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Abstract. In this paper, we consider the travel time tomography problem for conformal metrics on
a bounded domain, which seeks to determine the conformal factor of the metric from the lengths of
geodesics joining boundary points. We establish forward and inverse stability estimates for simple
conformal metrics under some a priori conditions. We then apply the stability estimates to show the
consistency of a Bayesian statistical inversion technique for travel time tomography with discrete,
noisy measurements.

1. Introduction

Consider a smooth, bounded, and simply connected domain Ω ⊆ Rm, with m ≥ 2. Given a
Riemannian metric g on Ω, we define the associated boundary distance function Γg : ∂Ω×∂Ω→ [0,∞)
by

Γg(ξ, η) = inf

{∫
γ
d|g| :=

∫ T

0
|γ̇(t)|g dt : γ ∈ C1([0, T ],Ω), γ(0) = ξ, γ(T ) = η

}
,

for all ξ, η ∈ ∂Ω. In other words, Γg(ξ, η) is the Riemannian distance (with respect to g) between
the boundary points ξ and η. We consider the following inverse problem: Can we recover the metric
g in the interior of the domain from the boundary distance function Γg?

This inverse problem, called the boundary rigidity problem in mathematics literature, arose in
geophysics in an attempt to determine the inner structure of the earth, such as the sound speed or
index of refraction, from measurements of travel times of seismic waves on the earth’s surface. This
is called the inverse kinematic problem or the travel time tomography problem in seismology [16, 45].

The boundary rigidity problem is not solvable in general. Consider, for example, a unit disk with
a metric whose magnitude is large (and therefore, geodesic speed is low) near the center of the disk.
In such cases, it is possible that all distance minimizing geodesics connecting boundary points avoid
the large metric region, and therefore one can not expect to recover the metric in this region from
the boundary distance function. In view of this restriction, one needs to impose additional geometric
conditions on the metric to be reconstructed. One such condition is simplicity. A metric g on Ω
is said to be simple if the boundary ∂Ω is strictly convex w.r.t. to g and any two points on Ω can
be joined by a unique distance minimizing geodesic. Michel conjectured that simple metrics are
boundary distance rigid [21], and this has been proved in dimension two [34]. In dimensions ≥ 3,
this is known for generic simple metrics [36]. When caustics appear, a completely new approach
was established in [37, 38] for the boundary rigidity problem in dimensions ≥ 3, assuming a convex
foliation condition. Boundary rigidity problems for more general dynamical systems can be found
in [10, 2, 48, 32, 17, 46, 35]. We also refer to [9, 39] for summaries of recent developments on the
boundary rigidity problem.

The boundary rigidity problem for general Riemannian metrics has a natural gauge: isometries
of (Ω, g) that preserve ∂Ω will also preserve the boundary distance function. In this paper, we
restrict our attention to the problem of determining metrics from a fixed conformal class. Let ḡ be
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a fixed “background” metric on Ω which is simple and has C3 regularity. For any positive function
n ∈ C3(Ω), define

gn := n2ḡ,

which is a new Riemannian metric on Ω that is conformal to ḡ. Our goal is to recover the parameter
n from the boundary distance function of gn. In this problem, the gauge of isometries does not
appear, and one expects to be able to uniquely determine the conformal factor n from Γgn .

It is known that simple metrics from the same conformal class are boundary rigid for all m ≥ 2
[26, 25, 28]. To be precise, if n1, n2 ∈ C3(Ω) are such that gn1 , gn2 are both simple metrics on Ω,
then Γgn1

= Γgn2
if and only if n1 = n2. To simplify notation, we will henceforth denote Γgn by

simply Γn.

1.1. Stability estimates for the deterministic inverse problem. The uniqueness aspect of the
boundary rigidity problem for conformal simple metrics has been quite well understood through the
aforementioned studies [26, 25, 28]. The first topic of this paper is the stability of the boundary
rigidity problem, i.e., quantitative lower bounds on the change in Γn corresponding to a change in
the parameter n. Stability is important in practice, as we hope the inversion method for travel time
tomography will be stable under perturbations of the data, e.g., by noise.

Conditional stability estimates for simple metrics can be found in [44, 36, 37], where the metrics
are assumed a priori to be close to a given one. When considering a fixed conformal class, various
stability estimates without the closeness assumption have been established in [25, 27, 3]. In [25] the
following stability result has been proved for the 2D boundary rigidity problem with the Euclidean
background metric:

(1) ‖n1 − n2‖L2(Ω) ≤
1√
2π
‖dξ(Γn1 − Γn2)(ξ, η)‖L2(∂Ω×∂Ω).

Here, dξ is the exterior derivative operator with respect to ξ and the L2 norms are taken with respect
to the standard Euclidean metric. Notice that since the boundary distance function is symmetric, this
estimate essentially says that the L2-norm of n1−n2 can be controlled by the H1-norm of Γn1−Γn2 .
For dimensions ≥ 3, there are generalizations [3, 27] of (1) with more complicated expressions (see
also Theorem 2.1). However, the estimates of [3, 27] are not in standard Sobolev or Hölder norms,
which makes them inconvenient for applications.

In this paper, we establish stability estimates similar to (1) for all dimensions ≥ 2, without any a
priori closeness assumptions on n1, n2. Before giving the statement of our results, we need to define
some function spaces for the conformal parameter n.

Definition 1.1. Let Ω0 be a smooth, relatively compact subdomain of Ω, and let λ,Λ, `, L be real
numbers such that

0 < λ < 1 < Λ, 0 < ` < L.

We define Nλ,Λ,`,L(Ω0) to be the set of all functions n ∈ C3(Ω) that satisfy the following conditions:

(i) The metric gn = n2ḡ is a simple metric on Ω.
(ii) λ < n(x) < Λ for all x ∈ Ω and n ≡ 1 on Ω \ Ω0.
(iii) Let expn(x, v) denote the exponential map with respect to gn based at x ∈ Ω and acting on

v ∈ TxΩ (that is, the tangent space of Ω at x). Then the derivative of expn(x, ·) satisfies

(2) `|w|ḡ < |Dv expn(x, v)(w)|ḡ < L|w|ḡ,

for all x ∈ Ω, v ∈ dom(expn(x, ·)), and w ∈ TvTxΩ ∼= TxΩ.
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We also let

Nλ,`(Ω0) :=
⋃

Λ>1, L>0

Nλ,Λ,`,L(Ω0).

The class of metrics associated with these function spaces includes any metric with non-positive
sectional curvature that is conformal to ḡ and equal to ḡ in a neighborhood of ∂Ω . Indeed, suppose
gn = n2ḡ is such a metric. Then (Ω, gn) is free of conjugate points by the curvature assumption,
and ∂Ω remains strictly convex with respect to gn since gn ≡ ḡ near ∂Ω. Therefore, gn is a simple
metric. Moreover, it follows from the Rauch Comparison Theorem that its exponential map expn
satisfies (2) for sufficiently large L and any ` < 1 (see, e.g., [6, Corollary 1.35]).

Remark 1.1 (Notation). Let T : W1 → W2 be a linear map between normed vector spaces. Given
real numbers m,M , we will use the notation

m ≺ T ≺M

as shorthand for

m‖w‖W1 < ‖Tw‖W2 < M‖w‖W1 ,

for all w ∈W1. Using this notation, (2) can be rewritten as

(3) ` ≺ Dv expn(x, v) ≺ L.

We will also use ‖T‖op to denote the operator norm of T :

‖T‖op := sup {‖Tw‖W2 : w ∈W1, ‖w‖W1 = 1} .

Remark 1.2. Let δ > 0 be the distance (w.r.t. to ḡ) between ∂Ω and Ω0, and let ξ, η ∈ ∂Ω be any
pair of boundary points such that distḡ(ξ, η) < δ. For any n ∈ Nλ,`(Ω0), gn coincides with ḡ on

Ω \ Ω0, and consequently, we have Γn(ξ, η) = distḡ(ξ, η). In particular, Γn1(ξ, η) = Γn2(ξ, η) for all
n1, n2 ∈ Nλ,`(Ω0).

We are now ready to state our results on stability estimates for the boundary rigidity problem.
The following “inverse stability” estimate follows from a result of Beylkin [3], combined with some
estimates for metrics with conformal factors n ∈ Nλ,`(Ω0). The details are presented in Section 2.

Theorem 1.2. Let Ω,Ω0, ḡ be as before, and let λ, ` be real numbers such that

0 < λ < 1, 0 < `.

Then there exists a constant C1(Ω,Ω0, ḡ, `) > 0 such that for all n1, n2 ∈ Nλ,`(Ω0),

‖n1 − n2‖L2(Ω) ≤ C1λ
2−m‖dξ(Γn1 − Γn2)(ξ, η)‖L2(∂Ω×∂Ω).

Here, the L2 norms are taken with respect to the background metric ḡ, and dξ represents the
exterior derivative operator with respect to ξ. Please note that the stability constant C1 can blow
up as `→ 0. In a sense, as ` approaches 0, we allow the metrics in our class to get closer and closer
to potentially having conjugate points, and thus becoming non-simple.

We will apply the above stability estimate to study a statistical inversion technique for travel
time tomography. For this purpose, we also need the following continuity (or “forward stability”)
estimate of Γn. To the best of our knowledge, no such continuity estimate has been published before.
The key idea in the proof is to apply the change of variables formula and use the upper bounds on

det
(
Dv expnj

)
to control ‖Γn1 − Γn2‖L2 in terms of ‖n1 − n2‖L2 .
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Theorem 1.3. Let Ω,Ω0, ḡ be as before, and let λ,Λ, `, L be real numbers such that

0 < λ < 1 < Λ, 0 < ` < L.

Then there exists a constant C2(Ω,Ω0, ḡ, `, L) > 0 such that for all n1, n2 ∈ Nλ,Λ,`,L(Ω0),

‖Γn1 − Γn2‖L2(∂Ω×∂Ω) ≤ C2
Λm/2

λ
‖n1 − n2‖L2(Ω).

As with Theorem 1.2, the constant C2 can blow up as `→ 0. The same happens as L→∞, since

this allows det
(
Dv expnj

)
to blow up. The details are again postponed to Section 2.

1.2. The statistical inverse problem. The boundary rigidity problem is nonlinear, and geodesics
are curved in general, so it is hard to derive explicit inversion formulas. Some reconstruction al-
gorithms and numerical implementations based on theoretical analyses can be found in [7, 8, 47].
Typically, inversion methods in travel time tomography take an optimization approach with ap-
propriate regularization. This is a deterministic approach which seeks to minimize some mismatch
functional that quantifies the difference between the observations and the forecasts (synthetic data).
However, this approach generally does not work well for non-convex problems. Moreover, various
approximations in numerical methods can introduce systematic (random) error to the reconstruction
procedure.

In this paper, we apply the above stability estimates (Theorems 1.2 and 1.3) to study a Bayesian
inversion technique for the travel time tomography problem. The Bayesian inversion technique pro-
vides a reasonable solution for ill-posed inverse problems when the number of available observations
is limited, which is a common scenario in practice. Applications of Bayesian inversion to seismology
can be found in [20, 41], which are based on the general paradigm of infinite dimensional Bayesian
inverse problems developed by Stuart [40]. However, most studies in the literature are concerned
with waveform inversion, which is more PDE-based. On the other hand, there are very few results on
statistical guarantees for the Bayesian approach to seismic inverse problems. These motivate us to
apply Stuart’s Bayesian inversion framework to produce a rigorous statistical analysis of the problem
of recovering the wave speed from the (noisy) travel time measurements.

For statistical inversion, it is convenient to rewrite the conformal factor n using an exponential

parameter: For any β ≥ 3, let Cβ0 (Ω0) denote the closure in the Hölder space Cbβc,β−bβc(Ω0) of the
subspace of all smooth functions compactly supported in Ω0. Given any function c ∈ C3

0 (Ω0), we
define the corresponding conformal factor nc by

(4) nc(x) =

{
ec(x) if x ∈ Ω0,

1 if x ∈ Ω \ Ω0.

It is easy to see that nc is a positive C3 function on Ω. To simplify notation, we will denote the
corresponding boundary distance function Γnc by simply Γc.

Our goal is to reconstruct the exponential parameter c from error-prone measurements of Γc
on finitely many pairs of boundary points (Xi, Yi), i = 1, . . . , N . Following the general paradigm
of Bayesian inverse problems, we assume that c arises from a prior probability distribution Π on
C3

0 (Ω0). We will construct Π so that it is supported in a subset of C3
0 (Ω0) of the following form:

Definition 1.4. Let `,M > 0 and β ≥ 3. We define Cβ`,M (Ω0) as the set of all functions c ∈ Cβ0 (Ω0)

that satisfy the following conditions:

(i) The metric gnc = n2
c ḡ is a simple metric on Ω.
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(ii) The derivative of expnc(x, ·) satisfies

Dw expnc(x,w) � `,

for all x ∈ Ω and w ∈ dom(expnc(x, ·)).
(iii) ‖c‖Cbβc,β−bβc(Ω0) < M .

We will show in Section 2 that if c ∈ Cβ`,M (Ω0), the corresponding conformal parameter nc ∈
Nλ,Λ,`,L(Ω0) for appropriate choices of λ,Λ and L. The precise construction of Π is described in
Section 3.

Remark 1.3 (Notation). Henceforth, we will denote Cbβc,β−bβc by simply Cβ.

Remark 1.4. It is known that small perturbations of simple metrics are again simple. Therefore,

Cβ`,M (Ω0) is an open subset of Cβ0 (Ω0).

The pairs of boundary points (Xi, Yi) between which the distance measurements are to be made
are chosen according to the rule

(Xi, Yi)
i.i.d.∼ µ,

where µ is the uniform probability measure on ∂Ω × ∂Ω induced by the background metric ḡ. The
actual distance measurements between these points are assumed to be of the form

Γi = eεiΓc(Xi, Yi),

where εi are i.i.d. N(0, σ2) normal random variables (σ > 0 is fixed) that are also independent of
(Xj , Yj)

N
j=1. For simplicity, we will henceforth assume that σ = 1 without loss of generality. Define

Zc = log Γc,

and for i = 1, . . . , N ,

Zi = log Γi

= Zc(Xi, Yi) + εi.

All of our measurements can be summarized using the data vector

(5) DN = (Xi, Yi, Zi)
N
i=1 ∈ (∂Ω× ∂Ω× R)N .

For convenience, let us define X = ∂Ω× ∂Ω× R.

Next, let PNc denote the probability law of DN |c. It is easy to see that PNc = ×Ni=1P
(i)
c , where

for each i ∈ {1, . . . , N}, P (i)
c is equal to the probability law of (Xi, Yi, Zi). More explicitly, for each

i ∈ {1, . . . , N},
dP (i)

c (x, y, z) = pcdµ(x, y)dz,

where

pc(x, y, z) =
1√
2π

exp

{
−1

2
(z − Zc(x, y))2

}
.

We denote the posterior distribution of c|DN by Π(·|DN ). By Corollary 2.7, the map (c, (x, y, z)) 7→
pc(x, y, z) is jointly Borel-measurable from C3

0 (Ω0)×X to R. So it follows from standard arguments
(see [14, p. 7] ) that the posterior distribution is well-defined and takes the form

Π(A|DN ) =

∫
A

∏N
i=1 pc(Xi, Yi, Zi)dΠ(c)∫ ∏N
i=1 pc(Xi, Yi, Zi)dΠ(c)
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for any Borel set A ⊆ C3
0 (Ω0). Our posterior estimator for c will be the posterior mean

(6) cN = EΠ[c|DN ].

Theorem 1.5. Suppose that the true parameter c0 is smooth and compactly supported in Ω0, and is
such that gnc0 is a simple metric on Ω. Then there is a well defined prior distribution Π on C3

0 (Ω0)
such that the posterior mean cN satisfies

‖cN − c0‖L2(Ω) → 0

in PNc0 - probability, as N →∞.

A more precise version of this result is stated in Theorem 3.1 in Section 3, which in fact re-
quires significantly weaker regularity assumptions on c0. It also specifies an explicit N−ω rate of
convergence, where ω is a positive constant that can be made arbitrarily close to 1/4.

To prove Theorem 1.5, we apply the analytic techniques developed in recent consistency studies
of statistical inversion of the geodesic X-ray transform [22] and related non-linear problem arising
in polarimetric neutron tomography [23, 24]. The forward and inverse stability estimates for the
measurement operators (like the ones in Theorems 1.2 and 1.3) play a key role in the arguments of
these references.

The analysis of theoretical guarantees for statistical inverse problems is currently a very active
topic. Recent progress for various linear and non-linear inverse problems include [11, 12, 1, 22, 29,
23, 24, 31, 5, 4]. See also the recent lecture notes [30].

The paper is structured as follows. In Section 2, we establish the forward and inverse stability esti-
mates for the boundary distance function. Section 3 is devoted to proving the statistical consistency
of Bayesian inversion for the boundary rigidity problem.

2. Forward and Inverse continuity estimates

In order to prove the statistical consistency of the proposed Bayesian estimator, we need to es-
tablish quantitative upper and lower bounds on the magnitude of change in the boundary distance
function Γn corresponding to a change in the conformal parameter n of the metric. This is the
content of Theorems 1.2 and 1.3, which we will prove in this section. We will also use these estimates
to establish similar bounds for the map c 7→ Zc = log Γc, when c belongs to the parameter space

Cβ`,M (Ω0) defined in Definition 1.4.

2.1. Stability estimates. We begin with the proof of Theorem 1.2. As we noted in the introduction,
such an estimate has already been proved for dimension m = 2 by Mukhometov in [25]. For general
m ≥ 2, we have the following result by Beylkin [3]. Also see [27, Lemma 4].

Theorem 2.1 ([3]). Let n1, n2 ∈ C3(Ω) be such that gn1 , gn2 are simple metrics on Ω. Then∫
Ω

(n1 − n2)(nm−1
1 − nm−1

2 ) dVolḡ

≤ Cm
∫
∂Ωξ×∂Ωη

∑
a+b=m−2

dξ(Γn1 − Γn2) ∧ dη(Γn1 − Γn2) ∧ (dξdηΓn1)a ∧ (dξdηΓn2)b ,
(7)

where dVolḡ is the Riemannian volume form induced by ḡ, and dξ and dη represent the exterior
derivative operators on ∂Ω with respect to ξ and η respectively. Given local coordinates (ξ1, . . . , ξm−1)
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for ξ and (η1, . . . , ηm−1) for η, we have dξ = dξi ∂
∂ξi

, dη = dηj ∂
∂ηj

, and dξdη = dξi ∧ dηj ∂2

∂ξi∂ηj
. The

constant

Cm =
(−1)

(m−1)(m−2)
2 Γ(m/2)

2πm/2(m− 1)!
,

depends only on the dimension m.

We will show that when n1, n2 ∈ Nλ,`(Ω0), the inequality (7) leads to the desired stability estimate.

Lemma 2.2. Let n ∈ Nλ,`(Ω0). Then the corresponding boundary distance function Γn satisfies

|dξΓn(ξ, η)|ḡ ≤ 1, |dηΓn(ξ, η)|ḡ ≤ 1,

and

|∇ξ∇ηΓn(ξ, η)|ḡ ≤
(1 + `−1)

λ
distḡ(ξ, η)−1

for all ξ, η ∈ ∂Ω with ξ 6= η. Here, ∇ξ,∇η denote the covariant derivative operators with respect to
ξ and η respectively, and distḡ(ξ, η) is the distance from ξ to η with respect to the metric ḡ.

Proof. Given ξ, η ∈ ∂Ω with ξ 6= η, let v(ξ, η) denote the unit vector (with respect to gn) at η tangent
to the geodesic from ξ to η. It follows from the First Variation Formula (cf. [18], Theorem 6.3) that
the gradient (with respect to gn) of Γn(ξ, ·) is given by

(8) gradη Γn(ξ, η) = Πηv(ξ, η),

where Πη : TηΩ → Tη∂Ω is the orthogonal projection map onto the tangent space of the boundary.
Since gn = ḡ on ∂Ω, it follows immediately that

|dηΓn(ξ, η)|ḡ = | gradη Γn(ξ, η)|gn = |Πηv(ξ, η)|gn ≤ |v(ξ, η)|gn = 1.

