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Abstract. A new method for hierarchical clustering of data points is presented. It combines treelets, a particular4
multiresolution decomposition of data, with a projection on a reproducing kernel Hilbert space. The5
proposed approach, called kernel treelets (KT), effectively substitutes the correlation coefficient6
matrix used in treelets with a symmetric, positive semi-definite matrix efficiently constructed from7
a symmetric, positive semi-definite kernel function. Unlike most clustering methods, which require8
datasets to be numeric, KT can be applied to more general data and yields a multi-resolution9
sequence of orthonormal bases on the data directly in feature space. The effectiveness and potential10
of KT in clustering analysis is illustrated with some examples.11

1. Introduction. Treelets, introduced by Lee, Nadler, and Wasserman [1, 2], is a method12

to produce a multiscale, hierarchical representation of unordered data. The central premise of13

treelets and the treelet transform is to exploit sparsity and capture intrinsic localized struc-14

tures with only a few features (attributes), represented in terms of an orthonormal basis.15

The treelet transform consists of a sequence of two-dimensional principal component ana-16

lyses implemented efficiently via rotations. The resulting multiresolution representation of17

the data can be used for dimensionality reduction and for feature selection prior to regres-18

sion/classification [1, 2].19

Cluster analysis, also called clustering [3], is one of the basic tasks of unsupervised learning20

and is concerned with finding a partition of a set so that elements in one cluster are more21

similar to one another than they are to elements in another cluster, i.e. the corresponding22

equivalence class captures similarity of its elements. The clustering can be flat, where the23

partition is a collection of disjoint sets, or hierarchical [4], where a nested tree of partitions24

is produced. The treelet transform produces a hierarchical clustering over attributes. In this25

work, we propose to combine the kernel method [10, 11] with the treelet transform to obtain26

an efficient tool for hierarchical clustering analysis over data points. We call this method27

kernel treelet (KT). The central idea is to project the data onto a reproducing kernel Hilbert28

space (RKHS). This effectively substitutes the correlation coefficient matrix, used by the29

original treelet method as a measure of similarity among attributes, with a symmetric, positive30

semi-definite matrix that measures similarity among data points. The intuition behind this31

approach is that inner products provide a measure of data similarity and a projection onto a32

RKHS, done via the so-called kernel trick [10, 11], is a natural and efficient way to construct33

appropriate (dis)similarity matrices for a wide variety of datasets. We present some examples34

that demonstrate the potential of KT as an effective tool for data clustering analysis.35

The typical complexity of hierarchical clustering methods is O(n3) (n denotes the number36

of data points in the dataset) but KT, like single linkage clustering [5], and complete linkage37

clustering [6] can be done in O(n2) operations. Most clustering methods are only directly38

applicable to numerical datasets. However, many modern datasets do not have clear represen-39
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tations in Rd due for instance to missing data, length difference, and non-numeric attributes.40

A typical solution to this problem usually involves finding a projection from each observation41

to Rd as is the case for example in text vectorization [7], array alignment [8], and missing-data42

imputation [9]. However, these particular projections pose considerable challenges and might43

raise the bias of the model if false assumptions are made. KT does not have this limitation44

and can be applied to an ample range of datasets, including those mentioned above.45

The rest of the paper is as follows. In Section 2 gives some basic background for the46

treelet transform and the kernel method. This is followed by the introduction of the KT47

model in Section 3. Section 4 presents some theory to help explain the success of the KT48

approach for clustering. Three examples of clustering analysis are given in section 5. In49

Section 6 an approach that combines KT with supervised learning is proposed to accelerate50

data hierarchical clustering. Finally, concluding remarks are given in Section 7.51

2. Background Information. We give in this section a brief description of the treelet52

algorithm [1, 2] and the Kernel method [12] as background for the introduction of the KT53

model. Treelets are based on the repeated application of two dimensional rotations to a matrix54

measuring the similarity of attributes. So we start by reviewing Jacobi (also called Givens)55

rotations first.56

A Jacobi rotation matrix J is an orthogonal matrix with at most 4 entries different from
the identity. For a given symmetric matrix M and entry pq, the Jacobi matrix J is constructed
so that

(JTMJ)pq = (JTMJ)qp = 0.

