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1. Introduction

Elliptic interface problems arise in many applications such as fluid dynamics and materials science, where the back-
ground consists of rather different materials on the subdomains separated by smooth curves called interface. The numerical
challenge of interface problems comes from the fact that the solution, in general, has low global regularity due to the dis-
continuity of parameter (e.g. dielectric constant) at the interface. Standard finite element methods have been studied for
elliptic interface problems by aligning the triangulation along the interface (body-fitted meshes) and are proven to achieve
optimal convergence rates in both L, and energy norms [8,3,14,57]. However, when the interface leads to subdomains of
complex geometry, it is non-trivial and time-consuming to generate body-fitted meshes.

To overcome the difficulty of mesh generation in the standard finite element methods, tremendous effort has been input
to develop numerical methods using unfitted (Cartesian) meshes. [52] is the first to propose the immersed boundary method
(IBM) to simulate blood flow using Cartesian meshes. The idea of IBM is to use a Dirac §-function to model the discontinuity
and discretize it to distribute a singular source to nearest grid points [52,53]. But IBM only achieves the first-order accuracy.
To improve the accuracy, Leveque and Li characterized the discontinuity as jump conditions and proposed the immersed
interface method (IIM) [37]. IIM constructs special finite difference schemes to incorporate the jump conditions near the
interface. High order unfitted finite difference methods including matched interface and boundary (MIB) method are also
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proposed in [63,62]. We refer to [40] for a review on IIM and other unfitted finite difference methods. The ghost fluid
method (GFM) is another promising method to solving interface problems as the pioneering work of Liu, Fedkiw, Myungjoo
and Kang [45]. GFM is simple and relatively easier to implement since it uses standard finite difference discretization and
only needs to modify the right-hand side. This method is only of first-order accuracy, and gets improved in a recent work
[21] where a local Voronoi grid is used near the irregular domain’s boundary to obtain second-order accurate solutions
and first-order accurate gradients. The interested readers are referred to [20] for the recent development on how to impose
boundary conditions on an irregular domain in capturing methods, with some applications.

In the meantime, unfitted numerical methods using finite element formulation are also developed for elliptic interface
problems. The extended finite element method [7,46,19] enriches the standard continuous finite element space by adding
some special basis functions to capture the discontinuity. The immersed finite element methods [38,41,42] modify the
basis functions to satisfy the homogeneous jump conditions on interface elements. For the nonconforming immersed finite
element method (IFEM) in [41], the numerical solution is continuous inside each element but can be discontinuous on the
boundary of each element. Recently, there are also some improved versions of IFEM such as the Petrov-Galerkin IFEM [32,
35,33], symmetric and consistent IFEM [36], and partially penalized IFEM [44].

The Nitsche’s method [5,11,12,10,30,27-29,31], also called the cut finite element method, is firstly proposed by Hansbo
and Hansbo in [27] to solve elliptic interface problems using unfitted meshes. It is further extended to deal with elastic
problems with strong and weak discontinuities [28]. The study of the Nitsche’s method for Stokes interface problems can
be found in [31]. The key idea of the Nitsche’s method is to construct an approximate solution on each fictitious domain
and use Nitsche’s technique [51] to patch them together. A similar idea was used to develop the fictitious domain method
[10,11]. The robust forms of the unfitted Nitsche’s method were given in [2,55]. The recent development of the cut finite
element method is referred to the review paper [12].

For elliptic interface problems, computation of gradient plays an important role in many practical problems as discussed
in [43], which demands numerical methods of high order accuracy. For standard elliptic problems, it is well known that the
gradient recovery techniques [64,66,65,60,25,1,50,49,13,58,4] can reconstruct a highly accurate approximate gradient from
the primarily computed data with reasonable cost. But for elliptic interface problems, only a few works have been done
on the gradient recovery and associated superconvergence theory. For example in [56], a supercloseness result between the
gradient of the linear finite element solution and the gradient of the linear interpolation is proved for a two-dimensional
interface problem with a body-fitted mesh. For IFEM, Chou et al. introduced two special interpolation formulae to recover
flux with high order accuracy for the one-dimensional linear and quadratic IFEM [15,16]. Moreover, Li and his collabora-
tors recently proposed an augmented immersed interface method [43] and a new finite element method [54] to accurately
compute the gradient of the solution to elliptic interface problems. In our recent work [22], we proposed an improved poly-
nomial preserving recovery for elliptic interface problems based on a body-fitted mesh and proved the superconvergence on
both mildly unstructured meshes and adaptively refined meshes. Later in the two-dimensional case [23], we proposed gra-
dient recovery methods based on symmetric and consistent IFEM [36] and Petrov-Galerkin IFEM [32,34,35] and numerically
verified its superconvergence. In [26], we provided a supercloseness result for the partially penalized IFEMs and proved that
the recovered gradient using the gradient recovery method in [23] is superconvergent to the exact gradient.

Despite the efficiency and accuracy that the methods mentioned above bring to recover the gradient, there are still some
cases in unfitted meshes where skinny triangles appear in the generated local body-fitted triangulations that destroy the
accuracy of recovered gradient near the interface. In this paper, we propose an unfitted polynomial preserving recovery
(UPPR) based on the Nitsche’s method. The key idea is to decompose the domain into two overlapping subdomains, named
fictitious domains, by the interface and the triangulation proposed in the Nitsche’s method. On each fictitious domain,
the standard linear finite element space will be used, and thus the classical polynomial preserving recovery (PPR) can be
applied in each fictitious domain. Compared to previous gradient recovery methods [22,23], the new method does not
require generating a local body-fitted mesh and therefore avoids the drawback caused by skinny triangles. In general, the
exact solutions of the interface problems are piecewise smooth on each subdomain. It implies that the extension of the exact
solution on each subdomain to the whole domain is smooth, based on which, the recovered gradient using the interpolation
of the exact solution is proven to be superconvergent to the exact gradient at rate of ©@(h2), and this is similar to the
classical PPR for standard elliptic problems. In addition, we prove O(h'>) supercloseness between the gradient given by
the Nitsche’s method and the gradient of the interpolation of the exact solution by a sharp argument. This enables us to
establish the complete superconvergence theory for the proposed UPPR.

The rest of the paper is organized as follows: We introduce briefly the elliptic interface problem and the Nitsche’s method
in Section 2. In Section 3, we analyze the supercloseness for the Nitsche’s method and prove the @(h'*) supercloseness
between the gradient of the finite element solution and the gradient of the interpolation of the exact solution. In section 4,
we describe the UPPR for the Nitsche’s method and establish its superconvergence theory. In Section 5, we present several
numerical examples to confirm our theoretical results.

2. Nitsche’s method for elliptic interface problem
In this section, we first introduce the elliptic interface problem and associated notations, and then summarize the unfit-

ted finite element discretization based on Nitsche’s method proposed in [2,27] as a preparation for the unfitted polynomial
preserving recovery (UPPR) method introduced later.
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Fig. 1. Typical example of domain © with interface T.

2.1. Elliptic interface problem

Let Q be a bounded polygonal domain with Lipschitz boundary 8% in R2. A C2-curve I divides € into two disjoint
subdomains €21 and €2 as in Fig. 1. We consider the following elliptic interface problem

—V-(B(2)Vu(z)) = f(z), inQq1UQ,, (2.1a)
u=0, on d¢2, (2.1b)

[u] =q, onT (2.1¢)

[Bo.u] =g, onTl (21d)

where d,u = (Vu) - n with n being the unit outward normal vector of I" and the jump [w] on I is defined as

[w] =w1 —wy, (2.2)
with w; = w|g, being the restriction of w on ;. The diffusion coefficient 8(z) > B is a piecewise smooth function, i.e.

p1(2) ifz=(x,y) e,
Ba(z) ifz=(x,y) € Q,

which has a finite jump of function value at the interface T'.

In this paper, we use the standard notations for Sobolev spaces and their associated norms as in [9,17,18]. For any
bounded domain D C €, the Sobolev space with norm || - |lx,p.,p and seminorm |- | p p is denoted by WkP(D). When
p =2, Wk2(D) is simply denoted by H¥(D) and the subscript p is omitted in its associate norm and seminorm. Similar
notations are applied to subdomains of T'. Let (-,-)p and (-, -)r denote the standard L, inner products of L,(D) and L(T"),
respectively. For a bounded domain D = D1 U D, with Dy N Dy =@, let W’“P(Dl U D) be the function space consisting of
piecewise Sobolev functions w such that w|p, € wk-P(Dy) and Wlp, € Wk-P(D,), whose norm is defined as

mnz{ (2.3)

p p 1/p
1wl p.oun, = (IWIE , 5, +IWIE, 5,) (2.4)

and seminorm is defined as

_ p p 1/p 2.5
IWlk,p.p1ub, = \IWl p p, T1Wlk pp, . (2.5)

In this paper, we denote C as a generic positive constant which can be different at different occurrences. In addition, it
is independent of mesh size and the location of the interface. By x < y, we mean that there exist a constant C such that
x<Cy.

2.2. Nitsche’s method
Let 7, be a triangulation of € independent of the location of the interface I'. For any element T € 7y, let hr be the

diameter of T and pr be the diameter of the circle inscribed in T. In addition, we make the following assumptions on the
triangulation.
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(a) (b) (c)

Fig. 2. Triangulation 7, on the square domain I" with circular interface I': (a) triangulation 7j; (b) triangulation 77 and w;  (non-shaded triangles);
(c) triangulation 7 and w; ; (non-shaded triangles).

Assumption 2.1. The triangulation 7, is shape regular in the sense that there is a constant o such that
hr

7 <o (2.6)

for any T € Tp.

Assumption 2.2. The interface I' intersects each interface element boundary T exactly twice, and each open edge at most
once.

To define the finite element space, denote the set of all elements that intersect the interface I by

Trn={TeTp:TNT #0}, (2.7)
and denote the union of all such type elements by
Qra= |J T. (2.8)
TE'T]-Jl

Denote the set of all elements covering subdomain 2; to be

Tin={TeTh:NT#p}, i=12; (2.9)
and let
Qp=J T, on= |J T. i=12 (2.10)
TeTin TeTin\Trn

Fig. 2 gives an illustration of €2; , and w; . We remark that Q¢ and €3, overlap on Qr , which is shown as the shaded
part in Figs. 2b and 2c.
Let V;p, be the standard continuous linear finite element space on ; j, i.e.

vi,hz[veco(sz,,h):vh e Py(T) foranyTeﬁh}, i=1,2, (211)
where P, (T) is the space of polynomials with degree <k on T. Then, we define the finite element space V} as

Vi ={vh=(in van) :vin € Vin i=1,2}, (212)
and Vy o as

Vio={vh € Vi :vhlaq=0}. (2.13)

Note that a function in V}, is a vector-valued function from R? - R?, which has a zero component in w1 |, but in
general two non-zero components in 7t . It means that one will have two sets of basis functions for any element T in
Tr.p: one for Vi p and the other for V.