Similar arguments show that |dξΓn(ξ, η)|ḡ ≤ 1 as well.
Next, let (ξ1, . . . , ξm−1) and (η1, . . . , ηm−1) be local coordinates for ∂Ω around ξ and η respectively.

We can extend these coordinate charts to boundary normal coordinates (ξ1, . . . , ξm) and (η1, . . . , ηm)
by taking ξm and ηm to be the corresponding distance functions from the boundary. With respect
to these coordinates, we may rewrite (8) as

(9) gradη Γn(ξ, η) =

m−1∑
j=1

vj(ξ, η)
∂

∂ηj
.

We can extend both sides of this equality to (1, 0)-tensor fields on ∂Ωξ × ∂Ωη, while maintaining the
equality. Taking covariant derivatives of both sides with respect to ξ, we get

(10) ∇ξ gradη Γn(ξ, η) =

m−1∑
i,j=1

∂vj

∂ξi
(ξ, η)

∂

∂ηj
⊗ dξi.

Here, we have used the fact that the product connection on ∂Ωξ × ∂Ωη satisfies ∇∂ξi∂ηj = 0 for

all i, j. Recall that gn is a simple metric, and its exponential map expn(x, ·) at any x ∈ Ω is a
diffeomorphism onto Ω. Let w(x, ·) : Ω → TxΩ denote its inverse map. Since Dv expn(x, v) � ` for
all v in the domain of expn(x, ·), we have

(11) ‖Dyw(x, y)‖op < `−1 for all y ∈ Ω.

Now observe that we have the identity

v(ξ, η) = − w(η, ξ)

Γn(ξ, η)
.
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So by (9) and (10),

∇ξ gradη Γn(ξ, η) = −
m−1∑
i,j=1

{
1

Γn(ξ, η)

∂wj(η, ξ)

∂ξi
− wj(η, ξ)

Γn(ξ, η)2

∂Γn(ξ, η)

∂ξi

}
∂

∂ηj
⊗ dξi

= − 1

Γn(ξ, η)


m−1∑
i,j=1

∂wj(η, ξ)

∂ξi
∂

∂ηj
⊗ dξi

+
1

Γn(ξ, η)
v(ξ, η)⊗ dξΓn(ξ, η).(12)

Observe that
∑m−1

i,j=1
∂wj(η,ξ)
∂ξi

∂
∂ηj
⊗ dξi is precisely the tensor form of the linear map

Πη ◦Dyw(η, y)
∣∣
y=ξ
◦Πξ,

where Πξ and Πη are, as before, orthogonal projections from TξΩ → Tξ∂Ω and TηΩ → Tη∂Ω
respectively. Therefore,∣∣∣∣∣∣

m−1∑
i,j=1

∂wj(η, ξ)

∂ξi
∂

∂ηj
⊗ dξi

∣∣∣∣∣∣
ḡ

≤
∥∥∥Dyw(η, y)

∣∣
y=ξ

∥∥∥
op
< `−1.

Combining this with (12), we get

|∇ξdηΓn(ξ, η)|ḡ = |∇ξ gradη Γn(ξ, η)|ḡ

≤ `−1

Γn(ξ, η)
+
|v(ξ, η)|ḡ|dξΓn(ξ, η)|ḡ

Γn(ξ, η)

≤ (1 + `−1)

Γn(ξ, η)
.

Finally, applying the simple estimate

distḡ(ξ, η) ≤ 1

λ
Γn(ξ, η),

we get

|∇ξ∇ηΓn(ξ, η)|ḡ = |∇ξdηΓn(ξ, η)|ḡ ≤
(1 + `−1)

λ
distḡ(ξ, η)−1.

This completes the proof. �

With these estimates in hand, we’re now ready to prove Theorem 1.2.

Proof of Theorem 1.2. Consider the inequality (7) from Theorem 2.1. For n1, n2 ∈ Nλ,`(Ω0), the left
hand side becomes

(13)

∫
Ω

(n1 − n2)2(nm−2
1 + nm−3

1 n2 + · · ·+ nm−2
2 )dVolḡ ≥ (m− 1)λm−2‖n1 − n2‖2L2(Ω).

Now consider the right hand side of (7). By Lemma 2.2,

|dξdηΓn|ḡ =
∣∣∣Alt

(
∇ξ∇ηΓn

)∣∣∣
ḡ
≤ (1 + `−1)

λ
distḡ(ξ, η)−1.
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Therefore, the right hand side of (7) is bounded above by

|Cm|
∫
∂Ω×∂Ω

|dξ(Γn1 − Γn2)|ḡ|dη(Γn1 − Γn2)|ḡ
∑

a+b=m−2

|dξdηΓn1 |aḡ |dξdηΓn2 |bḡ dσḡ

≤ (m− 1)|Cm|
(1 + `−1)m−2

λm−2

∫
∂Ω×∂Ω

|dξ(Γn1 − Γn2)|ḡ|dη(Γn1 − Γn2)|ḡ| distḡ(ξ, η)|2−m dσḡ,

where dσḡ is the surface measure on ∂Ω × ∂Ω induced by ḡ. Observe that by Remark 1.2, we have
(Γn1 −Γn2)(ξ, η) = 0 for all ξ, η ∈ ∂Ω with distḡ(ξ, η) < δ. Therefore, the above expression is further
bounded above by

(m− 1)|Cm|
(1 + `−1)m−2

λm−2
δ2−m

∫
∂Ω×∂Ω

|dξ(Γn1 − Γn2)|ḡ|dη(Γn1 − Γn2)|ḡ|dσḡ.

.m,δ,` λ
2−m

(
‖dξ(Γn1 − Γn2)‖2L2(∂Ω×∂Ω) + ‖dη(Γn1 − Γn2)‖2L2(∂Ω×∂Ω)

)
.m,δ,` λ

2−m‖dξ(Γn1 − Γn2)‖2L2(∂Ω×∂Ω)

since ‖dξ(Γn1 − Γn2)‖L2 = ‖dη(Γn1 − Γn2)‖L2 by symmetry. Combining this with (13), we get

‖n1 − n2‖2L2(Ω) .m,δ,` λ
2(2−m)‖dξ(Γn1 − Γn2)‖2L2(∂Ω×∂Ω)

and the theorem follows. �

Recall that we parametrized the conformal parameter n of the metric gn by a function c belonging

to the parameter space Cβ`,M (Ω0), as defined in (4). We assumed that our input data consists of

finitely many measurements of the function Zc = log Γc. In the following corollary, we translate
Theorem 1.2 into stability estimates for the map c 7→ Zc using simple Lipschitz estimates for the
exponential function: For all x, y ∈ [M1,M2],

(14) eM1 |x− y| ≤ |ex − ey| ≤ eM2 |x− y|.

This immediately implies that for all c1, c2 ∈ Cβ`,M (Ω0),

(15) e−M‖c1 − c2‖L2(Ω0) ≤ ‖nc1 − nc2‖L2(Ω) ≤ eM‖c1 − c2‖L2(Ω0).

Corollary 2.3. For any M > 0, there exists a constant C ′1 = C ′1(Ω,Ω0, ḡ, `,M) > 0 such that

‖c1 − c2‖L2(Ω0) ≤ C ′1‖Zc1 − Zc2‖H1(∂Ω×∂Ω)

for all c1, c2 ∈ C3
`,M (Ω0).

Proof. Let c1, c2 ∈ C3
`,M (Ω0). Then nc1 , nc2 ∈ Nλ,`(Ω0) for λ = e−M . So it follows from Theorem 1.2

that

(16) ‖nc1 − nc2‖L2(Ω) ≤ C1e
(m−2)M‖dξ(Γc1 − Γc2)‖L2(∂Ω×∂Ω).

By (15), the left hand side of the above equation is bounded below by e−M‖c1 − c2‖L2(Ω0). Now,
rewrite dξ(Γc1 − Γc2) as

dξ(Γc1 − Γc2) = dξ(e
Zc1 − eZc2 )

= eZc1dξZc1 − eZc2dξZc2
= eZc1dξ(Zc1 − Zc2) + (eZc1 − eZc2 )dξZc2 .

It follows from Remark 1.2 that if (ξ, η) ∈ supp(Γc1−Γc2), we have distḡ(ξ, η) ≥ δ, and consequently,

e−Mδ ≤ Γcj (ξ, η) ≤ eM diamḡ(Ω), j = 1, 2.
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Therefore, by applying (14) along with the fact that |dξΓcj |ḡ ≤ 1 by Lemma 2.2, we get

|dξ(Γc1 − Γc2)|ḡ ≤ |Γc1 ||dξ(Zc1 − Zc2)|ḡ + |Γc1 − Γc2 ||dξΓc2 |ḡ/|Γc2 |

≤ eM diamḡ(Ω)|dξ(Zc1 − Zc2)|ḡ +
|eZc1 − eZc2 |

e−Mδ

≤ eM diamḡ(Ω)|dξ(Zc1 − Zc2)|ḡ +
eM diamḡ(Ω)

e−Mδ
|Zc1 − Zc2 |,

where diamḡ(Ω) denotes the diameter of Ω with respect to the metric ḡ. This further implies

‖dξ(Γc1 − Γc2)‖L2(∂Ω×∂Ω) .Ω,ḡ,δ,`,M ‖Zc1 − Zc2‖H1(∂Ω×∂Ω).

Combining this with (15) and (16), we get

‖c1 − c2‖L2(Ω0) .Ω,ḡ,δ,`,M ‖Zc1 − Zc2‖H1(∂Ω×∂Ω).

This completes the proof. �

2.2. Forward continuity estimates. We now move on to the proof of Theorem 1.3. The key idea
is to use upper bounds on Dv expnj (x, v) to control ‖Γn1 − Γn2‖L2 with respect to ‖n1 − n2‖L2 .

We begin by introducing some notation. Let SΩ denote the unit sphere bundle on Ω, that is,

SΩ = {(x, v) ∈ TΩ : |v|ḡ = 1}.

The boundary of SΩ consists of unit tangent vectors at ∂Ω. Specifically,

∂SΩ = {(x, v) ∈ SΩ : x ∈ ∂Ω}.

Let ν denote the inward unit normal vector field along ∂Ω with respect to the metric ḡ. We define
the bundles of inward pointing and outward pointing unit tangent vectors on ∂Ω as follows:

∂+SΩ :=
{

(ξ, v) ∈ ∂SΩ : 〈v, νξ〉ḡ ≥ 0
}
, and

∂−SΩ :=
{

(ξ, v) ∈ ∂SΩ : 〈v, νξ〉ḡ ≤ 0
}
.

We also set

∂0SΩ := ∂+SΩ ∩ ∂−SΩ.

This coincides with S∂Ω, the unit sphere bundle on ∂Ω.
Next, let n ∈ Nλ,`(Ω0). For (ξ, v) ∈ ∂+SΩ, we let γn(ξ, v, t) = expn(ξ, tv) denote the unit speed

geodesic (with respect to gn) starting at ξ with initial direction v at time t = 0. We define τn(ξ, v)
to be the time at which γn(ξ, v, ·) exits Ω. It is known (see [33]) that for simple manifolds, τn is a
C1 function of ∂+SΩ, and τn(ξ, v) = 0 if and only if v ∈ Sξ∂Ω. We also define ηn(ξ, v) and un(ξ, v)

as the point and direction at which γn(ξ, v, ·) exits Ω. In other words,

ηn(ξ, v) := γn(ξ, v, τn(ξ, v)), and

un(ξ, v) := γ̇n(ξ, v, τn(ξ, v)).

Lemma 2.4. Let n ∈ Nλ,Λ,`,L(Ω0). Then for all (ξ, v) ∈ ∂+SΩ,

‖Dvτn(ξ, v)‖op ≤ L
τn(ξ, v)

〈ν, u〉ḡ
≤ LΛ diamḡ(Ω)

〈ν, u〉ḡ
,

where ν = νηn(ξ,v) and u = un(ξ, v).
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Proof. Let ρ ∈ C1(Ω) be such that ρ−1(0) = ∂Ω and ρ(x) = distḡ(x, ∂Ω) for x near ∂Ω. Consider
the function

f(t, v) = ρ(expn(ξ, tv)).

Observe that
∂f

∂t

∣∣∣
t=τn(ξ,v)

=
〈
(grad ρ)ηn(ξ,v), un(ξ, v)

〉
ḡ

= 〈ν, u〉ḡ.

On the other hand,

Dvf(t, v) = Dρexpn(ξ,tv) ◦
(
tDw expn(ξ, w)

∣∣
w=tv

)
⇒ Dvf

∣∣
(τn(ξ,v),v)

= τn(ξ, v)Πν ◦Dw expn(ξ, w)
∣∣
w=τn(ξ,v)v

,

where Πν is the linear map given by

Πν(w) = 〈ν, w〉ḡ for all w ∈ Tηn(ξ,v)Ω.

Now differentiating the identity f(τn(ξ, v), v) = 0 with respect to v, we get

0 =
∂f

∂t

∣∣∣
(τn(ξ,v),v)

Dvτn(ξ, v) +Dvf
∣∣
(τn(ξ,v),v)

= 〈ν, u〉ḡDvτn(ξ, v) + τn(ξ, v)Πν ◦Dw expn(ξ, w)
∣∣
w=τn(ξ,v)v

.

Therefore,

Dvτn(ξ, v) = −τn(ξ, v)

〈ν, u〉ḡ
Πν ◦Dw expn(ξ, w)

∣∣
w=τn(ξ,v)v

⇒ ‖Dvτn(ξ, v)‖op ≤
τn(ξ, v)

〈ν, u〉ḡ

∥∥∥Dw expn(ξ, w)
∣∣
w=τn(ξ,v)v

∥∥∥
op

≤ L
[
τn(ξ, v)

〈ν, u〉ḡ

]
,

as required. Now the lemma follows by observing that

τn(ξ, v) ≤ diamgn(Ω) ≤ Λ diamḡ(Ω),

for all (ξ, v) ∈ ∂+SΩ. �

We are now ready to prove Theorem 1.3. Recall that the notation
∫
γ fd|g| denotes the integral of

a function f along the curve γ with respect to the arc-length metric induced by g.

Proof of Theorem 1.3. Fix ξ ∈ ∂Ω, and define the sets

B1(ξ) := {η ∈ ∂Ω : Γn1(ξ, η) ≤ Γn2(ξ, η)},
B2(ξ) := {η ∈ ∂Ω : Γn2(ξ, η) ≤ Γn1(ξ, η)}.

Suppose η ∈ B1(ξ), and let γ1(ξ, η) denote the unit speed geodesic with respect to gn1 from ξ to η.
Clearly, Γn1(ξ, η) =

∫
γ1(ξ,η) n1d|ḡ|, whereas Γn2(ξ, η) ≤

∫
γ1(ξ,η) n2d|ḡ|. So we have

(Γn2 − Γn1)(ξ, η) ≤
∫
γ1(ξ,η)

(n2 − n1)d|ḡ| =
∫
γ1(ξ,η)

(n2 − n1)

n1
d|gn1 |.
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This implies

(Γn2 − Γn1)2(ξ, η) ≤ Γn1(ξ, η)

∫
γ1(ξ,η)

(n2 − n1)2

n2
1

d|gn1 | (by Cauchy-Schwarz)

= Γn1(ξ, η)

∫ Γn1 (ξ,η)

0

(n2 − n1)2

n2
1

(γ1(ξ, η, t))dt

≤ Γn1(ξ, η)

λ2

∫ Γn1 (ξ,η)

0
(n2 − n1)2(expn1

(ξ, tvn1(ξ, η)))dt,

where vn1(ξ, η) = γ̇n1(ξ, η, 0), that is, the unit tangent vector at ξ that points towards η. This implies∫
B1(ξ)

(Γn2 − Γn1)2(ξ, η)dη ≤ Λ diamḡ(Ω)

λ2

∫
∂Ω

∫ Γn1 (ξ,η)

0
(n2 − n1)2(expn1

(ξ, tvn1(ξ, η)))dtdη

=
Λ diamḡ(Ω)

λ2

∫
∂+SξΩ

∫ τn1 (ξ,v)

0
(n2 − n1)2(expn1

(ξ, tv))| det[Dvηn1(ξ, v)]dtdv.(17)

by the change of variables formula. (Here, dη is the surface measure on η ∈ ∂Ω with respect to
ḡ.) We now find an upper bound for | det[Dvηn1 ]| on the support of the integrand. Recall that by
definition,

ηn1(ξ, v) = expn1
(ξ, τn1(ξ, v)v).

With the canonical identification of TvSξΩ with a subspace of TξΩ, we get

Dvηn1(ξ, v) = Dw expn1
(ξ, w)

∣∣
w=τn1 (ξ,v)v

◦Dv(τn1(ξ, v)v)

= Dw expn1
(ξ, w)

∣∣
w=τn1 (ξ,v)v

◦
(
τn1(ξ, v)Id + v ⊗Dvτn1(ξ, v)

)
.

Here, v ⊗Dvτn1(ξ, v) should be interpreted as the map

w ∈ TvSξΩ ⊆ TξΩ 7→ [Dvτn1 |(ξ,v)(w)]v ∈ TξΩ.

So we have

‖Dvηn1(ξ, v)‖op ≤
∥∥∥Dw expn1

(ξ, w)
∣∣
w=τn1 (ξ,v)v

∥∥∥
op

(
τn1(ξ, v) + ‖Dvτn1(ξ, v)‖op

)
≤ L

(
Λ diamḡ(Ω) +

LΛ diamḡ(Ω)

〈ν(ηn1(ξ, v)), un1(ξ, v)〉ḡ

)
by Lemma 2.4. Now since Ω0 is a relatively compact subset of Ω, there exists an ε ∈ (0, 1) such that
if 〈ν(ηn1(ξ, v)), un1(ξ, v)〉ḡ < ε, the geodesic γn1(ξ, v, ·) lies entirely within Ω \ Ω0, and therefore,

(n2 − n1)2(expn1
(ξ, tv)) = 0 for all t ∈ [0, τn1(ξ, v)].

Therefore, on the support of the integrand in the right hand side of (17), we have the bounds

‖Dvηn1(ξ, v)‖op ≤ L
(

Λ diamḡ(Ω) +
LΛ diamḡ(Ω)

ε

)
.Ω,Ω0,ḡ,L Λ,

and consequently

|det[Dv(ηn1(ξ, v))]| .Ω,Ω0,ḡ,L Λm−1.
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Applying this bound to the right hand side of (17), we get∫
B1(ξ)

(Γn1 − Γn2)2(ξ, η)dη .
Λm

λ2

∫
∂+SξΩ

∫ τn1 (ξ,v)

0
(n2 − n1)2(expn1

(ξ, tv))dtdv

∼ Λm

λ2

∫
dom(expn1

(ξ,·))

(n2 − n1)2(expn1
(ξ, w))

|w|m−1
ḡ

dw

Again by Remark 1.2, we have (n2−n1)2(expn1
(ξ, w)) = 0 for all w ∈ dom(expn1

(ξ, ·)) with |w|ḡ ≤ δ.
Therefore, we get∫

B1(ξ)
(Γn1 − Γn2)2(ξ, η)dη .

Λm

λ2δm−1

∫
dom(expn1

(ξ,·))
(n2 − n1)2(expn1

(ξ, w))dw.

We now make the change of variable x = expn1
(ξ, w). The assumption that Dw expn1

(ξ, w) � `

implies that the inverse wn1(ξ, ·) of expn1
(ξ, ·) satisfies ‖Dxwn1(ξ, x)‖op < `−1, and consequently,

|det(Dxwn1(ξ, x))| < `−m.

Therefore, ∫
B1(ξ)

(Γn1 − Γn2)2(ξ, η)dη .
Λm

λ2

∫
Ω

(n2 − n1)2(x)|det(Dxwn1(ξ, x))|dVolḡ(x)

.
Λm

λ2`m

∫
Ω

(n2 − n1)2(x)dVolḡ(x).

By analogous arguments, we also have∫
B2(ξ)

(Γn1 − Γn2)2(ξ, η)dη .
Λm

λ2`m

∫
Ω

(n2 − n1)2(x)dVolḡ(x).

