Math CS-120: Homework 1

- **1.** Show that if $S, T \in \mathcal{A}$ and $S \subseteq T$, then $a(S) \leq a(T)$.
- **2.** Let $f:[0,1]\to\mathbb{R}$ be defined by f(x)=x when x is rational and f(x)=0 when x is irrational. Compute the upper and lower integrals of f. Is f Riemann integrable?
- **3.** Given a function $\alpha:[a,b]\to\mathbb{R}$, and a partition P of [a,b], let $\Delta\alpha_k=\alpha(x_k)-\alpha(x_{k-1})$. The upper and lower Riemann-Stieltjes integrals $(\overline{\int_a^b}fd\alpha)$ and $\underline{\int_a^b}fd\alpha$ of a bounded function $f:[a,b]\to\mathbb{R}$ can be defined by using the sums

$$U(P, f, \alpha) = \sum_{k=1}^{n} M_k(f) \Delta \alpha_k$$

$$L(P, f, \alpha) = \sum_{k=1}^{n} m_k(f) \Delta \alpha_k$$

(The Riemann integral is the special case when $\alpha(x) = x$.) Let α be defined on [-1,1] by $\alpha(x) = 0$ if x < 0 and $\alpha(x) = 1$ if $x \ge 0$. For any continuous $f : [-1,1] \to \mathbb{R}$, compute the upper and lower Riemann-Stieltjes integrals of f.

- **4.** A set A is dense in [0,1] if for every nonempty interval (a,b) such that $[0,1] \cap (a,b) \neq \emptyset$, it is also true that $(a,b) \cap A \neq \emptyset$. Prove that if f is Riemann integrable and f(x) = 0 for all $x \in A$, then $\int_a^b f = 0$.
- **5.** If $f:[a,b]\to\mathbb{R}$ is a bounded, continuous, non-negative function such that $\int_a^b f=0$, prove that f(x)=0 for every $x\in[a,b]$.
- **6.** Let $f:[a,b]\to\mathbb{R}$ be bounded. If P and Q are partitions of [a,b], then
 - (i) If $P \subseteq Q$, then $L(P, f) \le L(Q, f) \le U(Q, f) \le U(P, f)$.
 - (ii) $L(P, f) \leq U(Q, f)$

$$\text{(iii)} \underline{\int_a^b} f \leq \overline{\int_a^b} f$$

Hint: It is sufficient to prove (i) for the case when Q contains only one additional point.