removing the stiffness of surface tension for interfacial flows

Surface tension at an interface between two immiscible fluids arises from the
imbalance of their intermolecular cohesive forces. It is one of the most commonly
used physical regularizations in the study of interfacial flows. Surface tension plays
an important role in understanding fluid phenomena such as pattern formation in
Hele-Shaw cells, the motion of capillary waves on free surfaces, and the formation of
fluid droplets. Although surface tension provides a natural physical regularization
for fluid interfaces, it also induces a severe time step stability constraint for explicit
numerical methods. This severe stability constraint, which we refer to as stiffness, is
introduced by surface tension through the high order spatial derivatives in the local
curvature. These high order derivatives couple to the interface evolution equation
in a nonlinear and nonlocal manner. If an explicit time integration method is
used, these terms produce strong stability constraints on the time step (for the
Hele-Shaw flows, the time stability constraint is SAt < ming|z4|h3). Moreover,
these constraints are generally time dependent, and become more severe by the
differential clustering of points along the interface. This has been one of the major
difficulties in simulating interfacial flows with surface tension.

Hou, Lowengrub, and Shelley (HLS) [HLS94] have developed an efficient method
to remove the stiffness induced by surface tension for 2-D fluid interfaces. Their
method is based on a small scale decomposition technique and on a reformulation of
the problem in terms of the local tangent angle 8 at the interface and arclength met-
ric sq = y/22 + y2. The main motivation of using these new dependent variables is
that curvature has a very simple expression in these variables: k = 0, /s,. Another
important observation is that the stiffness only arises at small scales. Moreover,
the leading order contribution of the singular integral operator at small scales can
be expressed in terms of the Hilbert transform, which is diagonalizable in Fourier
space. By treating only the leading order terms implicitly, but treating the lower
order terms explicitly, an efficient semi-implicit discretization which effectively re-
moves the stiffness of surface tension can be obtained.

We will now give a brief description of the method. Given an equation of
motion of a free interface,

(z¢(,t),ye(a,t)) = Un + T8,

it can be recast in terms of the variables § and s,, and the following evolution
equations can be easily obtained:

(4.1) (sa)t = Ta—0,U,

<i> (Ua +6aT)

(4.2) 0+

Sa

where i and § are the unit local normal and tangential vectors respectively. U
and T are the local normal and tangential components of the interface velocity.
Note that only the normal velocity is physically prescribed. The tangential velocity
would determine the parametrization of the interface, but it does not affect the
shape of the interface. This degree of freedom in choosing T is exploited to derive
a simpler evolution equation for s, and €. One possible choice of T is to enforce
« to be an arclength variable, which implies that s, is independent of « if it is so
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initially. To achieve this, the tangential velocity T is selected as follows:

2m

(4.3) T(a,t) = T(0,1) + / b Ude’ — 2 [ 6, Uda’.
0 27 Jo

This equation expresses T entirely in terms of 8 and U. With this tangential
velocity, the evolution equations for 8 and s, reduce to

(4.4) (Sa)t = —% 27r9aUclcu.
(4.5) 6, = <si> (Ua +6,T) .

This system should be solved together with the evolution equations governing other
dynamical variables, such as the vortex sheet strength or the velocity potential.
This is a complete reformulation of the interface evolution problem.

The next step in the method of HLS is to extract the leading order singular
operators that contribute to the numerical stiffness. Again, a Taylor expansion
of the singular kernel is performed as in (3.7). For smooth interfaces, only the
singular term on the right hand side of (3.7) contributes to the stiffness. The
smooth kernel f gives rise to a smoothing operator which decays rapidly in high
frequency, consequently it does not contribute to the stiffness. Thus, the leading
order of the normal velocity U at small scales becomes

o3 (Z) e

Sa

In the case of two-fluid interface motion, we need to get the leading order term
for the vortex sheet strength . This term clearly comes form the curvature which
introduces the highest order spatial derivatives. Therefore

Ve ~ Skq -

After singling out the leading order terms, the system for § and - is decomposed
as follows:

(4.6) 0+

(%)’H[%HP,

S

(4'7) "= <2Sa> aaa + Q )

where P and () represent the smoother and lower order terms. They are obtained
by subtracting off the leading order terms from the right hand sides of the # and
equations respectively. We refer to this technique as the Small Scale Decomposition
(SSD). A similar but simpler, SSD can be found for Hele-Shaw flows. Hou, Klapper,
and Si [HKS98] have extended this technique to remove the stiffness of curvature
in 3-D filaments.

