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Abstract: In this article, we survey recent developments of weighted geodesic
X-ray transforms. A special case of weighted X-ray transform is the atten-
uated X-ray transform. We review both attenuated X-ray transforms and
X-ray transforms with general weights, in particular the matrix version, with
emphasis on the approaches using microlocal analysis. We also discuss ap-
plications of weighted X-ray transforms to nonlinear inverse problems, such
as the non-abelian X-ray transform and the lens rigidity problem.
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1 Introduction

In medical imaging techniques such as Computed Tomography (CT) and
Positron Emission Tomography (PET), the inner structure of tissues is re-
constructed from the collected data of the radiation of X-rays or gamma
rays through the human body. The theoretical underpinning for these medi-
cal imaging methods is the Radon/X-ray transform [48] in the plane, which
consists of recovering a function in some bounded domain from its integrals
along straight lines through this domain. Mathematically, the (Euclidean)
X-ray transform of a function 𝑓 , over the set of straight lines in R𝑛, is defined
as

𝐼𝑓(𝑥, 𝜃) :=

∫︁
𝑓(𝑥+ 𝑠𝜃) 𝑑𝑠, (𝑥, 𝜃) ∈ R𝑛 × S𝑛−1.

Here 𝜃 defines the direction of the straight line. We refer to [35, 58] for
thorough accounts of the Euclidean X-ray transform. In particular, Explicit
inversion formulas are available in any dimensions ≥ 2.

The standard X-ray transform is over straight lines. In practical appli-
cations, generalizations of X-ray transforms are often needed. For instance,
in seismic and ultrasound imaging, the waves do not always propagate along
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straight lines due to the variable index of refraction, often modeled by the
geodesics of a Riemannian metric.

Let (𝑀, 𝑔) be a compact non-trapping Riemannian manifold of dimen-
sion ≥ 2, with strictly convex boundary 𝜕𝑀 . A compact manifold with
boundary is non-trapping if every geodesic (with a starting point) exits the
manifold in a finite time. We denote

𝑆𝑀 := {(𝑥, 𝑣) ∈ 𝑇𝑀 : ‖𝑣‖𝑔(𝑥) = 1}

the unit tangent bundle. Given any (𝑥, 𝑣) ∈ 𝑆𝑀 , denote 𝜏(𝑥, 𝑣) the (forward)
exit time of the unit speed geodesic 𝛾𝑥,𝑣 starting at 𝑥 in direction 𝑣, i.e.
(𝑥, 𝑣) = (𝛾(0), �̇�(0)). 𝜏 is a finite function on 𝑆𝑀 due to the non-trapping
assumption. Let 𝜕+𝑆𝑀 and 𝜕−𝑆𝑀 be the incoming and outgoing boundaries
of 𝑆𝑀 respectively, which are defined by

𝜕±𝑆𝑀 = {(𝑥, 𝑣) ∈ 𝑆𝑀 : 𝑥 ∈ 𝜕𝑀,±⟨𝜈(𝑥), 𝑣⟩𝑔 ≥ 0}

with 𝜈(𝑥) the unit inward pointing normal vector at 𝑥 ∈ 𝜕𝑀 . The geodesic
X-ray transform of a function 𝑓 on 𝑆𝑀 is defined as

𝐼𝑓(𝑥, 𝑣) =

𝜏(𝑥,𝑣)∫︁
0

𝑓(𝛾𝑥,𝑣(𝑡), �̇�𝑥,𝑣(𝑡)) 𝑑𝑡, (𝑥, 𝑣) ∈ 𝜕+𝑆𝑀.

The inverse problem is concerned with determining 𝑓 from 𝐼𝑓 , defined on
𝜕+𝑆𝑀 .

In some applications, one needs to consider the weighted version of the
X-ray transform

𝐼𝑤𝑓(𝑥, 𝑣) =

𝜏(𝑥,𝑣)∫︁
0

𝑤(𝛾𝑥,𝑣(𝑡), �̇�𝑥,𝑣(𝑡))𝑓(𝛾𝑥,𝑣(𝑡), �̇�𝑥,𝑣(𝑡)) 𝑑𝑡.

where the weight 𝑤 is a function on 𝑆𝑀 too. One such example is the
attenuated X-ray transform, where the weight 𝑤 has the form

𝑤(𝛾𝑥,𝑣(𝑡), �̇�𝑥,𝑣(𝑡)) := 𝑒
∫︀ 𝑡
0
𝑎(𝛾𝑥,𝑣(𝑠),�̇�𝑥,𝑣(𝑠)) 𝑑𝑠, (𝑥, 𝑣) ∈ 𝜕+𝑆𝑀

for some attenuation coefficient 𝑎. The attenuated X-ray transform finds its
applications in medical imaging modalities, such as the Single Photon Emis-
sion Computerized Tomography (SPECT). Besides the medical imaging ap-
plications, the attenuated ray transform also arises in inverse problems for
radiative transport equations [5]. More recently, such transforms also demon-
strate their connection with the Calderón’s inverse conductivity problem in
anisotropic media [8].
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In this survey paper, we will focus on the case that 𝑓 is a function or
a vector field/1-form on 𝑀 , or their combinations. We denote the X-ray
transform of scalar functions by 𝐼0 and of 1-forms by 𝐼1. There is an obvious
difference between 𝐼0 and 𝐼1 in terms of their kernels. Notice that by the
fundamental theorem of calculus, the kernel of 𝐼1 contains all the potential
1-forms 𝑓 = 𝑑𝑝, where 𝑝 is a scalar function with 𝑝|𝜕𝑀 = 0. Therefore, one
can only expect to recover 𝑓 from 𝐼1𝑓 up to such potential 1-forms. Such
non-trivial kernel also appears in weighted X-ray transforms.

In Section 2, we review results on the attenuated X-ray transform, in
particular, the matrix version. There are multiple approaches to the prob-
lem, under different geometric conditions. We emphasize the studies using
microlocal analysis. Section 3 is devoted to X-ray transforms with general
weights. In Section 4, we discuss applications of weighted X-ray transforms to
several non-linear inverse problems, including the non-abelian X-ray trans-
form and the lens rigidity problem.

Acknowledgment: The author is partly supported by the NSF grant DMS-
2109116.

