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Abstract. We propose efficient pseudospectral numerical schemes for solving the self-consistent,
mean-field equations for inhomogeneous polymers. In particular, we introduce a robust class of
semi-implicit methods that employ asymptotic small scale information about the nonlocal density
operators. The relaxation schemes are further embedded in a multilevel strategy resulting in a method
that can cut down the computational cost by an order of magnitude. Three illustrative problems
are used to test the numerical methods: (i) the problem of finding the mean chemical potential field
for a prescribed inhomogeneous density of homopolymers; (ii) an incompressible melt blend of two
chemically distinct homopolymers; and (iii) an incompressible melt of AB diblock copolymers.
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1. Introduction. Field-theoretic models and approaches have proven to be very
useful in the study of inhomogeneous polymer and complex fluid phases. The appli-
cation of such methods to dense phases, such as melts and concentrated solutions
of homo-, block-, and graft copolymers, has been particularly fruitful in unraveling
the complexities of equilibrium self-assembly in such systems [15, 18, 16, 21, 9, 19].
Normally the statistical field theory models are solved in the mean-field (saddle point)
approximation, although recent developments enable direct numerical simulation of
field theories without any simplifying approximations [13, 11, 7]. Here we shall be
concerned with the development of efficient numerical algorithms for solving equilib-
rium field theories in the mean-field approximation, the so-called self-consistent field
theory (SCFT), that is well known in the fields of polymer and colloid science.

The SCFT equations are a highly nonlinear set of equations in one or more chem-
ical potential fields. The equations have also a strong nonlocality that emerges from
the solution of a modified diffusion equation and reflects the connected nature of
a polymer over distances of order, its radius-of-gyration. Solutions for the poten-
tial fields, in turn, uniquely specify the equilibrium monomer densities of the different
species and other thermodynamic and structural quantities of interest. Two strategies
for solving the SCFT equations have emerged: a spectral approach heavily exploited
by Matsen and Schick [20, 21] and a real-space approach followed by Scheutjens and
Fleer [25], Fraaije [8], Fraaije et al. [9], Shi, Noolandi, and Desai [26], Whitmore and
Vavasour [29], and Drolet and Fredrickson [5, 6], among others. A disadvantage of
the fully spectral approach is that the computational effort scales poorly [as O(N3

x)]
with the number of spectral elements Nx. It is therefore not well suited to high-
resolution simulations where there is no advanced knowledge of the symmetries of
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candidate structures. The real space method is better suited for situations where the
symmetries are not known in advance but becomes computationally demanding in
three dimensions. Recent work by Rasmussen and Kalosakas [24] has shown that the
solution of the modified diffusion equation can be efficiently solved by a pseudospectral
technique, taking advantage of the best features of real and reciprocal space. Here we
argue that this philosophy can be fruitfully extended to the full solution of the SCFT
equations, including both the solution of the diffusion equation as well as optimization
of the chemical potential fields.

2. Models of inhomogeneous polymers. In the present paper we consider
three illustrative problems that are typical of those encountered in applying SCFT to
realistic polymer systems. These problems are the following:

1. Target homopolymer density problem. Find the equilibrium chemical potential
field µ(r) that produces a prescribed monomer density profile ρ(r).

2. Incompressible A+B homopolymer blend. Find the chemical potential fields
µA(r) and µB(r) that produce the lowest free energy spatial distribution
of type A and B segments in a blend of homopolymers, subject to a local
constraint of incompressibility.

3. Incompressible AB diblock copolymer melt. Find the chemical potential fields
µA(r) and µB(r) that produce the lowest free energy spatial distribution of
type A and B segments of a diblock copolymer, subject to a local constraint
of incompressibility.

The first problem is the simplest of the three since a unique chemical potential field
exists for a given target density pattern. However, it is a particularly important
problem in extending SCFT to dynamics [8, 9, 10], since the density field is more
natural for building models of kinetic evolution, yet the chemical potential field is
required at each time step to embed accurate thermodynamic forces. Problems 2 and 3
require a simultaneous adjustment of the chemical potential fields and the conjugate
densities in order to reach a local minimum of the free energy functional. Ideally in
such problems one would like a global, rather than local, minimum of the free energy,
but this is an issue beyond the scope of the present paper and that often must be sorted
out with physical intuition. In problem 2, the equilibrium density pattern reflects a
macroscopic phase separation [3] between the two components and a long-wavelength
instability of the energy functional. In contrast, problem 3 involves a finite-wavelength
instability associated with microphase separation [18] of the block copolymer melt. In
problems 2 and 3, as we shall discuss, the optimization is complicated by the saddle
point character of the physically relevant solutions.

We now turn to the specific models under investigation. We follow closely the
notation in a recent review [11] and in all cases work in the canonical ensemble.

2.1. Target homopolymer density model. We consider a collection of n flex-
ible homopolymers, each of degree of polymerization N , in a volume V . Of interest
is the functional (not strictly a free energy for this simple model):

G[µ] =

∫
dr µ(r)ρ(r) + nN lnQ[µ],(2.1)

where ρ(r) is a prescribed monomer density field and Q[µ] is the partition function of a
single polymer subject to a chemical potential field µ(r). In the continuous Gaussian
chain model of flexible polymers [4], Q[µ] is given by

Q[µ] =
1

V

∫
dr q(r, 1; [µ]),(2.2)
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where the chain propagator q(r, s; [µ]) satisfies

∂

∂s
q(r, s; [µ]) = ∇2q(r, s; [µ]) − µ(r)q(r, s; [µ]), q(r, 0; [µ]) = 1.(2.3)

Here we have expressed the chain contour variable s in units of N and have ex-
pressed all lengths in units of the unperturbed radius-of-gyration of a polymer, Rg =
(Nb2/6)1/2, where b is the statistical segment length.

The functional G[µ] has a minimum, corresponding to the potential field µ∗(r)
satisfying

δG[µ]

δµ(r)

∣∣∣∣
µ=µ∗

= ρ(r) − ρ̃(r; [µ∗]) = 0,(2.4)

where ρ̃(r; [µ]) is a monomer density operator, reflecting the monomer density gener-
ated by a potential field µ(r). This operator is defined by

ρ̃(r; [µ]) = −nN
δ lnQ[µ]

δµ(r)
=

ρ0

Q[µ]

∫ 1

0

ds q(r, s; [µ])q(r, 1 − s; [µ]),(2.5)

where ρ0 ≡ nN/V = V −1
∫
drρ(r) is the volume-averaged monomer density in the

system.
While G[µ] is convex, the extremum chemical potential µ∗(r) is not unique be-

cause G[µ] and ρ̃(r; [µ]) are invariant to uniform chemical potential shifts, µ(r) →
µ(r) + µ0. We arbitrarily choose to lift this degeneracy by requiring that µ∗(r) have
vanishing spatial average, V −1

∫
dr µ∗(r) = 0.

