Brauer's Theorems and the Meromorphicity of *L*-Functions

Jordan Schettler

Department of Mathematics University of Arizona

10/9/07

Jordan Schettler Brauer's Theorems and the Meromorphicity of *L*-Functions

イロト イポト イヨト イヨト

Э

DQC

Relevance of L-functions Induced Class Functions and Brauer's Theorems

Outline

Introduction

- Framework
- Definition of $L(s, \chi)$
- Properties
- Relevance of *L*-functions 2
 - Special Cases
 - Applications
- Induced Class Functions and Brauer's Theorems 3
 - Induction
 - Brauer's Theorems

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

DQC

Let G = Gal(E/F) and fix a \mathbb{C} -representation

 $T: G \rightarrow GL(V)$

with character $\chi : g \mapsto tr(\widehat{T}(g))$.

Then $V^{I(\mathfrak{P})}$ is $T|_{G(\mathfrak{P})}$ -invariant where $I(\mathfrak{P})$ = inertia & $G(\mathfrak{P})$ = decomposition, so \exists rep

$$T_{\mathfrak{P}}: \operatorname{\textit{G}}(\mathfrak{P})/\operatorname{\textit{I}}(\mathfrak{P})
ightarrow \operatorname{\textit{GL}}(\operatorname{\textit{V}}^{\operatorname{\textit{I}}(\mathfrak{P})})$$

On the other hand, E/F is Galois, so \exists isomorphism

$$\frac{G(\mathfrak{P})}{I(\mathfrak{P})} \to \mathsf{Gal}\left(\frac{\mathcal{O}_{\mathsf{E}}/\mathfrak{P}}{\mathcal{O}_{\mathsf{F}}/\mathfrak{p}}\right) = \langle \mathsf{Frob}_{\mathsf{N}(\mathfrak{p})} \rangle$$

with

$$\sigma_{\mathfrak{P}} := \left[\frac{E/F}{\mathfrak{P}}\right] \mapsto \mathsf{Frob}_{\mathcal{N}(\mathfrak{p})}$$

where
$$\left[\frac{E/F}{\mathfrak{P}}\right]$$
 is the Artin symbol of E/F at \mathfrak{P} .

イロト イポト イヨト イヨト

= 900

Framework Definition of $L(s, \chi)$ Properties

Fact

If S is an equivalent representation of T and $\mathfrak{Q} \neq 0$ is another prime in \mathcal{O}_E lying over \mathfrak{p} , then for all $s \in \mathbb{C}$

$$\det\left(I - \widehat{T}_{\mathfrak{P}}\left(\sigma_{\mathfrak{P}}\right) \mathsf{N}(\mathfrak{p})^{-s}\right) = \det\left(I - \widehat{S}_{\mathfrak{Q}}\left(\sigma_{\mathfrak{Q}}\right) \mathsf{N}(\mathfrak{p})^{-s}\right)$$

イロト イポト イヨト イヨト

-

DQC

Introduction Relevance of *L*-functions Induced Class Functions and Brauer's Theorems Framework Definition of $L(s, \chi)$ Properties

Suppose

$$\mathfrak{p}\mathcal{O}_E=\mathfrak{P}_1^e\cdots\mathfrak{P}_g^e$$

is a prime decomposition in $\mathcal{O}_{\mathcal{K}}$.

If p is unramified in E/F (i.e., e = 1, true for all but finitely many p), then $I(\mathfrak{P})$ is trivial (and conversely), so we may view

 $\sigma_{\mathfrak{P}} \in \mathcal{G}(\mathfrak{P}) \subseteq \mathcal{G}$

and

$$T_{\mathfrak{P}}=T|_{G(\mathfrak{P})}.$$

イロト 不得 トイヨト イヨト

∃ <2 <</p>

Definition We now define the Artin *L*-function of χ as $L(s, \chi, E/F) = \prod_{0 \neq \mathfrak{p} \in \text{Spec}(\mathcal{O}_F)} \det(I - \widehat{T}_{\mathfrak{P}}(\sigma_{\mathfrak{P}})N(\mathfrak{p})^{-s})^{-1}.$ We write $L(s, \chi)$ for $L(s, \chi, E/F)$ if the extension is understood.