It is important to note that the leading order linear operators can be diago-
nalized under Fourier transform. An efficient semi-implicit scheme can be easily
designed by discretizing the leading order stiff terms implicitly using a Crank-
Nicholson discretization, and leap-frogging on the lower order terms. Let L(t) =
27s, which represents the total arclength of the interface. In Fourier space, (4.6)
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and (4.7) become

én+1 _én,1 |k| 2 2 amdtl 27 2an—1 Sn
ay  Torr— = B Frr e G pw
;)\/n—i-l_,’)‘/n—l S 9 2 41 2 4 -1 A
@9 x5 = R ! e ) vt

Note that there is no stiffness in the ODE for L(t) so we can discretize L explicitly.
Once L™ is updated, 6771 (k) and 4"+ (k) can be found by inverting a 2 x 2
matrix. This gives rise to a semi-implicit scheme which is at the same cost of an
explicit scheme but with no high order stability constraint. It is also possible to
design a fourth order semi-implicit discretization based on the same idea. This has
been used effectively in many applications, including those to be described in the
next section.

5. Numerical Study of Interfacial Flows

We now apply the methods reviewed in the previous sections to investigate nu-
merically interfacial flows with small surface tension. We consider three examples.
In the first one, we investigate the surface tension stabilizing effect for unstably
stratified two-fluid interfaces. In the second example we study the dynamic genera-
tion of capillary waves in overturning water waves with small surface tension. The
third example is devoted to the study of a Hele-Shaw flow with suction in the limit
of small surface tension. In addition, we review an innovative method to study the
singular perturbation of surface tension and the effect of noise in Hele-Shaw flows
and present surprising numerical results. All these studies reveal some fascinating
singular limiting behaviors of the interfacial flows as surface tension tends to zero.

5.1. Unstably stratified two-fluid interfacial flows. One of the classical
examples of hydrodynamic instability occurs when a layer of heavy fluid sits on
top of a lighter fluid, or equivalently when the interface is accelerated toward the
heavy fluid. This is called Raleigh-Taylor Instability [DR81]. Rayleigh-Taylor
instability is a fundamental instability of incompressible fluid flow at high Reynolds
number. The idealization of an unstably stratified shear layer as a two-fluid interface
separating two regions of potential flow has often been used as a model to study
mixing properties, boundary layers and coherent structures of fluids.

Pullin [Pul82] was one of the first to study numerically the stabilizing effect
of surface tension for unstably stratified two-fluid interfaces. But due to the in-
herent numerical instability, Pullin’s computations were not conclusive. Rangel &
Sirignano [RS88] also studied the effect of surface tension and density ratio on the
nonlinear growth of the Kelvin-Helmholtz instability. To overcome the time-step
stiffness constraint, they redistributed their grid points every time step. While this
technique can effectively relax the time step stability constraint, it also introduces
excessive numerical diffusion which could overshadow the effect of surface tension.

In [CH98]|, we computed several examples of two-fluid interfacial flows in the
presence of surface, including the particular case we present now. We consider here
an unstably stratified two-fluid interfacial flow (corresponding to Ag < 0) with the
following initial data

z(a,0) = a+0.1licos(2ma),
¥(e,0) = 0.
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FIGURE 1. Unstably stratified flow: Time evolution of the inter-
face with A = —0.1and S = 0.005. N = 1024 and At = 2.5x10~%.

In Figure 1 we plot the time evolution of an interface with A = —0.1, g = 10,
and S = 0.005. For this calculation we use N = 1024 and At = 2.5 x 10~*. We
observe two small fingers that appear around ¢ = 0.9, and the interface begins to
roll up. One can also see some capillary waves that are generated around ¢ = 1.2
and move outwards from the centers of roll-up. To ensure that our calculations are
accurate, we perform a careful resolution study. We find that up to ¢ = 1.4, the
accuracy stays at about 4.66 digits for N = 1024 and about 7.2 digits for N = 2048.
With N = 2048, we can continue our computations with reasonably good accuracy.
In Figure 2, we plot a sequence of the interface position in time from ¢ = 1.5 to
t = 1.75. Note that the finger tips broaden as they continue to roll, and that
the interface bends towards the finger tips. At ¢ = 1.75 , the minimum distance
between the finger tip and the opposite side of the interface is about 0.016. The
minimum distance continues to approach zero and by ¢ = 1.785 (Figure 3(a)), is
approximately 5 x 1074,

This process of bubble formation through self-intersection of a fluid interface
has been observed by HLS [HLS97] for a vortex sheet. The vortex sheet problem
is relatively easier to compute than the two-fluid interface here because the vortex
sheet strength, 7, can be determined dynamically without having to invert an inte-
gral equation iteratively. HLS also used adaptive mesh refinement which improved
the local resolution near the singularity. Based on their numerical results and a
local model, HLS have suggested that the interface minimum separation decreases
to zero according to (t. — t)?/3. In Figure 3(b), we compare the computed mini-
mum distance d;, represented as circles in the plot, and a fitted curve of the form
d(t) = C(t. — t)*/? as a solid line. We can clearly see a good agreement between
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FIGURE 2. Unstably stratified flow: A = —0.1 and S = 0.005.
Sequence of interface positions. N = 2048 and At = 1.25 x 107,
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FI1GurE 3. Unstably stratified flow: A = —0.1 and S = 0.005.
(a) Interface position at ¢ = 1.785 and (b) minimum separation
against time. The circles represent the computed values and the
solid line a fitted curve of the form d(t) = C(t. — t)/.

the values d; and d(t;) up to t = 1.76. Beyond which, our calculations are not well
resolved.

If the interface indeed goes through a self-intersection, this constitutes a singu-
larity in the evolution. We believe that the collision of the interface is caused by the
creation of intense localized jets produced by surface tension. Our numerical results
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indicate that the curvature blows up at the time of the collision and the interface
forms corners. This collision may signal an imminent, change in the topology of the
flow. Such topological singularity is commonly observed in interfacial flows, e.g.
in three-dimensional liquid jets. For three-dimensional liquid jets, the azimuthal
component of surface tension is believed to play an essential role in driving the jet
to form a pinching singularity. However, this component is completely absent in
the two-dimensional unstably stratified interfacial flow we study here, making the
appearance of such pinching singularities very surprising.

5.2. Dynamic generation of capillary waves. Unsteady motion of water
waves is one of the most familiar examples of free surfaces in our everyday experi-
ence. It is also the source of many interesting nonlinear phenomena. An important
event is the generation of capillary waves on the forward wave front [DQPW99,
EKT87, PLT93]. Surface tension is believed to play a fundamental role in gener-
ating these capillary waves.

The phenomenon of capillary waves generated by steady steep gravity waves
has been studied systematically by a number of researchers (see e.g. [LH95, LH96,
Cra70]). The effects of surface tension on breaking waves have recently been ad-
dressed by Tulin [Tul96]. The careful simulations by Tulin show the appearance
of a capillary jump, as defined by Longuet-Higgins [LH96], near the wave crest.
Recent computations by the authors [CH99] using the stable spectrally accurate
method discussed here, reveal a more detailed structure of the capillaries. As we
show next, we are able to compute with high accuracy not only up to the appear-
ance of the capillary jump as observed by Tulin, but also to follow the subsequent
development of the small scale structure produced by the capillaries. We also ex-
amine the limiting behavior of the capillary waves as surface tension decreases to
Zero.

Our initial data is the following:

(5.1) z(a,0) = a+0.1icos(27a) ,
(5.2) v(e,0) = —1+40.1sin(27a) .
The nonzero mean in vy corresponds to a nonzero velocity (equal to-1/2) at y = —o0.

This gives the wave an impulse to cause it to overturn. We take g = 10 and vary
the surface tension coefficient S throughout the simulations. Our first simulation is
for S = 0.001. In Figure 4, we present the interface profile at times ¢ = 0, 0.30, and
0.45, computed using N = 2048 and At = 5 x 107°. We can see that the interface
becomes vertical at ¢ = 0.30 and a capillary wave appears soon after the wave
begins to overturn. Figure 5(a) gives a close-up of a neighborhood of the crest at
time ¢ = 0.45. The curvature in this region is plotted in Figure 5(b). We can clearly
see a capillary wave train. We also examine closely the onset of this capillary wave
and find that at ¢ = 0.26, the curvature develops a spike right after the wave tip.
Such spike is not present in the case S = 0 for which the curvature varies smoothly
in the entire region. This spike subsequently develops into the capillary wave train.

A closer look at the interface profiles near t = 0.45 (Figure 5(a)) shows that the
capillary trough gets narrower in time, suggesting a possible formation of a trapped
bubble through self-intersection of the interface. We also find that both the cur-
vature and its derivative have maxima (in absolute value) in a small neighborhood
about the edge.
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FIGURE 4. Breaking wave profiles for § = 0.001 at times ¢ = 0,
0.30, and 0.45. N = 2048 and At =5 x 1075,
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FIGURE 5. (a) Close-up of the interface at ¢ = 0.45 and (b) the
curvature plotted against the Lagrangian parameter o for § =
0.001, N = 2048, and At =5 x 107°.
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FIGURE 6. Comparison of the zero surface tension interface profile
with the S > 0 profiles as S is decreased at ¢t = 0.45. (a) S =
25x107% (b) S = 125 x10°% (¢) S = 6.25 x 10°°. (d)
S =3.125 x 1075.