2.2. Binary homopolymer blend model. This model corresponds to a blend
of type A and B homopolymers subject to a local incompressibility constraint. For
simplicity, we restrict our attention to the case of symmetric chain lengths NA =
NB ≡ N and statistical segment lengths bA = bB ≡ b. A (composition independent)
Flory χ parameter is used to describe the strength of binary contacts between A and B
segments [3]. In the mean-field approximation, the free energy for such a system can
be expressed by the following functional:

F [µA, µB ] =

∫
dr [−fµA − (1 − f)µB + (µA − µB)2/(4χN)]

− fV lnQ[µA] − (1 − f)V lnQ[µB ],(2.6)

where V is the system volume, f is the average volume fraction of type A chains,
and Q[µ] is the single chain partition function defined by (2.2) and (2.3). For the
case of equal amounts of the A and B homopolymers, f = 1/2, this model exhibits a
macroscopic phase separation into coexisting A-rich and B-rich phases for “segregation
strengths” χN exceeding 2. Because of the particular orientation of the mean potential
fields in the complex plane [11], physical solutions correspond to saddle points in
which F [µA, µB ] is minimized with respect to the “exchange” potential field µ−(r) ≡
[µB(r)−µA(r)]/2 and maximized with respect to the “pressure” field µ+(r) ≡ [µA(r)+
µB(r)]/2. It is the latter field that imposes the incompressibility constraint and
produces the saddle point character of the problem. Relevant functional derivatives
are

δF [µ+, µ−]

δµ+(r)
= φ̃A(r; [µ+ − µ−]) + φ̃B(r; [µ+ + µ−]) − 1,(2.7)

δF [µ+, µ−]

δµ−(r)
= (2f − 1) +

2

χN
µ−(r) + φ̃B(r; [µ+ + µ−]) − φ̃A(r; [µ+ − µ−]),(2.8)
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where φ̃A and φ̃B are operators giving the local monomer volume fractions as func-
tionals of the potential fields. These are given by formulas similar to (2.5):

φ̃A(r; [µA]) =
f

Q[µA]

∫ 1

0

ds q(r, s; [µA])q(r, 1 − s; [µA]),(2.9)

φ̃B(r; [µB ]) =
(1 − f)

Q[µB ]

∫ 1

0

ds q(r, s; [µB ])q(r, 1 − s; [µB ]).(2.10)

The SCFT equations to be solved for the saddle point fields µ∗
+(r) and µ∗

−(r) are
obtained by setting the right-hand sides (RHSs) of (2.7) and (2.8) to zero:

φ̃A(r; [µ∗
+ − µ∗

−]) + φ̃B(r; [µ∗
+ + µ∗

−]) − 1 = 0,(2.11)

(2f − 1) +
2

χN
µ∗
−(r) + φ̃B(r; [µ∗

+ + µ∗
−]) − φ̃A(r; [µ∗

+ − µ∗
−]) = 0.(2.12)

2.3. Diblock copolymer melt model. This model corresponds to a melt of
flexible AB diblock copolymers subject to a local incompressibility constraint. For
simplicity, we again restrict our attention to the case of symmetric statistical segment
lengths bA = bB ≡ b and employ a (composition independent) Flory χ parameter to
describe the strength of binary contacts between A and B segments. The relevant free
energy can be expressed by the following functional:

H[µA, µB ] =

∫
dr [−fµA − (1 − f)µB + (µA − µB)2/(4χN)]

− V lnQc[µA, µB ],(2.13)

where V is the system volume, N is the copolymer degree of polymerization, f is the
average volume fraction of type A blocks, and Qc[µA, µB ] is the partition function
for a single copolymer experiencing chemical potentials µA and µB that exert forces,
respectively, on the A and B blocks. This object is given by

Qc[µA, µB ] =
1

V

∫
dr q(r, 1; [µA, µB ]),(2.14)

where the copolymer propagator satisfies

∂

∂s
q(r, s) = ∇2q(r, s) − ψ(r, s)q(r, s), q(r, 0) = 1,(2.15)

and we have suppressed the functional dependence on the potentials. The function
ψ(r, s) is given by

ψ(r, s) ≡
{

µA(r), 0 ≤ s ≤ f,
µB(r), f < s ≤ 1.

(2.16)

For the case of a symmetric diblock copolymer melt, f = 1/2, this model exhibits
a microphase phase separation [18] into a lamellar phase for segregation strengths χN
exceeding 10.495. As in the case of the binary blend, the copolymer problem has
a saddle point character in which H[µA, µB ] is to be minimized with respect to the
exchange potential µ−(r) ≡ [µB(r) − µA(r)]/2 and maximized with respect to the
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pressure µ+(r) ≡ [µA(r) + µB(r)]/2. The first derivatives for the diblock copolymer
melt are

δH[µ+, µ−]

δµ+(r)
= φ̄A(r; [µ±]) + φ̄B(r; [µ±]) − 1,(2.17)

δH[µ+, µ−]

δµ−(r)
= (2f − 1) +

2

χN
µ−(r) + φ̄B(r; [µ±]) − φ̄A(r; [µ±]).(2.18)

The local volume fraction operators φ̄A and φ̄B are given by formulas similar to (2.9)
and (2.10):

φ̄A(r; [µ±]) =
1

Qc[µ±]

∫ f

0

ds q(r, s; [µ±])q†(r, 1 − s; [µ±]),(2.19)

φ̄B(r; [µ±]) =
1

Qc[µ±]

∫ 1

f

ds q(r, s; [µ±])q†(r, 1 − s; [µ±]).(2.20)

Because of the lack of head-to-tail symmetry of a diblock copolymer, a new propaga-
tor q† appears in these equations. It satisfies the modified diffusion equation

∂

∂s
q†(r, s) = ∇2q†(r, s) − ψ†(r, s)q†(r, s), q†(r, 0) = 1,(2.21)

with

ψ†(r, s) ≡
{

µB(r), 0 ≤ s ≤ 1 − f,
µA(r), 1 − f < s ≤ 1.