2 Attenuated X-ray transform

Unlike the Euclidean case, there is no global parameterization of the
geodesics on general Riemannian manifolds, additional geometric assump-
tions are always needed. Substantial progress has been made on the X-ray
transform in the case where the metric is simple, i.e. (𝑀, 𝑔) is simply con-
nected, free of conjugate points, and the boundary is strictly convex. It is
known that 𝐼0 and 𝐼1 are injective (up to natural gauge) on simple manifolds
[33, 34, 1] with stability estimates [54, 30, 3, 39]. Inversion formulas for 𝐼0
and 𝐼1 on simple surfaces when the curvature is close to constant were given
in [46, 24], and numerical implementations in [28]. It is worth mentioning
that there is also much progress on the geodesic X-ray transform of higher
order tensor fields, see the books [50, 43] and survey papers [42, 21] for
recent developments.
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2.1 Attenuated X-ray transform on simple manifolds

Recall the attenuated X-ray transform

𝐼𝑎𝑓(𝑥, 𝑣) =

𝜏(𝑥,𝑣)∫︁
0

𝑓(𝛾𝑥,𝑣(𝑡), �̇�𝑥,𝑣(𝑡))𝑒
∫︀ 𝑡
0
𝑎(𝛾𝑥,𝑣(𝑠),�̇�𝑥,𝑣(𝑠)) 𝑑𝑠 𝑑𝑡, (𝑥, 𝑣) ∈ 𝜕+𝑆𝑀.

We refer to [10, 25] for surveys of the progress on the Euclidean attenuated
X-ray transform. In particular, inversion formulas are derived for the 2D
attenuated X-ray transform [36, 23]. In the case of the attenuated geodesic
ray transform on Riemannian manifolds, injectivity results have been accom-
plished on simple surfaces [49], simple manifolds with small attenuation [8]
and for real-analytic data [12, 18]. Inversions of such transforms on simple
surfaces were given in [29, 2].

Notice that the attenuation weight 𝑤 satisfies

𝑋𝑤 = 𝑤𝑎, 𝑤|𝜕+𝑆𝑀 = 1,

where 𝑋 is the generating vector field of the geodesic flow on 𝑆𝑀 so given
𝑓 ∈ 𝐶∞(𝑆𝑀)

𝑋𝑓(𝑥, 𝑣) =
𝑑

𝑑𝑡
𝑓(𝛾𝑥,𝑣(𝑡), �̇�𝑥,𝑣(𝑡))|𝑡=0.

In local coordinates

𝑋(𝑥, 𝑣) = 𝑣𝑖
𝜕

𝜕𝑥𝑖
− Γ𝑖

𝑗𝑘𝑣
𝑗𝑣𝑘

𝜕

𝜕𝑣𝑖

where Γ𝑖
𝑗𝑘 are the Christoffel symbols of the metric 𝑔. More generally, one can

consider the matrix attenuation 𝒜 ∈ 𝐶∞(𝑆𝑀 ;C𝑁×𝑁 ). Similar to the scalar
case, 𝒜 uniquely determines a matrix weight 𝑊𝒜 through the transport
equation

𝑋𝑊𝒜 =𝑊𝒜𝒜, 𝑊𝒜|𝜕+𝑆𝑀 = 𝐼𝑑.

We consider 𝒜(𝑥, 𝑣) = 𝐴𝑥(𝑣) + Φ(𝑥) where 𝐴 is a smooth matrix-valued 1-
form and Φ is a smooth matrix-valued function on 𝑀 . Let 𝑓(𝑥, 𝑣) = ℎ(𝑥) +

𝛼𝑥(𝑣) where ℎ is a smooth vector-valued function and 𝛼 is a smooth vector-
valued 1-form. We denote the corresponding attenuated X-ray transform by
𝐼𝒜𝑓 . Similar to the standard X-ray transform, the kernel of 𝐼𝒜 is nontrivial
in general. It’s easy to check that 𝐼𝒜(𝑑𝑝+𝒜𝑝) ≡ 0 for any 𝑝 ∈ 𝐶∞(𝑀 ;C𝑁 )

with 𝑝|𝜕𝑀 = 0. For the sake of simplicity, we denote the operator 𝑑+𝒜 by
𝑑𝒜 from now on. Note that since 𝑓 = ℎ + 𝛼, 𝑓 = 𝑑𝒜𝑝 is equivalent to say
that ℎ = Φ𝑝 and 𝛼 = 𝑑𝑝+𝐴𝑝.
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Motivation for considering matrix attenuation comes from the question
of identifying a connection 𝐴 from the parallel transport with respect to 𝐴
along geodesics, see Section 4.1 for more details. Such question also arises in
gauge theories in explaining the dynamics of elementary particles, as many
of the gauge theories are best described in the language of vector bundles
and connections on such bundles (connections define the parallel transport
in a vector bundle). Locally a connection is represented by a matrix valued
1-form, and it was shown in [41, 44] that this identification question could
be reduced to the geodesic X-ray transform with connection attenuations
through a pseudo-linearization process. In light of this reduction, the scalar
version 𝐼𝑎 is associated with the electromagnetism, where 𝑎 represents a
magnetic potential.

𝐼𝒜 is injective (up to nature gauge) on simple surfaces [41, 40] with
reconstruction formulas (up to a Fredholm error) [31].

Theorem 2.1. [40, Theorem 1.2] Let 𝑀 be a simple surface. If 𝐼𝒜𝑓 = 0,
then 𝑓 = 𝑑𝒜𝑝, where 𝑝 :𝑀 → C𝑁 is a smooth function with 𝑝|𝜕𝑀 = 0.

In dimension three and higher, it is known that 𝐼𝒜 is injective on simple
manifolds with negative (sectional) curvature [14, 44, 38]. Most of aforemen-
tioned results of the attenuated X-ray transform are based on 𝐿2 energy
estimates initiated in [33], and further developed by many mathematicians,
which is now called Pestov identity. It is known that the solution to the
transport equation

𝑋𝑢+ (𝐴+Φ)𝑢 = −𝑓, 𝑢|𝜕−𝑆𝑀 = 0

is given by

𝑢(𝑥, 𝑣) =

𝜏(𝑥,𝑣)∫︁
0

𝑊𝒜(𝛾𝑥,𝑣(𝑡), �̇�𝑥,𝑣(𝑡))𝑓(𝛾𝑥,𝑣(𝑡), �̇�𝑥,𝑣(𝑡)) 𝑑𝑡, (𝑥, 𝑣) ∈ 𝑆𝑀.

