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Abstract. A fully three-dimensional numerical study of the dynamics and field-induced
deformation of a sheared, superparamagnetic ferrofluid droplet immersed in a New-
tonian viscous fluid is presented. The system is a three-dimensional, periodic channel
with top and bottom walls displaced to produce a constant shear rate and with an ex-
ternal, uniform magnetic field perpendicular to the walls. The model consists of the
incompressible Navier-Stokes equations with the extra magnetic stress coupled to the
static Maxwell’s equations. The coupled system is solved with unprecedented reso-
lution and accuracy using a fully adaptive, Immersed Boundary Method. For small
droplet distortions, the numerical results are compared and validated with an asymp-
totic theory. For moderate and strong applied fields, relative to surface tension, and
weak flows a large field-induced droplet deformation is observed. Moreover, it is
found that the droplet distortion in the vorticity direction can be of the same order
as that occurring in the shear plane. This study highlights the importance of the three-
dimensional character of a problem of significant relevance to applications, where a
dispersed magnetic phase is employed to control the rheology of the system.
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1 Introduction

Magnetic fluids, also known as ferrofluids, are synthetic suspensions composed of solid
magnetic particles coated with a surfactant and suspended in a liquid carrier. In general,
particles are of magnetite with a diameter on the order of 3 nm to 15 nm (nanoparticles)
and the liquid carrier is typically oil or water (a Newtonian fluid). Thermal agitation
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keeps particles suspended due to Brownian motion while a surfactant (or electrically
charged particles) prevents them from clustering together [1–3].

An applied magnetic field, even of moderate intensity, can dramatically change the
rheology of a ferrofluid. This is significant for a number of applications in which the
magnetic component phase is used for controlling the system. In particular, two-phase
systems consisting of ferrofluid droplets immersed in a Newtonian carrier have a great
potential in important technological applications such as in the design of new, functional
materials [4] and in the delivery of drugs [5, p. 233] [6–8].

Several numerical investigations have been devoted to the deformation of ferrofluid
droplets under different flow and field conditions. Most studies have been either two-
dimensional or axi-symmetric [9–15]. Interface instabilities of a ferrofluid droplet under
the influence of an imposed magnetic field have also received considerable attention [16–
18].

In this work, we focus on the field-induced distortion of a ferrofluid droplet in shear
flow. We are inspired by the work of [14] on such deformation in quiescent flow. To this
end, we perform fully three-dimensional numerical simulations employing an adaptive
Immersed Boundary Method. This is coupled to an efficient, adaptive finite difference
solver for the static Maxwell’s equations to obtain the magnetic field. The building blocks
of this methodology, introduced in different contexts [1, 19, 20], are here combined and
applied for the first time for fully three-dimensional ferrofluid simulations. The mesh
adaptive methodology allow us to compute the flow and the droplet deformation with
unprecedented resolution and accuracy. However, our simulations are limited to small
capillary numbers (see Section 2.2 for a description of all dimensionless groups) and we
consider only a small number of points in parameter space due to the enormous com-
putational cost for each simulation to steady state (weeks of CPU and some of them
months). Nevertheless, our study shows clearly the significant field-induced distortions
of the ferrofluid droplet and the effect of the field on the direction of maximal deforma-
tion and on the overall dynamics towards steady state. In particular, we find that for
moderate to strong fields (relative to surface tension) and weak flows, the field-induced
droplet distortion can be quite significant. Moreover, the droplet deformation in the vor-
ticity direction can be of the same order as that occurring in the shear plane. This and
other results in this study highlight the importance of the three-dimensional character of
this significant rheological problem.

The paper is organized as follows: In Section 2, we present the governing equations,
the immersed boundary formulation, and the nondimensional form of the equations. The
physical parameters used in this study, which correspond to an actual PDMS ferrofluid
droplet suspended in viscous medium, are given at the end of this section. We summa-
rize the numerical methodology in Section 3. More details of the numerical discretization
appear in Appendix A. Section 4 is devoted to the numerical results, including a vali-
dation and a comparison with an asymptotic small deformation theory. Considerations
about a verification of the numerical accuracy are presented in Appendix B. A resolu-
tion study and an investigation of domain size effects are outlined in Appendix C. Some
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concluding remarks are given in Section 5.

2 Governing equations

We consider a three-dimensional rectangular channel Ω filled with a Newtonian fluid in
which there is a suspended, neutrally buoyant, ferrofluid drop. S(t) is the separation
interface, Ωd(t) and Ωc(t) are the regions inside and outside of the drop, respectively
(“d” stands for disperse phase (the drop) and “c” for continuous phase - the surrounding
fluid). The system is subjected to a simple shear arising by moving the top and bottom
walls with constant relative velocity. The two fluid components are assumed to be in-
compressible, immiscible, and density matched.

Macroscopically, the system is described by the conservation of linear momentum
and by the incompressibility constraint

ρ
Du

Dt
=−∇p+∇·(2ηE)+∇·τm+fs, (2.1)

∇·u=0, (2.2)

where D/Dt is the material derivative, u is the velocity field, p is the pressure, ρ is the
specific mass, and η is the (kinematic) viscosity. In (2.1), E =

(
∇u+∇uT

)
/2 is the de-

formation tensor (rate of strain) and τm is the stress stemming from the magnetic nano-
particles, coupling the nano-structure with the macroscopic flow. The term fs is the inter-
facial tension force.

The material properties ρ and η are constant within each phase but will vary in time
and space due to the drop motion, that is,

η=

{
ηd in Ωd(t),

ηc in Ωc(t),
(2.3)

and similarly for ρ.
An imposed external magnetic field H0 interacts with the magnetic particles in the

ferrofluid drop affecting its magnetization. There are no free currents in either region so
the magnetic induction B and the magnetic field H of the system satisfy the magnetostatic
Maxwell equations [1]

∇·B=0 and ∇×H=0 in Ω, (2.4)

and

B=

{
µ0(H+M) in Ωd(t),

µ0H in Ωc(t),
(2.5)

where µ0 is the permeability constant of vacuum. We consider a linearly magnetizable
ferrofluid. In that context, for sufficiently small magnetic particles (.6 nm in diameter)
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the magnetization becomes aligned almost instantly with the magnetic field, that is M=
χH, where χ is the magnetic susceptibility. If we assume the superparamagnetic behavior,
that is, B=µ0(1+χ)H, and use the fact that there is a scalar potential ψ (since ∇×H=0)
satisfying H=∇ψ, it follows that

∇·(µ∇ψ)=0 in Ω and
∂ψ

∂n
|∂Ω =n·H0, (2.6)

where

µ=

{
µ0(1+χ) in Ωd(t)

µ0 in Ωc(t).
(2.7)

For a superparamagnetic ferrofluid, the magnetic force density is given by [1] ∇·(µH⊗H)−
(1/2)µ0∇H·H, the last term being proportional to the identity matrix and, at the momen-
tum equation (2.1), it may be merged into the pressure field on the entire domain. In that
context, we may take the magnetic stress as being

τm =µH⊗H, (2.8)

thus the magnetic force is computed by

fm =∇·τm. (2.9)

2.1 Free boundary problem

The problem under consideration is a free boundary problem in the sense that the drop
surface S(t) has to be computed simultaneously with the other unknowns. Here, the
interface S(t) is represented by a parametric form X(α,t)= (X(α,t),Y(α,t),Z(α,t)), with
α=(α1,α2) the Lagrangian parameter, such that

S=S(t)={X(α,t) |α∈Σ0}, (2.10)

where Σ0 is a fixed domain. As in [19] and in [20], the interface is treated as an “immersed
boundary” that moves with local fluid velocity

X(α,t)

∂t
=U(α,t)=̇u(X(α,t),t)=

∫

Ω

u(x,t)δ(x−X(α,t))dx, (2.11)

and exerts the interfacial force

F(α,t)=κσn (2.12)

on the fluid, where x represents the Eulerian spatial position, δ(·) is the usual three-
dimensional Dirac delta function used in the immersed boundary method [19,21,22], κ is the
curvature of the interface, σ is the interfacial tension coefficient, and n is the unit exterior
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normal vector to interface S. The force F, defined solely on S, balances the normal stress
jump between the two fluid phases and it is used to compute the interfacial tension force
applied to the fluid which is given by

fs(x,t)=
∫

S
F(α,t)δ(x−X(α,t))dS, x∈Ω. (2.13)

We note that the velocity is continuous across the free surface S.
The discrete version of relations (2.11)-(2.13), in which the δ distribution is replaced

by a function of finite support, are known as the interpolation and spreading operators in
the Immersed Boundary Method.

2.2 Non-dimensional equations, dimensionless groups

We select as characteristic length and time scales the radius a of the initially undeformed
drop and the inverse of the shear rate, 1/γ̇, respectively. The pressure is scaled by ηcγ̇, the
magnetic permeability by µ0, and the magnetic field by H0 (the intensity of the applied
field).

The non-dimensional equations of motion are:

Re

(
ρ

Du

Dt

)
=−∇p+∇·(2ηE)+2

Bom

Ca
∇·τm+

1

Ca
fs, (2.14)

∇·u=0, (2.15)

where the dimensionless groups are

Re=
ρca2γ̇

ηc
, (2.16)

Ca=
ηcaγ̇

σ
, (2.17)

Bom =
aµ0H2

0

2σ
, (2.18)

the Reynolds number, the capillary number, and the magnetic Bond number, respectively.
The ratio Mn =Ca/Bom is called the Mason number.

Other important dimensionless parameters in the problem under consideration are

λ=
ηd

ηc
, (2.19)

rµ =
µd

µ0
, (2.20)

the viscosity ratio, and the permeability ratio between the droplet and the surrounding
fluid, respectively. For all the simulations we report on we take λ= 1.5 (for Re= 0.549)
or λ = 0.08 (for Re = 1.667×10−5), the density of the ferrofluid drop is matched with
the surrounding liquid so in this case the buoyancy is not considered in this study, and
rµ =(1+χ) with χ=0.8903.
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2.3 The physical parameters

The underlying values of the physical parameters we used in the simulations are based
on the ferrofluid droplet experiments by [14]. Namely, a = 1.291×10−3 m, σ = 1.35×
10−2 N ·m−1, ηc = 0.1N ·s·m−2, ηd = 0.15N ·s·m−2, µ0 = 1.2566×10−6 N ·A−2, and ρc =
1.26×103 kg·m−3.

3 Numerical methodology

We take the computational domain to be the cube centered at the origin and of size 40a,
where a is the radius of the initial, spherical droplet. The size of the domain was se-
lected through a numerical study to ascertain domain size effects, as documented in Ap-
pendix C. It was found that the difference between the drop deformation in this domain
and in one twice as large was less than 0.14%. This domain is discretized with a struc-
tured, adaptive mesh refinement (AMR) technique [23,24] using six levels of refinement.
The finest mesh (of mesh size h=0.0775a) covers at all times the droplet and a neighbor-
hood of it. As a comparison, a uniform mesh with this resolution would correspond to
using 5123 Eulerian mesh points.

To solve the flow equations (2.1)-(2.2), we employ the 3D AMR Immersed Boundary
Method solver in [19]. This is based on a pressure-increment projection method with a
second order, variable step semi-implicit discretization, and a regular triangular mesh [25]
for the droplet surface. To prevent excessive Lagrangian node clustering on the free sur-
face mesh, we apply a grid optimization that restrict vertices to slide slightly, while con-
strained to the surface, to conveniently adjust their positions (see [19] for more details).
These Lagrangian mesh operations are handled with the aid of the free, open-source soft-
ware GTS - the GNU Triangulated Surface Library (http://gts.sourceforge.net).

The aforementioned flow solver has been thoroughly tested [19, 20] and been found
to exhibit second order accuracy for smooth velocity fields. In the present work, we add
to this efficient fluid solver an AMR, second order method for the magnetic potential
equation (2.6). The discretization of this equation as well as that of the term ∇·τm are
detailed in Appendix A.

4 Numerical results

The computational domain is the cubic channel [−C,C]×[−C,C]×[−C,C], where C=20a.
The top and bottom domain’s faces are considered to be solid walls (no-slip velocity
boundary condition) while periodic boundary conditions are applied at the other faces.
An initially spherical, ferrofluid droplet of radius a is placed at the origin. The ratio of
the droplet viscosity to the surrounding, Newtonian fluid viscosity is λ = 1.5 and the
magnetic susceptibility is χ=0.8903. These two parameters remain fixed for all the sim-
ulations. When applied, the external magnetic field H0 (Bom > 0), is uniform and in the
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Figure 1: L and B are the length of the major and minor principal axes of the droplet
elliptical cross section cut by the shear plane (left). The orientation angle θ is defined with
respect to the x (flow) axis. W is the extent of the droplet in the z (vorticity) direction, as
defined by the elliptical cross section cut by the velocity gradient-vorticity plane (right).

normal-wall (y) direction.
As a validation test, we consider first the deformation of a ferrofluid droplet under an

applied magnetic field in quiescent flow. After that, we exclusively focus on the magnetic
field-induced droplet deformation under simple shear flow for small Ca. To produce this
flow with a constant shear rate γ̇, we move the domain’s top and bottom walls with a
constant velocity difference of 2Cγ̇. For future reference in the shear flow results, we call
x the streamwise direction, y the velocity gradient direction, and z the vorticity direction.

In this work we focus on small Ca cases to accurately resolve the drop distortion in
3D and to better quantify the effect on an applied magnetic field. We emphasize that all
the numerical simulations we report on are fully three-dimensional. We do not assume
any symmetries of the numerical solution.

4.1 Validation in quiescent flow

If the steady state shape of a superparamagnetic, ferrofluid droplet under imposed uniform
magnetic field H0 is a prolate ellipsoid (i.e. B=W<L in Figure 1), the problem is similar to
that of a dielectric ellipsoid in a uniform external electrical field, as pointed out by [14]. In
this situation, the intensity of the field inside the droplet is constant and is given by [14,26,
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Figure 2: Planar, xy cross section of the magnetic field magnitude (A·m−1) in the interior
and a vicinity of a ferrofluid drop in its steady state, obtained from a full 3D simulation
with Bom =4.4475, λ=1.5 and χ=0.8903.

p. 42]

Htheory =
µcH0

(1−ν)µc+νµd
, (4.1)

where µc and µd are the magnetic permeability of the continuous and dispersed phases,
respectively, ν is the demagnetization factor

ν=

(
1−E2

2E3

)(
ln

1+E

1−E
−2E

)
,

with eccentricity E=
√

1−B2/L2. L and B are the length of the ellipsoid principal axes
(Figure 1, L is aligned to the direction of the imposed magnetic field H0).

Starting from a quiescent flow, we perform a fully 3D simulation, up to steady state,
of an initially spherical ferrofluid droplet immersed in a Newtonian fluid and subjected
to a uniform magnetic field. We use the same physical parameters that [14] employed
in their experiments (see end of Section 2.2, H0 =1.2167×104 A·m−1). Figure 2 displays
a cross section of the magnetic field magnitude inside the droplet at steady state. Away
from the droplet surface, the magnetic field is approximately constant; it ranges between
1.01×104 and 1.04×104 A·m−1 and it is within 1.54% of the theoretical value Htheory =

1.0240×104 A·m−1. Near the droplet surface there are larger deviations from Htheory,
partly due to the spreading of the magnetic force by the Immersed Boundary Method.
The full 3D simulation gives a droplet with B/W = 1.000033419 and B/L= 0.604, i.e. a
prolate shape up to 4 digits of accuracy.