We investigate how the capillary wavelength, denoted as Ag, and its amplitude,
denoted as ag, scale with S as S is decreased. The capillary wavelength is defined
as the the distance between the two largest values of |k|. Although it is difficult
to obtain an accurate scaling for Ag and ag, we find that for a fixed time, both
quantities decrease nonlinearly as S decreases to zero. The scaling for Ag is roughly
O(\/g) This seems to be in agreement with the experimental results of Duncan
et al. [ DQPW99]. The monotonely decreasing behavior of As and ag suggests
that the limiting solutions converge strongly to the S = 0 profile for a fixed time.
This is indeed the case. We see from Figure 6 that the interface profiles with
decreasing surface tensions converge to the zero-surface-tension profile at the fixed
time ¢ = 0.45. This should be expected since the limiting zero-surface-tension water
wave problem is well-posed, even after the wave overturns [Wu97]. Surface tension
acts as a regular perturbation in this case. As we will see in the last subsection,
this conclusion does not apply to the ill-posed Hele-Shaw problem.

5.3. Hele-Shaw flow with suction. Here, we would like to investigate the
small surface tension limit of the Hele-Shaw flow with suction. This is a challenging
problem because the zero-surface-tension problem is ill-posed. There are limited
existence results of Hele-Shaw solutions in the presence of surface tension. Short-
time existence has been obtained by Duchon-Robert [DR84]. There is also a long-
time existence result but near equilibrium and without suction by Constantin and
Pugh [CP93]. Tian [Tia95] shows that singularity formation is inevitable if the
center of the viscous blob is not at the sink. However, the type of singularity is
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still unknown. On the other hand, there has been some attempt to perform a
perturbation analysis of the small surface tension solution using the knowledge of
the zero-surface-tension solutions. In [HLOS&8], Howison, Lacey, and Ockendon
propose an asymptotic model by assuming the existence of a self-similar steady-
state solution. Their analysis predicts that small surface tension could cause the
interface in the neighborhood of the cusp to propagate rapidly as a narrow jet,
analogous to a thin crack. They termed this the ’crack’ model. However, since
existence of this self-similar steady-state solution is unknown, the validity of this
asymptotic result is still in doubt.

To investigate the asymptotic behavior as surface tension tends to zero, we
consider an initially circular blob of viscous fluid surrounded by inviscid fluid, i.e.,
A, = 1. The center of the initial blob is located at (0, —0.1) and the sink is
placed at the origin. All the computations presented here are performed in double
precision. Due to the ill-posedness of the zero-surface-tension Hele-Shaw problem,
it is necessary to use Krasny filtering [Kra86] to suppress the spurious growth of
the round-off error. Krasny filtering is a simple but effective numerical filter which
sets to zero all the Fourier modes of the solution whose magnitude are below certain
filter level. In our computations we set this filter level to be 10712,

Due to the singular nature of the small surface tension solution, extremely
high space and time resolutions are required to obtain accurate numerical solutions.
Initially, we use NV = 2048 for most of the computations. We double N as soon as
the magnitude of the highest frequency mode of the tangent angle 6(«, t) is greater
than the filter level. Since the interface propagates rapidly to the sink, very small
values of time step At are required to compute accurately the interface motion as
it approaches the sink. At the latest stage of the motion, the number of grid points
typically increases to N = 8192 or N = 16384 and At = 2 x 10~7. We remark that
Kelly and Hinch [KH97] have studied numerically the effects of surface tension on
the Hele-Shaw flow with suction. By using a different boundary integral method
with a maximum of 200 grid points which are redistributed dynamically, their
computations lack the high accuracy necessary to capture the interface behavior
for sufficiently small surface tension. Nie and Tian [NT98] have performed a careful
numerical study of this problem and found that that the flow develops a curvature
singularity (in the form of a corner) when the interface reaches the sink. However,
their study is restricted to large surface tension case, and does not address the
limiting behavior of the small-surface-tension solution.

In the absence of surface tension, our computation shows that the interface
develops a cusp singularity at t. = 0.2842 and is located at (0,0.2305) for this
particular initial data. With surface tension S = 5 x 10~%, we can compute beyond
the cusp singularity of the zero-surface-tension solution. Figure 7 shows the inter-
face shape for S = 5 x 107°. We clearly see that the finger bulges and develops a
well-defined neck before it forms a wedge. It is interesting to note that this neck
appears at a height close to that of the zero-surface-tension cusp. It is reasonable
to conjecture that the formation of the neck and the bulging of the finger are due
to the influence of the zero-surface-tension singularity.