Therefore, if 𝐼𝒜𝑓 = 0, then 𝑢|𝜕𝑆𝑀 = 0, i.e. 𝑢 has trivial boundary value. As a
consequence, under the negative curvature assumption, the Pestov identity
implies that if 𝑓 is the sum of a (vector-valued) function and a (vector-
valued) one-form, 𝑢 must be independent of the direction 𝑣, i.e. 𝑢 = 𝑢(𝑥),
so

𝑓 = −𝑋𝑢− (𝐴+Φ)𝑢 = −𝑑𝑢− (𝐴+Φ)𝑢 = 𝑑𝒜𝑢.

See [41, 14, 38] for more details.
The question of the injectivity of 𝐼𝒜 on general simple manifolds is still

open in general. In [68], the author proves that 𝐼𝒜 is injective for generic sim-
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ple metrics and generic 𝒜. The proof is based on the following two theorems.
The first theorem is on the injectivity of 𝐼𝒜 in the real-analytic category.

Theorem 2.2. [68, Theorem 1.2] Let 𝑀 be a real-analytic simple manifold
with real-analytic metric 𝑔, let 𝒜 be real-analytic, then 𝐼𝒜 is injective.

We say that 𝒜 is real-analytic if both the real and imaginary parts of 𝒜
are real-analytic. The proof of Theorem 2.2 relies on the analytic microlo-
cal analysis approach initiated in [55, 56] in the study of the standard X-
ray transform. Recall that a distribution 𝑓 is called microlocally analytic at
(𝑥0, 𝜉0), 𝜉0 ̸= 0, if in local coordinates∫︁

𝑒𝑖𝜆(𝑥−𝑦)·𝜉−𝜆|𝑥−𝑦|2/2𝜒(𝑥)𝑓(𝑥) 𝑑𝑥 = 𝑂(𝑒−𝜆/𝐶) (1)

for some 𝜒 ∈ 𝐶∞
0 with 𝜒(𝑥0) ̸= 0 and for (𝑦, 𝜉) near (𝑥0, 𝜉0). The complement

of all such (𝑥0, 𝜉0) defines the analytic wave front set WF𝑎(𝑓).

Proposition 2.3. [68, Proposition 4.1] Assume that 𝑔 and 𝒜 are analytic.
Given nonzero covector (𝑥0, 𝜉0), let 𝛾0 be a geodesic through 𝑥0 conormal
to 𝜉0. If for some 𝑓 ∈ 𝐿2, 𝐼𝒜𝑓(𝛾) = 0 for 𝛾 in a neighborhood of 𝛾0 and
𝛿𝒜𝑓 = 0, then (𝑥0, 𝜉0) /∈ WF𝑎(𝑓).

Here 𝛿𝒜 is the adjoint of 𝑑𝒜 under the 𝐿2 inner product.
To prove Proposition 2.3, we notice that in a tubular neighborhood of

the geodesic 𝛾0, one can define analytic coordinates 𝑥 = (𝑥′, 𝑡) with 𝑡 the
parameter for 𝛾0 and 𝑥′ transversal to 𝛾0. One then multiplies 𝐼𝒜𝑓 = 0

by 𝑒𝑖𝜆𝜙 with some properly chosen complex phase 𝜙, and integrates with
respect to the 𝑥′ variable. Now we can apply the complex stationary phase
method in Sjöstrand [52] to obtain an FBI type transform as in (1) to resolve
WF𝑎(𝑓), assuming that 𝛿𝒜𝑓 = 0.

Applying Proposition 2.3, it follows that 𝑓 , modulo the gauge, is real-
analytic. If we extend 𝑓 by zero outside𝑀 , so 𝐼𝒜𝑓 = 0 still holds, the analytic
continuation shows that 𝑓 , modulo the gauge, must be zero, which proves
Theorem 2.2. There are related studies in the analytic category of attenuated
X-ray transforms in [16, 18], they either only consider the function case or
impose extra conditions on the 1-forms which make the kernel of the ray
transform trivial and the arguments simpler too.

Notice that we need to extend 𝑓 by zero outside 𝑀 . In particular, let 𝑀1

be a slightly larger open manifold, whose closure is simple as well. Consider
the normal operator 𝑁𝒜 = 𝐼*𝒜𝐼𝒜 on 𝑀1, where 𝐼*𝒜 is the adjoint of 𝐼𝒜 under
the 𝐿2 inner product. One can show that 𝑁𝒜 is a pseudodifferential operator
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of order −1. Moreover, 𝑁𝒜 is elliptic when restricted on those 𝑓 satisfying
𝛿𝒜𝑓 = 0, i.e. the 𝐿2 orthogonal complement of the natural gauge of 𝐼𝒜. Then
the Fredholm property follows, namely there are pseudodifferential operators
𝑃 and 𝑄 of order 1 and −1 respectively, such that

𝑃𝑁𝒜 +𝑄𝛿𝒜 = 𝐼𝑑+𝐾 (2)

for some smoothing operator 𝐾. As a consequence, one obtains the following
stability estimate

‖𝑓𝑠‖𝐿2(𝑀) ≤ 𝐶(‖𝑁𝒜𝑓‖𝐻1(𝑀1) + ‖𝑓‖𝐻−1(𝑀1)),

in particular, the error term ‖𝑓‖𝐻−1(𝑀1) can be absorbed if 𝐼𝒜, so 𝑁𝒜, is
injective (which holds in the real-analytic case by Theorem 2.2). Here 𝑓𝑠

is the projection of 𝑓 onto the 𝐿2 orthogonal complement of the space of
natural gauges on 𝑀 . See [17] for more detailed microlocal analysis of the
attenuated X-ray transform. Moreover, the above estimate is stable under
small perturbations of the metric and the attenuation 𝒜. We therefore reach
the following generic results.

Theorem 2.4. [68, Theorem 1.3] Let (𝑀, 𝑔) be a simple manifold, assume
that 𝐼𝒜 is injective up to natural gauge, then the following stability estimate
for 𝑁𝒜 holds

‖𝑓𝑠‖𝐿2(𝑀) ≤ 𝐶‖𝑁𝒜𝑓‖𝐻1(𝑀1).

Moreover, there exists 0 < 𝜖 ≪ 1 such that the above estimate remains
true if 𝑔 and 𝒜 are replaced by 𝑔 and 𝒜 satisfying ‖𝑔 − 𝑔‖𝐶4(𝑀1) ≤ 𝜖,
‖𝒜 − 𝒜‖𝐶3(𝑀1) ≤ 𝜖. The constant 𝐶 > 0 can be chosen uniformly, only
depending on 𝑔, 𝒜.

Remark 2.1. Theorem 2.2 and 2.4 will still hold on a compact manifold sat-
isfying certain microlocal conditions, which essentially says that the union of
the conormal bundles of nontrapped geodesics that are free of conjugate points
covers the cotangent bundle 𝑇 *𝑀 . In dimension 2, this microlocal condition
excludes the existence of conjugate points, and it is known that conjugate
points could be a problem [32]. In dimension 3 and higher this condition al-
lows the existence of trapped geodesics and conjugate points, so one only has
access to partial data, and the boundary is not necessarily convex, see also
[12, 56].
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2.2 Attenuated X-ray transform on non-simple manifolds

Results for the attenuated X-ray transform on non-simple manifolds are more
limited. As mentioned above, the generic injectivity [68] of 𝐼𝒜 also holds on
non-simple manifolds satisfying certain microlocal conditions. Injectivity of
𝐼𝒜 on negatively curved manifolds with hyperbolic trapping sets can be found
in [14]. In recent work [44], the author with collaborators establish injectivity
results on manifolds of dimension ≥ 3 admitting a convex foliation.

Theorem 2.5. [44] Let (𝑀, 𝑔) be a compact manifold with strictly convex
boundary and dim(𝑀) ≥ 3, admitting a smooth strictly convex function. If
𝐼𝒜𝑓 = 0, then 𝑓 = 𝑑𝒜𝑝 for some 𝑝 ∈ 𝐶∞(𝑀 ;C𝑁 ) with 𝑝|𝜕𝑀 = 0.

The condition on the existence of strictly convex function on 𝑀 was exten-
sively studied in [44] (see also the references there). In particular Lemma 2.1
of [44] shows that such a function exists if any one of the following conditions
holds:

(1) The sectional curvature is non-negative;
(2) M is simply connected with no focal points;
(3) M is simply connected and the curvature is non-positive.

It is easy to see that the existence of a strictly convex function implies
that (𝑀, 𝑔) is nontrapping. The class of manifolds of non-negative curvature
shows that, in contrast to many earlier results, Theorem 2.5 allows for the
metric to have conjugate points, so not necessarily simple. It is an open
question that whether simple manifolds admit strictly convex functions.

To prove Theorem 2.5, which is a global result, we follow the microlocal
approach leading to local results in dimension ≥ 3 initiated in [64] for the
standard X-ray transform of functions and further exploited in [59, 60, 61].
The local uniqueness results can be iterated, through a layer stripping ar-
gument, to obtain global results provided that (𝑀, 𝑔) can be foliated by
strictly convex hypersurfaces, see [44, Section 6] for details. In particular, we
establish the following local injectivity result near a strictly convex boundary
point.

Theorem 2.6. [44] Assume 𝜕𝑀 is strictly convex at 𝑝 ∈ 𝜕𝑀 . There exists
a function 𝑥 ∈ 𝐶∞(Ω) with 𝑂 = {𝑥 > 0} ∩𝑀 nonempty, and 𝑢 : 𝑂 → C𝑁

with 𝑢|𝑂∩𝜕𝑀 = 0, such that 𝑓 − 𝑑𝒜𝑢 can be stably determined from 𝐼𝒜𝑓

restricted to 𝑂-local geodesics.
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Here Ω is a small smooth extension of (𝑀, 𝑔), and 𝑂-local geodesics are those
geodesics segments in 𝑂 with endpoints in 𝜕𝑀 .

The proofs of the local theorem is microlocal and we set things up so that
a suitably localized version of the normal operator 𝐼*𝒜𝐼𝒜 fits into Melrose’s
scattering calculus [26], after conjugation by an exponential weight. As in
the previous references, a key ingredient is the introduction of an artificial
boundary 𝑥 = 0 which is a little bit less convex than the actual boundary, see
the Figure 1 below. The level sets of the function 𝑥 give a local foliation near
the convex boundary point 𝑝, and 𝑝 ∈ {𝑥 = 𝑐} for some 𝑐 > 0. Let 𝑦 be the
local coordinates along the level sets, so (𝑥, 𝑦) are valid local coordinates in
the domain of interest 𝑂. Then 𝑂-local geodesics correspond to those whose
tangent vectors are 𝜆𝜕𝑥 +𝜔𝜕𝑦, |𝜆| ≪ 1. The localized operator has the form

𝑁𝒜,𝐹 𝑓 = 𝑄−1𝑒−𝐹/𝑥

∫︁ ∫︁ ̃︁𝑊𝜒(𝜆/𝑥)𝐼𝒜(𝑒
𝐹/𝑥𝑄𝑓) 𝑑𝜆𝑑𝜔, 𝐹 > 0

where 𝑄 is a matrix function only depending on 𝑥 and ̃︁𝑊 is a modified
conjugate of the attenuation weight 𝑊𝒜. The cutoff function 𝜒 ∈ 𝐶∞

𝑐 (R)
is even and non-negative, thus when 𝑥 is small, only integrals along those
geodesics parameterized by sufficiently small 𝜆 will contribute to 𝑁𝒜,𝐹 𝑓 .

To obtain the Fredholm property for 𝑁𝒜,𝐹 in Melrose’s scattering calcu-
lus, one needs to verify its ellipticity at both the fiber infinity (the same as the
ellipticity for standard pseudodifferential operators) and the spacial infinity
𝑥−1 = ∞ (i.e. 𝑥 = 0, so the spacial boundary is pushed to infinity) when
restricted on the kernel of the principal symbol of 𝛿𝒜,𝐹 := 𝑒𝐹/𝑥𝛿𝒜𝑄

−1𝑒−𝐹/𝑥.
This implies that there exists some operator 𝑃 , such that

𝑁𝒜,𝐹 + 𝑑𝒜,𝐹𝑃𝛿𝒜,𝐹

is an elliptic scattering pseudodifferential operator of order (−1, 0). Here the
indices −1 and 0 correspond to the decay of the principal symbol at fiber
infinity and the boundary 𝑥 = 0 respectively. 𝑑𝒜,𝐹 := 𝑒−𝐹/𝑥𝑄−1𝑑𝒜𝑒

𝐹/𝑥 is
the conjugate of 𝛿𝒜,𝐹 . Similar to (2), the ellipticity essentially implies that
there exist operators 𝐵 and 𝐷, such that

𝐵𝑁𝒜,𝐹 +𝐷𝛿𝒜,𝐹 = 𝐼𝑑+𝐾

for some compact operator 𝐾. In addition, if 𝑐 > 0 is sufficiently small,
i.e. the domain of interest 𝑂 is small enough, the operator 𝐾 becomes a
contraction, so 𝐼𝑑 + 𝐾 is invertible by Neumann series, therefore 𝑁𝒜,𝐹 is
injective and stable in proper weighted Sobolev norms when restricted to
the kernel of 𝛿𝒜,𝐹 . Theorem 2.6 then follows after transferring the above
conclusion in a gauge free way.
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Fig. 1: The region below 𝜕𝑀 is the interior of 𝑀 , while the region {𝑥 > 0} is above {𝑥 =

0}. The neighborhood 𝑂 = 𝑀 ∩ {𝑥 > 0} is the shadowed area. The hypersurface 𝐻 = {𝑥 =

𝑐} is tangent to 𝜕𝑀 at the point 𝑝.

3 X-ray transform with general weights

Let 𝑊 ∈ 𝐶∞(𝑆𝑀 ;C𝑁×𝑁 ) be invertible and 𝑓 ∈ 𝐶∞(𝑀 ;C𝑁 ), we consider
the X-ray transform with a general matrix weight

𝐼𝑊 𝑓(𝑥, 𝑣) =

𝜏(𝑥,𝑣)∫︁
0

𝑊 (𝛾𝑥,𝑣(𝑡), �̇�𝑥,𝑣(𝑡))𝑓(𝛾𝑥,𝑣(𝑡)) 𝑑𝑡, (𝑥, 𝑣) ∈ 𝜕+𝑆𝑀.

In the Euclidean space of dimension ≥ 3, 𝐼𝑊 is injective for 𝐶1,𝛼 weight [20],
but there are counterexamples for 𝐶𝛼 weights [13]. In the two dimensional
plane, there are counterexamples with smooth weights [7].

By applying the analytic microlocal analysis, we can prove generic injec-
tivity similar to Theorem 2.2 and 2.4, which works in any dimensions.

Theorem 3.1. [68] Let 𝑀 be a real-analytic simple manifolds with real-
analytic metric 𝑔, let 𝑊 be real-analytic and invertible, then 𝐼𝑊 is injective.

Theorem 3.2. [68] Let (𝑀, 𝑔) be a simple manifold, assume that 𝐼𝑊 is
injective, then the following stability estimate for 𝑁𝑊 = 𝐼*𝑊 𝐼𝑊 holds

‖𝑓‖𝐿2(𝑀) ≤ 𝐶‖𝑁𝑊 𝑓‖𝐻1(𝑀1).
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Moreover, there exists 0 < 𝜖 ≪ 1 such that the above estimate remains
true if 𝑔 and 𝑊 are replaced by 𝑔 and �̃� satisfying ‖𝑔 − 𝑔‖𝐶4(𝑀1) ≤ 𝜖,
‖�̃� −𝑊‖𝐶3(𝑀1) ≤ 𝜖. The constant 𝐶 > 0 can be chosen uniformly, only
depending on 𝑔, 𝑊 .

The scalar case was considered in [12], and a version for Radon transforms
was studied in [19].

When the manifold admits a strictly convex function, using the scatter-
ing calculus and the layer stripping argument, one can prove the following
injectivity result similar to Theorem 2.5.

Theorem 3.3. [44] Let (𝑀, 𝑔) be a compact manifold with strictly convex
boundary and dim(𝑀) ≥ 3, admitting a smooth strictly convex function, then
𝐼𝑊 is injective.

Theorem 3.3 generalizes earlier results of the scalar case [64, Appendix]. A
quantitative version regarding the stability of 𝐼𝑊 under the convex foliation
condition can be found in [6]. Under similar geometric assumptions, [22]
establishes injectivity for piecewise constant functions where the weight 𝑊
is only continuous on 𝑆𝑀 . In [57], the authors apply microlocal analysis to
study weighted X-ray transform on manifolds with fold caustics.

Remark 3.1. We just consider the weighted X-ray transform along ordinary
geodesics in this section. However, the results can be generalized to general
smooth curves, even with nonconstant speed, see [12] and [64, Appendix],
also Section 4.2.

4 Applications

In this section, we discuss several applications of the weighted X-ray trans-
forms to various inverse problems.

4.1 The non-abelian X-ray transform

We consider the non-abelian X-ray transform, which is a non-linear inverse
problem. However, it can be reduced to the linear question of inverting cer-
tain attenuated X-ray transform.
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4.1.1 Non-linear problem for connections

Let 𝐴 be a 𝐺𝐿(𝑁,C)-connection, this simply means that 𝐴 is an 𝑁 × 𝑁

matrix whose entries are smooth 1-forms with values in C. It is natural
to incorporate a potential or Higgs field into the problem by considering
a pair (𝐴,Φ), where 𝐴 is a 𝐺𝐿(𝑁,C)-connection and Φ is a smooth map
𝑀 → C𝑁×𝑁 .

Given (𝑥, 𝑣) ∈ 𝜕+𝑆𝑀 and smooth geodesic 𝛾 = 𝛾𝑥,𝑣 : [0, 𝜏(𝑥, 𝑣)] → 𝑀 ,
we can solve a transport equation along geodesics:{︃

�̇� + [𝐴𝛾(𝑡)(�̇�(𝑡)) + Φ(𝛾(𝑡))]𝑈 = 0,

𝑈(0) = id

and define the scattering data 𝐶𝐴,Φ : 𝜕+𝑆𝑀 → 𝐺𝐿(𝑁,C) by

𝐶𝐴,Φ(𝑥, 𝑣) := 𝑈(𝜏(𝑥, 𝑣)).

