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Abstract

Phase fields models offer a systematic physical approach for investigating complex
multiphase systems behaviors such as near-critical interfacial phenomena, phase
separation under shear, and microstructure evolution during solidification. How-
ever, because interfaces are replaced by thin transition regions (diffuse interfaces),
phase field simulations require resolution of very thin layers to capture the physics
of the problems studied. This demands robust numerical methods that can effi-
ciently achieve high resolution and accuracy, especially in three dimensions. We
present here an accurate and efficient numerical method to solve the coupled Cahn-
Hilliard/Navier-Stokes system, known as Model H, that constitutes a phase field
model for density-matched binary fluids with variable mobility and viscosity. The
numerical method is a time-split scheme that combines a novel semi-implicit dis-
cretization for the convective Cahn-Hilliard equation with an innovative application
of high-resolution schemes employed for direct numerical simulations of turbulence.
This new semi-implicit discretization is simple but effective since it removes the
stability constraint due to the nonlinearity of the Cahn-Hilliard equation at the
same cost as that of an explicit scheme. It is derived from a discretization used
for diffusive problems that we further enhance to efficiently solve flow problems
with variable mobility and viscosity. Moreover, we solve the Navier-Stokes equa-
tions with a robust time-discretization of the projection method that guarantees
better stability properties than those for Crank-Nicolson based projection methods.
For channel geometries, the method uses a spectral discretization in the streamwise
and spanwise directions and a combination of spectral and high order compact fi-
nite difference discretizations in the wall normal direction. The capabilities of the
method are demonstrated with several examples including phase separation with,
and without, shear in two and three dimensions. The method effectively resolves
interfacial layers of as few as three mesh points. The numerical examples show
agreement with analytical solutions and scaling laws, where available, and the 3D
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simulations, in the presence of shear, reveal rich and complex structures, including
strings.

Key words: Cahn-Hilliard equation, Navier-Stokes equations, phase separation,
Model H, phase separation under shear flow, interface capturing methods.
PACS:

1 Introduction

Phase field based models replace sharp fluid/material interfaces by thin but
nonzero thickness transition regions where the interfacial forces are smoothly
distributed. The basic idea is to introduce an order parameter or phase field
that varies continuously over thin interfacial layers and is mostly uniform in
the bulk phases. Perhaps the best-known example of this type of model is the
Cahn-Hilliard equation [1,2] used for modeling phase separation in a binary
mixture quenched into the unstable region. The relaxation of the order pa-
rameter is driven by local minimization of the free energy subject to phase
field conservation and as a result, the interface layers do not deteriorate dy-
namically.

One of the applications for which phase field models are particularly well-
suited is the complex process of phase separation, structure formation and
evolution in flow systems, an area of technological impact in soft materi-
als processing. The hydrodynamics can be introduced in several ways. For
density-matched binary liquids, which is the case we focus on this work, this
is accomplished with the coupling of the convective Cahn-Hilliard equation
with a modified momentum equation that includes a phase field-dependent
surface force. This is known as Model H according to the classification of Ho-
henberg and Halperin [3]. In the case of fluids with different densities a phase
field model has been proposed by Lowengrub and Truskinovski [4].

One of the salient points of the phase field description is that the order param-
eter has a physical meaning and different phenomena can be accounted for by
a suitable modification of the free energy. Moreover, complex morphological
and topological flow transitions such as coalescence and interface break-up
can be captured naturally and in a mass-conservative and energy-dissipative
fashion. The main drawback on the other hand is that to properly model
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relevant physical phenomena the interface layers have to be extremely thin.
As a consequence the phase field has large gradients that must be resolved
computationally. This is not an easy task. High resolution is required but the
Cahn-Hilliard equation and the phase field-dependent surface force have high
order derivative components. Fully implicit treatment of these terms yields
expensive schemes and explicit discretizations quickly lead to numerical insta-
bility or impose impractical time-stepping constraints.

Here, we propose an efficient and robust numerical method for the coupled
Cahn-Hilliard/Navier-Stokes system. The time discretization of the method
is a semi-implicit one based on an extraction of constant coefficient leading
order terms (at small scales) that are time-step split. The implicit discretiza-
tion of these constant coefficient terms can be inverted efficiently at optimal
cost and relaxes the high order stability constraints. The time splitting allows
us to decouple at each time-step the Cahn-Hilliard and the Navier-Stokes
solvers. The semi-implicit discretization is combined with an original appli-
cation of state-of-the-art high resolution schemes. We solve the flow using a
robust time-discretization of the projection method that is formally second
order and has a stronger high modal decay than the popular Crank-Nicolson
based projection methods. For flows confined by walls and with streamwise
and spanwise periodicity, we discretize the system in space using a spectral
approximation in those directions and a combination of spectral and eighth
order compact finite difference approximations [5] in the wall normal direc-
tion. We demonstrate the efficacy of the method with examples of pure phase
separation and binary shear flow in two and three dimensions.

Little work has been done on the solution of the coupled Cahn-Hilliard/Navier-
Stokes system [6–9] and our three-dimensional simulations for separation un-
der shear flow are, to our knowledge, one of the first ever reported. The overall
method proposed here is accurate and robust allowing interface thickness of
as few as three mesh points and, as the numerical experiments show, its effi-
ciency makes possible high-resolution 3D simulations even on modest personal
computers. The numerical examples show agreement with analytical solutions
and scaling laws where available and the 3D simulations in the presence of
shear flow reveal rich and complex structures characterized by formation of
string-like phases.

The rest of the paper is organized as follows: the next section gives a brief
introduction to the model coupling the phase field and the Navier-Stokes equa-
tions. Section 3 discusses our proposed numerical procedure, and in Section 4
the method is validated through numerical examples, and the results of our
numerical experiments are presented and discussed. This is followed by some
concluding remarks and an appendix.

3



2 The Governing Equations

2.1 The Phase Field Method

Phase field methods are a particular class of diffuse-interface models that
have been used successfully in the study of critical phenomena but have not
been used much for fluid interfaces. In a phase field method, it is assumed
that the state of the system at any given time can be described by an order
parameter φ which is a function of the position vector. For example, in the
case of an isothermal binary fluid φ is the relative concentration of the two
components. A free energy can be defined for times when the system is not in
equilibrium [10], and this free energy can be written as a functional of φ:

F [φ] =
∫
Ω

{
f(φ(x)) +

1

2
k|∇φ(x)|2

}
dx, (1)

where Ω is the region of space occupied by the system. The term 1
2
k|∇φ(x)|2

accounts for the surface energy, with k a positive constant, and f(φ(x)) is the
bulk energy density which has two minima corresponding to the two stable
phases of the fluid.

The chemical potential µ is defined as

µ(φ) =
δF [φ]

δφ(x)
= f ′(φ(x))− k∇2φ(x). (2)

The equilibrium interface profile can be found by minimizing the functional
F [φ] with respect to variations of the function φ, i.e. solving µ(φ) = 0. Cahn
and Hilliard [1,2] generalized the problem to time-dependent situations by
approximating interfacial diffusion fluxes as being proportional to chemical
potential gradients, enforcing conservation of the field. The convective Cahn-
Hilliard equation can be written as

∂φ

∂t
+ u · ∇φ = ∇ · (M(φ)∇µ), (3)

where u is the velocity field and M(φ) > 0 is the mobility or Onsager coef-
ficient. Equation (3) models the creation, evolution, and dissolution of diffu-
sively controlled phase-field interfaces [11] (for a review of the Cahn-Hilliard
model see for example [12]). At the wall, we adopt the following no-flux bound-
ary conditions:

n · ∇φ = 0 and n ·M∇µ = 0, (4)

where n is the unit vector normal to the domain boundary.
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2.2 The Equations of Fluid Motion

This work focuses on density-matched binary mixtures with variable viscosity
and mobility. The fluid dynamics are described by the Navier-Stokes equations
with a phase field-dependent surface force [13]:

ρ

(
∂u

∂t
+ u · ∇u

)
=−∇p +∇ · η(∇u +∇uT ) + µ∇φ, (5)

∇ · u= 0, (6)

where u is the velocity field, p is a scalar related to the pressure that enforces
the incompressibility constraint (6), and η is the viscosity. The superscript T
stands for the transpose operator. At a wall the Dirichlet boundary condition
is imposed for the velocity field, i.e., u = u0 at a fixed domain boundary.

The coupled Cahn-Hilliard/Navier-Stokes system (3) − (6) is referred to as
“Model H” according to the nomenclature of Hohenberg and Halperin [3].

2.3 Interface Properties

For the binary fluid we use the following double well potential

f(φ) =
α

4

φ−
√

β

α

2φ +

√
β

α

2

, (7)

where α and β are two positive constants. The equilibrium profile is given by
the solutions of the equation

µ(φ) =
δF [φ]

δφ
= αφ3 − βφ− k∇2φ = 0. (8)

This leads to two stable uniform solutions φ± = ±
√

β
α

representing the coexist-
ing bulk phases, and a one-dimensional (say along the z-direction) non-uniform
solution

φ0(z) = φ+ tanh

(
z√
2ξ

)
(9)

that satisfies the boundary conditions φ0(z → ±∞) = ±φ (see [14,6]). This
solution was first found by Van der Waals [15] to describe the equilibrium
profile for a plane interface normal to the z direction, of thickness proportional

to ξ =
√

k/β, that separates the two bulk phases.
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We define the interface thickness to be the distance from 0.9φ− to 0.9φ+ so
that the equilibrium interface thickness is 2

√
2ξ tanh−1(0.9) = 4.164ξ. This

width contains 98.5% of the surface tension stress [7].

In equilibrium the surface tension σ of an interface is equal to the integral of
the free energy density along the interface. For a plane interface σ is given
by [14]

σ = k
∫ +∞

−∞

(
dφ0

dz

)2

dz =

√
2

3

k1/2β3/2

α
. (10)

It is evident from (9) and (10) that we can control the surface tension and
interface width through the parameters k, α, and β.

2.4 Nondimensionalization

We nondimensionalize the governing equations with the variables

u′ =
u

Uc

, t′ =
t

Tc

, x′ =
x

Lc

, p′ =
pLc

ηcUc

. (11)

Following Chella and Viñals [6] we choose as characteristic length Lc the mean
field thickness ξ of the interface, i.e Lc = ξ. The characteristic velocity Uc

depends on the problem; for example, it could be the imposed velocity in
shear flow. The characteristic time Tc is the time required for the fluid to be
convected a distance of the order of the interface thickness (in the absence of
capillarity), Tc = ξ/Uc. The order parameter φ is scaled with its mean-field

equilibrium value φ+ =
√

β/α. Dropping the primes, equations (3)-(6) become

∂φ

∂t
+ u · ∇φ =

1

Pe
∇ · λ∇µ, (12)

Re

(
∂u

∂t
+ u · ∇u

)
=−∇p +∇ · θ(∇u +∇uT ) +

1

Ca
µ∇φ, (13)

∇ · u= 0, (14)

where θ = η/ηc and λ = M/Mc are the normalized viscosity and mobility
respectively, and µ = φ3 − φ − ∇2φ is the dimensionless chemical potential.
The dimensionless groups used above are the Reynolds number, the Péclet
number, and the capillary number given by

Re =
ρUcξ

η
, Pe =

Ucξ

Mcβ
, Ca =

αηUc

β2ξ
=

2ηUc

3σ
, (15)

respectively. Physically, the Péclet number Pe is the ratio between the diffu-
sive time scale ξ2/(Mcβ) and the convective time scale ξ/Uc. The Reynolds
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number Re is the ratio between inertial and viscous forces and the capil-
lary number Ca provides a measure of the relative magnitude of viscous and
capillary (or interfacial tension) forces at the interface. Note that with this
nondimensionalization the length of the fluid domain is interpreted in units of
interface thickness ξ.

We consider the viscosity η as a linear function of the order parameter φ. That
is, if η− ≤ η ≤ η+ and ηc = η− we get

θ =
θmax − 1

2
φ +

θmax + 1

2
, (16)

where θmax = η+

η−
is the viscosity ratio. In this way η automatically changes

across the interface with a profile similar to the tanh function.

For the mobility M we follow [16] and we consider a profile as M = Mc (1− γφ2)
so that we have

λ =
(
1− γφ2

)
. (17)

where 0 ≤ γ ≤ 1. If γ −→ 0 we have phase separation dynamics controlled by
bulk diffusion, if γ −→ 1 we have dynamics controlled by interface diffusion.

3 The Numerical Method

3.1 Temporal Discretization

We propose a semi-implicit time discretization combined with a time-split
strategy. This discretization effectively decouples Cahn-Hilliard and Navier-
Stokes solvers and yields an efficient and robust modular scheme.

The outline of the method is as follows. Given φn and un the objective is to
solve for φn+1 and un+1 with the steps:

(1) Solve the Cahn-Hilliard equation with a second order semi-implicit method
and spectral spatial discretization to obtain φn+1.

(2) Using φn+1 compute the surface force and solve the phase-field modi-
fied Navier-Stokes equations with a second order SBDF(Semi-backward
difference formula)-based projection method to obtain un+1. The spatial
discretization is spectral in the streamwise and spanwise directions and
eighth order compact finite difference in the wall normal direction [5,17,18].

Our semi-implicit strategy uses a simple idea that works quite well for diffusion-
dominated equations, for example, the variable (even nonlinear) coefficient
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diffusion equation ut = ∇ · (χ∇u), χ > 0 [19,20]. We rewrite the latter as

∂u

∂t
= a∇2u + f(u), (18)

where f(u) = ∇ · (χ∇u) − a∇2u and a is constant in space (but could be
time-dependent). By treating the first term on the right hand side of (18)
implicitly and f(u) explicitly we can obtain semi-implicit discretizations that
can be easily solved. With energy estimates one can show that a first order
Euler discretization is unconditionally stable if a ≥ 1

2
max χ [19]. Since the

truncation error is dissipative and proportional to a, we consider a = 1
2
max χ

as an optimal value. Discretizations of this type are of common use in spectral
methods [20] as the constant coefficient implicit terms becomes diagonal in
Fourier space and thus can be inverted efficiently. However, as noted in [21],
these discretizations are less successful for dispersion-dominated problems.

We can apply this idea to deal with variable mobility. However, the application
of the same idea to the treatment of the nonlinear term due to the chemical
potential is not straightforward. To achieve this, we note that ∇2f ′(φ) = ∇ ·
(f ′′∇φ) where f ′(φ) = φ3−φ and f ′′(φ) = 3φ2−1. Letting τ = 1

2
max (f ′ (φ)) =

1
2
f ′′(±1) = 1 and defining λmax = max λ as the maximum of the normalized

mobility (the mobility ratio if Mc = M−) we rewrite (12) as

∂φ

∂t
=

1

Pe

λmax

2

[
τ∇2φ−∇4φ

]
+

1

Pe
[A(φ) + B(φ)]− u · ∇φ. (19)

where A(φ) = ∇·λ∇f ′(φ)− λmax

2
τ∇2φ and B(φ) = λmax

2
∇4φ−∇·λ∇(∇2φ). By

treating the first term on the right hand side of (19) implicitly and A(φ), B(φ)
and the convective term u · ∇φ explicitly we can obtain semi-implicit dis-
cretizations that can be solved efficiently at minimal cost. When loooking for
a second order semi-implicit multi-step method it is fundamental to note that
because of the very high frequency content in the Cahn-Hilliard solutions we
need a method with high modal damping. The use of weakly damping schemes
such as the popular combination of Crank-Nicolson with second or higher or-
der convective terms discretizations is not appropriate (Ascher, Ruuth and
Wetton [22]) since it can lead to extra iterations on the finest grid when using
multigrid methods with finite difference spatial discretizations, and to aliasing,
when using spectral collocation for spatial discretization as it is in our case.
Among the second order multi-step methods the extrapolated Gear (SBDF)
scheme has the strongest high modal decay [22]. We experimented numerically
with the Crank-Nicolson discretization applied to the modified Cahn-Hilliard
equation (19), without convection, and found that unless Crank-Nicolson is
used in its dissipative regime (∆t < Ch2) it would be unstable. The high
modal damping is apparently required to stabilize the high frequency content
of the explicitly treated difference between the variable coefficient term and

8



the constant one. The SBDF provides, without the stringent quadratic time-
step constraint, the required damping. Applied to (19) this scheme becomes:

3
2
φn+1 − 2φn + 1

2
φn−1

∆t
=

1

Pe

λmax

2

[
τ∇2φn+1 −∇4φn+1

]
+2

{
1

Pe
[A(φn) + B(φn)]− un · ∇φn

}
−
{

1

Pe

[
A(φn−1) + B(φn−1)

]
− un−1 · ∇φn−1

}
. (20)

In the absence of convection, this new discretization appears in our numerical
experiments to be unconditionally stable. Eyre [23] considers a discretization
of this type for the one-dimensional Cahn-Hilliard equation with constant
mobility, Smereka [24] uses it in the context of interface motion by surface
diffusion while Zhu, Chen, Shen, and Tikare [25] use it for the mobility term
but not for the nonlinear one, resulting in a conditionally stable method.

For the Navier-Stokes equations (13) and (14) we use the Gear scheme com-
bined with the above semi-implicit discretization applied to the variable vis-
cosity term. This discretization will provide the necessary damping for the
high mode components due to the near discontinuities in the derivatives of
the velocity and the presence of the almost singular surface-tension source
term. The discretized Navier-Stokes equations are:

3
2
un+1 − 2un + 1

2
un−1

∆t
= −∇pn+1

Re
+

θmax

2Re
∇2un+1 +

1

ReCa
µ(φn+1)∇φn+1

+2

[
C(un)

Re
− un · ∇un

]
−
[
C(un−1)

Re
− un−1 · ∇un−1

]
(21)

where C(um) = ∇ · θm+1(∇um + (∇um)T ) − θmax

2
∇2um with m = n, n − 1.

Karniadakis, Israeli and Orszag [26] employ this scheme in the context of single
phase flow i.e. without the source term and the scheme was called “stiffly”
stable. We use the same splitting with the addition of the source, i.e. surface
tension, term. The method can be summarized as follows:
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Step 1:

u∗ − 2un + 1
2
un−1

∆t
= 2

[
C(un)

Re
− un · ∇un

]
−
[
C(un−1)

Re
− un−1 · ∇un−1

]

+
1

ReCa
µ(φn+1)∇φn+1

(22)

Step 2:
u∗∗ − u∗

∆t
= −∇pn+1

Re
. (23)

Step 3 (Helmholtz equation):

3
2
un+1 − u∗∗

∆t
=

θmax

2Re
∇2un+1 (24)

with Dirichlet boundary conditions

un+1 = u0. (25)

We need to introduce two further assumptions for the intermediate velocity
fields u∗,u∗∗. First the incompressibility constraint

∇ · u∗∗ = 0 (26)

and second that the same field u∗∗ also satisfies the prescribed Dirichlet con-
dition in the direction normal to the boundary,

u∗∗ · n = u0 · n. (27)

Incorporating these assumptions into Equation (23) we finally derive a sepa-
rately solvable equation for the pressure (Poisson equation):

∇2pn+1 =
Re

∆t
∇ · u∗. (28)

Karniadakis, Israeli and Orszag [26] derive the Neumann boundary conditions
that allows second order accuracy in the velocity and pressure in the context
of single phase flow and constant viscosity. We follow the same procedure and
we evaluate the normal component of (21) at the boundary and let the term
∇2u = −∇× (∇× u) (due to the incompressibility constraint (6)) to yield:

∂pn+1

∂n

∣∣∣∣∣
Γ

= n ·
[
2(Reun · ∇un +∇θn+1∇un − θn+1∇× (∇× un) +∇ · θn+1(∇un)T )

−(Reun−1 · ∇un−1 +∇θn∇un−1 − θn∇× (∇× un−1) +∇ · θn(∇un−1)T )
]
.

(29)
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Note that we calculate the term ∇2un+1 with an extrapolation from the time
levels n and n− 1.

3.2 Stability

A rigorous stability analysis for the overall scheme is quite difficult. Neverthe-
less one can obtain valuable information about the stability and robustness of
the scheme through numerical tests (see section 4). In particular, through nu-
merical experiments we find that the semi-implicit discretization (20) for the
Cahn-Hilliard equation appears to be unconditionally stable when u ≡ 0, re-
gardless of the interface thickness. Moreover, the unconditional stability seems
to hold for a ≥ f ′′(±1)/2 = 1 just as for the corresponding discretization of
the variable diffusion equation ut = ∇ · (χ∇u). Thus, for a given nonzero u,
the scheme for the convective Cahn-Hilliard equation has only a CFL stability
condition:

∆tcfl ≤
(
|u|max

∆x
+
|v|max

∆y
+
|w|max

∆z

)−1

, (30)

where (u, v, w) are the components of the velocity field.

When coupled with the time discretization of the modified Navier-Stokes equa-
tions (22)- (24), in addition to the natural CFL condition, we have to consider
time step restrictions due to surface tension and viscosity. For the surface
tension we observe a mild stability constraint of the form

∆ts ≤ C1

√
ReCa (min {∆x, ∆y, ∆z})3/2 , (31)

where C1 is a constant. C1 = 10, works well for all our numerical examples.
Note that spatial mesh sizes are nondimensional so that min(∆x, ∆y, ∆z) =
O(1). The same type of condition is found for capturing (“color” ) methods
(with the appropriate nondimensionalization) such as the Level Set Method [27]
and the continuum surface force method (CSF) [28] that rely both on less stiff
evolution equations for the “color” function.

We now derive the stability constraint associated with the variable viscosity
term. Using the incompressibility condition, the Navier-Stokes equations (13)
in indicial notation (repeated index summation implied) become

(
∂ui

∂t
+ uk

∂ui

∂xk

)
=− 1

Re

∂p

∂xi

+
1

Re

{
∂

∂xk

(
θ
∂ui

∂xk

)
+

∂θ

∂xk

∂uk

∂xi

}

+
1

CaRe
µ

∂φ

∂xi

. (32)

The semi-implicit discretization removes the severe stability constraint due to
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the term ∂
∂xk

(
θ ∂ui

∂xk

)
but has limited effect on the term ∂θ

∂xk

∂uk

∂xi
. This term gives

rise to a CFL-like stability constraint that can be determined by estimating
max |∇θ|. In the limit of gently curved interfaces, and when the motion of
the interface is slow compared with the local relaxation times of φ, we can
approximate φ by the one-dimensional stationary solution φ0 in (9) along the
direction normal to the interface, i.e. ∇φ ' ∇φ0. From (9) and (16) we have
that ∇θ ∝ (θmax − 1) sech2x, then max |∇θ| ∝ (θmax − 1). Thus, the variable
viscosity time-step constraint has the form

∆tvr ≤ C2
Re

θmax − 1
(min {∆x, ∆y, ∆z}) , (33)

where C2 is a constant. For θmax = 1 the discretization is unconditionally
stable since it reduces to an implicitly treated constant viscosity case. For
θmax > 1 we could use successfully C2 = 10 for all our simulations. Note that
if we were treating the viscous term purely explicitly we would have the more
restrictive constraint ∆t ≤ Re

θmax
[(∆x)−2 + (∆y)−2 + (∆z)−2]−1.

We can now express our adaptive time stepping strategy as

∆tn+1 = min (∆tcfl, ∆ts, ∆tvr) . (34)

The discretization (20) effectively removes the high order stability constraints
associated with the Cahn-Hilliard equation and makes the phase field-based
method computationally competitive and robust. To relax more the viscous
stability constraint in the case of very small Re one can use a predictor-
corrector iteration strategy. Increasing the constant leading order term θmax

2

in (21) also relaxes the constraint by allowing a larger constant C2, albeit at
the cost of increasing the truncation error. For example if θmax is used instead
of 1

2
θmax we find that one can use C2 = 180 giving a significant saving in time

stepping.

3.3 Spatial Discretization

We employ high-resolution spatial discretizations to be able to accurately
resolve thin interfaces. The Cahn-Hilliard equation is discretized in space
(pseudo) spectrally (via FFT for periodic boundary conditions or Cosine trans-
form for the no-flux conditions). For the Navier-Stokes equations we use spec-
tral derivatives in the streamwise and spanwise (periodic) directions and an
eighth order finite difference compact scheme [5] for the wall normal derivatives
of the velocity and pressure. Note that compact finite difference approxima-
tions are used only for the wall normal derivatives of the velocity in (22)-(24)
and for the first order wall normal derivative of φ in (20). We compute the
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other derivatives spectrally in the x and y directions with the fast Fourier
transform (FFT). The details of the spatial discretization are given in the
Appendix.

4 Numerical Experiments and Validation

We present three types of numerical experiments to validate the proposed
method and test its capabilities . The experiments are simulations of drop
deformation, pure phase separation (spinodal decomposition) and phase sep-
aration under shear flow. A resolution study is also performed to check the
accuracy and the stability of the method. This is briefly described next.

4.1 Drop Deformation in a Shear Flow

We consider an initially 2D spherical drop in a shear flow. This is a classical
problem that was solved analytically for sharp interfaces and small deforma-
tions in the creeping flow approximation for unbounded domain by Taylor [29]
and in the presence of two walls by Shapira and Haber [30]. The drop will
assume the shape of an ellipsoid with a deformation that depends on the cap-
illary number and the viscosity ratio. Taylor [29] found that for equal viscosity
blends at steady state, i.e., when deformation due to the externally imposed
shear flow and interfacial relaxation balance one another, the deformation
parameter D = (l − s)/(l + s) is related to the capillary number Ca as

D =
35

32
Ca (35)

where l, s denote, respectively, the longest and shortest axes of the ellipsoid
in the shear gradient plane. This relation is valid in the limit of vanishing
deformations and holds in good approximation for D < 0.3. We use this
problem to demonstrate the convergence and accuracy of the numerical results
under grid refinement. At the same time, we validate the calculation of surface
tension and viscosity ratio.

As initial condition we start with a 2D circular drop in the center of the do-
main with a ”tanh” profile of the interface and we solve the Cahn-Hilliard
equation without convection to reach a steady state that leads to a com-
pletely saturated mixture. Then we impose a shear flow with the top and
bottom lid moving in opposite directions and with the dimensionless velocity
equal to plus or minus one, respectively. We consider three capillary numbers
Ca = 0.6, 0.9, and 1.2. The fluids have the same viscosity and Re = 0.1,
Pe = 10. We employ two resolutions 128 × 128 and 256 × 256, and domain
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sizes of L = 178 and L = 355, respectively. This combination of parameters
determines an interface thickness of three mesh points. Recall that, based on
our nondimensionalization, the length of the domain L is to be interpreted
in units of the interface thickness ξ. In Figure 1 we plot the final equilibrium
stage. The convergence of the results under grid refinement is evident. The
drop shape is ellipsoidal with the major axis converging to an angle of 45o as
Ca decreases, just as predicted by the analytic results [29,30]. Moreover, the
contours −0.9 and 0.9 describing the interface are well behaved since they stay
parallel throughout the computation. Increasing the capillary number results
in increased deformation and the angle diminishes in the direction of the ma-
jor axis to the undisturbed (horizontal) streamlines. This result matches the
numerical result of Rallison [31] for deformations where the analytical solution
is not available.

Now we perform 3D simulations with a grid size 128× 128× 128 and L = 178
which correspond to a 3 mesh-point thick interface. We choose the droplet ra-
dius to be 35 grid points which is large enough to avoid effects due to the finite
interfacial width and the presence of the walls [30]. We see from Figure 2 that
the deformation parameters obtained from simulations with different capillary
numbers Ca and Re = 0.01, P e = 100 (error bars) correspond well with the
theoretical predictions of (35). The error bars in Figure 2 result from errors
due to the use of diffuse interface (i.e. errors in estimating l and s) and the
use of a finite Re instead of a Re = 0. These numerical results are analogous
to the ones reported in [32].

To test the accuracy of the time discretization we perform a sequence of sim-
ulations with 512 × 512 mesh points keeping the spatial resolution fixed and
halving the time step. As a parameter we use interface thicknesses of three,
four and five mesh points (respectively L = 711, L = 533, L = 426). Again
Ca = 1.5, Pe = 10 and Re = 1 and the mean initial drop radius is 128 mesh
points. Denoting by Vi,j(∆t) = (φi,j,ui,j) the approximation obtained using
a step-size ∆t, and defining the error ratios

R(∆t) =

∑Nx,Ny

i,j=1 |Vi,j(∆t)−Vi,j(∆t/2)|∑Nx,Ny

i,j=1 |Vi,j(∆t/2)−Vi,j(∆t/4)|
, (36)

we calculate the order of convergence in time as

O(V ) =
logR(∆t)

log2
(37)

In Table 1 we show the results for φ and for the w component of ui,j =
(ui,j, wi,j):
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Table 1
Order of convergence in time

Interf. thickness O(φ) O(w)

3 1.01 0.98

4 1.20 1.18

5 1.42 1.39

To test the accuracy of the space discretization we compute a sequence of
2D simulations with Ca = 1.5, Pe = 10 and Re = 1 to time 2.0 using a
fixed time step that satisfies the stability requirement on three different grids,
128 × 128, 256 × 256 and 512 × 512 with L = 133, L = 266 and L = 533
respectively (4 mesh points thick interface). Further, we set the initial drop
mean radius equal to 1/4 the domain length. We proceed as for the time
accuracy check (equations (36)-(37)) and by comparing the difference in the
numerical solutions for adjacent resolutions we estimate the maximum error
point-wise. We then use these estimates of the error to compute a numerical
convergence rate. For points close to the periodic boundaries and away from
the interface we found a convergence rate of 2.7 for the velocity field and 2.8
for φ. In points close to the walls and to the interface the convergence rate
deteriorates with respectively 1.9 and 0.91 for the velocity and 2.1 and 0.95
for φ. These results compare favorably with the level set [27] and volume of
fluid [33] methods. Even though we cannot preserve spectral accuracy due to
the presence of the interface, the high accuracy discretization is important as
interface layers of only a few mesh points need to be resolved and numerical
diffusion has to be limited to avoid unphysical coalescence of interfaces.

Finally, we examine drop deformation in the case of variable viscosity. Shown
in Figure 3 are the results for Pe = 10, Re = 0.1, Ca = 0.8. Three viscosity
ratios are considered: θmax = 2, 5, and 10. We plot the contour of φ = 0
only. The observed deformation increases in accordance with the predictions
in [29,30] without any appreciable change in the orientation.