The construction of J is equivalent to finding the cosine (c) and sine (s) of the angle of rotation,57

which satisfy58 [
c −s
s c

] [
Mpp Mpq

Mqp Mqq

] [
c s
−s c

]
=

[
d1 0
0 d2

]
59

subject to the constraint c2+s2 = 1. The matrix J is then given Jpp = Jqq = c, Jpq = −Jqp = s,60

and Jij = δij for all the other entries. The new attributes61

d1 = Mppc
2 +Mqqs

2 − 2Mpqcs,(2.1)62

d2 = Mppc
2 +Mqqs

2 + 2Mpqcs,(2.2)6364

are referred to as the sum and difference variables or as the scaling and detailing variables.65

A numerical stable way of computing J is as follows. Assuming Mpq 6= 0, compute

b =
Mpp −Mqq

2Mpq

and define

t =
sgn(b)

|b|+
√
b2 + 1

.

Then c = 1√
t2+1

and s = ct. A Jacobi rotation over a n×n matrix uses O(1) space with O(n)66

work.67
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2.1. Treelets. The treelets algorithm [1, 2] constructs a multiresolution basis and a corre-68

sponding hierarchical clustering over the attributes of some datasets in Rd, with which sparsity69

sparsity can be exploited. In its most efficient implementation [2] it is an O(min(nd2, n2d) +70

Ld) algorithm (L is the number of levels in the multiresolution).71

The algorithm starts by constructing a d × d empirical covariance matrix A0 and an72

attribute similarity matrix M0 given by73

(M0)ij =

√
(A0)2ij

(A0)ii(A0)jj
+ λ |(A0)ij | .(2.3)74

75

where λ is a regularization, hyper-parameter.76

The initial set S0 of scaling indices is that of all the variables, i.e. S0 = {1, 2, ...d}. Starting77

with A0 and S0, at each tree level k = 1, . . . L (L < d), Ak and Sk are constructed as follows:78

1. Compute the d× d matrix Mk whose entries are given by79

(Mk)ij =

√
(Ak−1)

2
ij

(Ak−1)ii(Ak−1)jj
+ λ |(Ak−1)ij | .(2.4)80

81

2. Find the two indices αk, βk such that82

αk, βk = argmax
α,β∈Sk−1

(Mk)αβ.(2.5)83

84

3. Calculate the Jacobi matrix Jk for αk βk entry of Ak−1 and set Ak = JTk Ak−1Jk.85

4. Set aside the difference variable. Assuming, without loss of generality, that (Ak)αkαk
≤86

(Ak)βkβk , set Sk = Sk−1 − {αk}.87

The Jacobi rotations in the treelet algorithm produce an orthogonal basis to represent the88

data for each k ∈ {1, 2, 3, ..., L} (L = d− 1 being the maximum level of the tree). Defining89

Bk = JTk J
T
k−1 · · · JT2 JT1 ,(2.6)9091

then92

Ak = BkA0B
T
k .(2.7)9394

Consequently, every vector v ∈ Rd has a k-th basis representation Bkv. Furthermore, there95

is a compressed kth basis representation obtained by dropping insignificant (< ε) detailing96

(non-scaling) indices of Bkv. That is, if we define ei to be the ith column of the identity97

matrix, the compressed kth basis representation is given by98

τk(v) = Bkv −
∑
i 6∈Si

|Bkv·ei|<ε

(Bkv · ei)ei.99

Treelets can also be viewed as a hierarchical clustering method over attributes. The100

hierarchical clustering structure is stored in αk, βk. We start with trivial clustering where101

each attribute is in its own cluster and labeled by itself. For each k, we merge clusters labeled102

αk and βk and label it as βk. This is feasible because each step k the set of all cluster labels103

is exactly Sk−1. This operation gives a hierarchical tree for attribute clustering.104
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2.2. Kernel Method. The kernel method [12] allow us to map variables into a new feature105

(Hilbert) space via a kernel function. We now review briefly the basic concepts and ideas of106

this approach (see for example [10, 11] for a more comprehensive review).107

A kernel K over some set X is a function K : X × X → R. A symmetric and positive108

semi-definite (SPSD) kernel K has the properties:109

K(x1, x2) = K(x2, x1), for all x1, x2 ∈ X.(2.8)110

s∑
i=1

s∑
j=1

cicjK(xi, xj) ≥ 0, for all {x1, ..., xs} ∈ X and all {c1, ..., cs} ∈ R(2.9)111

112

If X is finite, then K is SPSD if and only if K(X,X) is a SPSD matrix. If X ⊆ Rd, there is a113

unique Hilbert space H and a feature map ΦK : Rd → H associated to a SPSD kernel K such114

that for all x, y ∈ X,115

K(x, x) = 〈ΦK(x),ΦK(y)〉H ,(2.10)116117

where 〈·, ·〉H stands for the inner product in H.118

The space H here is called a reproducing kernel Hilbert space (RKHS). The following are119

two common examples of SPSD kernels:120

1. Radial basis function (RBF) kernel121

K(x, y) = exp{−||x− y||
2

2σ2
}.(2.11)122

123

2. Polynomial kernel124

K(x, y) = (α〈x, y〉+ c0)
r.(2.12)125126

A kernel K for a set X can be restricted to a subset Y ⊆ X, and the SPSD property is127

preserved under such restriction. If the task under consideration is clustering over a finite set,128

the selected kernel needs only be SPSD on the (finite) set of all samples. Thus, we only need129

to check that the kernel matrix is SPSD. If we need to extend the clustering outcome to other130

data, e.g. for clustering boosted classification, then X has to include the whole data space as131

a subset.132

3. The KT Model. The objective KT is produce a hierarchical dataclustering for some133

set D = {d1, . . . , dn} given a SPSD kernel K : D × D → R measuring the data similarity.134

Instead of using the d×d empirical covariance matrix A0 in the initial step (2.3) of the treelet135

transform, we replace A0 with the n × n kernel matrix and apply the rest of the steps of136

treelets algorithm. In more detail:137

1. First calculate the n × n kernel matrix (A0)ij = K(di, dj). A0 is a SPSD matrix138

because K is SPSD kernel, and each column (or row) corresponds to a data point in139

D.140

2. Apply the treelet algorithm with hyper-parameter λ and L = n − 1 using the A0 of141

step 1. In our experiments, λ is set to 0 but it can also be tuned as in treelets.142

3. The hierarchical clustering produced by the treelet transform can now be viewed as143

a clustering of columns (or rows) of A0 and consequently as a clustering of the data144

points of the set D.145

4

This manuscript is for review purposes only.



3.1. Illustration. To illustrate how the KT method work we use the following 5 point146

two-dimensional dataset:147

D =

{[
0
0

]
,

[
2
0

]
,

[
2
−1

]
,

[
0
1

]
,

[
−1
1

]}
.(3.1)148

149

The data points are displayed in Figure 1. If we choose the RBF kernel (2.11) with σ = 0.5,

Figure 1. Distribution of dataset D = {(0, 0), (2, 0), (2,−1), (0, 1), (−1, 1)}

then the kernel matrix becomes

A0 =


1 e−8 e−10 e−2 e−4

e−8 1 e−2 e−10 e−20

e−10 e−2 1 e−16 e−24

e−2 e−10 e−16 1 e−2

e−4 e−20 e−24 e−2 1

 ≈


1.000 0.000 0.000 0.135 0.018
0.000 1.000 0.135 0.000 0.000
0.000 0.135 1.000 0.000 0.000
0.135 0.000 0.000 1.000 0.135
0.018 0.000 0.000 0.135 1.000

 .
Applying treelets to it gives a hierarchical tree for columns (or rows) of A0 and as remarked150

above, for the data points themselves as Figure 2 illustrates.151

4. Theory. We now prove that the kernel projection is equivalent to working with an152

n × n symmetric positive semi-definite matrix, regardless of the dimension of the KRHS H,153

and that this matrix can be efficiently evaluated through the kernel K. We also suggest a154

definition of a clustering frame and clustering equivalence for similarity-based clustering that155

allows us to connect the results of the clustering analysis for the original dataset with those156

of the transformed, projected set and thus explain the usefulness of KT approach.157