(2.22)

The SCFT equations for the saddle point fields are obtained as before by setting
the RHSs of (2.17) and (2.18) to zero:

φ̄A(r; [µ∗
±]) + φ̄B(r; [µ∗

±]) − 1 = 0,(2.23)

(2f − 1) +
2

χN
µ∗
−(r) + φ̄B(r; [µ∗

±]) − φ̄A(r; [µ∗
±]) = 0.(2.24)

We note that one way to assess the character (convexity) of functionals such as
F and H is by linearization about stationary points (see, e.g., [11]). However, to our
knowledge, there is no general study to address this question.

3. Numerical methods. Efficient evaluation of the energy functionals and first
derivatives of the three models requires an effective strategy for solving the modified
diffusion equations (2.3), (2.15), and (2.21). Spectral methods, which typically exhibit
exponential convergence in the number of retained modes, Nx, are clearly desirable for
high spatial resolution two- and three-dimensional calculations in simple geometries.
However, the linear operators ∇2 and µ(r) (or ψ or ψ†) appearing in the diffusion equa-
tions are not simultaneously diagonal in either real or reciprocal space. As discussed
recently by Rasmussen and Kalosakas [24], a pseudospectral [14] splitting scheme can
be devised that preserves spectral accuracy in space and has high-order accuracy in
the contour variable s. Moreover, this scheme is conveniently and efficiently imple-
mented with fast Fourier transforms (FFTs). Specifically, (2.3) is solved by stepping
forward in s from the initial condition by means of the formula

q(r, s + ∆s) ≈ exp[−∆sµ(r)/2] exp[∆s∇2] exp[−∆sµ(r)/2]q(r, s),(3.1)
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with errors that are third order in the contour step ∆s. The first and third propagators
on the RHS, exp[−∆sµ(r)/2], are applied at collocation points in real space where they
are diagonal, and the second propagator, exp[∆s∇2], is applied in k-space by means
of an FFT. For cases of periodic boundary conditions, plane wave bases are employed;
for nonperiodic boundary conditions, Chebyshev polynomials collocated on the nodes
of cosines prove most convenient [14]. This algorithm is unconditionally stable in
any number of dimensions and is considerably more accurate than finite difference
schemes based on forward time centered space, Crank–Nicolson, or Dufort–Frankel
contour stepping. Furthermore, the pseudospectral technique is nearly optimal: the
computational effort required to solve a diffusion equation for one realization of the
potential fields scales as NsNx logNx, where Ns is the number of chain contour steps.

The expressions for the derivatives of the energy functionals are linearly related
to density operators, which are, in turn, nonlinearly and nonlocally related to the
propagators q and q† by expressions such as (2.5). These expressions are most conve-
niently evaluated in real space at the collocation points of the basis functions. Because
q(r, s; [µ]) is evaluated by (3.1) at equally spaced contour positions, a Newton–Cotes
formula with comparable accuracy is most convenient for evaluating the contour in-
tegrals in expressions such as (2.5). In particular, a composite Simpson’s rule with
truncation error that is O(∆s4) is our method of choice. The computational effort to
evaluate expressions such as (2.5), (2.9)–(2.10), and (2.19)–(2.20) by such a procedure
is evidently comparable to a solution of the diffusion equation, i.e., O(NsNx logNx).

The problem of converging the chemical potential fields to a minimum or saddle
point can be viewed alternatively as a nonlinear set of equations to be solved for the
spectral elements or collocated fields (e.g., (2.4), (2.11)–(2.12), or (2.23)–(2.24)) or
as a nonlinear optimization problem. Adopting the first perspective, quasi-Newton
methods are often employed when implementing the fully spectral approach to SCFT
devised by Matsen and Schick [20]. These techniques, however, scale at best as O(N3

x).
For high-resolution simulations with Nx ∼ 103 − 106 spatial modes, such methods are
prohibitively expensive. We shall take the perspective in the present paper that any
potential field update scheme costing more than O(Nx logNx) operations per iteration
is unacceptable for large scale computation. The specific approaches to be followed
are somewhat model dependent, so we consider them in the subsequent sections on a
case-by-case basis.

3.1. Target homopolymer density problem. This problem is the easiest,
because G[µ] has a minimum that corresponds to our desired solution µ∗(r), and that
solution is unique up to a uniform shift. A natural approach is to try a relaxation
(iterative) scheme in which we introduce a fictitious “time” variable t and relax down
the gradient of G:

∂

∂t
µ(r, t) = − δG[µ]

δµ(r, t)
= ρ̃(r; [µ(t)]) − ρ(r).(3.2)

This can be viewed either as a relaxation scheme for solving (2.4) or a continuous
steepest descent approach to the problem of minimizing G[µ]. Regardless of the
perspective, we should point out that the “dynamics” described by (3.2) are not
physical polymer dynamics and that the goal is simply to find the steady state so-
lution µ∗(r) as quickly and efficiently as possible. Every evaluation of the RHS of
this equation involves a solution of the diffusion equation for a fixed value of µ(r, t)
and subsequent evaluation of the density operator, each costing of order NsNx logNx

operations. Thus, it pays to favor stability over accuracy in time integration schemes,
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since that allows larger time steps ∆t and presumably fewer total iterations (through-
out this work the words iteration and relaxation are used interchangeably) to reach
the steady state. As a result, a high-order time integration scheme for (3.2), such
as a fourth-order Runge–Kutta or a multistep method, would not be appropriate for
high-resolution SCFT calculations.

Another issue, noted previously, is that the density operators prove to be invariant
to uniform shifts in the chemical potential fields. In the case of (3.2) this implies that
the k = 0 Fourier component of µ(r) does not relax. Numerical errors can thus
accumulate and cause the spatial average of µ(r) to drift and ultimately create an
overflow or underflow situation. This is easily rectified, however, by imposing at each
iteration uniform shifts in the potential to pin its mean value at zero. Interestingly,
this problem disappears if the polymer theory is reformulated in the grand canonical
ensemble.

A very simple and useful explicit time integration scheme is the forward Euler
formula applied at the half step

µj+1/2(r) = µj(r) − ∆t
δG[µj ]

δµj(r)
,(3.3)

followed by a uniform field shift as described above:

µj+1(r) = µj+1/2(r) − 1

V

∫
dr µj+1/2(r).(3.4)

This simple scheme is much more stable than other low-order explicit time stepping
algorithms and is quite efficient for target density patterns without large gradients.
The integral in the shift (3.4) can be computed with spectral accuracy by simply using
the composite trapezoidal rule, as the integrand is periodic.