We consider now the limiting behavior of the interface past ¢. as surface tension
is decreased. We find with surprise that an asymptotic corner angle is selected in the
limit as surface tension tends to zero when the finger tip is about to reach the sink.
To validate this finding, we compare the interfaces for a set of decreasing values of
surface tension. Since the velocity of the interface depends on surface tension, it



82 HECTOR D. CENICEROS AND THOMAS Y. HOU

0.5

=)

FI1cURE 7. Evolution of the initially circular fluid blob past t., for
S =5 x 107°. The interface is plotted at ¢t = 0.2880, 0.2900, and
0.29181. N = 16384 and At = 2 x 10~ 7 for the last stage of the

motion

S Wedge angle | Variation
8 x 107 0.67459 -
4x10° %] 0.65719 0.0174
2x10~* 0.64399 0.0132
1x107* 0.63660 0.0074
5x107° 0.63359 0.0030

TABLE 1. The angle of the wedge (in radiants) for a decreasing set
of surface tensions. The variation (third column) is the difference
between consecutive angles, corresponding to surface tensions S
and 2S.

is more reasonable to compare the interfaces when their finger tips reach the same
level above the sink. As surface tension is reduced, the finger tip reaches the given
level faster. Figure 8 provides some indication of the asymptotic trend of the fingers
as surface tension is successively halved from S = 8 x 107* to S = 5 x 107°. We
choose the fixed level to be y = 0.01 which is very close to the sink. Table 1 shows
that the difference between consecutive angles (corresponding to surface tensions
S and 2S) decreases as surface tension is reduced. This strongly suggests that an
asymptotic angle is selected for the wedge as it touches the sink.

But, what is the limiting behavior of the interface in the vicinity of the neck?
Clearly, a potential neck singularity can only develop past ¢., the singularity time of
the zero-surface-tension solution. Before t., we find that the small surface tension
solution converges strongly to the zero-surface-tension solution. The interesting
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FicUrReE 8. Comparison of the interface finger for a sequence of
surface tensions. From the outer curve inwards, the fingers corre-
spond to the surface tension values S = 8 x 1074, 4x 1074, 2x 1074,
1 x 1074, and 5 x 10~°. Each interface is plotted when the tip of
the finger reaches the fixed level y = 0.01 at = 0. N = 16384
and At =2 x 107",

question is whether the small surface tension solution forms a neck singularity
past t. but before the time at which the limiting wedge reaches the sink. We find
strong evidence that the small surface tension solution indeed forms a neck (corner)
singularity in the limit as surface tension tends to zero. A pronounced neck with
two corners can be clearly observed for S = 5 x 1078 in Figure 9. A close inspection
of its tangent angle and curvature also suggests formation of two corner singularities
at the neck. Unfortunately, well-resolved computations for surface tensions smaller
than this value become extremely difficult due to interface singular behavior and
to growth of the round-off error noise.

The above numerical results provide us with a new understanding of the limiting
behavior of small surface tension Hele-Shaw flow with suction. The two necking
singularities past t. are surprising in a sense. They seem to be responsible for the
selection of limiting wedge angle. The fact that there is a well-defined limiting wedge
angle defies our intuition (one may think that the wedge angle should decrease with
surface tension). This also contradicts the assumption of the crack model in which
a self-similar profile of the finger is assumed. In [CHS99], we also investigate the
limiting behavior for two-phase Hele-Shaw flows, i.e. 4, < 1. We find that larger
viscosity in the exterior fluid prevents the formation of the neck and leads to the
development of thinner fingers. It is observed that the asymptotic wedge angle of
the fingers decreases as the viscosity ratio is reduced, apparently towards the zero
angle (cusp) of the zero-viscosity-ratio solution. For more discussions, we refer the
reader to [CHS99]. It is natural to ask how the behavior of the interface would
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F1cURrRE 9. Close-up of the interface around xz = 0 at ¢ = 0.2857
(just past t.) for S =5x 1076, N = 8192 and At =5 x 1075.

be in the corresponding 3-D Darcy flow. Ceniceros and Si [CS99] address this
problem numerically and find with surprise that the azimuthal component of the
surface tension does not play an important role in this case. The limiting behavior
is very similar to the 2-D flow studied here and no pinching singularity is found.
This is in contrast with 3-D liquid jets. It is conceivable that the suction force plays
a more dominant role than the azimuthal component of surface tension in this case.