<u>Note</u>: When dim($V^{l(\mathfrak{P})}$) = 0, the factor corresponding to \mathfrak{p} is 1.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

Introduction Relevance of *L*-functions I Induced Class Functions and Brauer's Theorems I

Framework Definition of $L(s, \chi)$ Properties

Example

Let $E = \mathbb{Q}(e^{2\pi i/3}, \sqrt[3]{2})$ and $F = \mathbb{Q}$. Then we may identify $G = S_3$. Consider $\widehat{T} : G \to GL(\mathbb{C}^{3\times 3})$ given by

$$(1 \ \ 2) \mapsto \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

and

$$(1 \ 2 \ 3) \mapsto \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

Jordan Schettler Brauer's Theorems and the Meromorphicity of *L*-Functions

Example (continued)

For
$$\mathfrak{p} = 3\mathbb{Z}$$
, we have $I(\mathfrak{P}) = G(\mathfrak{P}) = G$, so $V^{I(\mathfrak{P})} = \mathbb{C} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, giving

$$\widehat{T}_{\mathfrak{P}}(\sigma_{\mathfrak{P}}) = \mathbf{1}$$

Therefore the local factor at p is

$$\frac{1}{1-3^{-s}}$$

Jordan Schettler Brauer's Theorems and the Meromorphicity of *L*-Functions

イロト イポト イヨト イヨト

= 900

Introduction Relevance of *L*-functions Induced Class Functions and Brauer's Theorems Framework Definition of $L(s, \chi)$ Properties

Example (continued)

For $\mathfrak{p} = 5\mathbb{Z}$, we have $I(\mathfrak{P}) = \{1\}$ and $G(\mathfrak{P}) = \langle (1 \ 2) \rangle$, so $V^{I(\mathfrak{P})} = V$ and $\sigma_{\mathfrak{P}} = (1 \ 2)I(\mathfrak{P})$, giving

$$\widehat{\mathcal{T}}_{\mathfrak{P}}(\sigma_{\mathfrak{P}}) = \widehat{\mathcal{T}}((egin{array}{ccc} 1 & 2)) = egin{pmatrix} 0 & 1 & 0 \ 1 & 0 & 0 \ 0 & 0 & 1 \end{pmatrix}$$

Therefore the local factor at p is

$$\begin{vmatrix} 1 & -5^{-s} & 0 \\ -5^{-s} & 1 & 0 \\ 0 & 0 & 1-5^{-s} \end{vmatrix}^{-1} = \frac{1}{(1-5^{-s})(1-5^{-2s})}$$

イロト 不得 トイヨト イヨト

E DQC

Framework Definition of $L(s, \chi)$ Properties

Example (continued)

Similarly, it can be shown that the local factor at $3\mathbb{Z}$ is

$$\frac{1}{1-3^{-s}},$$

and the local factor at $7\mathbb{Z}$ is

$$\frac{1}{1-7^{-3s}}$$

Jordan Schettler Brauer's Theorems and the Meromorphicity of *L*-Functions

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

∃ <2 <</p>

L(s, χ) is analytic in s on the half plane where ℜ(s) > 1
If χ = χ₁ + χ₂ for some characters χ₁, χ₂, then

$$L(\boldsymbol{s}, \boldsymbol{\chi}) = L(\boldsymbol{s}, \boldsymbol{\chi}_1) L(\boldsymbol{s}, \boldsymbol{\chi}_2)$$