4.2 Comparison with small deformation theory: small Ca and Bom

The deformation and dynamics of a Newtonian drop in a viscous fluid undergoing a
shear flow, and with negligible inertia (Re≈0), are well understood [27,28]. The straining
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component of the flow promotes the drop’s deformation while surface tension acts as a
restoring force. The capillary number Ca represents the ratio of these competing forces.
The deformation is also dependent on the viscosity ratio λ of the drop and the suspend-
ing fluid. To quantify drop distortions of small to moderate size Taylor’s deformation
parameter

D=
L−B

L+B
, (4.2)

with L and B as defined in Figure 1, is usually employed. However, D does not offer in-
formation of the deformation in the vorticity direction (the length W defined in Figure 1).
For small Ca, i.e. surface tension dominating flow forces, there is small deformation, D
is linear with Ca, and the viscosity ratio λ has only a weak effect [29]. For Ca >O(1)
there is substantial deformation unless, λ is very large, in which case the drop spins like
a rigid body motion if the the local vorticity is strong enough. Finally, if λ≪1 and Ca≫1,
pointed and highly elongated thin drop shapes can form [27, 28]. The direction of maxi-
mal distortion varies with Ca and with time [27]. For Ca≪1, the angle θ of the direction of
maximum drop extension relative to the x axis approaches π/4, which is the shear flow’s
direction of principal extension. However, the equilibrium value of θ is not approached
monotonically; there are oscillations which are eventually damped out by surface tension
and viscous dissipation.

For a Newtonian drop in Stokes flow, there is a small deformation (Ca ≪ 1) theory
originated with Taylor’s work [29]. The idea is to do perturbation analysis in the small
deviations from the spherical shape using the exact Stokes flow solution of the latter. This
analysis can be directly extended to a slightly deformed sheared, ferrofluid droplet with
an applied field in the limit of both small Ca and small Bom, as we outline next.

Assuming the normal-stress balance has a magnetic contribution component and a
curvature variation proportional to O(Ca2), O(CaBom), and O(Bo2

m), the equation for the
perturbed droplet radius rs may be written as

rs = 1+α(λ)Ca x·E·x+β(χ)Bom x·A·x, (4.3)

where E is the rate-of-strain tensor and A is the irreducible (traceless) form of Maxwell’s
magnetic tensor (both tensors in dimensionless form). Following the steps detailed in [30]
and using the analytical solution of the magnetic field for a non-conducting sphere in a
uniform field in [26, p. 42] and [31, p. 364], we obtain

α(λ)=
19λ+16

8(λ+1)
, (4.4)

β(χ)=
3χ(2χ+1)

4(χ+3)2
. (4.5)

It is important to note, however, that the normal stress balance cannot be satisfied at all
the surface points [14, 32, 33]. Here, we opted to enforce it on the six intersection points
of the coordinate axes with the sphere, assuming that Ca≪1 and Bom ≪1.
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The deformation along the principal axes and the direction of maximal deformation
can now be estimated from the eigenvalues of (αE+βA) to yield:

L/(2a)≈1+
1

6
β(χ)Bom+

1

2

√
[α(λ)Ca]2+[β(χ)Bom]

2, (4.6)

B/(2a)≈1+
1

6
β(χ)Bom−

1

2

√
[α(λ)Ca]2+[β(χ)Bom]

2, (4.7)

W/(2a)≈1− 1

3
β(χ)Bom, (4.8)

and hence

D≈

√
[α(λ)Ca]2+[β(χ)Bom]

2

2+ 1
3 β(χ)Bom

. (4.9)

Clearly, (4.9) reduces to Taylor’s classical result in the limit Bom → 0. It is important to
note that for Bom =0, W/(2a)−1=O(Ca2) [34, 35] and this is one of the reasons why the
planar, Taylor deformation parameter D is usually employed as a measure of small drop
distortion in Newtonian flows. But for Bom >0, (4.8) shows that the field-induced varia-
tion in W, under the small deformation assumption, is O(Bom) and hence the importance
of three-dimensional computations.

To test this asymptotic formula we perform full 3D simulations for eight sets of small
Bom and Ca, with Bom = 2Ca (i.e. Mason number Mn = 2). This is done by varying the
surface tension with Re = 1.667×10−5 or Re = 0.549. With this choice of Mn, the coef-
ficient in the magnetic force term (∇·τm) in the momentum equation (2.14) is 1. Note
that since α(0.08)=2.02778 or α(1.5)=2.2250 and β(0.8903)=0.1227, the asymptotic for-
mula (4.9) predicts that the deformation due to the straining flow will dominate over the
field-induced distortion for Ca/Bom = 2. Figures 3 and 4 offer a comparison of the nu-
merical results for D and the asymptotic formula (4.9). There is good agreement for cases
with Re = 1.667×10−5 (Figure 3) but the asymptotic prediction slightly underestimates
the three computed values presented in Figure 4. The discrepancy could be attributed to
small inertial effects present at Re=0.549.

