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Set theory is one of the foundations of mathematics. In nearly every area of math, the main
definitions refer to sets: for example, you’ve seen that a vector space is a “set” with certain
properties. We could discuss set theory very rigorously, listing the axioms we must assume
in order to define and work with sets (if you want to read more about this, one place to start
is http://plato.stanford.edu/entries/set-theory/). However, in the interest of getting things
done, most mathematicians take the intuitive view that we know what a set is when we see
one! A set is essentially any collection of objects you can describe (although we have to
avoid self-referential descriptions: try thinking about “the set of all sets that do not contain
themselves as an element” to see why. In a set theory course, you’d learn that the axioms
prevent this from being considered a description of a legitimate set.)

Definitions

• set: Any well-defined collection of objects.

• elements: The objects in a set. We write “x ∈ S” to mean “x is an element contained
in the set S.”

• empty set: The set containing no elements. We denote it by the symbol ∅.

We use curly braces to define a set: whatever is contained inside are the elements. For this
reason, the empty set ∅ is sometimes written as {}. There are two main ways to describe a set:

1. List the elements.

Examples: {3, 7, {1}} or {1, 2, 3, ..., 100}

2. Use a rule.

Examples: {x : x ∈ R and 1 < x < 2} or {x : x ∈ N and 1 < x < 2}
(What other ways could you write these two sets?)

We will look at operations we can perform on sets soon. First, it will be useful to define
some of the language we use in proofs and logic.

Definitions

• statement: A mathematical sentence that is either true or false (but not both).
Example: x ∈ S is a statement since either x is an element of S or it isn’t!



• axiom: A statement in math that is assumed to be true, without requiring proof. (For
example, “the empty set exists” is one of the basic axioms of set theory.)

• and, or, implies: Words that can be used to join statements into a longer statement.
We’ll explain these further with truth tables. Notice we denote “P implies Q” with
the symbols P ⇒ Q (this can also be read “if P , then Q.”)

• if and only if: The statement P ⇔ Q is true only when both P ⇒ Q and Q ⇒ P
are true. In other words, P ⇔ Q means that P and Q are equivalent statements.
Example: The statement “x > 5 if and only if x− 2 > 3” is true.

• negation: The negation of a statement P is denoted P̄ (you’ll often see the notation
¬P or ∼P in other books.) P̄ is true if and only if P is false.

• converse: The converse of P ⇒ Q is Q ⇒ P .

• contrapositive: The contrapositive of P ⇒ Q is Q̄ ⇒ P̄ .

Truth Tables
We can describe when P̄ is true with the following truth table:

P P̄

T F
F T

In other words, we can look up whether P̄ is true once we know whether P is T or F. We
can do the same for more complicated statements, like “P and Q”:

P Q P and Q

T T T
T F F
F T F
F F F

P Q P or Q

T T T
T F T
F T T
F F F

We read the statement P ⇒ Q as either “P implies Q” or “If P , then Q.” The truth table
for P implies Q is a little trickier! Let P be the statement “It is raining,” and let Q be the
statement “It is cloudy.” Now, think about the statement “If it is raining, then it is cloudy.”
Clearly, this is supposed to be true if P and Q are both true. Fill in the rest of the truth
table below. The only case that is tricky is when P is false and Q is true – that is, when it
is not raining, and it is not cloudy.

P Q P ⇒ Q

T T T
T F
F T
F F



Notice that P implies Q is always true when P is false. Many theorems are of the form
P ⇒ Q: If you want to prove such a theorem, you only need to worry about what happens
when P is true! The outline of such a proof would look like “Assume P is true. (... logical
arguments ...) Therefore, Q is true.” This proof guarantees that the statement P ⇒ Q is
true.

A related idea is that P ⇒ Q is only false when P is true and Q is false. To show that
P ⇒ Q is true it is enough to show that this case is impossible! Here’s an outline of such a
proof: “Assume P is true. Also, assume Q is false. (... logical arguments ...) Conclude that
something impossible is true!” This proof really shows that the only case when P ⇒ Q is
false does not occur; therefore, P ⇒ Q must be true!

Methods of Proof

• Direct: Starting with any basic axioms or facts known to be true, use a series of
implications to conclude that the desired result is true.

• Proof by contradiction: Assume that the desired result is false. If this leads to an
impossible conclusion, then the result must be true instead!

• Counterexample: An example that proves a statement is false.

Examples:

Prove that if x2 − 2 < 2, then x < 4.
Prove that the converse of this is false.
Prove that there are infinitely many prime numbers.
Prove that if r is irrational, then 1

r
is irrational.