More stable time stepping algorithms can be constructed by using fully implicit
discretizations, i.e., by applying an approximation to ρ̃ at the future, j + 1/2, rather
than the present time j. Unfortunately such discretizations would yield at each it-
eration step a nonlinear system of equations for µj+1/2 whose solution would be as
expensive as solving the original equation (2.4). A more efficient approach is to use
a semi-implicit discretization in which the leading-order term (at high frequencies)
is treated implicitly, while the rest of the RHS is evaluated explicitly. A carefully
designed semi-implicit method can allow large step sizes and still retain computa-
tional efficiency per step. However, due to the highly nonlocal and nonlinear nature
of SCFT equations, such semi-implicit schemes are nontrivial to identify. To obtain
a class of these schemes we follow an idea motivated by the small scale decompo-
sition introduced by Hou, Lowengrub, and Shelley [17] in the context of boundary
integral methods for interfacial dynamics. A similar idea but for local terms has been
used by Badalassi, Ceniceros, and Banerjee [1] in phase field methods. We begin by
expanding the density operator for rapidly varying potentials, i.e., µ(r/ε) for ε → 0.
This is equivalent to an asymptotic expansion for small µ (the so-called random phase
approximation expansion [18, 3]). By expanding the solution of (2.3) to first order in
µ and substituting into (2.5), it is straightforward to show that

ρ̃(r; [µ]) = ρ0[1 −
∫

dr′ g(r − r′)µ(r′) + O(µ2)].(3.5)

The kernel g(r) in this expression decays on the scale of Rg (note that this was the
length scale used for nondimensionalization) and is most conveniently expressed in
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terms of its Fourier transform

ĝ(k) ≡
∫

dr exp(ik · r)g(r) = 2(e−k2

+ k2 − 1)/k4,(3.6)

which is the familiar Debye function [3]. Hence, the Jacobian

δ2G[µ]

δµ(r)δµ(r′)
= ρ0g(r − r′) + O(µ)(3.7)

is diagonal in k-space at large k (small ε) and positive definite. Morse [22] has recently
used this fact to speed up the computation of the Jacobian required in quasi-Newton
schemes for implementing the fully spectral version of SCFT.

With the following shorthand for a convolution, g ∗ µ ≡
∫
dr′ g(r − r′)µ(r′), our

semi-implicit time stepping algorithm can be written as

µj+1/2 − µj

∆t
= −ρ0 g ∗ µj+1/2 + ρ̃([µj ]) − ρ + ρ0 g ∗ µj ,(3.8)

followed by the uniform shift of (3.4). Equation (3.8) can be efficiently solved for
µj+1/2(r) by applying a single FFT-inverse FFT pair, requiring O(Nx logNx) opera-
tions. The shift of (3.4) can be done directly in Fourier space by setting to zero the
zeroth mode of µj+1/2(r) before applying the inverse FFT. That is,

µ̂j+1(k) = µ̂j(k) +
∆t

1 + ∆tρ0ĝ(k)
̂(ρ̃[µj ] − ρ)(k), k �= 0,(3.9)

µ̂j+1(0) = 0,(3.10)

where the caret denotes Fourier transform. Note that in Fourier space the semi-
implicit scheme has the same form as the explicit method but with a frequency-
dependent step size τ(k) = ∆t/(1 + ∆tρ0ĝ(k)) that can be precomputed once. With
these considerations the cost of the semi-implicit method is nearly identical to that
of the explicit method, as we will see in the numerical experiments. Moreover, for
large ∆t the step size τ(k) approaches asymptotically g(k)−1 which as (3.7) shows
is an approximation to the inverse of the Jacobian at small scales. Thus the semi-
implicit relaxation for large ∆t can be viewed as a quasi-Newton method at small
scales.

A third strategy for obtaining the optimum potential field µ∗(r) of the target
homopolymer density problem is to depart from (3.2) and instead adopt the conju-
gate gradient method for nonlinear optimization [23]. For the present model, gradi-
ents are evaluated as ρ(r) − ρ̃(r; [µ]), and full line minimizations are performed with
the functional G[µ] at each iteration to determine the step length along the search
direction. Line minimizations are expensive, with each function evaluation costing
O(NsNx logNx), so it remains to be seen whether this extra computational burden
is rewarded by proportionally faster convergence than the other two algorithms. We
have implemented both Fletcher–Reeves and Polak–Ribière variants for computing
conjugate gradient directions. The Polak–Ribière scheme seems to perform better
when the residuals are small, but in general there is little apparent difference in the
performance of the two variants. Here we report results using the Polak–Ribière
scheme.
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3.2. Binary blend model. The relaxation methods described in the previous
section can be easily extended to the binary blend model, except that care must be
taken to respect the saddle point nature of the SCFT solutions. Specifically, since the
free energy functional F [µ+, µ−] is to be maximized with respect to µ+ and minimized
with respect to µ−, (3.2) should be generalized to

∂

∂t
µ+(r, t) =

δF [µ+, µ−]

δµ+(r, t)
,(3.11)

∂

∂t
µ−(r, t) = −δF [µ+, µ−]

δµ−(r, t)
,(3.12)

which generates potential field updates up the gradient in the µ+ coordinate and down
the gradient in µ−. The explicit forward Euler scheme is evidently

µ
j+1/2
+ (r) = µj

+(r) + ∆t
δF [µj

+, µ
j
−]

δµj
+(r)

,(3.13)

µ
j+1/2
− (r) = µj

−(r) − ∆t
δF [µj

+, µ
j
−]

δµj
−(r)

,(3.14)

where (2.7)–(2.8) are used to evaluate the derivatives. Subsequent shifts analogous to
(3.4) are then applied to pin the k = 0 components of the two fields to the origin:

µj+1
± (r) = µ

j+1/2
± (r) − 1

V

∫
dr µ

j+1/2
± (r).(3.15)

Construction of a suitable semi-implicit scheme proves to be slightly more in-
volved. Expanding the functional derivatives to first order in µ± leads to

δF [µ+, µ−]

δµ+(r)
= −g ∗ [µ+ + (1 − 2f)µ−] + O(µ2

±),(3.16)

δF [µ+, µ−]

δµ−(r)
=

2

χN
µ− − g ∗ [(1 − 2f)µ+ + µ−] + O(µ2

±).(3.17)

Clearly, the use of (3.16) added and subtracted to the RHS of (3.11) at future and
present times, respectively, is stabilizing. However, similar addition and subtraction
of (3.17) to the RHS of (3.12) is destabilizing. It is therefore not advantageous to
utilize the full linearized form of δF/δµ− at the future time. Also the pressure-like
potential µ+ is the stiffest (least smooth) of the two chemical potentials, and thus
it makes sense to relax it first and use its updated value immediately after in the
relaxation of µ−, in the manner of Gauss–Siedel. The following semi-implicit-Siedel
(SIS) scheme addresses these issues and offers excellent performance:

µ
j+1/2
+ − µj

+

∆t
= −g ∗ µj+1/2

+ +
δF [µj

+, µ
j
−]

δµj
+

+ g ∗ µj
+,(3.18)

µ
j+1/2
− − µj

−
∆t

= −(2/χN)µ
j+1/2
− −

δF [µ
j+1/2
+ , µj

−]

δµj
−

+ (2/χN)µj
−,(3.19)
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followed by the shifts of (3.15). Equation (3.18) is efficiently solved just as in the
target density model by applying an FFT-inverse FFT pair, while (3.19) is trivially

implicit, requiring only algebraic manipulations to solve for µ
j+1/2
− on the colloca-

tion points in real space. We note that a second solution of the diffusion equations
and derivative evaluation is required between (3.18) and (3.19) in order to evaluate

δF [µ
j+1/2
+ , µj

−]/δµj
− at the intermediate state of new µ+ and old µ−. While this ap-

proximately doubles the computational cost per time step over the explicit scheme,
we shall see that this semi-implicit algorithm more than compensates by yielding in
general a much faster convergence.

Finally, we consider whether an optimization scheme could be applied in place
of (3.11) and (3.12) to analyze the blend model. The saddle point nature of the
problem prohibits direct application of the conjugate gradient method. A standard
approach [23] is to construct an auxiliary functional

F̃ [µ+, µ−] =
1

2

∫
dr

[(
δF

δµ+(r)

)2

+

(
δF

δµ−(r)

)2
]

(3.20)

that evidently has local minima at solutions of the SCFT equations. Use of this
functional, however, has two drawbacks. The first derivatives of F̃ involve the second
derivatives of F , which are expensive to compute with O(NsN

2
x) effort. Moreover,

even if one were to approximate the second derivatives of F or attempt to compute
them numerically, it appears that the functional F̃ confers an unphysical local stability
to the trivial homogeneous solution µ∗

+ = µ∗
− = 0. With analytical approximations

to the second derivatives, we found it difficult to converge solutions other than the
trivial solution. Since nonlinear optimization of saddle point problems is currently
a very active area of research, it may be the case that new methods will become
available to apply to saddle point SCFT problems. In the meantime, we expect that
efficient time stepping algorithms such as those outlined in this work for the solution
of (3.11)–(3.12) will prove to be the methods of choice for analyzing the macrophase
separation of homopolymers [3].

3.3. Diblock copolymer model. The development of explicit and semi-implicit
time stepping algorithms for the diblock copolymer model closely follows that for the
binary blend. Equations (3.11)–(3.12) still apply but with derivatives δF [µ±]/δµ±
replaced by δH[µ±]/δµ± given in (2.17)–(2.18). The explicit forward Euler scheme is
identical to (3.13)–(3.14):

µ
j+1/2
+ (r) = µj

+(r) + ∆t
δH[µj

+, µ
j
−]

δµj
+(r)

,(3.21)

µ
j+1/2
− (r) = µj

−(r) − ∆t
δH[µj

+, µ
j
−]

δµj
−(r)

,(3.22)

followed by the shifts of (3.15).
To develop a semi-implicit scheme, it is again helpful to expand the derivatives

to first order in µ±. We find that

δH[µ+, µ−]

δµ+(r)
= −(gAA + 2gAB + gBB) ∗ µ+ + (gAA − gBB) ∗ µ− + O(µ2

±),(3.23)

δH[µ+, µ−]

δµ−(r)
=

2

χN
µ− + (gAA − gBB) ∗ µ+ − (gAA − 2gAB + gBB) ∗ µ− + O(µ2

±),(3.24)
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where again ∗ denotes convolution and the symmetric 2× 2 matrix of kernels is most
conveniently expressed as Fourier transforms:

ĝAA(k) =
2

k4
[fk2 + exp(−k2f) − 1],(3.25)

ĝAB(k) =
1

k4
[1 − exp(−k2f)][1 − exp(−k2(1 − f))],(3.26)

ĝBB(k) =
2

k4
[(1 − f)k2 + exp(−k2(1 − f)) − 1].(3.27)

These functions are well known as the relevant Debye scattering functions for diblock
copolymers [18]. Following the same arguments as those used to deduce the blend
algorithm described in (3.18)–(3.19), we propose the following SIS scheme for the
diblock melt:

µ
j+1/2
+ − µj

+

∆t
= −(gAA + 2gAB + gBB) ∗ µj+1/2

+ +
δH[µj

+, µ
j
−]

δµj
+

(3.28)

+ (gAA + 2gAB + gBB) ∗ µj
+,

µ
j+1/2
− − µj

−
∆t

= −(2/χN)µ
j+1/2
− −

δH[µ
j+1/2
+ , µj

−]

δµj
−

+ (2/χN)µj
−,(3.29)

followed by the zeroth mode shifts. As in the blend case, a second solution of the diffu-
sion equations (2.15) and (2.21) and density operator evaluation according to (2.19)–

(2.20) is required before applying (3.29) in order to evaluate δH[µ
j+1/2
+ , µj

−]/δµj
− for

the updated pressure field µ
j+1/2
+ . Equations (3.28) and (3.29) have the same struc-

ture as in the SIS method for the blend, and thus they can be solved efficiently in
exactly the same way for analyzing the microphase separation of block copolymers [3].