Tables 1 and 2 provides the relative (percentage) variation of the droplet principal
axes, D, and θ. The changes in L and B (and therefore in D) are approximately lin-
ear in Bom, consistent with the asymptotic theory. However, this is evidently not the
case for the variation of W, which approximately triples as Bom is doubled. Given that
α(0.08)=2.02778 or α(1.5)=2.2250 and β(0.8903)=0.1227, it is conceivable that the term of
O(Ca2), which involves α as a factor in the Bom=0 case [34], becomes commensurate with
1
3 β(0.8903)Bom and this might explain the difference between the first order asymptotics
(4.8) and the simulation results. It is also noteworthy that θ at steady state decreases as
both Bom and Ca are increased but keeping their ratio fixed. This behavior for θ is typical
for Newtonian drops under simple shear ( [19], [36]) and in the current case is expected
from the dominance of the flow strain over the magnetic force.
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Figure 3: Comparison with the small deformation theory for Bom = 1
2 Ca. The numerical

results correspond to the cases Bom=0.0025, Bom=0.0050, Bom=0.0100, Bom=0.0200 and
Bom =0.0400. Re=1.667×10−5.
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Figure 4: Comparison with the small deformation theory for Bom = 1
2 Ca. The numerical

results correspond to the cases Bom=0.015625, Bom=0.03125 and Bom=0.0625. Re=0.549.
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Bom = 1
2 Ca 100

(
L−2a

2a

)
100

(
B−2a

2a

)
100

(
W−2a

2a

)
D θ [rad]

2.5000×10−3 0.534% -0.513% -0.029% 5.238×10−3 0.78
5.0000×10−3 1.067% -1.024% -0.044% 1.045×10−2 0.74
1.0000×10−2 2.134% -1.968% -0.086% 2.049×10−2 0.74
2.0000×10−2 4.354% -3.956% -0.219% 4.146×10−2 0.73
4.0000×10−2 9.006% -7.648% -0.660% 8.271×10−2 0.70

Table 1: Relative changes of the length of the droplet principal axes, Taylor’s deformation
parameter D, and the orientation angle θ at steady state. Re=1.667×10−5.

Bom = 1
2 Ca 100

(
L−2a

2a

)
100

(
B−2a

2a

)
100

(
W−2a

2a

)
D θ [rad]

1.5625×10−2 3.972% -3.552% -0.350% 3.754×10−2 0.82
3.1250×10−2 8.345% -6.893% -0.959% 7.564×10−2 0.75
6.2500×10−2 18.61% -13.09% -3.200% 1.543×10−1 0.65

Table 2: Relative changes of the length of the droplet principal axes, Taylor’s deformation
parameter D, and the orientation angle θ at steady state. Re=0.549.

4.3 Sheared ferrofluid droplet deformation under a strong magnetic field

In this subsection we examine the influence of a strong applied field, relative to surface
tension, on the distortion of a sheared droplet by comparing with the corresponding zero
field case.

We take Ca = 0.125. Figure 5 shows the shape of the steady state droplet and the
vorticity magnitude in a vicinity of the droplet for zero applied magnetic field (Bom =0).
There is strong vorticity concentrated around the regions of highest curvature.

We now look at the effects of a strong applied magnetic field, H0 = 1.2167×104 A·
m−1(Bom = 4.4475), for the same Ca = 0.125. Figure 6 displays the steady state droplet
shape, the magnetic field, and the vorticity magnitude in a neighborhood of the droplet.
The vorticity is about twice as large and much more localized than that in the zero field
case. The droplet deformation is substantial in both the shear plane and along the vor-
ticity (z) direction. The magnetic field is largely uniform in the droplet interior and away
from its surface, developing large gradients around the droplet tips in the external field
direction.

To quantify the distortion of the sheared ferrofluid droplet with and without an ap-
plied magnetic field, we plot Taylor’s parameter D as a function of time in Figure 7(a).
With the applied field, D reaches a steady state value of about 0.36, which is more than
double that obtained in the absence of a field. The plots in Figure 8 containing the time
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Figure 5: Steady state droplet shape and vorticity magnitude for zero external magnetic
field, Ca=0.125, Bom=0, Re=0.549. Shear plane cross section (left) and velocity gradient-
vorticity plane cross section (right).

evolution of the length of each of the droplet principal axes and the orientation angle,
provide additional details of the droplet deformation and dynamics. First of all, even for
Bom = 0, the elongated droplet is not axisymmetric (B 6=W). Second, the field-induced
variation of W, the droplet breadth in the vorticity direction, is about twice as much as
that of B. These two observations underline the importance of full three-dimensional sim-
ulations. Finally, the plot of θ, the angle of droplet maximal extension direction, confirms
the droplet wobbling motion toward a steady state and shows a marked shift toward the
direction of the applied field (θ=π/2).