Hereto D denotes the dataset and D the corresponding matrix whose columns are the158

data points in D and similarly for functions of D.159

Lemma 4.1. Let X ⊆ Rd. For every finite dataset D = {d1, . . . , dn} ⊆ X and an SPSD160

kernel K, there exists an orthonormal basis B of the RKHS H such that161

[ΦK(di)]B =

[
δi
0

]
for i = 1, . . . , n,(4.1)162

163
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Figure 2. Clustering tree for D = {(0, 0), (2, 0), (2,−1), (0, 1), (−1, 1)}.

where the left hand side stands for the representation of ΦK(di) in the basis B and δi ∈ Rn.164

Moreover, the matrix
[
δ1 δ2 · · · δn

]
is symmetric, positive semi-definite.165

Proof. We apply the Gram-Schmidt orthogonalization process to the maximal linearly in-166

dependent subset of {ΦK(d1), . . . ,ΦK(dn)} and get a set of orthonormal vectors {β̂i, . . . , β̂m},167

where168

m = dim(span{ΦK(d1), . . . ,ΦK(dn)}) ≤ n.(4.2)169170

We extend this set to a orthonormal basis B̂ = {β̂1, . . . β̂m, . . .} of H. Then, for all i ∈171

{1, 2, ..., n}, [ΦK(di)]B̂ is 0 after the m-th entry, and consequently after n-th entry, so there172

exists d̂i ∈ Rn such that173

[ΦK(di)]B̂ =

[
d̂i
0

]
.(4.3)174

175

The n× n matrix
[
d̂1 d̂2 · · · d̂n

]
can be written in its singular value decomposition176 [

d̂1 d̂2 · · · d̂n
]

= UΣV T ,(4.4)177
178

where U and V are orthogonal matrices and Σ is a diagonal matrix with non-negative entries.179

We can now define a new orthonormal basis B = {β1, . . . βm, . . .} through the change of180

basis matrix

[
V UT 0

0 I

]
. Let δi = V UT d̂i for all i ∈ {1, 2, ..., n}, then181

[ΦK(di)]B =

[
V UT 0

0 I

]
[ΦK(di)]B̂ =

[
V UT d̂i

0

]
=

[
δi
0

]
.(4.5)182

183

The projected data ΦK(di) in the basis B is
[
δi 0

]T
and the matrix184 [

δ1 δ2 · · · δn
]

= V UT
[
d̂1 d̂2 · · · d̂n

]
= V ΣV T(4.6)185

186

is symmetric and positive semi-definite.187
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Corollary 4.2. Let X ⊆ Rd and D = {d1, . . . , dn} ⊆ X a dataset. For every x ∈ X, define188

Ψ(x) as the first n components of ΦK(x) in the basis B of Lemma 4.1, i.e.189 [
Ψ(x)
∗

]
= [ΦK(x)]B.(4.7)190

191

Then,192

〈Ψ(D),Ψ(D)〉 = 〈ΦK(D),ΦK(D)〉H = K(D,D).(4.8)193194

Here, 〈Ψ(D),Ψ(D)〉 denotes the matrix with entries 〈Ψ(di),Ψ(dj)〉 and similarly for195

〈ΦK(D),ΦK(D)〉H and K(D,D).196

Proof. For all di ∈ H, [
Ψ(di)

0

]
= [ΦK(di)]B,

that is Ψ(di) = δi. From Lemma 4.1, we have that Ψ(D) =
[
δ1 δ2 · · · δn

]
is symmetric,

positive semi-definite and

〈Ψ(D),Ψ(D)〉 =
[
δ1 δ2 · · · δn

]2
= 〈ΦK(D),ΦK(D)〉H = K(D,D).