Adding the last two inequalities, we get∫
∂Ω

(Γn1 − Γn2)2(ξ, η)dη .
Λm

λ2`m
‖n1 − n2‖2L2(Ω)

⇒
∫
∂Ω

∫
∂Ω

(Γn1 − Γn2)2(ξ, η)dηdξ .
Λm

λ2`m
‖n1 − n2‖2L2(Ω)

⇒ ‖Γn1 − Γn2‖L2(∂Ω×∂Ω) .Ω,Ω0,ḡ,`,L
Λm/2

λ
‖n1 − n2‖L2(Ω).

This completes the proof.
�

Next, we derive the analogous continuity estimate for the map c 7→ Zc. The key step is to show
that for any M > 0, the operator norm of the derivative of expnc(x, v) is uniformly bounded for all

c ∈ C3
`,M (Ω0) and (x, v) ∈ dom(expnc). We begin with a simple lemma.

Lemma 2.5. Let (M, g) be a Riemannian manifold whose curvature tensor R satisfies

‖R‖ = sup {|R(u, v)w|g : u, v, w ∈ SM} <∞.

Then any Jacobi field J along a unit speed geodesic γ : [0, T ]→M satisfies the norm bounds

|J(t)|2g + |J̇(t)|2g ≤ e(1+‖R‖)t
(
|J(0)|2g + |J̇(0)|2g

)
for all t ∈ [0, T ].
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Proof. Set f(t) = |J(t)|2g + |J̇(t)|2g. Since J is a Jacobi field, it satisfies the equation

J̈(t) +R(J(t), γ̇(t))γ̇(t) = 0.

Therefore,

f ′(t) = 2〈J(t), J̇(t)〉g + 2〈J̇(t), J̈(t)〉g
= 2〈J, J̇〉g + 2〈J̇ ,−R(J, γ̇)γ̇〉g
≤ 2|J |g|J̇ |g + 2|J̇ |g‖R‖|J |g|γ̇|2g
≤ (1 + ‖R‖)f(t).

So it follows that
f(t) ≤ e(1+‖R‖)tf(0) for all t ∈ [0, T ].

�

Next, let us recall the definition of the canonical metric on the tangent bundle of a Riemannian
manifold, also called the Sasaki metric. Let (M, g) be a Riemannian manifold, (x,w) ∈ TM, and
V1, V2 ∈ T(x,w)TM. Then we may choose curves αj(s) = (σj(s), vj(s)) in TM, defined on (−ε, ε),
such that

αj(0) = (x,w), α̇j(0) = Vj , for j = 1, 2.

The inner product of V1, V2 with respect to the Sasaki metric is defined to be

〈V1, V2〉g := 〈σ̇1(0), σ̇2(0)〉g + 〈v̇1(0), v̇2(0)〉g,
where v̇j(s) represents the covariant derivative of vj(s) along the curve σj(s). Note that we are
using the same notation for the Sasaki metric as for the original metric g. Now, for any C1 map
F : TM→M, the operator norm of the total derivative of F at (x,w) ∈ TM is given by

‖DF (x,w)‖op := sup{|DF (x,w)(V )|g : V ∈ T(x,w)TM, |V |g = 1}.

We will show that if c ∈ C3
`,M (Ω0), the total derivative of expnc is bounded above in the operator

norm.

Proposition 2.6. For any M > 0, there exists L = L(M) > 0 such that for all c ∈ C3
`,M (Ω0), the

total derivative of the exponential map of gnc satisfies

‖D expnc(x,w)‖op < L

for all x ∈ Ω and w ∈ dom(expnc(x, ·)). In particular, nc ∈ Nλ,Λ,`,L(Ω0).

Proof. Suppose c ∈ C3
`,M (Ω0). Fix (x,w) ∈ dom(expnc), and let V ∈ T(x,w)TΩ. It suffices to show

that
|D expnc(x,w)(V )|ḡ < L|V |ḡ.

Choose a curve α(s) = (σ(s), v(s)) in TΩ, defined on (−ε, ε), such that α(0) = (x,w) and α̇(0) = V .
Consider the family of geodesics Φ : (−ε, ε)× [0, 1]→ Ω defined by

Φ(s, t) = expnc(σ(s), tv(s)).

The variation field of this family of geodesics is

J(t) := ∂s expnc(σ(s), tv(s))
∣∣
s=0

,

which is a Jacobi field along γ(t) := Φ(0, t). Observe that

J(1) = ∂s expnc(σ(s), v(s))
∣∣
s=0

= D expnc(x,w)(V ),

which is precisely the quantity whose norm we want to estimate.
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Let R be the Riemann curvature tensor of (Ω, gnc), and let Rijkl denote its tensor coefficients with

respect to a fixed global coordinate chart on Ω. Then we have

Rijkl = ∂kΓ
i
lj − ∂lΓikj + ΓikmΓmlj − ΓilmΓmkj ,

where

Γljk =
1

2
n−2
c ḡlm

(
∂j(n

2
c ḡkm) + ∂k(n

2
c ḡjm)− ∂m(n2

c ḡjk)
)
.

This implies that for any x ∈ Ω,

max
ijkl
|Rijkl(x)| .ḡ 1 + nc(x)−2‖nc‖2C2 . e4M (1 +M)4.

Therefore, for any x ∈ Ω and unit tangent vectors u, v, w ∈ SxΩ,

|R(u, v)w|gc . nc(x)

(
max
ijkl
|Rijkl(x)ujvkwl|

)
. e5M (1 +M)4

⇒ ‖R‖ ≤ Ce5M (1 +M)4

for some C > 0. Taking L2 > exp(1 + C ′e5M (1 +M)4) and applying Lemma 2.5, we get

|D expc(x,w)(V )|2gc = |J(1)|2gnc < L2
(
|J(0)|2gnc + |J̇(0)|2gnc

)
= L2

(
|σ̇(0)|2 + |v̇(0)|2

)
= L2|V |2ḡ.

This completes the proof. �

Corollary 2.7. There exists a constant C ′2 = C ′2(Ω,Ω0, ḡ, `,M) > 0 such that for all c1, c2 ∈
C3
`,M (Ω0),

‖Zc1 − Zc2‖L2(∂Ω×∂Ω) ≤ C ′2‖c1 − c2‖L2(Ω0).

Proof. We know from Theorem 1.3, Proposition 2.6, and equation (15) that

‖Γc1 − Γc2‖L2(∂Ω×∂Ω) .Ω,Ω0,ḡ,`,M ‖c1 − c2‖L2(Ω0).

Now consider

‖Γc1 − Γc2‖2L2(∂Ω×∂Ω) =

∫
∂Ω×∂Ω

∣∣eZc1 − eZc2 ∣∣2 dξdη.

Recall that there exists δ > 0 such that Zc1(ξ, η) = Zc2(ξ, η) whenever distḡ(ξ, η) < δ. On the set
{distḡ(ξ, η) ≥ δ},

e−Mδ ≤ Γcj (ξ, η) ≤ eM diamḡ(Ω)

⇒ −M + log δ ≤ Zcj (ξ, η) ≤M + log | diamḡ(Ω)|.(18)

So by (14),

|eZc1 (ξ,η) − eZc2 (ξ,η)| ≥ e−Mδ|Zc1(ξ, η)− Zc2(ξ, η)|
for all (ξ, η) ∈ ∂Ω× ∂Ω. Consequently,

‖Γc1 − Γc2‖2L2(∂Ω×∂Ω) =

∫ ∣∣eZc1 − eZc2 ∣∣2 dξdη ≥ e−2Mδ2

∫
|Zc1 − Zc2 |2 dξdη.

So we conclude that
‖Zc1 − Zc2‖L2 . ‖Γc1 − Γc2‖L2 . ‖c1 − c2‖L2 .

�

We conclude this section with a technical result that will be necessary for the proof of Theorem
3.7 in Section 3.
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Theorem 2.8. Given M > 0, there exists a constant C ′3 = C ′3(Ω,Ω0, ḡ, `,M) > 0 such that for all
c1, c2 ∈ C3

`,M (Ω0),

‖Zc1 − Zc2‖H2(∂Ω×∂Ω) ≤ C ′3.

Proof. We know from Theorem 1.3 that

‖Zc1 − Zc2‖L2 . ‖c1 − c2‖L2 . 2M.

Next, let ξ, η ∈ ∂Ω. It follows from Remark 1.2 that if distḡ(ξ, η) < δ, then Zc1 − Zc2 and all its
derivatives are identically 0 in a neighborhood of (ξ, η). On the other hand, if distḡ(ξ, η) > δ, Lemma
2.2 implies

|dξ(Zc1 − Zc2)(ξ, η)|ḡ ≤
|dξΓc1(ξ, η)|ḡ

Γc1(ξ, η)
+
|dξΓc2(ξ, η)|ḡ

Γc2(ξ, η)
.
eM

δ
.

This shows that ‖dξ(Zc1−Zc2)‖L2 is uniformly bounded for c1, c2 ∈ C3
`,M (Ω0). By symmetry, ‖dη(Zc1−

Zc2)‖L2 is also uniformly bounded.
So it only remains to consider the Hessian tensor of Zc1 − Zc2 . Let ∇ denote the Levi-Civita

connection on ∂Ωξ × ∂Ωη, and let πξ : ∂Ωξ × ∂Ωη → ∂Ωξ and πη : ∂Ωξ × ∂Ωη → ∂Ωη denote the

canonical projection maps. We may decompose ∇ as ∇ξ +∇η, where ∇ξ and ∇η are the covariant
derivative operations with respect to ξ and η respectively. More precisely, given any tensor field F
on ∂Ωξ × ∂Ωη, and any tangent vector v ∈ T (∂Ωξ × ∂Ωη), we have

∇ξvF = ∇(πξ)∗vξF, ∇ηvF = ∇(πη)∗vηF,

where (vξ, vη) is the image of v under the canonical isomorphism from T (∂Ωξ × ∂Ωη) to (T∂Ωξ) ×
(T∂Ωη). Correspondingly, the Hessian operator on ∂Ωξ × ∂Ωη can be decomposed as

Hess = ∇2 = (∇ξ +∇η)(∇ξ +∇η)

= ∇ξ∇ξ +∇ξ∇η +∇η∇ξ +∇η∇η

= Hessξ +∇ξ∇η +∇η∇ξ + Hessη,

where Hessξ and Hessη are the Hessian operators with respect to ξ and η respectively. Now let
ξ, η ∈ ∂Ω be such that distḡ(ξ, η) > δ. Then for j = 1, 2,

∇ξ∇ηZcj (ξ, η) = ∇ξ∇η log Γcj (ξ, η)

=

(
∇ξ∇ηΓcj

Γcj
−
dξΓcj ⊗ dηΓcj

Γ2
cj

)
(ξ, η).