We now halve Ca (by halving the shear rate γ̇ and so Re is reduced accordingly) and
examine again the effect of a strong applied field, Bom = 4.4475, by comparing with the
zero-field, sheared droplet and with the previously discussed Ca = 0.125 case. As ex-
pected, the droplet is less deformed for the smaller value of Ca but as Figure 7(b) also
demonstrates, the applied field produces a variation of D of about the same magnitude
for both values of the capillary number. For these two weak flow situations, the magnetic
force dominates over the straining flow and D is approximately proportional to Bom, as
predicted by the asymptotic theory (4.9). Figure 9 provides the individual evolution of
the droplet distortion along each of the principal axes and of the angle θ. When compar-
ing with the Ca= 0.125 case (Figure 8), we observe that the most noticeable variations,
relative to the zero-field case, occur in W and in θ. For the weaker flow, Ca=0.0625, the
main distortion is induced by the applied field. This is evident in the significant shift in
θ to a value much closer to π/2 than to π/4.

4.4 Field-Induced droplet distortion for fixed Ca.

In our final study, we take Ca=0.125 fixed and consider three values of Bom, obtained by
ten fold increases: Bom =0.0625, Bom =0.625, and Bom =6.25.

Table 3 presents the relative (percentage) changes of the droplet principal axes, D, and
θ for these three very disparate magnetic Bond numbers. Despite the data being limited
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Figure 6: Steady state droplet, vorticity magnitude, and magnetic field (A·m−1) for Bom=
4.4475, Ca=0.125, Re=0.549. Upper plot: shear plane cross section. Lower plot: Velocity
gradient-vorticity plane cross section.
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Ca=0.125 Ca=0.0625

Figure 7: Time evolution of Taylor’s deformation parameter D for (a) Ca = 0.125, Re =
0.5490 and (b) Ca=0.0625, Re=0.2745. The black circles correspond to the zero external
field case (Bom =0) and the unfilled squares to Bom =4.4475.
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Figure 8: Time evolution of the (scaled) length of the droplet principal axes and the ori-
entation angle for Ca = 0.125 and Re = 0.549. The black circles correspond to the zero
external field case (Bom =0) and the unfilled squares to Bom =4.4475.
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Figure 9: Time evolution of the (scaled) length of the droplet principal axes and the ori-
entation angle for Ca= 0.0625 and Re= 0.2745. The black circles correspond to the zero
external field case (Bom =0) and the unfilled squares to Bom =4.4475.

to just three values of Bom, it is clear that the droplet distortion is nonlinear in Bom. More-
over, there is little difference between the droplet deformation for the two smallest values
of Bom, which indicates that the corresponding droplet distortion is predominantly due
to the flow strain. But for Bom = 6.25, there is a dramatic change in the droplet defor-
mation. The relative variation of L is now more than four times that obtained at the
two smaller magnetic Bond numbers. Furthermore, the relative change of W is almost
40% and as large as that of B. In the absence of the applied field, W only experiences a
relative change of about 3%. The field-induced distortion of the droplet in the vorticity
direction is remarkably large and underlines, again, the three-dimensional character of
the problem.

Finally, the last column of Table 3 shows that as Bom increases the angle θ of the
direction of maximal deformation also increases. This is consistent with the field-induced
distortion becoming more and more predominant over the flow strain deformation.

5 Conclusion

We reported on fully three-dimensional numerical simulations of the dynamics and de-
formation of a sheared ferrofluid droplet immersed in a Newtonian viscous fluid and
with applied magnetic field. To our knowledge, this is the first such three-dimensional
study.
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Bom 100

(
L−2a

2a

)
100

(
B−2a

2a

)
100

(
W−2a

2a

)
D θ [rad]

6.25×10−2 +18.61% -13.09% -3.200% 1.543×10−1 0.65
6.25×10−1 +21.40% -13.19% -5.425% 1.661×10−1 0.75
6.25×10+0 +89.01% -29.47% -29.39% 4.565×10−1 1.05

Table 3: Relative changes of the length of the droplet principal axes, Taylor’s deformation
parameter D, and the orientation angle θ at steady state for fixed Ca=0.125, Re=0.549.

The consideration of the magnetic effects and solution of the potential equation has
increased the computational cost by about 11 %, if considered a time step without La-
grangian mesh optimization. In the context of the reported simulation, the time spent for
one optimization is about 30 % greater than a time step without optimization, with the
number of optimizations strongly depends on how and how much the interface deforms.

While we consider only a limited number of values of the capillary and the magnetic
Bond number, due to the enormous computational cost of each high resolution simula-
tion to steady state, our study shows clearly the significant field-induced distortions of
the sheared ferrofluid droplet and the effect of the field on the direction of maximal de-
formation and on the overall dynamics towards steady state. In particular, we found that
for Bom≈O(1) and small Ca (weak flows), the droplet deformation in the vorticity direc-
tion can be of the same order as that occurring in the shear plane. This and other results
in this study highlight the relevance of the three-dimensional character of this important
rheological problem.
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A Discretization of the magnetic potential equation and compu-

tation of the magnetic force

We discretize equation (2.6) as

D·
[
µGψi,j,k

]
=0,
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where G=̇(D∆x
,D∆y

,D∆z
) and D=̇(D∆x

(·)x+D∆y
(·)y+D∆z

(·)z) are the standard, centered
difference approximations of the gradient and the divergence operators, respectively. In
the x direction we have