3.4. Multilevel embedding. One can view (2.4) for the optimal field µ∗(r)
as a nonlinear equation, and, as such, one is naturally tempted to try the nonlinear
multigrid algorithm [2]. The efficacy of nonlinear multigrid relies heavily on having a
relaxation method that quickly damps high-frequency components of the error. How-
ever, due to the highly nonlocal nature of (2.4) (and of the SCFT equations in general)
such relaxation methods would be extremely difficult and computationally expensive
to achieve. The semi-implicit small scale decomposition that we propose here does
a stronger high-modal damping in the error than the explicit Euler technique, but
both schemes primarily enhance the damping of low-frequency modes. The conjugate
gradient method is itself a roughening algorithm. Thus, the fine-to-coarse grid process
of the multigrid method for the purpose of a coarse grid correction of the error would
not work in the present context of the SCFT equations. However, one can still use
coarse grid information to construct an initial guess for the fine grid iteration, i.e., a
coarse-to-fine process. Moreover, we can apply this strategy in a multilevel fashion
and to all the iterative relaxation schemes for solving the SCFT equations.

To simplify the description of our multilevel approach let us consider the simplest
case of finding the chemical potential field for a prescribed inhomogeneous density,
i.e., the problem of section 2.1. Let us assume a uniform discretization and denote by
Nx and Ns the number of spatial nodes (collocation points) and the number of chain
contour steps, respectively. (Nx, Ns) defines the finest grid level, and, assuming that
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Nx and Ns are powers of two, one can choose the coarsest level (N0
x , N

0
s ) such that

(Nx, Ns) = (2LN0
x , 2

LN0
s ), where L is an integer. This will give us L + 1 grid levels:

(N l
x, N

l
s) = (2lN0

x , 2
lN0

s ), l = 0, 1, . . . L,(3.30)

with (NL
x , N

L
s ) = (Nx, Ns).

Since the unconditionally stable scheme (3.1) is used, we are only constrained
by accuracy and efficiency in choosing N l

s. Given the high-order accuracy of our
discretization these two requirements can be accomplished by taking N l

s ∝ N l
x. Thus,

we can label each grid level with just one of these two parameters. Let µ
(0)

N l
x

be the

initial guess of the chemical potential at a given resolution N l
x, and denote by Rml

[µ
(0)

N l
x
]

the result of applying ml (explicit or semi-implicit) relaxations (“time” steps) to it.
With this notation the multilevel embedding algorithm can be described simply as
follows:

1. Input initial guess at coarsest level, µ
(0)
N0

x
.

2. For l = 0 : L− 1, relax and interpolate to next finer level:

µ
(1)

N l
x

= Rml
[µ

(0)

N l
x
];(3.31)

µ
(0)

N l+1
x

= I
2N l

x

N l
x

[µ
(1)

N l
x
];(3.32)

3. Starting with µ
(0)

NL
x
, relax at finest level until the desired tolerance in the error

is met.
In (3.32), I

2N l
x

N l
x

stands for spatial interpolation from grid level l to grid level l + 1.

Spectral interpolation in this case can be efficiently implemented by just padding

with zeros the Fourier transform of µ
(1)

N l
x

to correspond to that of a 2N l
x long array

and transforming back.
The number of relaxations per level ml should be chosen such that at the end

only a few finest grid relaxations are needed to achieve a given tolerance. Thus, for
computational efficiency ml should decrease with l. Here we choose

ml =
M

2l
, l = 0, 1, . . . L− 1,(3.33)

where M is the number of relaxations at the coarsest level. Clearly, the choice of M
depends on the problem, the particular relaxation scheme used, and the desired toler-
ance. An appropriate M can be predetermined by running fast coarse grid relaxations.
Here we illustrate only the potential of this technique without fine-tuning the number
of sweeps ml.

4. Results. We now examine the performance of the above schemes with a series
of numerical experiments in one spatial dimension for each model. All the methods
considered here have been implemented in FORTRAN. Fourier transforms are com-
puted using the FFTW [12] package. The codes were run in the same dedicated
computer, a Pentium III 1GHz 2Gb RAM workstation under linux. The step size,
∆t, is always selected as large as the stability of the methods permits and so that the
error is decreased the fastest.

4.1. Target homopolymer density problem. For this model we consider the
following target density:

ρ(r) = ρ0[1 + tanh(η cos(2πL−1r))], 0 ≤ r ≤ L,(4.1)
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Fig. 1. Target homopolymer density ρ(r). (a) η = 2 and (b) η = 5.
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Fig. 2. Target homopolymer density model; η = 2. Error for explicit (dashed-dotted curve) and
semi-implicit (continuous curve) methods.

where ρ0 is the volume-averaged monomer density, η is a constant, and L is the
domain size. We take L = 10 and ρ0 = 1/2 and consider two values of η, 2 and 5,
which correspond to a smooth target and a “sharper” target, respectively, as shown
in Figure 1. We set initially µ(r) ≡ 0. To measure the error we use the l1 norm

|f |1 ≡ 1

Nx

Nx∑
j=1

|f(rj)|.(4.2)

Figure 2 shows the error |ρ − ρ̃|1 in the case of η = 2 against the number of
iterations for both the explicit Euler relaxation and the semi-implicit scheme with
∆t = 2.5 and ∆t = 21, respectively. Nx = 128 and Ns = Nx are used for both
schemes. Because in Fourier space the semi-implicit scheme becomes explicit, its
computational cost is nearly the same as that of the explicit method. Indeed, 1000
iterations took 2.040sec for the explicit and 2.050sec for the semi-implicit. As observed
in Figure 2 the schemes are comparable up to errors of O(10−4) where a crossover takes
place and the faster decay of the semi-implicit outperforms the explicit relaxation.
Table 1 compares the explicit, semi-implicit, and conjugate gradient methods. The
conjugate gradient method has the fastest rate of convergence, but, because it requires
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Table 1

Target homopolymer density model; η = 2. Comparison of the one-level schemes. NC denotes
no convergence to a particular error level.

Error Explicit Semi-implicit Conjugate gradient

Iterations CPU time(sec) Iterations CPU time(sec) Iterations CPU time(sec)

10−3 41 0.10 47 0.11 11 0.22

10−5 195 0.41 175 0.37 32 0.56

10−8 1194 2.43 452 0.93 NC –

10−12 7721 15.74 1274 2.57 NC –
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Fig. 3. Solution µ for the target homopolymer density model; η = 2.

Table 2

Target homopolymer density model; η = 5. Comparison of the one-level schemes.

Error Explicit Semi-implicit Conjugate gradient

Iterations CPU time(sec) Iterations CPU time(sec) Iterations CPU time(sec)

10−3 313 0.69 307 0.65 48 0.87

10−4 2743 5.56 2753 5.62 145 2.48

10−5 14854 29.38 15607 32.39 4875 8.67

an average of 10 to 11 energy function evaluations for the line minimization per
iteration, it performs the poorest for this particular case. Moreover, the conjugate
gradient method stalls at an error level of 10−7. Note that for an error less than 10−12

the semi-implicit scheme converges 6 times faster than the explicit one. The numerical
solution µ with |ρ− ρ̃|1 = 10−12 is shown in Figure 3.

We now turn to η = 5. As Table 2 shows, for this sharper target, the explicit
method (∆t = 2.5) and the semi-implicit scheme (∆t = 19) have a comparable perfor-
mance with a much slower convergence rate than that observed for η = 2. Note also
that at high accuracy the conjugate gradient method performs the best of the three
methods, reaching an error of 10−5 almost 4 times faster than the other two schemes.
The numerical solution µ with |ρ − ρ̃|1 = 10−5 is shown in Figure 4. This is a much
less smooth function than that for η = 2 and thus with more high-modal components,
which explains the slowdown in the convergence of the two descent-type methods.
As a consequence of the slow convergence rate, the computational cost for finding µ
in the case of a sharp target density can put a serious constraint on high-resolution
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Fig. 4. Solution µ for the target homopolymer density model; η = 5.
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Fig. 5. Target homopolymer density model; η = 5. Comparison of the one-level semi-implicit
scheme (dashed-dotted curve) and its multi-level version (continuous curve).

computations, especially in multidimensions. We can cut down significantly the com-
putational cost by using the multilevel strategy described in section 3.4. Figure 5
shows the behavior of the error for the semi-implicit scheme (dashed-dotted curve)
and for its multilevel (continuous curve) version. The coarsest grid is N0

x = 32, and
thus three levels are used in this case. There are jumps in the error when a change of
level is performed and interpolation is employed, but the error quickly goes back to its
one-level decaying rate that is approximately independent of the resolution (Nx, Ns).
The multilevel algorithm takes 3.74sec to achieve an accuracy of 10−5 in the error,
almost one ninth of the time employed by the one-level scheme.

4.2. Binary blend model. We start with χN = 4, L = 10, and the symmetric
case f = 1/2. We first use the following initial conditions for the chemical potentials:

µ−(r) = 0.1 cos(2πL−1r),(4.3)

µ+(r) = −0.1 cos(2πL−1r).(4.4)

We fix the (finest) resolution to Nx = 256 and Ns = Nx. Figure 6 demonstrates
the superiority of the SIS scheme (∆t = 50) over the explicit relaxation (∆t = 1.5).
Even though the SIS costs roughly twice as much as the explicit scheme per iteration,
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Fig. 6. Binary blend model; χN = 4, f = 1/2, L = 10. Deterministic initial conditions.
Comparison of the SIS scheme (continuous curve) and the explicit Euler scheme (dashed-dotted
curve).

Table 3

Binary blend model; χN = 4, f = 1/2, L = 10, Nx = 256, and Ns = Nx. In the ML-SIS,
A/B, A is the number of finest grid iterations and B is the total number of iterations.

Error Explicit SIS ML-SIS

Iterations CPU time(sec) Iterations CPU time(sec) Iterations CPU time(sec)

10−3 26 0.61 14 0.65 1/15 0.10

10−5 70 1.55 19 0.89 2/30 0.18

10−8 225 5.27 36 1.68 10/76 0.60

10−12 717 16.50 65 2.94 21/143 1.21

its fast convergence quickly compensates the extra work converging to O(10−14) al-
most 6.5 times faster. Table 3 presents a comparison of these two methods along with
the multilevel SIS. Again for the latter, N0

x = 32 was used, and thus the computations
were performed using four levels. The multilevel embedding of the SIS method can
further speed up the computations by reducing the number of finest grid iterations.
As Table 3 shows, the multilevel SIS (ML-SIS) can be over 13 times faster than the
explicit method at an error of 10−12. The local monomer volume fractions and the
approximations to the saddle point fields µ∗

− and µ∗
+ are shown in Figure 7. As antici-

pated in constructing the SIS scheme, µ∗
− is smoother than µ∗

+, which has pronounced
cusps in the interfacial regions.

The performance difference between the explicit and the SIS methods is even
greater in the case of random initial conditions for the chemical potentials, as illus-
trated in Figure 8. It takes the explicit scheme 1000 iterations (22.67sec) to reduce the
error to O(10−6), while the SIS method accomplishes this in 40 iterations (1.82sec),
i.e., over 12 times faster. With the random initial conditions for the chemical po-
tentials, a different solution is selected as shown in Figure 9. The same pattern is
selected by the explicit, the SIS, and the ML-SIS method. The ML-SIS converges to
this solution, in a fraction of the SIS time.

We now consider larger χN , i.e., stronger segregation of the A and B polymer
segments, and larger domain size L. We take χN = 8, L = 20, and f = 1/2 with initial
conditions (4.3) and (4.4). Figure 10 presents the error plotted against the number
of iterations. The error for the explicit method (∆t = 0.25) shows an oscillatory
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Fig. 7. Binary blend model; χN = 4, f = 1/2, L = 10. Deterministic initial conditions.
(a) φ̃A and φ̃B. (b) µ∗

− and µ∗
+. Error = 10−12.
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Fig. 8. Binary blend model; χN = 4, f = 1/2, L = 10. Random initial conditions. Comparison
of the SIS scheme (continuous curve) and the explicit Euler scheme (dashed-dotted curve).

behavior, and its minimum value after 500 iterations is only 2.5 × 10−3. The SIS
scheme (∆t = 50) converges quickly, reaching an error of 2×10−13 after 500 iterations
in 22.88sec of CPU time. The ML-SIS scheme with N0

x = 64 (three levels) can reach
the same accuracy in just 6.05sec. The numerical solutions are shown in Figure 11.
A similar performance of the methods is observed for the asymmetric case. The
solution for f = 0.3 is presented in Figure 12. The explicit scheme fails to converge
below 5 × 10−3, while the SIS method reaches an error of 4 × 10−13 at the end of
the 500 iterations. The superiority of the SIS scheme over the explicit method is
again even greater in the case of random initial conditions. The explicit scheme fails
to converge below an error of 10−2, while the SIS scheme converges quickly up to
round-off error level in 650 iterations with ∆t = 25.

4.3. Diblock copolymer model. We consider first for this model the case
χN = 16, L = 10, f = 1/2, and random initial conditions for the potentials. We
take again the (finest) resolution to be Nx = 256 and Ns = Nx. Figure 13 compares
the behavior of the error for the explicit (∆t = 4) and the SIS (∆t = 500) schemes.
The detailed performance of the methods is listed in Table 4, where representative
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Fig. 9. Binary blend model; χN = 4, f = 1/2, L = 10. Random initial conditions. (a)
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Fig. 10. Binary blend model; χN = 8, f = 1/2, L = 20. Deterministic initial conditions.
Comparison of the SIS scheme (continuous curve) and the explicit Euler scheme (dashed-dotted
curve) and the ML-SIS scheme (dotted).

multilevel numbers are also shown. For this χN the explicit and the SIS schemes are
comparable at low accuracy (O(10−5)). At high accuracy the SIS scheme becomes
more than twice as fast as the explicit method. The SIS scheme reaches round-off
error level at about 350 iterations. For an error of 10−12 the ML-SIS (with four levels)
cuts down the computational cost of the one-level SIS by a factor of more than 6 and
by over a factor of 12 for the explicit method. Figure 14 shows the solution for an
error equal to 10−12.

We now increase the χN parameter and reduce the domain size as follows:
χN = 25, L = 5. Again we consider the symmetric case f = 1/2 and random
initial conditions for the potentials. The error plotted against the number of itera-
tions for the explicit method (∆t = 4) and for the SIS relaxation (∆t = 500) appears
in Figure 15. The two methods give now a slightly slower error decay, and the ex-
plicit scheme presents a different behavior at the first 200 iterations before going to
a steady monotone decay. The detailed comparison of their performance at several
accuracies is presented in Table 5. At high accuracy, the SIS method is still superior
to the explicit relaxation and for an error = 10−12 is over twice as fast. The solution
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Fig. 11. Binary blend model; χN = 8, f = 1/2, L = 20. (a) φ̃A and φ̃B. (b) µ∗
− and µ∗
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Error = 2 × 10−13.
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Fig. 12. Binary blend model; χN = 8, f = 0.3 (asymmetric), L = 20. (a) φ̃A and φ̃B.
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+. Error = 4 × 10−13.

is shown in Figure 16.
As the last case we consider larger χN . We take χN = 40, L = 5, f = 1/2,

and random initial conditions. Figure 17 compares the decay rate of the error for the
explicit method (∆t = 1) and for the SIS scheme (∆t = 20). At this χN , the explicit
Euler method fails to converge below an error of O(10−3), while the SIS scheme can
easily attain an error at round-off level in a few hundred iterations. Figure 18 compares
the SIS with its multilevel version for the case of three levels and ∆t = 40. The SIS
reaches an error of 10−10 in 20.06sec, while the ML-SIS can reach such accuracy in
5.54sec. The solution is shown in Figure 19.

5. Discussion and conclusions. We presented and examined several numer-
ical methods for solving the self-consistent mean-field equations for inhomogeneous
polymers in three illustrative problems. A new class of efficient semi-implicit meth-
ods and a multilevel strategy were proposed. At high accuracy, the semi-implicit
methods consistently outperform the explicit relaxation scheme. When random con-
ditions and/or strongly segregated polymers are considered, the superiority of the
semi-implicit schemes is even more pronounced. Furthermore, by embedding the new
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Fig. 13. Copolymer melt model; χN = 16, f = 1/2, L = 10. Random initial conditions.
Comparison of the SIS scheme (continuous curve) and the explicit Euler scheme (dashed-dotted
curve).

Table 4

Copolymer blend model; χN = 16, f = 1/2, L = 10, Nx = 256, and Ns = Nx. In the ML-SIS
(four levels, ∆t = 200), A/B, A is the number of finest grid iterations and B is the total number of
iterations.

Error Explicit SIS ML-SIS

Iterations CPU time(sec) Iterations CPU time(sec) Iterations CPU time(sec)

10−3 108 2.34 24 1.06 1/43 0.15

10−5 183 4.00 106 4.59 6/110 0.50

10−8 587 12.97 188 8.03 15/190 0.99

10−12 1173 25.43 298 12.77 23/338 1.64
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Fig. 14. Copolymer melt model; χN = 16, f = 1/2, L = 10. Random initial conditions.
(a) φ̄A and φ̄B. (b) µ∗

− and µ∗
+. Error = 1 × 10−12.

semi-implicit relaxation schemes into the proposed multilevel strategy, we obtained
methods that can achieve computational savings of as much as an order of magnitude
for the one-dimensional problems studied here. We expect that the multilevel strategy
will be even more beneficial when scaling up to high-resolution SCFT simulations in
two and three dimensions [27]. Finally, we note that an alternative SCFT relaxation
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Fig. 15. Copolymer melt model; χN = 25, f = 1/2, L = 5. Random initial conditions.
Comparison of the SIS scheme (continuous curve) and the explicit Euler scheme (dashed-dotted
curve).

Table 5

Copolymer blend model; χN = 25, f = 1/2, L = 5, Nx = 256, and Ns = Nx. In the ML-SIS
(four levels, ∆t = 80), A/B, A is the number of finest grid iterations and B is the total number of
iterations.

Error Explicit SIS ML-SIS

Iterations CPU time(sec) Iterations CPU time(sec) Iterations CPU time(sec)

10−3 89 1.93 59 2.58 2/72 0.25

10−5 229 4.95 118 5.13 7/136 0.58

10−8 699 15.00 206 9.01 21/231 1.36

10−12 1365 29.62 324 13.92 43/375 2.54
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Fig. 16. Copolymer melt model; χN = 25, f = 1/2, L = 5. Random initial conditions.
(a) φ̄A and φ̄B. (b) µ∗

− and µ∗
+. Error = 1 × 10−12.

scheme employing Anderson mixing has been proposed by Thompson, Rasmussen,
and Lookman [28]. This scheme might be fruitfully combined with the multilevel
strategy described here.
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Fig. 17. Copolymer melt model; χN = 40, f = 1/2, L = 5. Random initial conditions.
Comparison of the SIS scheme (continuous curve) and the explicit Euler scheme (dashed-dotted
curve).
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Fig. 18. Copolymer melt model; χN = 40, f = 1/2, L = 5. Random initial conditions. The
SIS scheme (continuous curve) and the ML-SIS (dotted curve).
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Fig. 19. Copolymer melt model; χN = 40, f = 1/2, L = 5. Random initial conditions.
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