• In particular, if χ_1, \ldots, χ_r are the irreducible characters, then

$$L(\boldsymbol{s},\chi) = \prod_{j=1}^{r} L(\boldsymbol{s},\chi_j)^{(\chi,\chi_j)},$$

where

$$(\chi,\psi) = \frac{1}{|G|} \sum_{g \in G} \chi(g) \psi(g^{-1})$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- $L(s, \chi)$ is analytic in s on the half plane where $\Re(s) > 1$
- If $\chi = \chi_1 + \chi_2$ for some characters χ_1, χ_2 , then

$$L(\boldsymbol{s},\chi) = L(\boldsymbol{s},\chi_1)L(\boldsymbol{s},\chi_2)$$

• In particular, if χ_1, \ldots, χ_r are the irreducible characters, then

$$L(\boldsymbol{s},\chi) = \prod_{j=1}^{r} L(\boldsymbol{s},\chi_j)^{(\chi,\chi_j)},$$

where

$$(\chi,\psi) = \frac{1}{|G|} \sum_{g \in G} \chi(g) \psi(g^{-1})$$

- $L(s, \chi)$ is analytic in s on the half plane where $\Re(s) > 1$
- If $\chi = \chi_1 + \chi_2$ for some characters χ_1, χ_2 , then

$$L(\boldsymbol{s},\chi) = L(\boldsymbol{s},\chi_1)L(\boldsymbol{s},\chi_2)$$

 In particular, if χ₁,..., χ_r are the irreducible characters, then

$$L(\boldsymbol{s},\chi) = \prod_{j=1}^{r} L(\boldsymbol{s},\chi_j)^{(\chi,\chi_j)},$$

where

$$(\chi,\psi)=rac{1}{|G|}\sum_{g\in G}\chi(g)\psi(g^{-1})$$

If deg(χ) = χ (1) = 1 (always true when both *G* is abelian and $\chi \in Irr(G)$ = set of irreducible characters in *G*), then

Special Cases

Applications

$$L(\boldsymbol{s}, \chi) = \prod_{0 \neq \mathfrak{p} \in \operatorname{Spec}(\mathcal{O}_F)} \frac{1}{1 - \chi(\mathfrak{p}) N(\mathfrak{p})^{-s}} = \sum_{\operatorname{ideals} J \neq 0} \frac{\chi(J)}{N(J)^s}$$

where

$$\chi(J) = \prod_{\mathfrak{p}^{\boldsymbol{arphi}}||J} \widehat{\mathcal{T}}_{\mathfrak{P}}(\sigma_{\mathfrak{P}})^{\boldsymbol{arphi}} \in \mathbb{C}$$

Example

Let
$$E = \mathbb{Q}(\sqrt{2})$$
, $F = \mathbb{Q}$. Then $G = \{1, g\}$ where $g(\sqrt{2}) = -\sqrt{2}$.

Special Cases

Applications

Consider
$$\chi = \widehat{T} : G \to \mathbb{C}^{\times} = GL(\mathbb{C})$$
 given by $g \mapsto -1$.

For $\mathfrak{p} = 2\mathbb{Z}$, we have $\mathfrak{p}\mathcal{O}_E = (\sqrt{2}\mathcal{O}_E)^2$, so $I(\mathfrak{P}) = G(\mathfrak{P}) = G$, giving $V^{I(\mathfrak{P})} = \{0\}$. Thus the local factor at \mathfrak{p} is 1.

Example (continued)

Now suppose $p \in \mathbb{N}$ is an odd prime. Then $I(\mathfrak{P}) = \{1\}$. If (2|p) = 1, then $G(\mathfrak{P}) = \{1\}$, and if (2|p) = -1, then $G(\mathfrak{P}) = G$.

Thus the local factor at $\mathfrak{p} = p\mathbb{Z}$ is

$$\frac{1}{1-(2|p)p^{-s}}$$

Example (continued)

Therefore

For the trivial character $1_G \in Irr(G)$, we have

$$L(s, 1_G) = \sum_{\text{ideals } J \neq 0} \frac{1}{N(J)^s} = \zeta_F(s),$$

which is the Dedekind zeta function of the number field F.

イロト 不同 トイヨト イヨト

= 990

Also, if $F = \mathbb{Q}$ and $E = \mathbb{Q}(e^{2\pi i/m})$ while $\chi \in Irr(G)$ is arbitrary, then $G \cong (\mathbb{Z}/m\mathbb{Z})^{\times}$ is abelian and

Special Cases

Applications

$$L(\boldsymbol{s},\chi) = \sum_{n=1}^{\infty} \frac{\chi(n\mathbb{Z})}{|\mathbb{Z}/n\mathbb{Z}|^{\boldsymbol{s}}},$$

which is a Dirichlet *L*-function.

イロト 不得 トイヨト イヨト

E DQC

In particular, if m = 1 then $E = F = \mathbb{Q}$, so $Irr(G) = \{1_G\}$ and

$$L(\boldsymbol{s}, \boldsymbol{1}_{\boldsymbol{G}}) = \sum_{n=1}^{\infty} \frac{1}{|\mathbb{Z}/n\mathbb{Z}|^{\boldsymbol{s}}} = \zeta(\boldsymbol{s}),$$

which is the Riemann zeta function.

In the abelian case, L-functions have been used in the proofs of

- prime number theorem (Riemann zeta function)
- prime ideal theorem (Dedekind zeta functions)
- primes in arith. prog. theorem (Dirichlet *L*-functions)

イロト イポト イヨト イヨト

Sac

In the nonabelian case, *L*-functions can be used to prove the following theorem

Theorem (Chebotarev, 1922)

Let E, F, G be as above and C be a conjugacy class in G. Then the set of unramified primes $\mathfrak{p} \neq \mathfrak{0}$ in \mathcal{O}_F such that $\sigma_{\mathfrak{P}} \in C$ for some prime \mathfrak{P} in \mathcal{O}_E with $\mathfrak{P} \cap \mathcal{O}_F = \mathfrak{p}$ has density |C|/|G|.

ヘロア 人間 アメヨア 人口 ア

Sar

Now let G be an arbitrary finite group.

Definition

Take $Char(G) = \mathbb{Z}$ -module generated by Irr(G), and take cf(G) = set of functions from G to \mathbb{C} which are constant on conjugacy classes (i.e., class functions).

Then $cf(G) \supseteq Char(G)$ is a \mathbb{C} -algebra.

・ロト ・ 同ト ・ ヨト ・ ヨト

Sac

Definition

Suppose $H \leq G$ and $\varphi \in cf(H)$. The induced class function $\varphi^{G} \in cf(G)$ is given by

$$\varphi^{G}(x) = \frac{1}{|H|} \sum_{g \in G} \dot{\varphi}(g^{-1}xg)$$

where $\dot{\varphi}$ is 0 on $G \setminus H$ and φ on H.

• Induction is a C-linear transformation from cf(H) to cf(G)

• Induction is transitive

• If φ is a character of $H \leq G$, then φ^{G} is a character of G

Jordan Schettler Brauer's Theorems and the Meromorphicity of *L*-Functions

• Induction is a C-linear transformation from cf(H) to cf(G)

Induction is transitive

• If φ is a character of $H \leq G$, then φ^{G} is a character of G

Jordan Schettler Brauer's Theorems and the Meromorphicity of *L*-Functions

• Induction is a C-linear transformation from cf(H) to cf(G)

Induction is transitive

• If φ is a character of $H \leq G$, then φ^{G} is a character of G

Induction Brauer's Theorems

• (Frobenius Reciprocity) If $\varphi \in cf(H)$ and $\theta \in cf(G)$, then

$$(\varphi^{G},\theta)_{G} = (\varphi,\theta|_{H})_{H}$$

In the context of G = Gal(E/F), let K be a field between F and E. Then if φ is a character of H := Gal(E/K), we have