𝐶𝐴,Φ is also called the non-abelian X-ray transform of (𝐴,Φ). It encapsu-
lates the parallel transport information along geodesics connecting boundary
points. The inverse problem of recovering the pair (𝐴,Φ) from 𝐶𝐴,Φ has a
natural gauge equivalence: if 𝑢 : 𝑀 → 𝐺𝐿(𝑁,C) is smooth and 𝑢|𝜕𝑀 = id
then

𝐶𝐴,Φ = 𝐶𝑢−1𝑑𝑢+𝑢−1𝐴𝑢,𝑢−1Φ𝑢.

Recently, the author and collaborators [44] proved the following unique de-
termination result up to gauge transformations.

Theorem 4.1. [44, Theorem 1.1] Let (𝑀, 𝑔) be a compact Riemannian man-
ifold of dimension ≥ 3 with strictly convex boundary, and suppose (𝑀, 𝑔)

admits a smooth strictly convex function. Let (𝐴,Φ) and (𝐵,Ψ) be two pairs
such that 𝐶𝐴,Φ = 𝐶𝐵,Ψ. Then there is a smooth map 𝑢 : 𝑀 → 𝐺𝐿(𝑁,C)
such that 𝑢|𝜕𝑀 = id, 𝐵 = 𝑢−1𝑑𝑢+ 𝑢−1𝐴𝑢 and Ψ = 𝑢−1Φ𝑢.

Theorem 4.1 is proved by introducing a pseudo-linearization that reduces the
non-linear problem to a linear one related to the attenuated X-ray transform.
A similar scenario arises in polarization tomography [37] and quantum state
tomography [20], see [44, Section 8].

One virtue of Theorem 4.1 is that there is no restriction on the pair
(𝐴,Φ). In 2D, similar result holds on simple surfaces [40]. In previous works
[11, 51, 41, 14] it was assumed that the structure group was the unitary
group. There are also recent works dealing with 𝐺𝐿(𝑁,C)-connections, but
under additional assumptions [31, 38]. In [68], the author shows that the
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rigidity result (up to the natural gauge) holds for generic simple metrics and
generic connections and Higgs fields, including the real-analytic ones.

Theorem 4.2. [68, Theorem 1.1] Let 𝑀 be a real-analytic simple manifold
with real-analytic metric 𝑔0. Let 𝒜0, ℬ0 be real-analytic, there exists 𝜖 > 0

such that whenever there are another metric 𝑔 and pairs 𝒜 = (𝐴,Φ), ℬ =

(𝐵,Ψ) satisfying

‖𝑔 − 𝑔0‖𝐶4(𝑀) ≤ 𝜖, ‖𝒜 −𝒜0‖𝐶3(𝑀) + ‖ℬ − ℬ0‖𝐶3(𝑀) ≤ 𝜖,

(1) if 𝐶𝒜 = 𝐶ℬ w.r.t. the metric 𝑔, then there is 𝑝 : 𝑀 → 𝐺𝐿(𝑁,C) with
𝑝|𝜕𝑀 = 𝑖𝑑, such that ℬ = 𝑝−1𝑑𝒜𝑝;
(2) if ‖𝒜0 − ℬ0‖𝐶2(𝑀) ≤ 𝜖 and 𝜄*𝒜 = 𝜄*ℬ with 𝜄 : 𝜕𝑀 → 𝑀 the canonical
inclusion, then there exists 𝑝 :𝑀 → 𝐺𝐿(𝑁,C) with 𝑝|𝜕𝑀 = 𝑖𝑑 such that the
following stability estimate holds w.r.t. the metric 𝑔

‖ℬ − 𝑝−1𝑑𝒜𝑝‖L2(M) ≤ 𝐶‖𝐶ℬ − 𝐶𝒜‖𝐻1(𝜕−𝑆𝑀)

for some uniform constant 𝐶 > 0 which depends only on 𝑔0, 𝒜0, ℬ0.

4.1.2 Reduction to the linear problem

As mentioned above, the pseudo-linearization of the scattering data 𝐶𝐴,Φ

gives certain weighted geodesic X-ray transform. Here we give the reduction,
see also [41, 44].

Let 𝒜 = 𝐴 + Φ and ℬ = 𝐵 + Ψ. Given a geodesic 𝛾 : [0, 𝑇 ] → 𝑀 , let
𝜑(𝑡) = (𝛾(𝑡), �̇�(𝑡)) be the corresponding geodesic flow on 𝑆𝑀 . Define the
matrix-valued function

𝐹 (𝑡) =𝑊ℬ(𝜑(𝑡))𝑊
−1
𝒜 (𝜑(𝑡)),

by the fundamental theorem of calculus and the definitions of 𝑊𝒜, 𝑊ℬ (see
Section 2.1)

𝐹 (𝑇 )− 𝐹 (0) =

𝑇∫︁
0

𝑊ℬ(𝜑)(ℬ(𝜑)−𝒜(𝜑))𝑊−1
𝒜 (𝜑) 𝑑𝑡. (1)

We define �̂� by

�̂�𝑈 =𝑊ℬ𝑈𝑊
−1
𝒜 , 𝑈 ∈ 𝐶∞(𝑆𝑀 ;C𝑁×𝑁 ),
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then the right-hand side of (1) indeed gives the following weighted geodesic
ray transform of ℬ −𝒜: ∫︁

𝛾

�̂� (ℬ −𝒜) 𝑑𝑡. (2)

By the definition of �̂� , it is obvious that �̂� |𝜕+𝑆𝑀 = id. Given a matrix-
valued function 𝑈 we have

𝑋(𝑊ℬ𝑈𝑊
−1
𝒜 ) =𝑊ℬℬ𝑈𝑊−1

𝒜 +𝑊ℬ(𝑋𝑈)𝑊−1
𝒜 −𝑊ℬ𝑈𝒜𝑊−1

𝒜 ,

which implies that
(𝑋�̂� )𝑈 = �̂� (ℬ𝑈 − 𝑈𝒜).

If we define 𝒜 by 𝒜𝑈 = ℬ𝑈 − 𝑈𝒜, we get exactly 𝑋�̂� = �̂�𝒜, i.e. (2) is
the attenuated geodesic ray transform with the attenuation 𝒜, we denote it
by 𝐼𝒜.

Now it’s easy to see that Theorem 2.5 and 2.4 imply Theorem 4.1 and
4.2 respectively.

4.2 Lens rigidity problem

In this section, we consider several non-linear inverse problems associated
with various Hamiltonian flows. In particular, one encounters X-ray trans-
forms along general family of curves.

4.2.1 Lens rigidity for geodesic flows

An important inverse problem arose in geophysics in an attempt to deter-
mine the inner structure of the Earth, such as the sound speed or index of
refraction, from measurements on the surface of travel times of seismic waves,
which is called travel time tomography in seismology. From a mathematical
point of view, the sound speed of the Earth is modeled by a Riemannian
metric, and the travel times by the lengths of geodesics between boundary
points.

Consider the behavior of all the geodesics going through the manifold, in
particular on non-simple manifolds, there could be more than one geodesics
connecting two points. In addition to the length information, we could also
consider the data of the geodesic flow in the phase space. This induces an-
other type of information: the scattering relation, introduced by Guillemin
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[15], is a map which sends the point and direction of entrance of a geodesic
to the point and direction of exit at the boundary. The scattering relation

𝒮 : 𝜕+𝑆𝑀 → 𝜕−𝑆𝑀, 𝒮(𝑥, 𝑣) := (𝛾𝑥,𝑣(𝜏(𝑥, 𝑣)), �̇�𝑥,𝑣(𝜏(𝑥, 𝑣)))

together with information of lengths (travel time) ℓ = 𝜏 |𝜕+𝑆𝑀 of correspond-
ing geodesics gives the lens data (𝒮, ℓ). Notice that the lens data is unchanged
under any isometry which fixes the boundary. The lens rigidity problem is
concerned with the determination of a Riemannian metric up to isometry
(the natural obstruction), from the lens data.

On simple manifolds, the lens data and travel time data are equivalent
[27], and is called the boundary rigidity problem. It is known that simple
surfaces are boundary distance rigid [47]. For dimensions ≥ 3, the boundary
rigidity problem on simple manifolds is still open in general. Uniqueness and
stability were proven for simple metrics in the same conformal class [33, 34],
and for generic simple metrics, including the real-analytic ones [55]. Recent
work [63] addresses the statistical inversion of travel time tomography. We
refer to survey papers [66, 62] for summaries of recent developments on the
lens/boundary rigidity problem.

The lens rigidity problem is closely related to the geodesic X-ray trans-
form. Indeed, the linearization of the lens/travel time data gives the X-ray
transform of symmetric tensors of order two. In [53], the lens rigidity prob-
lem on a Euclidean domain in R𝑛 was reduced to the invertibility of some
weighted X-ray transform through a pseudo-linearization argument. A space-
time version of the problem was studied in [65]. Let 𝜑𝑖(𝑡, 𝑥, 𝑣) and 𝑋𝑖 be the
geodesic flow and geodesic vector field associated with Riemannian metric
𝑔𝑖, 𝑖 = 1, 2. They are viewed as vectors in R2𝑛.

Lemma 4.3. [53, equation 2.10] Assume that two metrics 𝑔1 and 𝑔2 have
the same lens data, then

ℓ(𝑥0,𝑣0)∫︁
0

𝜕𝜑2
𝜕(𝑥, 𝑣)

(𝑡− 𝑠, 𝜑1(𝑠, 𝑥0, 𝑣0))(𝑋1 −𝑋2)(𝜑1(𝑠, 𝑥0, 𝑣0)) 𝑑𝑠 = 0. (3)

The left hand side of (3) is a weighted X-ray transform of 𝑋1 −𝑋2. Notice
that 𝑋1 − 𝑋2 implicitly measures the difference between 𝑔1 and 𝑔2. On
the other hand, locally near a strictly convex boundary point, the weight
𝜕𝜑2

𝜕(𝑥,𝑣) (𝑡 − 𝑠, 𝜑1(𝑠, 𝑥0, 𝑣0)) is close to the identity matrix, so invertible, for
(𝑥0, 𝑣0) almost tangent to 𝜕𝑀 .
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Applying the scattering calculus to the transform from Lemma 4.3, lo-
cal lens rigidity was proven in [59, 61]. Consequently, the layer stripping
argument gives the following global lens rigidity.

Theorem 4.4. [61, Theorem 1.3] Suppose that (𝑀, 𝑔) is a compact 𝑛-
dimensional Riemannian manifold, 𝑛 ≥ 3, with strictly convex boundary,
and 𝑥 is a smooth function with non-vanishing differential whose level sets
are strictly concave from the superlevel sets, and {𝑥 ≥ 0} ∩𝑀 ⊂ 𝜕𝑀 . Sup-
pose also that 𝑔 is a Riemannian metric on 𝑀 and suppose that the lens data
of 𝑔 and 𝑔 are the same. Then there exists a diffeomorphism 𝜓 : 𝑀 → 𝑀

fixing 𝜕𝑀 such that 𝑔 = 𝜓*𝑔.

The isotropic version of Theorem 4.4 was shown earlier in [59].

4.2.2 Lens rigidity for Magnetic flows

Let 𝐺 be the Lorentz force, a 1-1 tensor, associated with some magnetic field
Ω, that is a closed 2-form, through the equality

Ω𝑥(𝑣, 𝑤) = ⟨𝐺𝑥(𝑣), 𝑤⟩𝑔 , 𝑣, 𝑤 ∈ 𝑇𝑥𝑀.

A solution 𝛾 of
∇�̇� �̇� = 𝐺(�̇�)

is called a magnetic geodesic, where ∇ is the Levi-Civita connection of 𝑔.
Then 𝜑𝑡 : 𝑡→ (𝛾(𝑡), �̇�(𝑡)) defines a magnetic flow on 𝑇𝑀 , which is a Hamil-
tonian flow. The triple (𝑀, 𝑔,Ω) defines a magnetic system. It is easy to check
that every magnetic geodesic has constant speed, here we only consider the
unit speed magnetic geodesics.

Let 𝑥 ∈ 𝜕𝑀 , 𝑆𝜕𝑀 be the unit sphere bundle of the boundary 𝜕𝑀 , we
say 𝑀 is strictly magnetic convex at 𝑥 if

Λ(𝑥, 𝑣) > ⟨𝑌𝑥(𝑣), 𝜈(𝑥)⟩𝑔

for all 𝑣 ∈ 𝑆𝑥𝜕𝑀 , where Λ is the second fundamental form of 𝜕𝑀 , 𝜈(𝑥) is
the inward unit vector normal to 𝜕𝑀 at 𝑥. When 𝑌 = 0, this is consistent
with the ordinary definition of convexity.

Similar to the definition of the lens data of usual geodesics, one can
define the lens data of magnetic geodesics and consider the corresponding
lens rigidity problem. In [70], the conformal case of this non-linear problem
was studied.
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Theorem 4.5. [70, Theorem 1.5] Let dim 𝑀 ≥ 3, 𝑔0 be a given Riemannian
metric, let 𝑐, 𝑐 > 0 be smooth functions, Ω, Ω̃ be smooth closed 2-forms and let
𝜕𝑀 be strictly magnetic convex with respect to both (𝑐2𝑔0,Ω) and (𝑐2𝑔0, Ω̃).
Assume that 𝑐 = 𝑐 and 𝜄*Ω = 𝜄*Ω̃ on 𝜕𝑀 , and 𝑀 can be foliated by strictly
magnetic convex hypersurfaces for (𝑀, 𝑐2𝑔0,Ω). If 𝒮 = 𝒮, ℓ = ℓ̃, then 𝑐 = 𝑐

and Ω = Ω̃ in 𝑀 .

The proof of Theorem 4.5 is also a combination of the pseudo-linearization
and a layer stripping process. It is worth mentioning that integral identity
(3) holds for general Hamiltonian flows. Earlier results under the simplicity
assumption can be found in e.g. [9, 4]. On the other hand, the linearized
problem was considered in [9, 69].

4.2.3 Lens rigidity for particles in a Yang-Mills field

In this section, we consider a nonlinear inverse problem associated with the
motion of a classical colored spinless particle under the influence of an ex-
ternal Yang-Mills potential.

Let 𝐺 be a compact Lie group of matrices with Lie algebra g. We think of
(𝑀, 𝑔) as the configuration space where our classical colored particle travels
and we think of the g (or its dual g*) as the space of “color charges” or
internal degrees of freedom. In this case, a connection 𝐴 (the external Yang-
Mills potential) is just an element 𝐴 ∈ 𝐶∞(𝑀,𝑇 *𝑀 ⊗ g) = Λ1(𝑀, g). Since
g is a Lie algebra of matrices, we can think of 𝐴 as a matrix of 1-forms in
that Lie algebra. We define 𝐹 := 𝐹𝐴 = 𝑑𝐴+𝐴∧𝐴 ∈ Λ2(𝑀, g) the curvature
or field strength of 𝐴. Using the metric 𝑔, given 𝜉 ∈ g, we can define a
(1, 1)-tensor F𝜉 : 𝑇𝑀 → 𝑇𝑀 uniquely by

𝑔𝑥(F𝜉
𝑥(𝑣), 𝑤) = ⟨𝐹𝑥(𝑣, 𝑤), 𝜉⟩

for all 𝑥 ∈𝑀 and 𝑣, 𝑤 ∈ 𝑇𝑥𝑀 . The field F will play the role of a generalized
Lorentz force. The connection 𝐴 induces a covariant derivative in the adjoint
bundle which we denote by 𝐷.

The system lives in 𝑇𝑀 × g and the ODEs determining the trajectories
𝑡 ↦→ (𝛾(𝑡), �̇�(𝑡), 𝜉(𝑡)) ∈ 𝑇𝑀 × g are given by{︃

∇�̇� �̇� = F𝜉
𝛾(�̇�),

𝐷�̇�𝜉 = 0,
(4)

which are called Wong’s equations [67]. The equations reduce to the Lorentz
equation of magnetic geodesics in the abelian case 𝐺 = 𝑈(1). A quick analy-
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sis of (4) reveals two kinematic constraints: 𝛾 must travel at constant speed
and 𝜉 must remain in the adjoint orbit it started on. For this reason, it
makes sense from now on to restrict our motion to the compact phase space
𝑆𝑀 ×𝒪.

Definition 4.1. A smooth function 𝑓 : 𝑀 → R is said to be strictly YM-
convex if

Hess𝑥(𝑓)(𝑣, 𝑣) + ⟨𝐹𝑥(𝑣,∇𝑓(𝑥)), 𝜉⟩ > 0

for all (𝑥, 𝑣, 𝜉) ∈ 𝑆𝑀 × 𝒪. Similarly, we shall say that 𝑥 ∈ 𝜕𝑀 is strictly
YM-convex if

Λ𝑥(𝑣, 𝑣) + ⟨𝐹𝑥(𝑣, 𝜈(𝑥)), 𝜉⟩ > 0

for any 𝑣 ∈ 𝑆𝑥𝜕𝑀 and 𝜉 ∈ 𝒪, where Λ is the second fundamental form of
𝜕𝑀 . If this holds for all 𝑥 ∈ 𝜕𝑀 , then we say that 𝜕𝑀 is strictly YM-convex.

Now under suitable conditions, it is possible to recover the potential 𝐴, up to
gauge transformations, from the lens data (𝒮, ℓ) of the system (i.e. scattering
data plus travel times).

Theorem 4.6. [45, Theorem 1.2] Let (𝑀, 𝑔) be a compact Riemannian man-
ifold with boundary and dimension ≥ 3 and let 𝒪 be an adjoint orbit that
contains a basis of g. Let 𝐴 and 𝐴 be two Yang-Mills potentials such that
1. 𝜕𝑀 is strictly YM-convex with respect to both (𝑔,𝐴) and (𝑔,𝐴);
2. 𝑖*𝐴 = 𝑖*𝐴 where 𝑖 : 𝜕𝑀 →𝑀 is the canonical inclusion.
If (𝑔,𝐴) admits a strictly YM-convex function and (𝒮𝐴, ℓ𝐴) = (𝒮𝐴, ℓ𝐴), then
there exists a smooth function 𝑢 : 𝑀 → 𝐺 such that 𝐴 = 𝑢−1𝑑𝑢 + 𝑢−1𝐴𝑢

and 𝑢|𝜕𝑀 = 𝑒.
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