5.4. Finger selection and noise effects in Hele-Shaw cells. Morpholog-
ical instabilities are common to pattern formation problems. The non-equilibrium
growth of crystals and directional solidification are some of the best known exam-
ples. Due to the underlying Mullins-Sekerka instability, very small perturbations
caused by noise originate convoluted interfacial patterns when surface tension is
small. The generic mechanisms in the formation of these complex patterns are
present in the simpler problem of a Hele-Shaw interface. The purpose of this study
is to investigate the impact of small surface tension on the pattern formation and
selection of fingers.

We first formulate the Hele-Shaw problem in a way which is convenient for
analysis. We rely on the conformal mapping technique on which most analyses
are based. To this end, we represent the interface motion by a time-dependent
conformal map z({,t) that takes the interior of the unit circle in the (-plane onto
the physical domain of the viscous fluid in the z-plane. The unit circle itself is
mapped to the Hele-Shaw interface. Because of the presence of the source at the
origin, z has the following form

a(t)



NUMERICAL STUDY OF INTERFACIAL PROBLEMS WITH SMALL SURFACE TENSION 85

where f is an analytic function inside the disk, and a(t) is real and positive. We
nondimensionalize all variables by taking the pumping rate ¢ = 27 and a(0) =
1. Letting Z(a,t) = z(e®,t), we obtain the following evolution equation (for a
derivation see for example [CK91])

(5-4) Zy = F(Za) + SG(Za):
where

(5.5) F(Zy) = —iZo(I —iH)|Za] 2,
and

(5-6) G(Zoz) = iZa(I - Z'H)[|Za|_2H/Ca].

Here K is the mean curvature. The subscript @ means differentiation with respect
to that variable. H is the periodic Hilbert transform defined as

(5.7) Hf(a) = %/0 " cot %(a _ o) f(a')do.

Many exact solutions have been found for the zero surface tension problem
(see, e.g. [Saf59, How86a, How86b, How86¢c, SB84]). Here we are interested
in comparing non-zero S solutions with those zero-surface-tension solutions for
which z¢((,0) has at least one zero in the extended complex domain |{| > 1. For
concreteness, we consider the following expanding bubble with three-fold symmetry:

_A®) ¢ ]

(5.8) z(¢,t) C {1 + 230 ]

where A(t) and (o(t) have analytical expressions (see [SB84]). The parameters A(0)
and (p(0) are real numbers satisfying A(0) > 0 and |[(o(0)| > 1. The derivative z¢
has three zeros in |(| > 1 which approach the unit disk and impinge on it at a
time t.. This particular set of initial data has been used by Siegel, Tanveer, and
Dai [STD96]. In our study, we choose A(0) =1 and (p(0) = 1.2. With this choice
of initial data, t. = 0.3301. At t., the zero-surface-tension solution forms three
cusp singularities.

5.4.1. The daughter singularity. Before we proceed to our numerical study, we
need to describe briefly the perturbation analysis of Tanveer [Tan93] and Siegel,
Tanveer, and Dai [STD96]. The perturbation analysis requires to extend the equa-
tions of motion to |¢| > 1. First, equation (5.4) can be analytically continued into
the domain |¢| < 1 by the use of Poisson integral formula. The analytic continuation
to |¢| > 1 is achieved by contour deformation.

In the domain |{| > 1, the extended evolution equation has the following form

(5.9) 2t =quzet g2+ S(q3(z<)<_<1/2 +7),

where ¢1, g2, and ¢3 are analytic functions of ¢ in |¢| > 1. The term (ZC)C_CI/Q
tains the leading order contribution from surface tension. The function r contains

those surface tension terms which are less singular than (ZC)Egl/

con-

®in the neighbor-
hood of a zero of z:(¢,0). We do not write the explicit forms of these functions
since they play no role in the leading order asymptotic analysis.

When performing a perturbation analysis, it is important to choose a function
space and an associated norm so that the limiting problem is well-posed in this
function space. Although the zero-surface-tension problem is ill-posed in the phys-
ical space, it becomes well-posed in the extended complex domain. Thus, it makes
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sense to perform a perturbation expansion in the extended |(| > 1 domain for small

S:
(510) Z(C)t) :ZO(Cat)+Szl(C>t)+ )

where zg is the zero-surface-tension solution [Tan93]. It is easy to see that zg and
z1 satisfy the following equations:

(5.11) Zot = qioZo¢ t G20
(5.12) zit = qozi¢c+ Q30(2‘0c)g_<1/2 +e

where the subscript 0 on any ¢; term denotes its evaluation using the corresponding
S = 0 solution.

