

Hint for Section 2.3, #2(a)

Let $u(x, t)$ solve the wave equation (with bounded second derivatives). It might be easier to define the new function v as a function of the variables x and s :

$$(\star) \quad v(x, s) = \frac{c}{\sqrt{4\pi ks}} \int_{-\infty}^{\infty} e^{-t^2 c^2 / 4ks} u(x, t) dt.$$

We want to show that $v_s(x, s) = kv_{xx}(x, s)$ – in other words, v solves the heat equation.

Since $u_{tt}(x, t) = c^2 u_{xx}(x, t)$, we know that

$$\frac{c}{\sqrt{4\pi ks}} \int_{-\infty}^{\infty} e^{-t^2 c^2 / 4ks} u_{tt}(x, t) dt. = \frac{c}{\sqrt{4\pi ks}} \int_{-\infty}^{\infty} e^{-t^2 c^2 / 4ks} (c^2 u_{xx}(x, t)) dt.$$

The right-hand side clearly equals $c^2 v_{xx}(x, s)$. Therefore, we only need to show that the left-hand side is $\frac{c^2}{k} v_s(x, s)$. Do this by calculating both

(a) $\frac{c^2}{k} v_s(x, s)$ using formula (\star) .

(b) the integral on the left-hand side (use integration by parts twice!)

Compare these answers to make sure they're the same!