For any T in 7r p, denote T; =T N; as the part of T in ;, with |T;| being the measure of T; in RZ. Denote 't =I'NT
as the part of I in T, with |I't| being the measure of I't in R!. To increase the robustness of the Nitsche’s method, we
introduce two weights as used in [2]

B2|T1] B1T|

=, K2|T =, (2.14)
B2|T1| + B11T2| B2IT1] + B11T2|

K1lt
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which satisfies that x1 + x2 = 1. Then, we define the weighted averaging of a function vy in V} on the interface I" as

{wy=k1vin+iavan WY =iavin+K1von. (215)

Using the notations introduced above, the Nitsche’s method [12,27,2] for the elliptic interface problem (2.1) is to find
up € Vp o such that

ap(up, vp) = Lp(vp), VYvp € Vi o; (2.16)
where the bilinear form ay is defined as

2

ay (up, vp) = Z (BVUin Vvin)g, — ([un]. €BonviY) — ([va]. €BonunY) +h~" (v [unll. [val)y. (217)

i=1

and the linear functional Ly is defined as

2
L(vi) =Y _(f, VVin)e, — (@ {Bwval)r +(va, [val, ) + (&, {w}*)p, (218)
i=1

with the stability parameter
_ 2hr|T'1]
[T11/B81 + |T2l/ B2

In [2], the discrete variational form is shown to be consistent as the following theorem:

Vit (2.19)

Theorem 2.3. Let u be the solution of the interface problem (2.1). Then we have
ap (i, vip) = L(vp), Vv € Vppo, (2.20)
where i = (uy, up) with the short-hand notation u; = u|q, as used in (2.2).

Theorem 2.3 implies the following Galerkin orthogonality:

Corollary 2.4. Let u be the solution of (2.1) and uy, be the solution of the discrete problem (2.16). Then we have
ap( —up, vp) =0, VYvy € Vi, (2.21)

with @t = (uq, u).

To analyze the stability of the bilinear form ay (-, -), we introduce the following mesh-dependent norm [12,27]

WIVIIE=1Vul gue, + Y hrll@avHG o + D W VTG, - (2.22)
TéT]",h TE'Trvh

In [27], it is shown that the bilinear form ay(-, -) is coercive with respect to the above mesh-dependent norm in the
following sense

Theorem 2.5. There is a constant C such that

Clllvalllz <an(vi, vi),  Vvh € Vi. (223)
Based on the above coercivity, Hansbo et al. proved the following optimal convergence result [27]:

Theorem 2.6. Let u be the solution to the interface problem (2.1) and uy, be the finite element solution to (2.16). If u € H2($21 U ),
then

i — upllln < Chllull2.0,08, (2.24)
and
|1l — upllo.e < Ch?|[ull2.0,u0,, (2.25)

with @t = (uq, uy).
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3. Supercloseness analysis

In this section, we establish the supercloseness result between the gradient of the finite element solution and the gradi-
ent of the interpolation of the exact solution as a preparation for the superconvergence analysis of the unfitted polynomial
preserving recovery based on Nitsche’s method. For that propose, we need the triangulation 7, to satisfy Condition (o, o)
as explained below.

Two adjacent triangles are said to form an O(h!*®) approximate parallelogram if the lengths of any two opposite edges
differ only by O(h't9).

Definition 3.1. The triangulation 7} is called to satisfy Condition (o, &) if there exist a partition 7;1 u 7;12 of 7, and positive
constants o and o such that every two adjacent triangles in 7711 form an O(h'*?) parallelogram and

Z IT| = OHh%).

TeT?

Remark 3.1. For the Nitsche’s method, we usually use a Cartesian mesh which is independent of the location of the interface.
Therefore the mesh satisfies Condition (o, @) with 0 =000 and o = 1.

To define the interpolation operator, we need to extend the function defined on the subdomain €; to the whole do-
main Q. Let E;, i =1, 2, be the H3-extension operator from H>(2;) to H3(S2) such that

(Eiw)|g; = w, (3.1)
and
IEiwlso < Clwls,o;, YweH(Q),s=0,1,2,3. (3.2)

Let I; , be the standard nodal interpolation operator from C () to Vin. Define the interpolation operator for the finite
element space Vp as

v =7 pvi, I7 pv2), (3.3)
where

I;jh=1i’hE,‘Vj, i=1,2. (3.4)

Optimal approximation capability of I}} is proved in [27]. Assume 7y satisfies Condition (o', &), and then we can prove

the following theorem:

Theorem 3.2. Suppose the triangulation Ty satisfies Condition (o', ). Let u be the solution of the interface problem (2.1) and I}u be
the interpolation of u in the finite element space Vi, o. If u € H'(2) N H3(£21 U Q) N W2 (Q1 U Qy), then for ii = (u1, u) and all
vh € Vho,

an (@i — [fu, vp) < C<h]+p(||u||3,91us22 + [ull2,00,01U2,) +h3/2||u||z,oo,glugz> [Vl (3.5)
where p = min(a, §, 3).

Proof. By (2.17), we have

2

an@ = Ty, vi) = Y (BV (i = iy, Vvip)

i=1
—([vn]. {Bon(u — I;‘;u)}})F +h1 (y[u — Iiu], [[V"l]]>[‘
= [(BV @ = 13400, VVa o |+ [(BY @2 = 15 412), VVa )y,
+[(BV (@ = Iju), Vvpwgp, | + |[([u — Tiul. {Bovar|
+ [{[va]. £B3n(u — L ¥yr| +h ™" (v [u — Tiul. [vi])r]
:=F1+F+F3+F4+ Fs+ Fe,

—([u — Iiul. {B0nvi});

Qi
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because ©; C wq,, UQr for i =1, 2. Since 7y satisfies Condition (o, &), it follows that 77 5 \ 7r,n and T n \ Tr palso satisfy
Condition (o, cr). Notice that the restriction of the finite element space V;; on w;j is just the standard continuous linear
finite element space for i = 1, 2. Then by Lemma 2.1 in [58], we have

|F1] < Ch™™ (lull3., + llull2.00.9:)Vhlns (3.7)
|F2| < Ch™ P (lulls,0, + 1Ul12,00,2,) [Vhlns (3.8)

where p = min(c, % %). To estimate F3, the Cauchy-Schwartz inequality implies

1/2 1/2
2 2
Fs<| > IV =I5 unldy, > IVvaalg s,
TeTr TeTrn
1/2 1/2
2 2
+ DD IV =1l g, > 1Vvanls,
TeTr TeTrn
1/2 1/2
4 2 2
<C| > h*ul .0 > IVviallg
TeTrn TeTrn
1/2 1/2
4 2 2
+C| Y rYul g, > Vvl
TeTrn TeTrn
1/2 1/2
2 2
<Ch*|[ullz.000, | Y 1 > Vvl s,
TeTrn TeTrn
1/2 1/2
2 2
+ChP U200, [ D 1 > Vvl
TeTrn TeTrn

3/2 3/2
<Ch32)ull2.00.2, 1VI1.0; + Ch*2|t]12.00.0, 1V]1.0,
3/2 .
<Ch3/ ]2, 00,2100, [VI1,2,U;

where we have used the fact ZTGTP LR O(h™1). By the Cauchy-Schwartz inequality and the trace inequality in [27,55],
we have '

NI
[NE

Fa<| D hy'ilu—riullg r, > hrl{Bowva G 1,

T€7},h Te7—l",h
1
2 2
-1 2
<[ X Yohrtiuwi— w3, | valil
TeTry i=1
1
2 2
_2 2 2
<Y Z(hT ||lli—I;-k’hui”oj-i-||V(ui—1;ihu,')||0,-r) vallls o)
TeTrp i=1 X
1
2 2
4 2
<c| 3 S ndEwildar | vallln
TE'T[*_h i=1

2
<Ch?||ullz.co.iuy | Y 1] Ivallln
TeTrp

3/2
<Ch32|lull2, 00,202, | 11Vhl|In-

Similarly, we can estimate F5 and Fg as
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3/2

Fs < Ch32||ul2.00.0,0a, |1Vl lI4;
3/2

Fe < Ch*2||ul2.00.0,02, ||| VAllh-

Combing all the above estimations, we get (3.5). O

(3.10)

Now we state our main supercloseness result as follows.

Theorem 3.3. Assume the same hypothesis as in Theorem 3.2 and let uy, be the finite element solution of the discrete variational
problem (2.16), then

un = Tullln = € (B (lulls.0,08, + Il12.00.100,) +h/ 2 ull2.00. 102, ) (3.11)

where p = min(a, %, %).

Proof. By Corollary 2.4, we have the following Galerkin orthogonality

ap( —up, vp) =0, Vvp e Vyo,

where 1 = (u1, uz). Then we have

an(up — Ifu, vp) = ap(@ — Ifu, vp), Yvp € Vi

Taking v = up — Iju and using Theorem 3.2 and Theorem 2.5, we prove (3.11). O
Remark 3.2. Theorem 3.3 implies that we can have the same supercloseness result as the partially penalized IFEM [26].

4. Superconvergent gradient recovery

In this section, we first propose the unfitted polynomial preserving recovery (UPPR) technique based on the Nitsche’s
method, then prove that the recovered gradient by UPPR is superconvergent to the exact gradient on mildly unstructured
meshes.

4.1. Unfitted polynomial preserving recovery

To accurately recover the gradient, we notice that the finite element solution uy of the Nitsche’s method (2.16) consists
of two part: uq and up . Also, by the fact that we can smoothly extend the exact solution u|g; (i =1,2) to the whole
domain, it is safe to assume u|q, and its extension E;u|q, is smooth in general. For each i € {1, 2}, u; , € Vp, is a continuous
piecewise polynomial on fictitious domain €;  but its gradient Vu; j, is only a piecewise constant function. This motivates
us to naturally use some smoothing operators such as superconvergent patch recovery (SPR) and polynomial preserving
recovery (PPR) to smooth the discontinuous gradient into a continuous one on each fictitious domain €; p.

To this end, let GL be the PPR gradient recovery operator [60,50] on the fictitious domain €; for i =1, 2. Then Gf,l is a
linear operator from V;j to V; x Vi, whose value at each nodal point is obtained by the local least squares fitting using
sampling points only located in €; ;. According to [24,60,50], the gradient recovery operator GL is bounded in the sense
that

i
IGLvinllo.Qin S IVikl.Qins  Vikh € Vi, (4.1)
and is consistent in following sense that

Vi — Guli nvillo.o S h*I1Vills.g . YVi € H? (Qip), (4.2)

fori=1,2.
Let up be the finite element solution of the discrete variational problem (2.16). We define the recovered gradient of uy
as

Ryup = (G,llum, cﬁuz,h). (4.3)

The linearity of GL implies Ry, is a linear operator from Vj to Vi x V. Ry is called the unfitted polynomial preserving
recovery (UPPR).

Remark 4.1. The definition of the gradient recovery operator can be presented in a more general form. In fact, G;'I can be
chosen as any local gradient recovery operators [59] like simple averaging, weight averaging, SPR and PPR. For simplicity
and efficiency, we only consider G} as PPR here.
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Remark 4.2. The main idea is to use the standard PPR on each fictitious domain €;, which is similar to the improved
polynomial preserving recovery for the finite element method based on body-fitted meshes [22]. But the proposed method
(4.3) does not require the mesh fitting the interface, and that is why we call it unfitted polynomial preserving recovery
method.

Remark 4.3. We considered the gradient recovery technique for immersed finite element methods in [23], which is also
based on unfitted meshes. The gradient recovery technique in [23] needs to generate a local body-fitted mesh by dividing
every interface triangle into three sub-triangles, which can lead to skinny triangles and therefore a loss of accuracy. The
proposed gradient recovery operator (4.3) overcomes this drawback.

Note that as a function in V, x Vj, Ruup is continuous on each subdomain ; and is discontinuous in the whole
domain  which approximates the exact gradient Vu. Also, similar to the finite element solution uy, both G}!ulyh and

Gﬁuzﬁh in (4.3) are, in general, non-zero on interface triangles T € 7Tp . For the gradient recovery operator Ry (4.3), we can
show that it is consistent as follows:

Theorem 4.1. Let Ry, : Vj — V), x V), be the unfitted polynomial preserving recovery operator defined in (4.3) and I}, be the interpo-
lation of u into the finite element space V}, as defined in (3.3). If u € H3 (21 U Q3), then we have

Vi — Rpliullo.o,ue, < Ch?|ul3.0,ua, (4.4)

with Vu = (Vuq, Vuy).

Proof. By (2.4), (3.3), (3.4), and (4.2), we have
IVu = RaLiull§ o,00, = IVu1 — GAI; qullf o, + 1 Vuz — GiI5 yullf o

= |VEju1 — Gyl yull§ o, + I VE2uz — GRI5 pullf o,
< IVE1u1 = GyI} pullg g, , + IVE2u2 — Gi13 yullg o, ,
=IVE1u1 — Gyl nErully o, , + IVE2u2 — Gilo nEautG g, , (4.5)
< Cih*|Ewuil3 g, , + Coh*|Ex pital3 g, ,
< Cih*urf3g, + Cah*uzld g,
< Ch*|ul3.g,u0,-

Taking square root on both sides of (4.5) completes our proof. O

Remark 4.4. Theorem 4.1 means the recovered gradient using the interpolation of the exact solution is superconvergent to
the exact gradient at a rate of O(h?). It is similar to the classical PPR operator for regular elliptic problems.

4.2. Superconvergence analysis

In the following, we shall show the superconvergence property of the proposed UPPR. Our main superconvergent tool is
the supercloseness result provided in Section 3.

Theorem 4.2. Under the same hypothesis as in Theorem 3.2. We further assume that uy, is the finite element solution of the discrete
variational problem (2.16). Then we have

19 = Rittnllo.cyus, < € (A (lulls2um, + lulz.00.2000) + 072 ul2.00.2000; )
where Vu = (Vuy, Vuy) and p = min(e, 5, 3).
Proof. By the triangle inequality, we have

Vu — Rpupllo.oue, < IVu — Ruljullo.oue, + IRnI;u — Ruupllo,.Q,ue, == F1 + Fa.
According to Theorem 4.1, we have
2
F] =< Ch |u|3,Q1UQZ‘

For F, we have
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F3 =Gy I5 yu1 — Guuralig ., + IG5 yu2 — Gruz sl o,
<IGxI3 pt1 — Gt wllg g, , + IGRT3 ptt2 — Gtz wllg g, ,
< CIIVI} put —ur g g, , + CIVU3 2 — 2 )5 0, ,
< CIIVI; pur —ur g g, + CIVU3 yuz = ua G o, + CIVUT it — i 5 o, + CIVU pti2 — 2 ) g,
= CIVUiu = un) g g,ua, + CIVUT 1 — 1 G 0, ey + CIVUS iz — 2 )5 0, 0,
= Cllfup = rulll + CIV I} pur —u1 WG g, nay + CIVUS pu2 — w2 0)llg 0, 110,
:=F3+4+ F4+ Fs.
Theorem 3.3 implies that

2
1 2
F3 = C (" (lulls.gum, + lullzo02i00) + 12 ul2000000; ) -

Then, we estimate F4 as

Fa <CIVU; pu1 =)l 0, e
<CIVUL ur —uimld o,

<CIVU1pEru — i w5 o,

=C Y IVUipErun —ur g

TET[*J,
4
<C Y hEiuilzcor
TE'TFT,A,
4
<Ch*lulcoqiue, Y 1

TE'Tryh
<Ch3|ul2,00,0,U8;
where we have used the fact ZTGTN 1~ O(h™1). Similarly, we have
Fs5 < Ch*[ul,00,0,00,-
Combining the estimates for F3, F4, and Fs, we have
F2 = C (K" (lulls2um; + lulz.0.0000) + 172 U l2.00.0000; )

which completes the proof. O

By the above superconvergence result, we naturally define a local a posteriori error estimator on an element T € 7y:

nr = 18"%(Rnttn — Vun)llo,1, (4.6)
and the corresponding global error estimator
1/2
m=|>_m| - (47)
TeTy

Theorem 4.2 implies the error estimator (4.6) (or (4.7)) is asymptotically exact for the Nitsche’s method:

Theorem 4.3. Assume the same hypothesis in Theorem 3.2 and let uy, be the finite element solution of the discrete variational problem
(2.16). Further assume that there is a constant C(u) > 0 such that

IVu = Vupllo.e = Cwh, (4.8)
then it holds that

Tlh

_ — 1| <Ch”, (4.9)
1B1/2(Vu — Vup)llo,@

where Vu = (Vuy, Vuy) and p = min(e, 5, 3).
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Table 1

Numerical results for Example 5.1 with gy =10, g = 1.
h De Order Die Order De Order
1/16 4.61e—02 - 2.37e—02 - 1.82e—02 -
1/32 2.34e—02 0.98 9.34e—03 134 7.70e—03 1.25
1/64 117e—02 1.00 3.28e—03 1.51 2.75e—03 1.48
1/128 5.88e—03 1.00 1.17e—03 1.48 9.95e—04 1.47
1/256 2.94e—03 1.00 4.08e—04 152 3.36e—04 1.56
1/512 1.47e—03 1.00 1.43e—04 1.51 117e—04 1.53
1/1024 7.35e—04 1.00 5.08e—05 1.49 4.17e—05 1.48

Table 2

Numerical results for Example 5.1 with gy =1000, 8, =1.
h De Order Die Order D"e Order
1/16 4.19e—02 - 2.62e—02 - 2.15e—02 -
1/32 2.13e—02 0.98 9.98e—03 1.39 8.52e—03 133
1/64 1.06e—02 1.00 3.53e—03 1.50 3.09e—03 1.46
1/128 5.33e—03 1.00 1.25e—03 1.50 1.12e—03 147
1/256 2.66e—03 1.00 4.33e—04 1.52 3.75e—04 1.57
1/512 1.33e—03 1.00 1.52e—04 1.51 1.29e—04 1.54
1/1024 6.66e—04 1.00 5.41e—05 149 4.59e—05 1.49

Proof. By Theorem 4.2 and (4.8), we have

M 1| < [18Y2Ryun = V)llo.0

— -1l < ~ <Ch”. O (4.10)
BY2||Vu — Vuyllo.@ 1812(Vu — Vup)llo.2

Remark 4.5. For interface problems, there are two types of errors: the error introduced by geometric discretization and the
error introduced by the singularity of the solution. The first type of error can be predicted by the curvature of the interface
[56,61]. The error estimator (4.6) or (4.7) can be used to estimate the second type of error.

5. Numerical examples

In this section, we show the performance of proposed unfitted polynomial preserving recovery (UPPR) method by several
numerical examples with both simple and complex interface geometries. The computational domains of all examples are
chosen as Q = (—1,1) x (—1, 1). For the first three numerical examples, the uniform triangulations of © are obtained by
dividing € into N2 sub-squares and then dividing each sub-square into two right triangles. The resulted uniform mesh size
ish= % For convenience, we use the following errors in all the examples:

De:=||Vu — Vupllo,o,ue,, D'e:=[VIju — Vupllo,o,ue,.
D'e:=||Vu — Ryupllo.2,ue,

with Vu = (Vuq, Vuy).

Example 5.1. In this example, we consider the interface problem (2.1) with homogeneous jump condition as in [41]. The
interface is a circular interface of radius ro = 0.5. The exact solution is

3

.

I
r3 1 1
E+(ﬁ_‘_/ﬁ_+)

where r = /x2 + y2.

We consider the following four typical different jump ratios: 81/82 = 1/10 (moderate jump), 81/82 = 1/1000 (large
jump), B1/B2 =1/100000 (huge jump), and B1/82 = 100000 (huge jump). The numerical errors are displayed in Tables 1-4.
We observe an optimal convergence in the H!-seminorm as predicted by Theorem 2.6. The observed O(h!-) supercloseness
and superconvergence confirm our theoretical results. In addition, we observe the same superconvergence results in all
different cases. It means that the superconvergence results are independent of the jump ratios of the coefficient. In Fig. 3,
we plot the recovered gradient on the initial mesh.

if (x, y) € Q1,

u(x,y)=
g if (x,y) € Qo,

Example 5.2. In this example, we consider the flower-shape interface problem with non-homogeneous jump conditions as
studied in [47,62]. The interface curve I' in polar coordinates is given by
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Table 3

Numerical results for Example 5.1 with gy =1, B2 = 100000.
h De Order Die Order De Order
1/16 1.99e—01 - 2.95e—02 - 3.23e—02 -
1/32 9.97e—02 1.00 9.94e—03 157 1.06e—02 1.61
1/64 4.98e—02 1.00 3.53e—03 1.50 3.08e—03 1.78
1/128 2.49e—02 1.00 1.19e—03 1.56 1.05e—03 1.55
1/256 1.25e—02 1.00 4.33e—04 1.46 3.85e—04 145
1/512 6.23e—03 1.00 1.56e—04 147 1.38e—04 1.48
1/1024 3.12e—03 1.00 5.51e—05 1.50 4.85e—05 1.51

Table 4

Numerical results for Example 5.1 with 8y = 100000, 8, = 1.
h De Order Die Order D'e Order
1/16 4.19e—02 - 2.62e—02 - 2.15e—02 -
1/32 2.13e—-02 0.98 9.99e—03 139 8.54e—03 133
1/64 1.06e—02 1.00 3.54e—03 1.50 3.10e—03 1.46
1/128 5.33e—-03 1.00 1.25e—03 1.50 112e—-03 1.46
1/256 2.66e—03 1.00 4.33e—04 152 3.84e—04 1.55
1/512 1.33e—03 1.00 1.52e—04 1.51 1.37e—04 1.48
1/1024 6.66e—04 1.00 5.41e—05 1.49 4.65e—05 1.56

(a) (b)

Fig. 4. Plots for Example 5.2: (a) plot of the interface; (b) plot of numerical solution.

1 sin(50)
— + [ —
2 7

It contains both convex and concave parts, as demonstrated in Fig. 4a. The diffusion coefficient is piecewise constant with
B1 =1 and B, = 10. The right-hand side function f in (2.1a) is chosen to match the exact solution

ey, if (X, y) €

ux,y)=
0.1(x% 4+ y3)2 — 0.011n2y/*x2 + y2), if (x, y) € Qa,
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Table 5

Numerical results for Example 5.2.
h De Order Die Order De Order
1/16 8.86e—02 - 5.81e—02 - 3.74e—02 -
1/32 3.90e—02 119 1.50e—02 1.95 1.19e—-02 1.65
1/64 1.90e—02 1.04 4.37e—03 1.78 3.57e—-03 174
1/128 9.48e—03 1.00 1.57e—03 148 1.29e—-03 147
1/256 4.74e—03 1.00 5.63e—04 148 4.72e—04 145
1/512 2.37e-03 1.00 2.00e—04 1.50 1.71e—04 147
1/1024 1.18e—03 1.00 7.06e—05 1.50 6.62e—05 137

Fig. 5. Plots of recovered gradient for Example 5.2 on the initial mesh: (a) x-component; (b) y-component.

Q

(a) (b)

Fig. 6. Plots for Example 5.3: (a) plot of the interface; (b) plot of numerical solution.

and the jump conditions (2.1c)-(2.1d) are provided by the exact solution.

In Fig. 4b, we plot the numerical solution on the initial mesh which clearly indicates the non-homogeneous jump in
function value. We show the numerical results in Table 5. As expected, we observe the first-order convergence for the
gradient of finite element solution. For the recovered gradient, O(h!->) convergence is observed, which is in agreement with
Theorem 4.2. The recovered gradient on the initial mesh is visualized in Fig. 5.

Example 5.3. In this example, we consider the following nonlinear interface problem with homogeneous jump conditions
—V.(BVu)+sin(u)=f, zinQ\T.

The interface curve I is the zero level of the function
P y) =B +yH) —0? —x —y?,

as shown Fig. 6a. We choose the exact solution u(x, y) = ¢(x, y)/B(x, y), where

xy+3 if(x,y) e,

ﬁ(x’y)z{loo if (x, y) € Q.

The right hand side function f and boundary condition are determined by the exact solution.
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Table 6

Numerical results for Example 5.3.
h De Order Die Order De Order
1/16 5.76e—02 - 3.89e—02 -0 2.70e—02 -
1/32 2.94e—02 0.97 1.41e—02 1.46 1.00e—02 143
1/64 1.48e—02 0.99 5.32e—03 141 3.94e—-03 135
1/128 7.44e—03 0.99 1.86e—03 1.51 141e—03 148
1/256 3.72e—03 1.00 6.77e—04 1.46 5.18e—04 144
1/512 1.86e—03 1.00 2.38e—04 1.51 1.82e—04 1.50
1/1024 9.32e—04 1.00 8.44e—05 149 6.52e—05 148

Fig. 7. Plots of recovered gradient for Example 5.3 on the initial mesh. (a) x-component; (b) y-component.

We solve the discretized nonlinear problem by Newton’s method. In Fig. 6b, we plot the numerical solution on the initial
mesh. The numerical results are given in Table 6. Note that interface is not even Lipschitz-continuous and has a singular
point at the origin. Even thought in that case, we observe the same superconvergence results as in linear interface problems.
The recovered gradient on the initial mesh is visualized in Fig. 7.

Example 5.4. In this example, we consider the interface problem with complex geometrical structure as in [48]. The interface
in polar coordinates is given by

r =0.40178(1 + cos(26) sin(66)) cos(6).
The interface and subdomains are plotted in Fig. 4a. The coefficient function is
& =y*=7/7, xy) e,
(xy +2)/5, (x,y) € 22;
and the exact function is

sin(x+y)+cos(x+y)+1, (x,y) €,
X+y+1, (%, ¥) € Q.

Bx,y)= {

u(x, y):{

As plotted in Fig. 8a, the interface contains complex geometrical structure. To guarantee the Assumption 2.2, we need an
extremely fine mesh. It would increase the computational cost. To reduce the computational cost, we propose an adaptive
strategy to generate an initial unfitted mesh. Here we use the curvature-based a posterior estimator to guide the refinement
of the mesh as in [56]. Different from the mesh generated in [56], the resulted mesh is an unfitted mesh and all triangles
are perfect right triangles.

Fig. 8b plots the generated initial unfitted mesh. It is easy to see that the mesh is refined around the part of the interface
with high curvature. The other four levels of unfitted meshes are obtained by uniform refinement. The numerical results are
summarized in Table 7. Note that in Table 7, convergence rates are listed with respect to the degree of freedom (DOF). The
corresponding convergent rates with respect to the mesh size h are double of what we present in Table 7. The gradient of
finite element solution converges to the exact gradient at the rate of O(h) while the recovered gradient superconverges at
the rate of @(h!-). Additionally, the predicted supercloseness is observed in the numerical experiment.

Example 5.5. In this example, we consider the interface problem as in [6,56]. The interface in parametric form is given by

{ x(t) =r(t) cos(O(t)),
y() =r(®)sin(0(t)):
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Q2
(a) (b)
Fig. 8. Plots for Example 5.4: (a) plot of the interface; (b) initial unfitted mesh.

Table 7

Numerical results for Example 5.4.
DOF De Order Die Order D'e Order
2573 2.49e—02 - 1.32e—02 - 8.68e—03 -
10265 1.29e—02 0.48 4.42e—03 0.79 3.20e—03 0.72
41009 6.57e—03 0.49 1.56e—03 0.75 1.25e—03 0.68
163937 3.30e—03 0.50 5.09e—04 0.81 4.46e—04 0.74
655553 1.66e—03 0.50 1.74e—04 0.77 1.59e—04 0.74
2621825 8.28e—04 0.50 5.92e—05 0.78 5.48e—05 0.77

where

0(t) =t + sin(4t), r(t) =0.60125+ 0.24012 cos(4t +  /2).
The coefficient function is

4+sinx+y), (xy) e,
B, y) = 2, .2 .
10+x*+y%,  (x,¥) € Qy;

and the exact solution is

_ sin(x) cos(y), (x,y) e Qq,
u(x’y)_[l—xz—yz, (x, ) € Q.

The interface I", shown in Fig. 9a, contains complex geometrical structure. We use the same algorithm as in Example 5.3
to generate an initial unfitted mesh which is plotted in Fig. 9b. Table 8 lists the numerical results. Clearly, we observe the
desired optimal convergence and superconvergence rates.

Example 5.6. In this example, we consider the interface problem as in [39,56]. The interface I" in parametric form is defined
by
x(t) =r(0) cos(@) + xc,
{ y(©) =r@)sin(@) + yc;
where r(0) =rg + 1 sin(wh), 0 <6 < 2.

In this test, we take rg = 0.4, r; = 0.2, @ = 20, and x. = y. = 0.02+/5. The coefficient 8 is a piecewise constant with
B1 =1 and B, = 10. The exact function is

r*/B1, (X, y) € Q1,
(r* —0.110g(2r))/B2, (%, ¥) € Q.
The interface I' is plotted in Fig. 10a and the adaptively refined initial mesh is shown in Fig. 10b. The numerical results

are given in Table 9. The observed results confirm the first-order convergence rate as predicted by Theorem 2.6. For the
errors De! and De’, O(h'®) order decaying rates can be observed which are better than our theoretical results. Compared

u(x, y)={
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2
(a) (b)
Fig. 9. Plots for Example 5.5: (a) plot of the interface; (b) initial unfitted mesh.
Table 8
Numerical results for Example 5.5.
DOF De Order Die Order D'e Order
1381 2.14e—01 - 9.04e—02 - 8.01e—02 -
5489 1.12e—-01 0.47 2.51e—02 0.93 2.02e—02 1.00
21889 5.67e—02 0.49 7.60e—03 0.86 6.65e—03 0.80
87425 2.85e—02 0.50 2.32e—03 0.86 2.11e—03 0.83
349441 1.42e—02 0.50 7.29e—04 0.83 6.99e—04 0.80
1397249 7.12e—03 0.50 2.43e—04 0.79 2.39e—04 0.78
2 \I/
(a) (b)
Fig. 10. Plots for Example 5.6: (a) plot of the interface; (b) initial unfitted mesh.
Table 9
Numerical results for Example 5.6.
DOF De Order Die Order D'e Order
6514 1.30e—01 - 5.36e—02 - 4.39e—02 -
26027 6.70e—02 0.48 1.53e—02 0.91 1.58e—02 0.74
104053 3.39e—02 0.49 4.23e—03 0.93 4.74e—03 0.87
416105 1.70e—02 0.50 117e—-03 0.93 1.32e—03 0.92
1664209 8.51e—03 0.50 3.26e—04 0.92 3.72e—04 0.91
6656417 4.25e—03 0.50 9.26e—05 091 9.97e—05 0.95

61
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to the numerical results using a body-fitted mesh in [56], we achieve the same accuracy by using an unfitted mesh with
about one sixth of the total mesh grid points.

6. Conclusion

In this paper, we propose a new gradient recovery technique based on the Nitsche’s method. Compared to our previ-
ous works [22,23,26], it avoids the loss of accuracy of gradient near the interface caused by skinny triangles. By proving
the supercloseness result for the Nitsche’s method, we are able to show that the recovered gradient is superconvergent to
the exact gradient. As a byproduct, we propose a curvature estimator based adaptive algorithm to generate initial unfitted
triangulations for the elliptic interface problems with complex geometry, which greatly reduces the computational cost as
illustrated in Examples 5.4, 5.5 and 5.6. The future work is planned in several different directions: firstly, we will extend the
study into three dimension problems; secondly, we will consider other type equations like elastic interface problems and
wave propagation problems in heterogeneous media; thirdly, we will combine the curvature estimator and the recovery-
based a posterior error estimator to derive adaptive algorithms for the complex interface problems.
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