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Intuitively, we think of rational numbers as fractions – given two integers m and n (n 6= 0),
we would like to say that m

n
is a rational number. The problem with this is that many of

these fractions should actually be the same rational number, so we can’t simply define the
rational numbers as the set of all {(m, n) : m,n ∈ Z and n 6= 0} (Notice this set is the
Cartesian product Z× (Z \ {0}).) If we did this, we would be saying (1, 2) and (−3,−6) are
different rational numbers (since they are different elements of this set). We can fix this by
defining the following equivalence relation on Z× (Z \ {0}):

For all (a, b) and (c, d) ∈ Z× (Z \ {0}), define (a, b) ∼ (c, d) ⇔ ad = bc.

We can now define a rational number to be any equivalence class of this relation. The set
of rational numbers is denoted by the symbol Q (therefore, the set of irrational numbers can
be written as R \ Q). Then, we have that (1, 2) and (−3,−6) belong to the same equiva-
lence class and are therefore representatives of the same rational number. To use our usual
notation, we allow ourselves to write 1

2
instead of (1, 2), and we write 1

2
= −3

−6
since these

fractions represent the same equivalence class (i.e., they represent the same rational number).

We should check that all our usual operations on rational numbers can be defined and
work the way we expect. For example, we need to define how to add rational numbers:
Given two of the equivalence classes, what answer do we get when we add them together?
The easiest thing to do is to take a representative from each equivalence class and define the
addition of the ordered pairs:

(a, b) + (c, d) = (ad + bc, bd).

Our answer should be the rational number represented by ad+bc
bd

. But is this well-defined?
Our definition of addition starts off by choosing representatives (a, b) and (c, d) for each
rational number – what would have happened if you had taken different representatives
(a1, b1) and (c1, d1) of the same two rational numbers? The addition is only well-defined if
the choice does not make a difference: that is, in either case, the answer we get by adding
should represent the same rational number. You can skip the proof below since we didn’t
do it in lecture, but it’s included here in case you want to see the details:

Assume (a, b) ∼ (a1, b1) and (c, d) ∼ (c1, d1). This means (i) ab1 = ba1 and (ii) cd1 = dc1.
We want to show that (a, b) + (c, d) ∼ (a1, b1) + (c1, d1). In other words, whichever pair of
representatives we choose, their addition represents the same rational number. Using the def-
inition of addition, we see that we want to show that (ad+bc, bd) ∼ (a1d1+b1c1, b1d1). By def-
inition of the equivalence relation, this means we need to show (ad+bc)b1d1 = bd(a1d1+b1c1).
Compute, and use (i) and (ii) when necessary:

(ad + bc)b1d1 = (ab1)(dd1) + (bb1)(cd1) = (ba1)(dd1) + (bb1)(dc1) = bd(a1d1) + bd(b1c1)

= bd(a1d1 + b1c1).



So we have that the two answers represent the same equivalence class, and we therefore get
a unique answer when we add two rational numbers.

In class, we proved the following:

• Every non-zero rational number can be uniquely written as a fraction m
n

such that
n > 0 and hcf(m, n) = 1. (In other words, a non-zero rational number can be written
in lowest terms.)

• Proposition 2.3:
√

2 is not rational. (More precisely, there is no rational number m
n

such that m2

n2 = 2.)

• Proposition 2.4: Consider a ∈ Q and b ∈ R \Q. We are guaranteed that the sum a + b
is irrational, and as long as we know that a 6= 0, then we are also guaranteed that the
product ab is irrational. (Notice that if a, b are both irrational there are examples where
their sum/product is not irrational! E.g., if we multiply the two irrational numbers

√
2

and 1√
2

together, we get the rational number 1. Although we can prove the familiar
facts that π and e are irrational numbers, it is unknown whether or not the numbers
π + e and πe are both irrational!)

• Proposition 2.1: Between any two rational numbers there is another rational number.

• Proposition 2.5: Between any two real numbers there is an irrational number.

• Generalizing Propositions 2.1 and 2.5, you proved on your homework that “Between
any two real numbers, there is both a rational and an irrational number.”

Since the first item in the list is not proven in the book, we include a proof here:

Proposition Every non-zero rational number r can be uniquely written as a fraction m
n

such that n > 0 and hcf(m, n) = 1.

Proof: Given r ∈ Q (r 6= 0), we know we can represent it as a fraction p
q

for some p, q ∈ Z
(p, q 6= 0). Without loss of generality, we may assume q > 0. (If q < 0, we can use the rep-
resentation −p

−q
instead.) Let d =hcf(p, q). Then, we know we can write p = md and q = nd

for some m,n ∈ Z with hcf(m,n) = 1 and also n > 0 (since q > 0). Then, r = p
q

= md
nd

= m
n
.

Now, to show uniqueness, assume that there are two such representations: that is, assume

r =
m1

n1

=
m2

n2

for some m1, n1, m2, n2 ∈ Z : n1 > 0, n2 > 0, hcf(m1, n1) = 1, hcf(m2, n2) = 1.

Since m1

n1
= m2

n2
represent the same natural number, we know that (i) m1n2 = m2n1. This

implies both n2 | m2n1 and n1 | m1n2. However, since we know that n1 and m1 are coprime
and that n2 and m2 are coprime, this implies n2 | n1 and n1 | n2. Since n1 and n2 are both
positive, we must have the inequalities n2 ≤ n1 and n1 ≤ n2. This is only possible if n1 = n2.
Then, using (i), m1n2 = m2n2 ⇒ (m1 −m2)n2 = 0 ⇒ m1 = m2 since n2 6= 0. Hence, both
n1 = n2 and m1 = m2, and therefore, the representation of r as a fraction written in lowest
terms is unique. �


