

An example of a function where $f_{xy}(0, 0) \neq f_{yx}(0, 0)$

Consider the continuous function defined piecewise by

$$f(x, y) = \begin{cases} \frac{xy(x^2 - y^2)}{x^2 + y^2} & \text{if } (x, y) \neq (0, 0) \\ 0 & \text{if } (x, y) = (0, 0) \end{cases}$$

- (a) Find f_x and f_y . (This is easy for $(x, y) \neq (0, 0)$. At $(0, 0)$, show that f_x and f_y both exist and equal 0 by using the definition of the partial derivative.) The functions f_x and f_y are in fact continuous, and they are also differentiable! (see part (c))
- (b) Find $f_{xy}(0, 0)$ and $f_{yx}(0, 0)$ (Use the definition of partial derivatives again!)
- (c) Why doesn't this example contradict the theorem (2.124) in your book?