4.1. Clustering Equivalences.197

Definition 4.3. A clustering frame is a pair (D, f) where D is a finite, ordered dataset and198

f : D ×D → R is a mapping that measures similarity for the points in the dataset D.199

Definition 4.4. Two clustering frames (D1, f1) and (D2, f2) are equivalent, and we write200

(D1, f1) = (D2, f2), if and only if f1(D1,D1) = f2(D2,D2).201

For any similarity-based clustering method, using two equivalent clustering frames gives the202

same clustering outcome.203

A pertinent example of clustering frame equivalence is the following. If an SPSD kernel204

K corresponds to the projection ΦK , then there is a RKHS H such that205

K(D,D) = 〈ΦK(D),ΦK(D)〉H.(4.9)206207

Therefore, the clustering on D using similarity mapping K corresponds to the clustering on208

ΦK(D) using the inner product in H, i.e.209

(D,K) = (ΦK(D), 〈·, ·〉H).(4.10)210211

4.2. Kernel Treelets Clustering Equivalences. Recall that the treelet transform applied
to some dataset D̂ produces a hierarchical clustering over its attributes, or in other words, a
clustering over the data of D̂T . If we apply the treelet transform to D̂ = ΨT (D), then the
outcome would be a hierarchical clustering over the columns of D̂T = (ΨT (D))T = Ψ(D).
Therefore, the clustering frame for the KT is (Ψ(D), 〈·, ·〉) and because

〈ΦK(D),ΦK(D)〉H = 〈Ψ(D),Ψ(D)〉,
7
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we have (Ψ(D), 〈·, ·〉) = (ΦK(D), 〈·, ·〉H). Finally, from (4.10) we get the clustering frame212

equivalence213

(D,K) = (ΦK(D), 〈·, ·〉H) = (Ψ(D), 〈·, ·〉),(4.11)214215

which implies that applying the treelet transform to the matrix D̂ = ΨT (D) provides the216

same hierarchical clustering as that produced by the clustering frame (D,K). Also, rather217

than computing A0 directly through D̂, one computes this matrix efficiently with the kernel218

trick (4.9) : A0 = K(D,D).219

4.3. Complexity. The complexity of computing kernel matrix is O(ξn2), where ξ is the220

complexity of applying kernel function to a pair of data and ξ = d if the data is numeric.221

Computing the rotation steps can be seen as applying treelets to a d = n matrix, and thus it222

complexity is O(Ld) = O((n− 1)n) = O(n2) if properly optimized as in treelets. So the total223

complexity of KT is O(ξn2).224

5. Examples. We implemented KT and the following examples in Python with the pack-225

ages Numpy [15] and Scikit-learn [16]. Plots were generated with Matplotlib [17]. The treelets226

part of our implementation is not optimized, so its cost is O(n3) operations (an O(n2) imple-227

mentations is also possible [1]) . The hyperparameter λ is set to 0 in all of the experiments228

below.229

5.1. Clustering for Six Datasets. To illustrate how KT works as a hierarchical clustering230

method over data, we use first an example from Scikit-learn [16] which consists of 6 datasets,231

each of which has 1500 two-dimensional data points (i.e. n = 1500 and d = 2). We can232

visualize each dataset and each cluster by plotting each observation as a point in the plane.233

Each of the first five datasets consists of data drawn from multiple shapes with an error in234

distance. The sixth dataset is a uniform random sample from [0, 1]2 to show how clustering235

methods work for uniform distributed data and specially how smooth the boundaries of their236

partitions are.237

Figure 3 compares the performance of KT with different kernels with that of some other238

clustering methods for the six aforementioned datasets. The number of clusters and hyper-239

parameters are tuned for each method and the sample sizes are set to 1000 for each instance240

of the KT method. Each row in Figure 3 represents a dataset and each column represents241

a clustering method. In this experiment, KT with RBF kernel is the method that performs242

clustering closest to human intuition for all first five datasets. Only spectral clustering (column243

5) has a similar performance. The sixth dataset shows that KT is affected by the relative244

density deficiency in some area due to sampling and shows porous boundaries. The excellent245

performance of the RBF KT on the first five datasets can be traced to the fact that these246

datasets are to some extent Euclidean distance-based, which corresponds to the assumptions247

for RBF kernel.248

5.2. Clustering for a Social Network Dataset. We now consider an example of network249

analysis from the Stanford Network Analysis Project [18]. This is a dataset consisting of250