4.2 2D & 3D Phase Separation

We begin the numerical experiments with an example of pure spinodal phase
separation of a binary mixture. An initially homogeneous disordered phase
separates into ordered structures when quenched into a metastable region.
The Cahn-Hilliard equation (without convection) models this process. For
pure phase separation it is convenient to nondimensionalize (3), with u = 0,
using variables (11) with Lc as the domain size and Tc = Mcβ. Dropping the
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primes, equation (3) becomes

∂φ

∂t
= ∇ ·

(
1− γφ2

)
∇(f ′(φ)− C2∇2φ), (38)

where C = ξ/Lc is the Cahn number and f ′(φ) = φ3 − φ. The Cahn number
represents the ratio between the interface thickness and the domain size. Char-
acteristic properties of (38) are the conservation of the order parameter [12]

d

dt

∫
Ω

φ(t,x)dx = 0, (39)

and a monotonic decrease in the total energy

d

dt
F [φ] =

∫
Ω

{
f(φ) +

C2

2
|∇φ|2

}
dx ≤ 0. (40)

We take as initial condition a random perturbation of a uniform mixture as
follows

φ(0,x) = φm + Cr(x), (41)

where the random r(x) is in [−1, 1] and has zero mean. φm is the constant
concentration of the uniform mixture. The domain is the unit square.

In our first example we consider periodic boundary conditions, constant mobil-
ity (γ = 0) and φm = 0 which corresponds to the well known case of spinodal
phase separation controlled by bulk diffusion. We take C = 7.03 × 10−4 and
using a spatial mesh of 1024×1024 points we have interfacial thickness of three
points. According to linear analysis (see e.g. [34]) the fastest growth rate is
1/(4C2). The solution quickly develops two spatial length scales, one associ-
ated with the wavelength λ of the fastest growing mode and the other, the
shortest one, with the transitions between phases. For φm = 0, λ = 2π

√
2C,

while the phase transition layers are approximately of size C and thus a mesh
size of O(C) is needed. After the fast initial stage the dynamics are very slow
and it takes a long time to reach a quasi-stationary state. With the third order
semi-implicit scheme we can compute stably the solution and resolve both the
fast initial dynamics and the slow long-time behavior, varying ∆t to adjust
to the dynamics, while at the same time retaining the required high spatial
resolution.

Figure 4 shows snapshots of the solution plotted as flooded contours. The red
color corresponds to φ = 1 and the blue to φ = −1. The initially homogeneous
mixture undergoes a fast separation followed by slow coarsening where typical
spinodal structures can be observed. Due to the very small Cahn number
and the high resolution the interfaces separating the structures appear fairly
sharp. We start the computation with ∆t = 4.95 × 10−7 to resolve the early
fast growth of solution, but we only compute with this time-step up to t =
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C = 7.03 × 10−4. For the longer time computation we use ∆t = 0.0002.
This time-step selection is based on accuracy as the method appears to be
unconditionally stable, and any choice of ∆t produces a stable computation.

As shown in [35] a two-phase morphology undergoing coarsening can be char-
acterized by the time-dependent structure function

S (k, t) =
1

N

〈∑
r

∑
r′

e−ik·r
[
φ (r + r′, t) φ (r′, t)− 〈φ〉2

]〉
, (42)

where both sums run over the lattice, N is the total number of points in
the lattice, and <> stands for average over all lattice points. The normalized
structure function s (k, t) is given by

s (k, t) =
S (k, t)

N
[
〈φ2 (r)〉 − 〈φ〉2

] (43)

and we can characterize the typical length scale R(t) with the first moment
of s(k, t) [25],

k1(t) =

∑
ks(k, t)∑
s(k, t)

. (44)

In Figure 5 we plot the normalized and circularly averaged structure function
at five different time steps. The lines are spline fits to the simulation data.
As time increases, the maximum value of the structure function increases and
shifts to lower k, indicating an increase in the real-space average length scale.
This is consistent with the results reported in [25]. In Figure 6 we plot the cubic
of the average domain size versus time. The straight line behavior confirms
the expected cubic growth law [25].

We now consider a case of variable mobility by setting γ = 0.9. Figure 7
shows the morphological evolution of the mixture for φm = 0 and Cahn num-
ber C = 0.001 using a 1024 × 1024 resolution. This is the case of interface
diffusion controlled coarsening that is characterized by much slower dynamics
but with similar morphological patterns. These results are analogous to the
ones reported in [25]. But here, with the unconditionally stable scheme, we
are able use a large time step (∆t = 0.01) to follow the very slow coarsening
dynamics. Moreover, we can resolve a thinner interface of only three mesh
points, with third order time integration.

We turn now to two 3D simulations of pure phase separation with constant
mobility (γ = 0) and no-flux boundary conditions, i.e. n · ∇φ = 0 and
n ·∇(f ′(φ)−C2∇2φ) = 0 (Figure 8 and 9). We take first φm = 0 and C = 0.01
and we render the iso-surface of separation of the two fluids at φ = 0. Figure 8
depicts representative snapshots of the iso-surface. Notice the complexity of
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the patterns that cannot be extrapolated from the 2D counterpart. The sim-
ulation begins with ∆t = 2.5× 10−4 up to t = C = 0.01 and for longer times
∆t = 0.01 is used. Figure 9 presents very different separation morphology.
For this simulation we take φm = −0.5 and we render the initial stages using
∆t = 2.5× 10−4. The initial uniform mixture evolves into a system consisting
of a large array of round particles at t = 0.01. The coarsening takes place and
the spherical drops grow until they coalesce.

Figure 10 shows the time-behavior of the phase field mean and the energy for
a spinodal decomposition with a resolution of 128×128×128. We find that the
mean is preserved within 3 to 4 digits and the energy decreases monotonically
(and smoothly) throughout the entire computation as required by (40).

4.3 2D & 3D Phase Separation and Pattern Formation in a Channel under
Shear

We consider phase separation (spinodal decomposition) of a density-matched
binary fluid mixture in a channel under shear. As we will see, linear shear
plays a crucial role in the morphology and evolution of the patterns. The
initial conditions are a random perturbation around the uniform concentration
φ = 0. Figure 11(a) and Figure 11(b) show 2D results at two shear rates with
the top lid and bottom lid moving horizontally in opposite directions. The
shear rate is defined as sr = Uc/h where h is the distance between the two
plates.

Since we impose a fixed geometry, sr ∝ Uc. Thus, to change the shear rate
we need to change Pe, Re and Ca as they all contain Uc. The flow in Fig-
ure 11(b) has five times the shear rate as that in Figure 11(a). We notice that
after a transient stage characterized by the formation of patterns in the mix-
ture under the influence of the Cahn-Hilliard term (spinodal decomposition),
the domains get elongated into long layers against their intrinsic surface ten-
sion instabilities. Moreover, the patterns formed in the early stage are quite
different when the shear velocity increases, and the number of layers in the late
stage increases when the shear rate is higher. This behavior is in accordance
with experiments reported in [36] and simulations in [9].

In Figure 12 we consider a 3D simulation in the presence of shear. Here the
structures are much more complex with plates and strings forming. Stringlike
structures have been observed in polymer blends which are thermodynamically
near a phase transition point [37,38] and in immiscible viscoelastic systems in
complex flow fields [39] and in dispersed droplets [39]. There is great current
interest in micro and nano lengthscale technologies in which polymer blends
could play an important role. For example, if we create strings with a conduc-
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tive material in an insulating matrix with good mechanical properties, then
one could produce wires. In other ways [39] it might be possible to manu-
facture ultrathin materials of high one-dimensional strength or scaffolds. A
detailed study of the string process formation with our numerical procedure
is under way and it will be reported elsewhere. The methodology presented
here appears quite promising for the design and analysis of multiphase and
complex fluid formulations.

5 Concluding Remarks

An accurate and efficient numerical method for computing phase ordering
kinetics coupled with fluid dynamics was presented. The numerical method is
a time-split scheme that combines a novel semi-implicit discretization for the
convective Cahn-Hilliard equation with a ”stiffly stable” time-discretization of
the projection method for the Navier-Stokes equations. The numerical method
is robust and has minimal cost. Some of the capabilities of the method were
illustrated with numerical examples in two and three dimensions, including
the technologically important problem of phase separation under shear flow.
In particular, the 3D simulations in the presence of shear flow reveal rich
and complex structures, including strings. The method can be extended to
general geometries through the use of other spatial high order discretizations
such as in spectral element methods, while retaining the same characteristic
of stability and efficiency. The type of discretizations presented here also offer
great promise for the computation of complex fluid systems such as polymeric
flows.
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Appendix

6 The Spatial Discretization

6.1 Helmholtz equation

We rewrite the third step of the projection method (24) (Helmholtz equation)
as

2Re

θmax

u∗

∆t
−∇2u∗ =

2Re

θmax

(
un

∆t
− un · ∇un

)
+

2

θmaxCa
µ(φn+1)∇φn+1

+
2

θmax

[
∇ · θn+1(∇un + (∇un)T )− θmax

2
∇2un

]
. (45)

Since we have periodic boundary conditions in the horizontal direction we can
Fourier transform to obtain (dropping the asterisk)(

2Re

θmax∆t
+ k2

x + k2
y

)
û− û′′ = Ω̂ (kx, ky, z) , (46)

where the prime denotes derivative with respect to z, Ω(x, y, z) is the right-
hand side of (45) and the caret stands for the 2D Fourier transform in the
streamwise direction. Thus (i is the z-index of the grid)

û′′i = k2ûi−Ω̂i, (47)

where k2 = Re
θmax∆t

+ k2
x + k2

y. An eighth order finite difference compact scheme
discretization of (50), as we will see in 6.3, yields the pentadiagonal system

Cûi−2 + Bûi−1 + Aûi + Bûi+1 + Cûi+2 =

βΩ̂i−2 + αΩ̂i−1 + Ω̂i + αΩ̂i+1 + βΩ̂i+2,
(48)

where A = k2 +(b/2 + 2a) / (∆z)2, B = αk2−a/ (∆z)2, C = βk2− b/ (2∆z)2.
The parameters a, b, α and β (given in 6.3) are chosen to achieve formal eighth
order accuracy [5].

6.2 Poisson equation

Since we have periodic boundary conditions in the horizontal direction we can
Fourier transform the Poisson equation (28) to obtain(

k2
x + k2

y

)
p̂− p̂′′ = Ξ̂ (kx, ky, z) , (49)
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where the prime denotes derivative with respect to z, Ξ(x, y, z) is the right-
hand side of (28) and the caret stands for the 2D Fourier transform in the
streamwise direction. Thus (i is the z-index of the grid)

p̂′′i = k2p̂i − Ξ̂i, (50)

where k2 = k2
x + k2

y. An eighth order finite difference compact scheme dis-
cretization of (50) yields the pentadiagonal system:

Cp̂i−2 + Bp̂i−1 + Ap̂i + Bp̂i+1 + Cp̂i+2 =

βΞ̂i−2 + αΞ̂i−1 + Ξ̂i + αΞ̂i+1 + βΞ̂i+2,
(51)

where A = k2 + (b/2 + 2a) / (∆z)2, B = αk2− a/ (∆z)2, C = βk2− b/ (2∆z)2

and the parameters a, b, α and β as provided in the next section. The Neumann
boundary condition (29), applied at i = 1 and i = Nz is implemented via
second order approximations:

3

2∆z
p̂1 −

2

∆z
p̂2 +

1

2∆z
p̂3 = −p̂′1, (52)

− 1

2∆z
p̂Nz−2 +

2

∆z
p̂Nz−1 −

3

2∆z
p̂Nz = −p̂′Nz

(53)

where p̂′1 and p̂′Nz
are the (x, y)−transforms of the z−derivatives at the walls.

The pentadiagonal matrix for this linear system is well-conditioned, except
for k = 0, in which case it is singular. This situation arises because , with
Neumann conditions at both ends of the domain, the solution for the pressure
is non-unique since pressure is only defined within a constant. Rewriting the
momentum equation (13) at the wall with the use of the incompressibility
condition (14)

∂p

∂z
= θ

∂2w

∂z2
(54)

where w is the wall normal component of u = (u, v, w). Fourier transforming
(54) in x an y direction and using the incompressibility condition (14) we get:

∂p̂

∂z
= ikxθ

∂û

∂z
+ ikyθ

∂v̂

∂z
(55)

i.e. for the singular case kx = ky = 0 the two Neumann conditions at both
ends of the domain (29) reduce to

∂p̂

∂z
= 0. (56)
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To solve for the case k = kx = ky = 0 we use the cosine transform since it au-
tomatically satisfy (56); we then deal with a third wave number kz and for the
case kx = ky = kz = 0 we set the solution as a constant. This is inconsequential
since as noted before pressure is only defined within a constant.