$$L(s, \varphi^G, E/F) = L(s, \varphi, E/K)$$

イロト 不得 トイヨト イヨト

∃ <2 <</p>

Induction Brauer's Theorems

• (Frobenius Reciprocity) If $\varphi \in cf(H)$ and $\theta \in cf(G)$, then

$$(\varphi^{G},\theta)_{G} = (\varphi,\theta|_{H})_{H}$$

 In the context of G = Gal(E/F), let K be a field between F and E. Then if φ is a character of H := Gal(E/K), we have

$$L(s, \varphi^G, E/F) = L(s, \varphi, E/K)$$

イロト イポト イヨト イヨト

∃ <2 <</p>

Definition

An elementary (resp. hyper-elementary) subgroup of *G* is a subgroup of the form $C \times P$ (resp. $C \rtimes P$) where *P* is a *p*-group for some prime *p* and *C* is cyclic with (|C|, p) = 1.

ヘロア 人間 アメヨア 人口 ア

Sar

<u>Notation</u>: (1) Let \mathcal{E} (resp. \mathcal{H}) be the set of elementary (resp. hyper-elementary) subgroups of *G*.

(2) Let \mathcal{R} be the ring of all class functions of G which restrict to generalized characters on H for all $H \in \mathcal{E}$.

(3) Let \mathcal{I} be the \mathbb{Z} -module generated by all characters of the form λ^{G} where λ is a linear character of some $H \in \mathcal{E}$.

・ロト ・ 国 ト ・ 国 ト ・ 国 ト

= nar

Theorem (Brauer's Induction and Characterization Theorem) We have $\mathcal{I} = Char(G) = \mathcal{R}$.

- The first equality says, in particular, that every irreducible character can be written as the Z-linear combination of characters induced from linear characters of elementary subgroups.
- The second equality says that a class function of *G* is a generalized character of *G* if and only if it restricts to generalized characters for all elementary subgroups.

ヘロア 人間 アメヨア 人口 ア

Sac

Sketch of Proof of Brauer's Theorems. STEP 1: $\mathcal{I} \subseteq$ Char(G) $\subseteq \mathcal{R}$ and \mathcal{I} is an ideal in \mathcal{R}

STEP 2: $1_G = \sum_{H \in \mathcal{H}} a_H (1_H)^G$ with $a_H \in \mathbb{Z}$ by Banaschewski

STEP 3: Assume $G = C \rtimes P \in \mathcal{H}$ by transitivty of induction

STEP 4: If $G \in \mathcal{E}$, we're done; otherwise $G \neq N := N_G(P) \in \mathcal{E}$

Induction Brauer's Theorems

Sketch Continued.

STEP 5: $(1_N^G, 1_G)_G = (1_N, 1_N)_N = 1$ by Frobenius

STEP 6:
$$\mathbf{1}_{G} = \mathbf{1}_{N}^{G} - \sum_{\mathbf{1}_{G} \neq \chi_{i}} \mathbf{a}_{i} \chi_{i}$$
 with $\mathbf{a}_{i} \in \mathbb{Z}$

STEP 7: Suppose $\chi_i(1) = 1$ for some *i*

STEP 8: $P \in \text{Syl}_{p}(K)$ and $N \leq K$ with $K := \text{ker}(\chi_{i}) \leq G$

STEP 9: $G = KN \subseteq K \neq G$ by Frattini

Theorem (Meromorphicity of *L*-Functions)

In the context of G = Gal(E/F), there are intermediate fields K_1, \ldots, K_m of E/F and integers n_i such that

$$L(\boldsymbol{s}, \boldsymbol{\chi}, \boldsymbol{E}/\boldsymbol{F}) = \prod_{j=1}^{m} L(\boldsymbol{s}, \xi_j, \boldsymbol{E}/\boldsymbol{K}_j)^{n_j}$$

for some linear characters ξ_j of Gal(E/K_j); in particular, Artin *L*-functions are meromorphic.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Sar

Example

Let $E = \mathbb{Q}(e^{2\pi i/3}, \sqrt[3]{2})$, $F = \mathbb{Q}$, \widehat{T} be as in the first example. Set $H = \langle (2 \ 3) \rangle = \operatorname{Stab}_G(1)$ and take *K* to be the fixed field of *H*. Then inducing the trivial character on *H* gives us the permutation character χ of \widehat{T} . Thus

$$L(\boldsymbol{s}, \boldsymbol{\chi}, \boldsymbol{E}/\boldsymbol{F}) = L(\boldsymbol{s}, \boldsymbol{1}_{H}, \boldsymbol{E}/\boldsymbol{K}) = \zeta_{\boldsymbol{K}}(\boldsymbol{s})$$

is actually well-understood.

・ロト ・ 国 ト ・ 国 ト ・ 国 ト

Sac

Proof of Meromorphicity.

We may assume $\chi \in Irr(G)$. Then by Brauer's induction theorem there are elementary subgroups H_1, \ldots, H_m and linear characters λ_i of H_i with

$$\chi = \sum_{j=1}^{m} n_j \lambda_j^G$$

for some $n_1, \ldots, n_m \in \mathbb{Z}$. The result now follows from Galois correspondence and the properties of *L*-functions above.

ヘロア 人間 アメヨア 人口 ア

Sar

Conjecture (Artin)

If $\chi \in Irr(G)$, then $L(s, \chi)$ is an entire function unless χ is the trivial character, in which case the only pole of $L(s, \chi)$ is a simple pole at s = 1.

Note: Artin's conjecture is known to be true in the cases where [G, G] is abelian, *G* is a *p*-group, or |G| is squarefree.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Sar

Induction Brauer's Theorems

Example

Let *E* be the splitting field of $x^4 + 3x + 3$ over $F = \mathbb{Q}$.

• $G = \text{Gal}(E/F) \cong D_8 = \langle a, b | a^4 = b^2 = 1, ab = ba^{-1}$

• $H_1 := Z(G), H_2 := \langle a \rangle, K_j$ is the fixed field of H_j for j = 1, 2

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Example

Let *E* be the splitting field of $x^4 + 3x + 3$ over $F = \mathbb{Q}$.

•
$$G = \operatorname{Gal}(E/F) \cong D_8 = \langle a, b | a^4 = b^2 = 1, ab = ba^{-1} \rangle$$

• $H_1 := Z(G), H_2 := \langle a \rangle, K_j$ is the fixed field of H_j for j = 1, 2

Example

Let *E* be the splitting field of $x^4 + 3x + 3$ over $F = \mathbb{Q}$.

•
$$G = \operatorname{Gal}(E/F) \cong D_8 = \langle a, b | a^4 = b^2 = 1, ab = ba^{-1} \rangle$$

• $H_1 := Z(G), H_2 := \langle a \rangle, K_j$ is the fixed field of H_j for j = 1, 2

Example (continued)

 G/H₁ ≅ C₂ × C₂ has 4 irreducible characters ψ₁,...,ψ₄, which inflate to 4 irreducible characters χ_j = inf_G^{G/H₁}(ψ_j) of G; turns out that

$$L(\boldsymbol{s}, \chi_j, \boldsymbol{E}/\boldsymbol{F}) = L(\boldsymbol{s}, \psi_j, \boldsymbol{K}_1/\boldsymbol{F})$$

The remaining character χ₅ is induced from a character φ₃ of H₂, so
 L(s, χ₅, E/F) = L(s, φ₃, E/K₂)

イロト 不得 トイヨト イヨト

-

DQC

Example (continued)

 G/H₁ ≅ C₂ × C₂ has 4 irreducible characters ψ₁,..., ψ₄, which inflate to 4 irreducible characters χ_j = inf_G^{G/H₁}(ψ_j) of G; turns out that

$$L(\boldsymbol{s}, \chi_j, \boldsymbol{E}/\boldsymbol{F}) = L(\boldsymbol{s}, \psi_j, \boldsymbol{K}_1/\boldsymbol{F})$$

The remaining character χ₅ is induced from a character φ₃ of H₂, so
 L(s, χ₅, E/F) = L(s, φ₃, E/K₂)