‘circles of friends’ (or ‘friends lists’) from Facebook. It has nV = 4039 surveyed individuals,251

which can be viewed as vertices of an undirected graph. Each two vertices are connected with252

8
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Figure 3. Comparison of different clustering algorithms on 6 datasets. 0 - KT (RBF), 1 - KT (r = 1),
2 - KT (r = 2), 3 - Mini batch Kmeans, 4 - Mean shift, 5 - Spectral clustering, 6 - Ward, 7 - Agglomerative
clustering, 8 - DBSCAN, 9 - Gaussian mixture.

an edge if the corresponding individuals are friends and not otherwise. The edges are not253

weighted and the total number is 88234. We use KT to obtain a hierarchical clustering on254

this dataset.255

Denote the set of vertices on the graph as V and define a kernel function K : V × V → R256

such that for every v1, v2 ∈ V257

K(v1, v2) =


1045 if v1 = v2.

1 if v1, v2 are connected.

0 otherwise.

(5.1)258

259

The number 1045 is the largest degree of all vertices.260

Lemma 5.1. The matrix K(V, V ) defined by (5.1) is SPSD.261

Proof. Clearly, K(V, V ) symmetric. Moreover it is diagonally dominant with a positive262

diagonal:263 ∑
j 6=i
|K(V, V )i,j | = degree(vi) ≤ max

j
degree(vj) = 1045 = K(V, V )i,i, i = 1, 2, ..., nV .264

265

Now, since K(V, V ) is symmetric all its eigenvalues are real. Suppose there is a negative266

eigenvalue −λ2. Then K(V, V ) +λ2I is singular but this is impossible because K(V, V ) +λ2I267

is strictly diagonally dominant. Therefore K(V, V ) is SPSD.268

9
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To estimate the performance of KT as a multiresolution, hierarchical clustering method269

on this dataset, we do the following evaluation. For each cluster partition in the hierarchy, i.e.270

for each tree level k = 1, . . . L = n−1, we compute its confusion matrix and the corresponding271

true positive rate and false positive rate. The confusion matrix, is a 2 × x array recording272

the number of true positives (true predicted connections), true negatives (true predicted no-273

connections), false positives (false predicted connections), and false negatives (false predicted274

no-connections) for pairwise associations. The true positive rate (TPR) measures the propor-275

tion of two nodes being in the same cluster given that the two nodes are connected. The false276

positive rate (FPR) measures the proportion of two nodes being in the same cluster given that277

the two nodes are not connected. For each tree level, k = 1, . . . n−1, there corresponds a point278

in the plane (TPR(k),FPR(k)) and interpolating these points we obtain the so-called receiver279

operating characteristic (ROC) curve, which is displayed in Figure 4. The performance of the280

KT for clustering on this dataset is excellent. As a reference, the line y = x corresponds to a281

prediction accuracy of random guessing. For the KT clustering, at about 20% FPR we obtain282

almost 100% TPR, i.e. if we take 20% of nodes that are not connected and place them in283

the clusters obtained by the KT method then they will be connected to other vertices with284

almost probability 1. Another measure of the effectiveness of the hierarchical clustering is the285

so-called area under the curve, which is the numerical integral of the ROC over [0, 1]. For the286

KT the AUC is 0.958, very close to the optimal value 1.287

Figure 4. Receiver operating curve (ROC), as the tree level increases, for the KT clustering for the social
network example.

5.3. Clustering for a Dataset with Missing Information. Our last example is a dataset288

with missing information. We use the mice protein expression (MPE) dataset [19] from the289

UCI Machine Learning Repository. This is a dataset consisting of 1080 observations for 8290

classes of mice, each of which containing 77 expression levels of different proteins with some291

of the entries missing.292

We employ KT to obtain a hierarchical clustering on this dataset. First, we standardize293

the data so that each attribute has empirical mean 0 and standard deviation 1. Then, we294
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define the following RBF kernel. For for all observations u, v in the dataset V ,295

K(u, v) = exp

{
− 32

|Euv|
∑
i∈Euv

‖ui − vi‖2
}
,(5.2)296

297

where Euv is the set of indices for which the data is available in both u and v. We check that298