By Lemma 2.2, this implies

|∇ξ∇ηZcj (ξ, η)|ḡ ≤
|∇ξ∇ηΓcj (ξ, η)|ḡ

Γcj (ξ, η)
+
|dξΓcj (ξ, η)|ḡ|dηΓcj (ξ, η)|ḡ

Γ2
cj (ξ, η)

.
1 + `−1

λδ2
+

1

δ2
.

This implies that ‖∇ξ∇η(Zc1 − Zc2)‖L2 is uniformly bounded as well. Finally, consider the fact [43]
that

Hessξ Γcj (ξ, η) = (Dw expcj (ξ, w(ξ, η)))−1(Dξ expcj (ξ, w(ξ, η))),

where w(ξ, ·) is the inverse of expcj (ξ, ·) as in Lemma 2.2. Therefore, by Proposition 2.6,

|Hessξ Γcj (ξ, η)|ḡ . `−1L(M).
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Writing Zcj = log Γcj , we get

Hessξ Zcj (ξ, η) = Hessξ log Γcj (ξ, η)

=

(
Hessξ Γcj

Γcj
−
dξΓcj ⊗ dξΓcj

Γ2
cj

)
(ξ, η),

which implies

|Hessξ Zcj (ξ, η)|ḡ ≤
|Hessξ Γcj (ξ, η)|ḡ

Γcj (ξ, η)
+
|dξΓcj (ξ, η)|2ḡ
Γ2
cj (ξ, eta)

.
`−1L

λδ2
+

1

δ2
.

So we conclude that ‖Hessξ(Zc1−Zc2)‖L2 , and by similar arguments, ‖Hessη(Zc1−Zc2)‖L2 , are both

uniformly bounded on Cβ`,M (Ω0) as well. This proves the result. �

3. Statistical Inversion through the Bayesian framework

As discussed in the Introduction, we will be using the posterior mean of c given finitely many
measurements DN = (Xi, Yi, Zi)

N
i=1, as an estimator for the true metric parameter c0. Let us begin

by describing the prior distribution Π for c ∈ C3
0 (Ω0). We will assume that Π arises from a centered

Gaussian probability distribution Π̃ on the Banach space C(Ω0) that satisfies the following conditions.

Condition 3.1. Let β ≥ 3 and α > β+ m
2 . We assume that Π̃ is a centered Gaussian Borel probability

measure on C(Ω0) that is supported in a separable subspace of Cβ0 (Ω0). Moreover, its Reproducing
Kernel Hilbert space (RKHS) (H, ‖·‖H) must be continuously embedded in the Sobolev spaceHα(Ω0).

We refer the reader to [14, Chapter 11] or [15, Sections 2.1 and 2.6] for basic facts about Gaussian
probability measures and their Reproducing Kernel Hilbert Spaces.

We now define the prior Π to be the restriction of Π̃ to Cβ`,M (Ω0) in the sense that

(19) Π(A) =
Π̃
(
A ∩ Cβ`,M (Ω0)

)
Π̃(Cβ`,M (Ω0))

for all Borel sets A ⊆ C3
0 (Ω0). We will see in Lemma 3.5 that Cβ-balls have positive Π̃-measure.

This together with the fact that Cβ`,M (Ω0) is an open subset of Cβ0 (Ω0) (c.f. Remark 1.4) implies that

Π̃(Cβ`,M (Ω0)) > 0. Therefore, (19) yields a well-defined probability distribution on C3
0 (Ω0).

Theorem 3.1. Let Π be a prior distribution on C3
0 (Ω0) defined by (19). Assume that the true

parameter c0 ∈ Cβ`,M (Ω0) ∩ H, and let cN be the mean (6) of the posterior distribution Π(·|DN )

arising from observations (5). Then there exists ω ∈ (0, 1/4) such that

PNc0
(
‖cN − c0‖L2(Ω0) > N−ω

)
→ 0 as N →∞.

Moreover, ω can be made arbitrarily close to 1/4 for α, β large enough.

Remark 3.1. The assumption that c0 ∈ Cβ`,M (Ω0) ∩ H is weaker than in Theorem 1.5, where we

assumed that c0 is smooth, compactly supported in Ω0, and that gnc0 is simple. Indeed, if gnc0 is

a smooth simple metric, c0 necessarily belongs to Cβ`,M (Ω0) for appropriate values of `,M , and any

β. Moreover, given any c0 ∈ Hα
0 (Ω0), it is possible to choose Π̃ so that its RKHS H contains c0.
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Indeed, let (f(x) : x ∈ Ω0) be the so-called Matérn-Whittle process of regularity α (see [14, Example
11.8]), whose corresponding RKHS is Hα(Ω0). It follows from Lemma I.4 in [14] that the sample
paths of this process belong almost surely to Cβ(Ω0). Now choose a cut-off function ϕ ∈ C∞(Ω0)
such that ϕ > 0 on Ω0, ϕ and all its partial derivatives vanish on ∂Ω0, and ϕ−1c0 ∈ Hα(Ω0). Define

Π̃ to be the probability law of (ϕ(x)f(x) : x ∈ Ω0). Then H = {ϕf : f ∈ Hα(Ω0)}, which contains
c0. Therefore, Theorem 3.1 is a more general and precise version of Theorem 1.5.

3.1. A General Contraction Theorem. Our proof of Theorem 3.1 will follow the same general
strategy as in [23], with some modifications necessitated by the fact that our prior Π is not in itself

a Gaussian probability measure, but rather the restriction of such a measure to Cβ`,M (Ω0). We begin

with a general posterior contraction result (Theorem 3.2). This is a simplified version of [23, Theorem
5.13], which suffices for us since our prior Π independent of N . Before stating the result, we need

to introduce some notation. Recall that for c ∈ Cβ`,M (Ω0), we defined pc as the probability density

function

pc(x, y, z) =
1√
2π

exp

{
−1

2
(z − Zc(x, y))2

}
for all (x, y, z) ∈ X ,

where X = ∂Ω× ∂Ω× R. Given c1, c2 ∈ Cβ`,M (Ω0), let

h(c1, c2) :=

(∫
X

(
√
pc1 −

√
pc2)2dµ(x, y) dz

)1/2

denote the Hellinger distance between pc1 and pc2 ,

K(c1, c2) := Ec1
[
log

(
pc1
pc2

)]
=

∫
X

log

(
pc1
pc2

)
pc1dµ(x, y) dz

the Kullback-Leibler divergence, and

V (c1, c2) := Ec1
[
log

(
pc1
pc2

)]2

.

Also, for any F ⊆ Cβ`,M (Ω0) and δ > 0, we let N (F, h, δ) denote the minimum number of h-balls of

radius δ needed to cover F .

Theorem 3.2. Let Π̂ be a Borel probability measure on C3
0 (Ω0) supported on Cβ`,M (Ω0). Let c0 ∈

Cβ`,M (Ω0) be fixed, and let δN be a sequence of positive numbers such that δN → 0 and
√
NδN → ∞

as N →∞. Assume that the following two conditions hold:

(1) There exists C > 0 such that for all N ∈ N,

(20) Π̂
({
c ∈ Cβ`,M (Ω0) : K(c, c0) ≤ δ2

N , V (c, c0) ≤ δ2
N

})
≥ e−CNδ2

N .

(2) There exists C̃ > 0 such that

(21) logN (Cβ`,M (Ω0), h, δN ) ≤ C̃Nδ2
N .

Now suppose that we make i.i.d. observations DN = (Xi, Yi, Zi)
N
i=1 ∼ PNc0 . Then for some k > 0

large enough, we have

(22) PNc0

(
Π̂
({
c ∈ Cβ`,M (Ω0) : h(c, c0) ≤ kδN

}
|DN

)
≤ 1− e−(C+3)Nδ2

N

)
→ 0

as N →∞.
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Proof. Define

(23) BN =
{
c ∈ Cβ`,M (Ω0) : K(c, c0) ≤ δ2

N , V (c, c0) ≤ δ2
N

}
, N ∈ N.

By condition (1) and [15, Lemma 7.3.2], we have that for any ζ > 0 and any probability measure m̃
on BN ,

PNc0

(∫
BN

N∏
i=1

pc
pc0

(Xi, Yi, Zi)dm̃(c) ≤ e−(1+ζ)Nδ2
N

)
≤ 1

ζ2Nδ2
N

.

In particular, choosing ζ = 1 and taking m̃ to be the restriction of Π̂ to BN followed by normalization,
we get that

PNc0

(∫
BN

N∏
i=1

pc
pc0

(Xi, Yi, Zi)dΠ̂(c) ≤ Π̂(BN )e−2Nδ2
N

)
≤ 1

Nδ2
N

N→∞−−−−→ 0.

Set

AN =

{∫
BN

N∏
i=1

pc
pc0

(Xi, Yi, Zi)dΠ̂(c) ≥ e−(2+C)Nδ2
N

}
,

where C is as in condition (1). It is clear that AN ⊇
{∫

BN

∏N
i=1

pc
pc0
dΠ̂(c) ≥ Π̂(BN )e−2Nδ2

N

}
, and

therefore, PNc0 (AN )→ 1 as N →∞.
Next, we consider condition (2). Let k > k′ > 0 be numbers to be determined later. Fix N and

define the function N(ε) = eC̃Nδ
2
N for all ε > ε0 = k′δN . It follows from condition (2) that for any

ε > ε0,

N (Cβ`,M (Ω0), h, ε/4) ≤ N (Cβ`,M (Ω0), h, k′δN/4) ≤ eC̃Nδ2
N = N(ε).

Therefore, by [15, Theorem 7.1.4], there exist test functions ΨN = ΨN (DN ) such that for some
K > 0,

PNc0 [ΨN = 1] ≤ N(ε)

K
e−KNε

2
; sup

c:h(c,c0)>ε
ENc [1−ΨN ] ≤ e−KNε2 .