It is worth noting that the leading order surface tension term enters the z;
equation as a known forcing function. This singular forcing function contains a
branch point singularity when zoc = 0 in |¢| > 1. Thus, if the initially given z has
a zero in z¢ in the extended |¢| > 1 domain, i.e.

(5.13) 2¢(¢,0) ~ D(0)(C = Go(0)) for [Go(0)| > 1,

then the singular forcing term (zog)&l/ ? will generate a new complex singularity at
t =0" at ¢ = (o(0). The solution for z; will have the form

(5.14) 21~ Ao()(C = o) ™32 + Aa(t)(C = Calt) =2

with Ag(0) + A4(0) = 0. The spawn daughter singularity (;(t) moves according to
the following equation

(5.15) Calt) = =q1o(Ca(t), 1) with Ca(0) = (o (0),
whereas the motion of the zero (y(t) is governed by
(5.16) Go(t) = —q10(Co(8), £) — g20¢ (Co(8), )[z¢c (Go(1), )] -

Thus, (o(t) and (4(t) travel at very different speeds. Depending on the initial data,
it is possible that (4(t) could reach the unit disk first when the zero is still far
from it. For future reference, we define ¢4 to be the time at which the solution to
(5.15) reaches the unit disk. For the data we consider here, we can solve the above
ODE numerically to obtain t; = 0.0463, which is much smaller than ¢, = 0.3301.
At t4, (4 reaches the unit disk and the daughter singularity becomes a physical
singularity for z;. According to the prediction of Tanveer and Siegel, Tanveer,
and Dai, the nonzero surface tension solution can deviate significantly from the
corresponding zero-surface-tension solution no matter how small the surface tension
is, even though the zero-surface-tension solution is still analytic at t4. Further
inner asymptotic analysis of [Tan93] suggests that the initial singularity (4(0) is
transformed by the presence of surface tension into cluster of an infinite number
of —4/3 singularities. The cluster is localized around (4(t) before it breaks up and
disperse near the unit disk.

5.4.2. An effective numerical method to study the limit. The daughter singular-
ity theory is quite surprising and is a bit counter intuitive at first glance. Numerical
results in [STD96] give partial confirmation of this singular perturbation of small
surface tension to Hele-Shaw flows. But due to the extreme noise sensitivity, Siegel,
Tanveer, and Dai find it very difficult to compute for S < 1072, even if quadruple
(128-bit) precision was used.
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In [CHOO0], we develop a novel numerical method to overcome the difficulties
mentioned above. Our method relies on three key observations. The first one is that
noise can be significantly reduced by using a parametrization that yields a compact
representation of the solution in Fourier space. Out of many choices (Lagrangian,
equal-arclength, etc.), we find that the conformal map representation gives the most
compact parametrization of the interface. This compact parametrization has also
been used by Dai and Shelley [DS93] and by Siegel, Tanveer, and Dai [STD96].
With this parametrization, we can use effectively Krasny filtering [Kra86] to sep-
arate noise from the physical solution for the majority of high to intermediate
modes. Moreover, we can also perform selective filtering based on the symmetry of
the solution.

The second observation is to derive a scaled equation for the leading order
perturbation. The reason for doing this is because the daughter singularity is only
born at t = 0F. For times of O(At), the amplitude of the daughter singularity is
O(SAt). Moreover, since the daughter singularity is still far from the unit disk, the
interface is analytic and its Fourier modes decay exponentially, in a rate of %,
where k is the wave number. Therefore, many digits are required to capture the
presence of the singularity in the complex plane.

In order to effectively capture the complex singularity, we need to factor out
the small surface tension coefficient in front of the complex singularity. One way
to do this is to derive a scaled equation for the perturbed quantity. Specifically,
we obtain an evolution equation for the scaled deviation, Z = (Z — Z,)/S, where
Zy is the known zero-surface-tension solution. Note that Z, satisfies the equation
Zot = F(Zya). Subtracting this equation from (5.4) we get

(5.17) Z = %[F(Zoa +8Za) = F(Zoa)] + G(Zoa + SZa),

which can be further simplified to !

(5.18) Zy = iZ(I —iH)W(@) + i Zo(I —iH)|Zoo| ™2 + G(Zoa + SZs),
where

_ 2Pte(ZOt/ZOOz) + S|ZOt/Z0a|2
B |Za|? '

Thus, the small surface tension coefficient is factored out from the scaled equation
completely.