D∆x
(ψ)i,j,k =

ψi,j,k−ψi−1,j,k

∆x
,

D∆x
((µGψ)x)i,j,k =

µi−1/2,j,kD∆x
(ψ)i,j,k−µi−3/2,j,kD∆x

(ψ)i−1,j,k

∆x
,

where ψi,j,k and µi,j,k are the approximations corresponding to the values at the cell cen-
ters and µi−1/2,j,k =(1/2)(µi−1,j,k+µi,j,k) is the value of µ at the cell face. The discretiza-
tion in the other directions is performed similarly. This second order finite difference
discretization of (2.6) is defined on composite AMR grid. Applying the boundary condi-
tions (of Neumann type in at top and bottom walls and periodic in the other directions),
the resulting system of equations is solved using a multilevel multigrid method, simi-
lar to that employed for the pressure equation in the projection step of the fluid solver
and described in [19]. The method uses a V-cycle recursive form and Gauss-Seidel as a
relaxation, using the relaxation to downwards, on the coarsest multigrid level, and to up-
wards, in a number of 3, 10 and 10 times, respectively. Taking, approximately, 5 iterations
to achieve a residual less than 1×10−9.

Once the magnetic potential ψ is obtained, at every time step, the magnetic stress
tensor τm is approximated to second order using finite differences. The xy component of
τm is computed at the cell center as

((τm)xy)i,j,k = µ̃i,j,k

(
ψi+1,j,k−ψi−1,j,k

2∆x

)(
ψi,j+1,k−ψi,j−1,k

2∆y

)
,

where µ̃i,j,k =
(
µi+1,j,k+µi−1,j,k+µi,j+1,k+µi,j−1,k

)
/4 is an approximation to µ at the cell

edge. The xy component of τm at the cell edge is computed as the average of the cor-
responding four closest cell center values. The x component of ∇·τm is approximated
by

(∇·τm)xijk
=

(
((τm)xx)i,j,k−((τm)xx)i−1,j,k

∆x

)

+

(
((τm)xy)i−1/2,j+1/2,k−((τm)xy)i−1/2,j−1/2,k

∆y

)

+

(
((τm)xz)i−1/2,j,k+1/2−((τm)xz)i−1/2,j,k−1/2

∆z

)
,

The other components of τm and of ∇·τm are computed similarly.
The second order accuracy of the scheme to compute ψ, τm, and ∇·τm was verified

by the method of manufactured solutions. That is, starting with an arbitrary smooth
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function ψe, which satisfy the boundary conditions, an exact solution is constructed by
modifying the right hand side of (2.6). This exact solution is then used to obtain precise
convergence rates of the numerical approximation on a fixed AMR grid.

B Verification of the numerical accuracy

In the absence of any ferromagnetic components (τm = 0), (2.1)-(2.2) reduce to the fa-
miliar Navier-Stokes equations for an incompressible flow. In that case, the numerical
scheme is tested for its accuracy and stability properties, the results being reported in
detail by Pivelo (2012) [37] and by Pivelo et al. (2014) [20] who employ the manufactured
solution strategy to that end. Furthermore, [37] reports also on the accuracy of Lagrangian
mesh operations found in the immersed boundary methodology employed here such as
the interpolation of Eulerian velocities, the spreading of tension forces, and the interface
evolution in time, while Jesus et al. (2015) [19] reports on the Lagrangian mesh optimiza-
tion and its computational costs along with other comments on efficiency (see also the
supplementary material accompanying that later work). In summary, the fluid solver ex-
hibits second-order for the velocity and between first- and second-order accuracy for the
pressure. When Lagrangian mesh operations are taken into account, we obtain between
first- and second-order accuracy for the entire scheme, the usual accuracy expected in
the context of immersed boundary methodologies [21]. To complete the accuracy verifi-
cation, we consider next the computation of the magnetic force when there is a ferromag-
netic component present (τm 6=0).

In the context of the manufactured solution strategy, we select smooth functions to
play the role of both the magnetic permeability function, µ, and the (exact) magnetic
scalar potential, ψe. We test the numerical scheme for computing the magnetic force (2.9)
by first solving the elliptic equation for ψ

∇·(µ∇ψ) = fe
.
=∇·(µ∇ψe), (B.1)

and then by computing the magnetic tensor as

τm = µ(H⊗H), (B.2)

where H =∇ψ. The magnetic force is computed by fm =∇·τm. In this context, we
note that the right hand side of (B.1) does not vanish in general since we usually select
the magnetic scalar potential rather arbitrarily (it does not have to necessarily bear any
physical meaning). In real a physical problem, we solve a Laplace equation and not a
Poisson equation ( fe =0). For the tests that follow, we choose

ψe(x)=sin

(
2πx

b1−a1

)
+cos

(
2πy

a2−b2

)
−a3b3z+

a3z2

2
+

b3z2

2
− z3

3
, (B.3)

and as the given magnetic permeability

µ(x)=sin2

(
2πx

b1−a1

)
sin2

(
2πy

b2−a2

)
sin2

(
2πz

b3−a3

)
+1, (B.4)
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Figure 10: Composite grid employed in the verification of the accuracy in the computa-
tion of the magnetic scalar potential and of the magnetic force.

