
Math 117: The Completeness Axiom

Theorem. Let D be a natural number such that D is not a perfect square. There is no
rational number whose square equals D. (I.e.,

√
D is not a rational number.)

Lemma. Let D be a natural number such that D is not a perfect square. Then there exists
a natural number λ such that λ2 < D < (λ + 1)2.

Proof of lemma. Homework!

Proof of theorem by contradiction. Assume r is a rational number such that r2 = D.

Obviously, r 6= since D ≥ 1. We can assume r > 0 (otherwise, is a rational number

such that ( )2 = r2 = D and > 0.) Since r is rational and r > 0, there exist positive

integers u and t with such that r = t
u
. Then, t2 = . Using

the lemma, there exists a natural number λ such that λ2 < D < (λ + 1)2. Therefore,

< = t2 < .

Therefore, since u, t, and λ are positive, < t < . These inequalities tell us

that is positive and that < u. We rewrite the fraction t
u

as follows:
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Letting t′ = and u′ = , notice these are both positive integers and

r = . Since u′ < u and t′ = < t, this contradicts the fact that r = t
u

was

. �

Note. Theorem 12.1 in the book is stated only for prime natural numbers. However, the
proof can be adapted to work for all natural numbers that are not a perfect squares by using
a little bit of number theory (like prime factorizations). Notice the proof given in the book
is also a proof by contradiction and even arrives at the same contradiction we did (after you
assume the rational number such that r2 = D is written in lowest terms, it turns out it
couldn’t have been!)



Consider the set T = {r ∈ Q : 0 < r2 < 2}.

Does this set have an upper bound in Q?

·

But we don’t expect it to have a “least upper bound” (a supremum) in Q. However, we do
expect T to have a supremum in R – namely, we expect

√
2 to be the “least upper bound.”

Definitions. Let S be a subset of R.

· A real number x is an upper bound for S iff for every .

· A real number s is the supremum of S (s = sup S) iff both

(a) s is for S.

(b) for every x , there exists k such that .

· A real number m is the maximum of S iff m is and .

We can similarly define lower bound, infimum (the “greatest lower bound”), and minimum.
(Homework: Read Practice 12.6)

The Completeness Axiom. For every nonempty subset S of the real numbers is that is
bounded above, sup S exists and is a real number.

Using the completeness axiom we can prove that
√

2 exists! In other words, there exists a
positive number x ∈ R such that x2 = 2. In fact, we will prove that

√
D exists for every

natural number D.

Theorem. Let D be a natural number. Then, there exists a positive real number x such
that x2 = D.

Proof. Let S = {r ∈ Q : 0 < r2 < D}. Since D ≥ 1, ∈ S and S is nonempty. Also, S

is bounded above by since for every r ∈ S, and therefore, .

Therefore, by the completeness axiom, there exists x ∈ such that . Notice

that x is positive since x is and 1 ∈ S. We plan to show that

x2 = D by contradiction.

Suppose x < D.

Prove that this assumption leads to a contradiction (on another sheet of paper).
Hint: What property of x will be impossible if it is the case that x < D? This is the fact
that you should try to contradict!

Suppose x > D.

Prove that this assumption also leads to a contradiction.
Hint: In this case, what do you know about x that you will be trying to contradict?

Since both x < D and x > D lead to a contradiction, we must have that x = D. �


