Summary of Integral Theorems

Line Integrals:

Definition 1. A parametrized curve is a vector-valued function $\mathbf{c}(t) : I \subseteq \mathbb{R} \to \mathbb{R}^n$.

-its image should be the curve that you want to integrate over

Common Parametrizations

- 1. A circle of radius r in the xy-plane centered around the origin, $\mathbf{c}(t) = (r \cos t, r \sin t, 0), t \in [0, 2\pi]$
- 2. A line segment joining the points (a, b, c) to (p, q, r), $\mathbf{c}(t) = (a, b, c) + t(p a, q b, r c)$, $t \in [0, 1]$

Types of line integrals

- 1. Vector line integrals: $\int \mathbf{F} \cdot d\mathbf{s}$ where \mathbf{F} is a vector field and $d\mathbf{s} = \mathbf{c}'(t)dt$
- 2. Scalar line integrals: $\int f ds$ where f is a scalar function and $ds = ||d\mathbf{s}|| = ||\mathbf{c}'(t)||dt$

How to set up a line integral

- 1. Find a parametrization for your curve: $\mathbf{c}(t)$.
- 2. Calculate $\mathbf{c}'(t)$.
- 3. Are you doing a vector line integral or a scalar line integral?
 - (a) If vector line integral, plug in $\mathbf{c}(t)$ into \mathbf{F} and integrate $\mathbf{F}(\mathbf{c}(t)) \cdot \mathbf{c}'(t) dt$.
 - (b) If scalar line integral, plug in $\mathbf{c}(t)$ into f and integrate $f(\mathbf{c}(t))||\mathbf{c}'(t)||dt$.

Surface Integrals:

Definition 2. A parametrized surface is a vector-valued function $\mathbf{r}(u, v) : D \subseteq \mathbf{R}^2 \to \mathbf{R}^n$.

-its image should be the surface that you want to integrate over

Common Parametrizations

- 1. A sphere of radius r centered around the origin: $\mathbf{r}(\phi, \theta) = (r \cos \theta \sin \phi, r \sin \theta \sin \phi, r \cos \phi), \phi \in [0, \pi], \theta \in [0, 2\pi].$
- 2. A cylinder of radius r centered around the z-axis: $\mathbf{r}(\theta, z) = (r \cos \theta, r \sin \theta, z), \\ \theta \in [0, 2\pi], z \in [0, h]$ where h is the height of the cylinder.
- 3. A plane with normal vector (a, b, c), $\mathbf{r}(u, v) = (u, v, \frac{-1}{c}(au + bv + d))$ $u \in (-\infty, \infty), v \in (-\infty, \infty).$

Types of surface integrals

- 1. Vector surface integrals: $\int \mathbf{F} \cdot d\mathbf{S}$ where \mathbf{F} is a vector field and $d\mathbf{S} = \mathbf{N}(u, v) du dv = \hat{\mathbf{n}}(u, v) dS$ where $\hat{\mathbf{n}} = \mathbf{N}/||\mathbf{N}||$ and $dS = ||\mathbf{N}(u, v)|| du dv$. You can use either definition of $d\mathbf{S}$, as they are equal.
- 2. Scalar surface integral: $\int f dS$ where f is a scalar function and $dS = ||d\mathbf{S}|| = ||\mathbf{N}(u, v)||dudv$.

How to set up a surface integral

- 1. Find a parametrization for your surface: $\mathbf{r}(u, v)$
- 2. Calculate the tangent vectors, $\mathbf{T}_u = \frac{\partial \mathbf{r}}{\partial u}$ and $\mathbf{T}_v = \frac{\partial \mathbf{r}}{\partial v}$
- 3. Calculate $\mathbf{N}(u, v) = \mathbf{T}_u \times \mathbf{T}_v$
- 4. Are you doing a vector surface integral or a scalar surface integral?
 - (a) If vector surface integral, plug in $\mathbf{r}(u, v)$ into \mathbf{F} and integrate $\mathbf{F}(\mathbf{r}(u, v)) \cdot \mathbf{N}(u, v) du dv$
 - (b) If scalar surface integral, plug in $\mathbf{r}(u, v)$ into f and integrate $f(\mathbf{r}(u, v))||\mathbf{N}(u, v)||dudv$

Triple integrals

-In rectangular coordinates (x, y, z), dV = dxdydz. -In cylindrical coordinates (r, θ, z) , $dV = rdrd\theta dz$. -To switch from rectangular coordinates to cylindrical coordinates, $x = r \cos \theta$, $y = r \sin \theta$, z = z. -In spherical coordinates, (r, θ, ϕ) , $dV = r^2 \sin \phi dr d\theta d\phi$. -To switch from rectangular coordinates to spherical coordinates, $x = r \cos \theta \sin \phi$, $y = r \sin \theta \sin \phi$, $z = r \cos \phi$.

Stoke's Theorem:

Theorem 1. If **F** is a vector field defined on a surface *S*, then $\int \int_{S} (\nabla \times \mathbf{F}) \cdot d\mathbf{S} = \int_{c=\partial S} \mathbf{F} \cdot d\mathbf{s}$ if *S* and *c* are oriented positively.

-Look at what this is saying: The vector surface integral of the curl of a vector field \mathbf{F} is equal to the vector line integral of \mathbf{F} around the boundary curve of the surface.

-You can only apply this theorem when you have a curl involved.

-This theorem is generally not applied when the surface is closed (when it has no boundary curve, like a sphere for example).

Divergence Theorem:

Theorem 2. If **F** is a vector field defined on a 3-dimensional region W which is bounded by a closed surface S, then $\int \int_{S=\partial W} \mathbf{F} \cdot d\mathbf{S} = \int \int \int_{W} \nabla \cdot \mathbf{F} dV$ assuming that the normal vector for S is pointing outwards.

-This theorem is saying: The vector surface integral of \mathbf{F} on the boundary of W is equal to the triple integral of the scalar function $\nabla \cdot \mathbf{F}$ over W.

This theorem can be applied to any vector surface integral over a closed surface.This theorem can only be applied when the surface is closed.

Green's Theorem:

Theorem 3. If P(x, y) and Q(x, y) are differentiable, then $\int_{c=\partial D} Pdx + Qdy = \int \int_{D} (\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}) dxdy$ if c is oriented positively.

- This theorem says: The line integral around the curve c is equal to an integral over the interior of c as long as c and the region D lie in \mathbb{R}^2 .

- This theorem can only be applied to regions that lie in the xy-plane.

- If $\mathbf{F}(x, y) = (P(x, y), Q(x, y))$, then the left hand side of the theorem is just $\int_{c=\partial D} \mathbf{F} \cdot d\mathbf{s}$.

Which integral theorem can I apply? Ask yourself these 3 questions:

- 1. Are the regions involved lying in the xy-plane? If yes, apply Green's Theorem. If no, go to next question.
- 2. Am I integrating over a closed surface (this means that the surface has a definite inside and outside, like a sphere, or a cylinder with top and bottom attached, or a cube)? If yes, apply Divergence theorem. If no, go to the next question.
- 3. Am I integrating a curl over a surface? If yes, apply Stoke's theorem. If you answered no to this question and the previous 2 questions, you can not apply any of the classical integration theorems.