Our third observation is that we need to perform a resolution study in the
precision digits and the filter level. To achieve this, we use very high precision
arithmetic to solve numerically the scaled equation (5.17). High precision has the
additional benefit of reducing the amplitude of the round-off noise. Variable high
precision (up to 80 digits) was accomplished in this work with the use of the multi-
precision package developed by Bailey [Bai90]. All these three ingredients are
essential in capturing the singular behavior of the small surface tension solution.

5.4.3. Numerical results. We first present our computations performed for S =
107,108, and 10~? (the computations presented here actually used the original
Z equation presented in [CHO0]). In our numerical computations, we start with
N = 4096. N is doubled to 8196 when the magnitude of the highest Fourier
mode exceeded the filter level. The time-step is then reduced by a factor of 8.

(5.19) h(a)

I This improved formula was pointed out to us by an anonymous referee.



88 HECTOR D. CENICEROS AND THOMAS Y. HOU

§=0 S=10

25 25

20 20

15 15

10 A 10 /\M\

5 5

B0z 001 0 oo1 o002 8oz 001 0 oo1 o002
s=10"® s=107°

25 25

20 20

15 15

10 10

5 5

8oz 001 0 oo1 o0 S0z 001 0 oo1 oo

F1cure 10. Curvature vs a/2m around one tip of the interface at
t =0.048 for S =0, 1077, 1078, and 10~°. N = 8192. Precision
level 60. Filter level 10~55.

We use the 60-digit computations for all the values of S which are found to be
in good agreement with the 80-digit computations. The singular nature of the
asymptotic solution can be seen clearly in the deviations of the S > 0 curvatures
from the corresponding zero-surface-tension curvature. As observed in Figure 10,
the deviations are significant and rather localized at the fixed time ¢t = 0.048.
Indeed, the smaller the surface tension the larger the deviation.

Next, we present first a sequence of pictures of the interface curvature near one
tip at early times near t; (Figure 11), now for a fixed surface tension. The com-
putations correspond to S = 1078. One can already feel the effect of the daughter
singularity in the physical domain at the time ¢ = 0.043 around the interface tips.
At t = 0.043, the tip curvature flattens in a very localized finite region. This is in
agreement with the theoretical estimate of the daughter singularity impact time.
After ¢t = 0.046 on, the curvature develops large deviations from the zero-surface-
tension curvature. The affected physical regions near the three tips also spread in
time. This behavior is consistent with the asymptotic theory which implies that
daughter singularity cluster will disperse once it gets sufficiently close to the unit
disk. It is worth pointing out that the length scale decreases in time while the am-
plitude grows in time. During this process, the impact of the daughter singularity
on the physical domain becomes more pronounced.

We would like to perform a long time calculation to identify the impact of
the daughter singularity on the interface. To do this, we first compute up to tq4
using 60-digit arithmetic. Shortly after that, we switch to double precision when
the highest mode of Z is about 1073, The number of points is doubled whenever
the spectrum becomes under-resolved. Finally we stop the computation with N =
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FIGURE 11. Tip curvature for S = 10~% at early times near t; = 0.0463.
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FIGURE 12. Close-up of the interface at t = 0.0502 for S = 108,

32768 and At = 10~7. In this calculation, we find that the curvature grows rapidly
at subsequent times. In a very short time interval, the maximum of curvature has
grown more than 10 times its value at ¢ = 0.049, and the singular regions continue
to spread in time. In Figure 12, we can see that the singular effects are already
visible in the interface. The small indentations near the interface tip correspond to
the largest curvature transition. These side indentations are a signature of surface
tension.
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FiGURE 13. Close-ups of the Hele-Shaw interface at different times
for S = 10~* (¢ = 0.23-0.50, with a 0.03 time difference between
profiles) and S = 107° (¢ = 0.05-0.09, with a 0.01 time differ-
ence between profiles). Computation performed with the equal-
arclength method.

To better illustrate the impact of daughter singularity on the physical domain,
we present two more computations with larger surface tensions using the the equal-
arclength method of HLS [HLS94]. The method presented in this subsection can-
not compute accurately for larger surface tension due to severe time-stepping limi-
tations. Figure 13 shows the close-up of the evolution of the interface near one tip
for S = 10* and S = 107° respectively. The symmetric indentations are clearly
formed before the noise-induced tip splitting occurs. For S = 10, the side inden-
tations produced by surface tension begin to be visible in the second curve from left
to right. Shortly after that the tip-splitting process and the finger formation begin.
The above calculations also suggest that surface tension defines a length scale of
the finger width. According to the asymptotic theory, this length scale is related
to the minimum distance of the complex singularity to the unit disk.
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