Euv 6= ∅ so that K is well-defined. The number 32 is a parameter empirically selected. We299

confirmed numerically that the kernel matrix is SPSD.300

We compare the predicted clusters and the true labels according to pairwise scores. Fig-301

ure 5 shows how KT performs compared to the popular KMeans clustering method. Here,302

we measure the true positive rate as the proportion of two records being in the same cluster303

given that they are from mice of the same type, and the false positive rate as the proportion304

of two records being in the same cluster given that they are from mice of different type. As305

in the previous example of the network dataset, we draw the ROC and calculate its AUC.306

The AUC of KT is much greater than that of KMeans (0.726 > 0.579), demonstrating KT’s307

superiority for this dataset.308

Figure 5. Comparison of receiver operating curve (ROC) for KT and KMeans on the MPE dataset.

6. Accelarating Kernel Treelets. The treelet approach is meant for small to moderate309

size high-dimensional datasets (small n, large d) because of its O(n2) complexity. In the310

context of spectral clustering, Yan, Huang and Jordan [20] proposed a preprocessing method,311

using classical k-means or random projections trees, to reduce the size of the input dataset312

and thus accelerate the spectral analysis of the method.313

In a similar spirit, we propose here to apply KT to a moderate size sample S ⊂ D for an314

initial clustering and then use a kernel support vector machine (SVM) to assign cluster labels to315

the rest of the data, i.e. the all dj ∈ D\S. To illustrate this approach, we consider again the six316

datasets of Example 1. Figure 6 demonstrates how the number of sample points nS affects the317

clustering result. Each column represents KT using the RBF kernel for different nS , denoted318

KTns in Table 1. The run time is displayed in Table 1, columns 2-7. The hyper-parameter319

σ = 0.1 is tuned towards nS = 1000 case and is used for all other sample sizes. Note that as320
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KT1500 is of full sample size, it does not trigger the kernel SVM whereas KT1499 does. From321

Figure 6 and Table 1, we observe that the minimum optimal ns for the first 5 datasets is 1000,322

100, 1000, 200, 50, respectively (ns is dataset dependent, as expected) and thus the overall323

cost of the clustering analysis could be substantially reduced with this approach. Furthermore,324

the fourth dataset shows that optimal hyper-parameter σ is ns-dependent. The RBF kernel325

can be considered as a weighted average of distance and connectivity, where a larger σ means326

a higher weight on distance. For the same σ = 0.1, as sample size ns increases, the clustering327

result becomes more distance-based rather than connectivity-based, demonstrating that the328

optimal σ for those sample sizes is actually smaller.329

Figure 6. Comparison of different number-of-cluster estimate on 6 datasets.

7. Concluding remarks. In the paper we describe a novel approach, kernel treelets (KT),330

for hierarchical clustering. The method relies on applying the treelet transform to an n × n331

matrix measuring data similarities in a feature, reproducing kernel Hilbert space. We show332

with some examples that KT can be as useful as other hierarchical clustering methods and333

is especially competitive for datasets without numerical matrix representation and or then334

there is missing data. The KT approach also shows significant potential for semi-supervised335

learning tasks and as a pre-processing, post-processing step in deep-learning. Work in these336

directions is underway.337
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KTnS 1 2 3 4 5 6

0 - KT50 0.011 0.012 0.013 0.011 0.011 0.01

1 - KT100 0.035 0.044 0.039 0.045 0.033 0.028

2 - KT200 0.109 0.099 0.128 0.12 0.121 0.132

3 - KT300 0.225 0.217 0.242 0.269 0.259 0.235

4 - KT500 0.551 0.568 0.62 0.569 0.652 0.536

5 - KT800 1.315 1.513 1.534 1.378 1.699 1.295

6 - KT1000 2.016 2.055 2.336 2.098 2.782 1.941

7 - KT1200 2.88 2.94 3.242 3.004 4.146 2.77

8 - KT1499 4.438 4.532 5.4 4.713 6.788 4.341

9 - KT1500 4.472 4.69 5.398 4.807 6.782 4.274
Table 1

KTns denotes the use of KT to a sample of size ns. The numbers on columns 2-7 are the run times for
the clusters in Figure 7.
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