6.3 Finite difference compact schemes

For the first derivative in the z (wall normal direction) we use the compact
approximation scheme [5]

βû′i−2 + αû′i−1 + û′i + αû′i+1 + βû′i+2 =

b
ûi+2 − ûi−2

4∆z
+ a

ûi+1 − ûi−1

2∆z
, (57)

where the prime denotes derivative with respect z, and the caret stands for the
2D Fourier transform in the streamwise direction. The optimized coefficients
for an eighth-order compact stencil are α = 4

9
, β = 1

36
, a = 40

27
, b = 25

54
. For

the points neighboring boundaries i = 2 and i = Nz − 1 we use a fourth order
scheme with α = 1

4
, β = 0, a = 3

2
, b = 0.

The compact approximation schemes for the boundaries i = 1 and Nz are

û′1 + 2û′2 =
1

∆z

(
−5

2
û1 + 2û2 +

1

2
û3

)
, (58)

û′Nz
+ 2û′Nz−1 =

1

∆z

(
5

2
ûNz − 2ûNz−1 −

1

2
ûNz−2

)
. (59)

These are third order schemes [5,18].

To approximate the second derivative we use

β û′′i−2 + αû′′i−1 + û′′i + αû′′i+1 + βû′′i+2 =

b
ûi+2 − 2ûi + ûi−2

4 (∆z)2 + a
ûi+1 − 2ûi + ûi−1

(∆z)2 (60)

and the optimized coefficients for an eighth-order compact stencil are α = 344
1179

,
β = 23

2358
, a = 320

393
, b = 310

393
, while for the points i = 2 and i = Nz − 1 we use a

fourth order scheme with α = 1
10

, β = 0, a = 6
5
, b = 0,. For the boundaries we

choose
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û′′1 + 11û′′2 =
1

(∆z)2 (13û1 − 27û2 + 15û3 − û4) , (61)

û′′Nz
+ 11û′′Nz−1 =

1

(∆z)2 (13ûNz − 27ûNz−1 + 15ûNz−2 − ûNz−3) . (62)

These are third order accurate schemes with a truncation error ten times
smaller than that of the analogous explicit one (see [5,18]).

6.4 Properties of Cosine Transforms

We define the Fourier cosine transforms of a function f (x) as

C [f (x)] =
2

π

∞∫
0

f (x) cos ωxdx (63)

For the second derivatives we have,

C

[
d2f

dx2

]
= − 2

π

df

dx
(0)− ω2C[f ] (64)

under the hypothesis of compact support for f (x) and f ′ (x).

For the fourth derivative we have,

C

[
d4f

dx4

]
= − 2

π

(
d3f

dx3
(0)− ω2 df

dx
(0)

)
+ ω4C[f ] (65)

under the hypothesis of compact support for f (x) , f ′ (x) and f ′′′ (x). We used
these properties to solve the Cahn-Hilliard and the Poisson equation for the
case kx = ky = 0; for the Cahn-Hilliard equation f ′ (0) = f ′′′ (0) = 0 due to
the boundary conditions (4) and for the Poisson equation f ′ (0) = 0 due to
the boundary condition (56). Note that these properties hold for the discrete
transforms as well.
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Fig. 1. 2D deformation of an initially spherical drop described by φ, Pe = 10,
Re = 0.1,for (a) Ca = 0.6,, (b) Ca = 0.9, and (c) Ca = 1.2. First column N = 128
and L = 178, second column N = 256 and L = 355.
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Fig. 2. Deformation of a droplet subject to shear flow. The continuous line represent
the theoretical prediction of Taylor [29] while the error bars represent the steady
state deformation parameter D obtained from 3D simulations as a function of the
capillary number Ca.
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Fig. 3. 2D deformation of an initially spherical drop described by φ, Pe = 10,
Re = 0.1, Ca = 0.8, θmax = 2, 5 and 10, N = 256 and L = 355.
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Fig. 4. Evolution of φ, represented in flooded contours, at different times. (a)
t = 6.93 × 10−4, (b) t = 0.36, (c) t = 1.16, (d) t = 2.76. N = 1024, γ = 0,
φm = 0, C = 7.03× 10−4 and ∆t = 4.95× 10−7 for (a), ∆t = 0.0002 for (b)-(d).
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Fig. 5. Structure function as a function of k at five different time steps for
bulk-diffusion-controlled coarsening.
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Fig. 6. The cubic of the average domain size vs time at the late stage of
bulk-diffusion-controlled coarsening (domain size characterized by (1/k1)).
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Fig. 7. Variable mobility: evolution of φ, represented in flooded contours, at different
times. (a) t = 0.1, (b) t = 0.47, (c) t = 1.4, (d) t = 3.0. N = 1024, γ = 0.9,
φm = 0.0, C = 0.001 and ∆t = 0.01 for (a)-(d).
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Fig. 8. Evolution of φ represented by the iso-surfaces of separation of the two fluids
at φ = 0.0, at different times. (a) t = 0.0375, (b) t = 6.5, (c) t = 14.0, (d) t = 94.0.
N = 256, γ = 0.0, φm = 0.0 and ∆t = 2.5 × 10−4 for (a), ∆t = 0.01 for (b), (c)
and (d).
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Fig. 9. Evolution of φ represented by the iso-surfaces of separation of the two fluids
at φ = 0.0, at different times. (a) t = 0.10375, (b) t = 0.10475, (c) t = 0.10625, (d)
t = 0.15. N = 256, γ = 0.0, φm = −0.5 and ∆t = 2.5 × 10−4 for (a), (b), (c) and
(d).
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Fig. 10. Behavior of the mean φm and of the energy F (φ) in time for the
semi-implicit scheme for φm(t = 0) = 0.
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Fig. 11. 2D spinodal decomposition in a channel under shear, (a)(First Column)
Pe = 7.5, Re = 0.1, and Ca = 0.5, (b) (Second column) Pe = 37.5, Re = 0.5, and
Ca = 2.5. N = 256 and L = 355.

37



Fig. 12. 3D spinodal decomposition in a channel under shear, Pe = 10, Re = 0.5,
Ca = 5, N = 128 and L = 178. (a) t = 800, (b) t = 2500, (c) t = 5000, (d)
t = 57100.
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