k-th run k-th c-grid Ek = ||ψ−ψe||2 q= log2(Ek/Ek+1)

k=1 032×032×032L2 3.02×10−3 −
k=2 064×064×064L2 7.54×10−4 2.0
k=3 128×128×128L2 1.88×10−4 2.0
k=4 256×256×256L2 4.71×10−5 2.0

Table 4: L2-norm of the error Ek and estimated order of convergence q obtained under
grid refinement for the magnetic scalar potential on a two-level composite grid.

where x=(x,y,z)∈ [a1,b1]×[a2,b2]×[a3,b3]=[−0.16,0.16]×[−0.16,0.16]×[−0.16,0.16]. We
highlight the fact that by selecting (B.3)-(B.4), we automatically select the exact He=∇ψe

and τme = µ(He⊗He). Of course, the exact magnetic force is also known, fme =∇·τme .
The idea now is to compare fme with the magnetic force numerically computed from
the given magnetic permeability (B.4) and from the numerical solution of (B.1)-(B.2) for
which boundary conditions are provided by (B.3) (periodic in x and y directions, and
Neumann boundary condition in the z direction).

A study of the convergence under grid refinement is performed for several discretiza-
tions of the computational domain. In particular, Tables 4 and 5 present the results on a
series composite grids (c-grids) with two levels n×n×nL2 which are based on the c-grid
displayed in Figure 10, where n is the number of cells in each direction in the first level
(base level) and “L2” refers to the total number of grid levels used. Close to second-
order convergence behavior is verified for both the magnetic scalar potential and for the
magnetic force.
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||(∇·τm)x−(fme)x||2 q ||(∇·τm)y−(fme)y||2 q ||(∇·τm)z−(fme)z||2 q

1.37×10+2 − 2.01×10+2 − 1.43×10+1 −
3.80×10+1 1.9 5.12×10+1 2.0 3.70×10+0 2.0
1.12×10+1 1.8 1.40×10+1 1.9 9.40×10−1 2.0
3.50×10+0 1.7 4.09×10+0 1.8 2.36×10−1 2.0

Table 5: L2-norm of the error and estimated order of convergence for each component of
the magnetic force (∇·τm is computed numerically while fme=∇·τme is computed exactly,
their components (fme)x, (fme)y and (fme)z have magnitudes around O(104), O(104) and
O(103), respectively).

Domain Size (2C) 100

(
L−2a

2a

)
100

(
B−2a

2a

)
100

(
W−2a

2a

)
θ [rad]

05a +59.63% -24.16% +16.49% 0.99
10a +62.39% -22.68% -22.06% 1.03
20a +63.27% -23.02% -22.12% 1.03
40a +63.31% -23.08% -22.14% 1.03
80a +63.49% -23.08% -22.27% 1.03

Table 6: Relative changes of the length of droplet principal axes and the orientation angle
θ at steady state for Bom =4.4475, Ca=0.125, Re=0.549, λ=1.5, χ=0.8903.

C Influence of the domain size and resolution study

To examine domain size effects on the deformation of the sheared ferrofluid droplet un-
der the influence of a uniform applied magnetic field H0 in the normal wall (y) direction,
we perform steady state simulations on the computational domain [−C,C]×[−C,C]×
[−C,C] for C approximately equal to 2.5a, 5a, 10a, 20a, and 40a (these computational
domains are labeled C2.5a, C05a, C10a, C20a, and C40a, respectively). The number of
adaptive refinement levels is adjusted so that the finest level is the same in all cases
(h = ∆x = ∆y = ∆z = 0.0775a). A cross section of the domain with the initial composite
grid is shown in Figure 11.

We take Bom =4.4475, Ca=0.125, Re=0.549, λ=1.5, χ=0.8903. These dimensionless
groups correspond to the case of maximal deformation in our study. As documented in
Table 6, the difference between the results corresponding to the domain sizes 40a and 80a
are less than 0.14%. Therefore, to reduce the computational cost we select the computa-
tional domain to be of size 40a.

We also performed a resolution study for the same case of shear droplet deformation
(Bom = 4.4475, Ca = 0.125) using three different spatial resolutions: the initial spherical
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Figure 11: Shear plane cross section of the computational domain and the composite
adaptive grid.

droplet was discretized with a Lagrangian mesh of 5120, 20480, and 81920 triangles and
the corresponding Eulerian grid resolution was adjusted so that the ratio between the
Eulerian and the Lagrangian grid size was approximately 2, which is a common choice
for the Immersed Boundary Method [20, 21, 38].

Figure 12 shows the time evolution of length of the droplet principal axes and Taylor’s
deformation parameter for the three resolutions. The difference between the results of
the two highest resolutions is less than 0.3%. Given this negligible variation in the results
and to keep the computational cost affordable, we choose the intermediate resolution
for all the numerical studies in this work. Finally, we note that the selected resolution
corresponds to a ratio a/h= 12.91, where h is the Eulerian grid size inside and around
the droplet (finest level of the AMR mesh). Some works of related simulations for two-
dimensional or axisymmetric droplets [9,10,14] report that an appropriate a/h should be
between 12 and 20.
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