Now let l > C̃ be arbitrary. Setting k =
√
l/K and ε = kδN , we can see that this implies

(24) PNc0 [ΨN = 1]→ 0 as N →∞ ; sup
c:h(c,c0)>kδN

ENc [1−ΨN ] ≤ e−lNδ2
N .

Now define

FN = {c ∈ Cβ`,M (Ω0) : h(c, c0) ≤ kδN}

which is the event whose probability we want to bound. Then by (24),

PNc0

(
Π̂(F cN |DN ) ≥ e−(C+3)Nδ2

N

)
= PNc0

∫F cN ∏N
i=1

pc
pc0

(Xi, Yi, Zi)dΠ̂(c)∫ ∏N
i=1

pc
pc0

(Xi, Yi, Zi)dΠ̂(c)
≥ e−(C+3)Nδ2

N , ΨN = 0, AN

+ o(1)

≤ PNc0

(
(1−ΨN )

∫
F cN

N∏
i=1

pc
pc0

(Xi, Yi, Zi)dΠ̂(c) ≥ e−(2C+5)Nδ2
N

)
+ o(1).
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Now by Markov’s inequality, this is further bounded above by

ENc0

[
(1−ΨN )

∫
F cN

N∏
i=1

pc
pc0

(Xi, Yi, Zi)dΠ̂(c)

]
e(2C+5)Nδ2

N + o(1)

=

[∫
F cN

ENc0

[
(1−ΨN )

N∏
i=1

pc
pc0

(Xi, Yi, Zi)

]
dΠ̂(c)

]
e(2C+5)Nδ2

N + o(1) (by Fubini’s Theorem)

=

[∫
c:h(c,c0)>kδN

ENc [(1−ΨN )]dΠ̂(c)

]
e(2C+5)Nδ2

N + o(1)

≤ e(2C+5−l)Nδ2
N + o(1).

Now choosing l > 2C + 5, the Theorem follows. �

3.2. Properties of the Prior. In this section, we will verify the assumptions of Theorem 3.2 when

Π̂ = Π. The key ingredient in the arguments is the forward continuity estimate from Corollary 2.7.

We begin by observing that the Hellinger distance between c1, c2 ∈ Cβ`,M (Ω0) is equivalent to the

L2(∂Ω× ∂Ω) distance between Zc1 and Zc2 .

Lemma 3.3. There exists κ = κ(Ω, ḡ,M) > 0 such that for all c1, c2 ∈ Cβ`,M (Ω0),

κ‖Zc1 − Zc2‖2L2 ≤ h2(c1, c2) ≤ 1

4 Volḡ(∂Ω)2
‖Zc1 − Zc2‖2L2 .

Proof. Consider the “Hellinger affinity” function

ρ(c1, c2) =

∫
X

√
pc1pc2dµ = 1− 1

2
h2(c1, c2).

We have

ρ(c1, c2) =
1√
2π

∫
X

exp

{
−1

4
((z − Zc1(x, y))2 + (z − Zc2(x, y))2)

}
dµ(x, y) dz

=
1

Volḡ(∂Ω× ∂Ω)

∫
∂Ω×∂Ω

exp

{
−1

4
(Zc1(x, y)2 + Zc2(x, y)2)

}
×

[
1√
2π

∫ ∞
−∞

exp

{
−1

2

(
z − Zc1 + Zc2

2

)2
}
dz

]
exp

{
1

8
(Zc1 + Zc2)2

}
dx dy

=
1

Volḡ(∂Ω)2

∫
∂Ω×∂Ω

exp

{
−1

8
(Zc1(x, y)− Zc2(x, y))2

}
dx dy.(25)

Now applying the simple estimate e−t ≥ 1− t for all t ≥ 0, we get

ρ(c1, c2) ≥ 1

Volḡ(∂Ω)2

∫
∂Ω×∂Ω

[
1− 1

8
(Zc1 − Zc2)2

]
dx dy

= 1− 1

8 Volḡ(∂Ω)2
‖Zc1 − Zc2‖2L2 .

Consequently,

h2(c1, c2) = 2(1− ρ(c1, c2)) ≤ 1

4 Volḡ(∂Ω)2
‖Zc1 − Zc2‖2L2 .
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Next, we use the fact Zc1 , Zc2 satisfy the uniform bounds (18) on the support of Zc1 − Zc2 . Conse-
quently, for all x, y ∈ ∂Ω, we have

(26) |Zc1(x, y)− Zc2(x, y)| ≤ ∆,

where ∆ = 2M + log diamḡ(Ω)− log δ. Set T = ∆2/8 and observe that for all t ∈ [0, T ],

e−t ≤ 1−
(

1− e−T

T

)
t

by the convexity of t 7→ e−t. Therefore, for κ = 1−e−T
4T , we have

exp

{
−1

8
(Zc1(x, y)− Zc2(x, y))2

}
≤ 1− κ

2
|Zc1(x, y)− Zc2(x, y)|2

for all (x, y) ∈ ∂Ω × ∂Ω. Integrating both sides of this inequality with respect to dµ(x, y) and
applying (25), we get

ρ(c1, c2) ≤ 1− κ

2
‖Zc1 − Zc2‖2L2

⇒ h2(c1, c2) ≥ κ‖Zc1 − Zc2‖2L2 .

This completes the proof. �

Now let us verify Condition (1) of Theorem 3.2 for Π.

Lemma 3.4. For c0 ∈ Cβ`,M (Ω0) and t > 0, define

BN (t) = {c ∈ Cβ`,M (Ω0) : ‖c− c0‖Cβ ≤ δN/t},

and let BN ,Π, and δN be as in Theorem 3.2. Then for some t > 0 large enough, BN (t) ⊂ BN for all
N ∈ N. In particular,

Π(BN ) ≥ Π(BN (t)).

Proof. We need to verify that if t is large enough, then for any c ∈ BN (t), we have K(c, c0) ≤ δ2
N and

V (c, c0) ≤ δ2
N . Consider a random observation (X,Y, Z), where (X,Y ) is a pair of boundary points

chosen with respect to the uniform probability measure µ, and Z = Zc0(X,Y ) + ε, with ε ∼ N(0, 1)
independent of (X,Y ). Observe that for any c ∈ BN (t),

log
pc0
pc

(X,Y, Z) = −1

2
[(Z − Zc0(X,Y ))2 − (Z − Zc(X,Y ))2]

=
1

2
(Zc(X,Y )− Zc0(X,Y ))2 − ε(Zc(X,Y )− Zc0(X,Y )).(27)
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Since E[ε|X,Y ] = 0, we have

K(c, c0) = Ec0
[
log

pc0
pc

(X,Y, Z)

]
= Eµ

[
1

2
(Zc(X,Y )− Zc0(X,Y ))2

]
(28)

=
1

2 Volḡ(∂Ω× ∂Ω)

∫
∂Ω×∂Ω

(Zc(x, y)− Zc0(x, y))2 dx dy

=
1

2 Volḡ(∂Ω)2
‖Zc − Zc0‖2L2

. ‖c− c0‖2L2 (by Corollary 2.7)

.
δ2
N

t2
.(29)

So it follows that if t is large enough, K(c, c0) ≤ δ2
N for all c ∈ BN (t). Next, consider

V (c, c0) = Ec0
[
log

pc0
pc

(X,Y, Z)

]2

≤ 2Eµ
[

1

2
(Zc − Zc0)2

]2

+ 2Eµ
[
(Zc − Zc0)2Eε[ε2]

]
(by (27))

=
1

2

∫
∂Ω×∂Ω

|Zc − Zc0 |4dµ(x, y) + 2Eµ[Zc − Zc0 ]2 (since E[ε2] = 1)

≤
‖Zc − Zc0‖2L∞
2 Volḡ(∂Ω)2

‖Zc − Zc0‖2L2 + 4K(c, c0)

by (28). It follows from (26) that ‖Zc − Zc0‖L∞ < ∆, where ∆ > 0 depends only on Ω, ḡ, δ.
Consequently,

V (c, c0) . ‖Zc − Zc0‖2L2 +K(c, c0)

. C ′22 ‖c− c0‖2L2 +K(c, c0) (by Corollary 2.7)

. ‖c− c0‖2Cβ +
δ2
N

t2
(by (29))

.
δ2
N

t2
.

This shows that for t > 0 large enough, we also get V (c, c0) ≤ δ2
N for all c ∈ BN (t). �

Next, we will establish a lower bound for Π(BN (t)), which will follow from estimates of Π̃- measures
of sets of the form {c : ‖c‖Cβ ≤ ε} when ε > 0 is small. To this end, it is convenient to work with
Hölder-Zygmund spaces Cs∗(Ω0), with s > 0 (see [42] for a detailed treatment). If s is not an integer,
Cs∗(Ω0) is simply the Hölder space Cs(Ω0). On the other hand, if s is a positive integer, Cs∗(Ω0) is a
larger space than Cs(Ω0), and is defined by the norm

‖f‖Cs∗(Ω0) =
∑
|a|≤s−1

sup
x∈Ω0

|∂af(x)|+
∑
|a|=s−1

sup
x∈Ω0, h 6=0

|∂af(x+ h) + ∂af(x− h)− 2f∂a(x)|
|h|

.
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In either case, it is easy to see that ‖f‖Cs∗ ≤ ‖f‖Cs for all f ∈ Cs(Ω0). It turns out that Cs∗(Ω0) coin-
cides with the Besov space Bs

∞,∞(Ω0), which allows us to use various embedding and approximation
results from Besov space theory.

Before proceeding, let us fix ν > 0 such that

(30) ν > max

{
2m

2(α− β)−m
,
m

β

}
, and define δN = N−1/(2+ν).

It is easy to verify that δN → 0 and
√
NδN = N

ν
2(2+ν) →∞ as N →∞.

Lemma 3.5. Let c0 ∈ Cβ`,M (Ω0) ∩ H, and define δN as in (30). Then for t > 0 large enough, there

exists C ′ = C ′(Ω,Ω0, ḡ, α, β, `,M, c0, t) > 0 such that for all N ∈ N,

Π(BN (t)) ≥ exp{−C ′Nδ2
N}.

In particular, there exists C = C(Ω,Ω0, ḡ, α, β, `,M, c0) > 0 such that for all N ∈ N,

Π(BN ) ≥ exp{−CNδ2
N}.

Proof. The sets {b ∈ C3
0 (Ω0) : ‖b‖Cβ ≤ δ} for δ > 0 are convex and symmetric. Hence by [15,

Corollary 2.6.18],

Π̃(‖c− c0‖Cβ ≤ δN/t) ≥ e−‖c0‖
2
H/2Π̃(‖c‖Cβ ≤ δN/t).

Moreover, since c0 ∈ Cβ`,M (Ω0), which is open with respect to the Cβ metric, we have for all sufficiently

large t > 0,

Π(BN (t)) = Π(‖c− c0‖Cβ ≤ δN/t) =
Π̃(‖c− c0‖Cβ ≤ δN/t)

Π̃(Cβ`,M (Ω0))
,

and therefore,

(31) Π(BN (t)) ≥ e−‖c0‖2H/2 Π̃(‖c‖Cβ ≤ δN/t)
Π̃(Cβ`,M (Ω0))

.

Next, choose a real number γ such that

(32) β < γ < α− m

2
, ν >

2m

2(α− γ)−m
.

Alternatively, if β is not an integer, we can simply set γ = β. In either case, we have ‖f‖Cβ ≤ ‖f‖Cγ∗
for all f ∈ Cγ∗ (Ω0).

Now recall our assumption that the RKHS H of Π̃ is continuously embedded into Hα(Ω0). We
know from [13, Theorem 3.1.2] that the unit ball U of this space satisfies

logN (U, ‖ · ‖Cγ∗ , ε) ≤
(
A

ε

) m
(α−γ)

for some fixed A > 0 and all ε > 0 small enough. Therefore, by [19, Theorem 1.2], there exists D > 0
such that for all ε > 0 small enough,

Π̃(‖c‖Cβ ≤ ε) ≥ Π̃(‖c‖Cγ∗ ≤ ε) ≥ exp

{
−Dε−

2m
2(α−γ)−m

}
.
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Consequently, (31) implies that for t > 0 large enough,

Π(BN (t)) ≥ 1

Π̃(Cβ`,M (Ω0))
exp

{
−
‖c0‖2H

2
−Dt

2m
2(α−γ)−m δ

− 2m
2(α−γ)−m

N

}

>
1

Π̃(Cβ`,M (Ω0))
exp

{
−
‖c0‖2H

2
−Dt

2m
2(α−γ)−m δ−νN

}
(by (30) and (32))

=
1

Π̃(Cβ`,M (Ω0))
exp

{
−
‖c0‖2H

2
−Dt

2m
2(α−γ)−mNδ2

N

}
≥ exp{−C ′Nδ2

N}

for C ′ = log
(

Π̃(Cβ`,M (Ω0))
)

+
‖c0‖2H

2 + Dt
2m

2(α−γ)−m . It now follows from Lemma 3.4 that for t > 0

sufficiently large, there exists C > 0 such that Π(BN ) ≥ exp{−CNδ2
N}. This completes the proof. �

Thus, we have verified Condition (1) of Theorem 3.2. The next Lemma verifies Condition (2).

Lemma 3.6. There exists C̃ = C̃(Ω,Ω0, ḡ, β, `) > 0 such that

logN (Cβ`,M (Ω0), h, δN ) ≤ C̃Nδ2
N .

Proof. In order to construct a covering of Cβ`,M (Ω0), it suffices to construct such a covering of the

Cβ∗ (Ω0) - ball of radius M centered at 0. Therefore, if Uβ denotes the unit ball of Cβ∗ (Ω0),

logN (Cβ`,M (Ω0), ‖ · ‖L2 , δN ) ≤ logN (MUβ, ‖ · ‖L2 , δN ).

Now applying [13, Theorem 3.1.2] to the inclusion Cβ∗ (Ω0) ↪→ L2(Ω0), we have

logN (Cβ`,M (Ω0), ‖ · ‖L2 , δN ) ≤
(
A′

δN

)m
β

for some A′ > 0. Since ν > m/β, we get

logN (Cβ`,M (Ω0), ‖ · ‖L2 , δN ) ≤ bδ−νN = bNδ2
N ,

where b > 0. Now, Lemma 3.3 and Corollary 2.7 imply that an L2 ball of radius δN centered

at any c ∈ Cβ`,M (Ω0) is contained in the Hellinger ball of radius
C′2

2 Volḡ(∂Ω)δN centered at the same

point. Therefore, by suitably rescaling the constant b to C̃(Ω,Ω0, ḡ, β, `,M) > 0, we get the desired
complexity bound

logN (Cβ`,M (Ω0), h, δN ) ≤ C̃Nδ2
N .

�

3.3. Posterior Convergence. In this section, we will combine the results of Sections 3.1 and 3.2
to prove Theorem 3.1.

Theorem 3.7. Let Π, α, β,M, c0 be as in Theorem 3.1, ν, δN as in (30), and C > 0 as in Lemma
3.5. Then for k′ > 0 large enough, we have

(33) PNc0

(
Π({c ∈ Cβ`,M (Ω0) : ‖Zc − Zc0‖L2 ≤ k′δN}|DN ) ≥ 1− e−(C+3)Nδ2

N

)
→ 1

as N →∞. Moreover, for all k′′ > 0 large enough,

(34) PNc0

(
Π({c ∈ Cβ`,M (Ω0) : ‖c− c0‖L2 ≥ k′′δ1/2

N }|DN ) ≥ e−(C+3)Nδ2
N

)
→ 0
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as N →∞.

Proof. Combining Lemmas 3.5 and 3.6 with Theorem 3.2, we get (33) for all sufficiently large k′ > 0.
To get (34), consider the event

EN = {c ∈ Cβ`,M (Ω0) : ‖Zc − Zc0‖L2 ≤ k′δN}.

By Corollary 2.3, for any c ∈ EN ,

‖c− c0‖L2 ≤ C ′1‖Zc − Zc0‖H1

≤ C ′1‖Zc − Zc0‖
1/2
L2 ‖Zc − Zc0‖

1/2
H2

by the standard interpolation result for Sobolev spaces. Therefore, by Theorem 2.8,

‖c− c0‖L2 ≤ C ′1(C ′3)1/2(k′δN )1/2

Taking k′′ > C ′1(k′C ′3)1/2, we conclude that

‖c− c0‖L2 ≤ k′′δ1/2
N .

Combining this with (33) gives us (34). �

The final step in the proof of Theorem 3.1 is to prove that the posterior contraction rate in the
above Theorem carries over to the posterior mean cN = EΠ[c|DN ] as well. Let

0 < ω <
1

2(2 + ν)
.

We note that ω can be made arbitrarily close to 1/4 by choosing α, β appropriately. Indeed, if α and
β are sufficiently large, (30) allows ν to be arbitrarily close to 0. Correspondingly, ω can be made
arbitrarily close to 1/4. Next, define

ωN := k′′δ
1/2
N = k′′N

− 1
2(2+ν) = o(N−ω)

where k′′ > 0 is as in Theorem 3.7.

Proof of Theorem 3.1. Observe that

‖cN − c0‖L2 =
∥∥EΠ[c|DN ]− c0

∥∥
L2

≤ EΠ [‖c− c0‖L2 |DN ] (by Jensen’s inequality)

≤ ωN + EΠ
[
‖c− c0‖L21{‖c−c0‖L2≥ωN}

∣∣DN]
≤ ωN + EΠ

[
‖c− c0‖2L2 |DN

]1/2
[Π(‖c− c0‖L2 ≥ ωN |DN )]1/2

by Cauchy-Schwarz inequality. Now it suffices to show that the second summand on the right hand
side is stochastically O(ωN ) as N →∞.

Arguing as in the proof of Theorem 3.2 and applying Lemma 3.5, we get that the events

A′N =

{∫
Cβ`,M (Ω0)

N∏
i=1

pc
pc0

(Xi, Yi, Zi)dΠ(c) ≥ e−(2+C)Nδ2
N

}
satisfy PNc0 (A′N )→ 1 as N →∞. Here, C is as in Lemma 3.5. Now, Theorem 3.7 implies

PNc0
(
EΠ
[
‖c− c0‖2L2 |DN

]
×Π(‖c− c0‖L2 ≥ ωN |DN ) > ω2

N

)
≤ PNc0

(
EΠ
[
‖c− c0‖2L2 |DN

]
e−(C+3)Nδ2

N > ω2
N

)
+ o(1),
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which is bounded above by

PNc0

(
e−(C+3)Nδ2

NEΠ
[
‖c− c0‖2L2 |DN

]
> ω2

N , A
′
N

)
+ o(1)

= PNc0

e−(C+3)Nδ2
N

∫
‖c− c0‖2L2

∏N
i=1

pc
pc0

(Xi, Yi, Zi)dΠ(c)∫ ∏N
i=1

pc
pc0

(Xi, Yi, Zi)dΠ(c)
> ω2

N , A
′
N

+ o(1)

≤ PNc0

(∫
‖c− c0‖2L2

N∏
i=1

pc
pc0

(Xi, Yi, Zi)dΠ(c) > ω2
Ne

Nδ2
N

)
+ o(1)(35)

using the fact that
∫ ∏N

i=1
pc
pc0

(Xi, Yi, Zi)dΠ(c) ≥ e−(C+2)Nδ2
N on A′N . Next, using Markov’s inequal-

ity, (35) can be further bounded above by

≤ e−Nδ2
Nω−2

N ENc0

[∫
‖c− c0‖2L2

N∏
i=1

pc
pc0

(Xi, Yi, Zi)dΠ(c)

]
+ o(1)

= e−Nδ
2
Nω−2

N

∫
‖c− c0‖2L2ENc0

[
N∏
1

pc
pc0

(Xi, Yi, Zi)

]
dΠ(c) + o(1) (by Fubini’s Theorem)

≤ e−Nδ2
Nω−2

N

∫
‖c− c0‖2L2dΠ(c) + o(1)

(
since ENc0

[
N∏
1

pc
pc0

]
= 1

)
. e−Nδ

2
Nω−2

N + o(1) . e−Nδ
2
NN2ω + o(1)→ 0 as N →∞

This completes the proof. �
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