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Setup

Fix a rational prime p and a number field F .

Let F∞/F be a Zp-extension, i.e. as topological groups

Γ := Gal(F∞/F ) ∼= Zp

where Γ is given the Krull topology.
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Setup

Infinite Galois theory gives an inclusion reversing bijection

closed subgroups↔ intermediate fields.

Also, all nontrivial closed subgroups of Zp are of the form

pnZp

for some n ∈ N0.
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Setup

Thus the extensions of F contained in F∞ form a tower

F = F0 ⊆ F1 ⊆ F2 ⊆ . . . ⊆ F∞

such that ∀n ≥ 0

Γn := Gal(F∞/Fn)

has index pn in Γ and

Gal(Fn/F ) ∼= Γ/Γn ∼= Z/(pn).
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Cyclotomic Extensions

There is always at least one Zp-extension of F .

In particular, there is a unique subfield

F c
∞ ⊆ F (ζp∞)

s.t. F c
∞/F is a Zp-extension, so-called cyclotomic.

Note: Kronecker-Weber⇒ Qc
∞ is the only Zp-ext’n of Q.
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Cyclotomic Extensions

We define the cyclotomic character

χ : Gal(F (ζp∞)/F ) � Z×p ∼= (finite group)× Zp

by

σ(ζpn) = ζ
χ(σ)
pn for all n ∈ N0.

For example, if ζ2p ∈ F , then im(χ) ∼= Zp, so

F c
∞ = F (ζp∞).
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Cyclotomic Extensions

Moreover,

F c
∞ = FQc

∞

with

Qc
∞ ⊆ Q(ζp∞)+ ⊆ R.

E.g., if p = 3 and F = Q, then

F c
∞ = Q(ζ3∞)+ =

∞⋃
n=0

Q(ζ3n+1 + ζ−1
3n+1).
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Fundamental Theorem

Theorem (Iwasawa’s Growth Formula)

Let F∞/F be as above. Then ∃λ, µ, ν ∈ Z with λ, µ ≥ 0 s.t.
∀n� 0

ordp|C(Fn)| = λn + µpn + ν

where C(Fn) is the class group of Fn.
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Idea Behind Growth Formula

Let Ln denote the p-Hilbert class field of Fn, so

Xn := Gal(Ln/Fn) ∼= Sylow-p subgroup of C(Fn).

Then Gal(Fn/F ) acts on Xn via the SES

1→ Xn → Gal(Ln/F )→ Gal(Fn/F )→ 1.



Iwasawa
Theory of

Elliptic Curves
and BSD in
Rank Zero

Jordan
Schettler

Classical
Theory for
Number
Fields

Theory for
Elliptic Curves

Application to
a Special
Case of BSD

Three
Concrete
Examples

Action on Xn

Explicitly,

σ · xn := σ̃xnσ̃
−1

where xn ∈ Xn and

σ̃ ∈ Gal(Ln/F )

extends
σ ∈ Gal(Fn/F ).
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The Iwasawa Module

Thus each Xn is a module (given the discrete topology) over

Zp[Gal(Fn/F )]

(given the product topology), so

X := lim←−Xn

is a Λ-module where

Λ := lim←−Zp[Gal(Fn/F )].
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Description of Λ

Now

Γ ∼= lim←−Gal(Fn/F ),

so we may view

Zp[Γ] ⊆ Λ.

In fact, Zp[Γ] is dense in Λ.
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Description of Λ

There is an identification

Λ
∼−→ Zp[[T ]] : γ 7→ T + 1

where γ ∈ Γ has γ|F1 nontrivial.

Here γ is a topological generator, i.e.

Γ = 〈γ〉.
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Λ-module Decomposition

Λ is not a PID, but there is a structure theorem...

Theorem
If M is finitely generated Λ-module, ∃pseudo-isomorphism

M ∼ Λr ⊕
s⊕

i=1

Λ

(pni )
⊕

t⊕
j=1

Λ

(f mj
j )

where each fj ∈ Zp[T ] is distinguished and irreducible.
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Connection Between Growth Formula and X

It turns out that X is a finitely generated torsion Λ-module.

Taking M = X , there’s a well-defined characteristic
polynomial

char(X ) :=

(
s∏

i=1

pni

) t∏
j=1

fj


which generates the so-called characteristic ideal of X .
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Connection Between Growth Formula and X

We can compute λ, µ in the growth formula:

µ = n1 + · · ·+ ns = ordp(char(X ))

λ = m1 deg(f1) + · · ·+ mt deg(ft) = deg(char(X ))
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The p-adic L-function Attached to a Character

From now on, suppose p is odd for simplicity.

Fix Q ↪→ Cp and let χ be a primitive Dirichlet character.

∃p-adic meromorphic function Lp(s, χ) with

Lp(1− n, χ) = (1− χ(p)pn−1)L(1− n, χ)

whenever p − 1|n ≥ 1.
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Framework for Main Conjecture

Take F = Q(ζp).

Then G := Gal(F/Q) 	 X via

σ · (xn) = (σω|Fn · xn)

where

σω ∈ Gal(Q(ζp∞)/Q)

is the “Teichmüller lift.”
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The Teichmüller Lift

We define σω as follows: if σ(ζp) = ζa
p , take

σω(ζpn) = ζ
ω(a)
pn

for all n ∈ N where

ω : (Z/(p))× → µp−1 ⊆ Z×p
is determined by

a ≡ ω(a) (mod p).
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Isotypic Decomposition

Now Ĝ = 〈ω〉, so

X =

p−2⊕
i=0

εiX

as Zp[G]-modules where

εi =
1

p − 1

∑
g∈G

ωi(g)g−1.
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Statement of Main Conjecture

Let i ∈ {3, 5, . . . , p − 2}. Then we have the following result.

Theorem (Mazur, Wiles)

There is a generator f of (char(εiX )) such that

f (κs − 1) = Lp(s, ω1−i)

for all s ∈ Zp where γ = χ−1(κ).

Note: We can choose κ = 1 + p.
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Pontryagin Dual

Define a functor on topological Λ-modules

(−)∗ := Homcont(−, Qp/Zp).

With diagonal Γ-action and compact-open topology this
functor interchanges compact and discrete Λ-modules.

Note: Qp/Zp is taken to have trivial Γ-action.
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First Observation

(1) For m ∈ N0 ∪ {∞} we may view

X ∗
m ≤ H1(Fm, Qp/Zp)

as the classes which are unramified at all places of Fm.
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Second Observation

(2) The natural maps

XΓn
∼= X/(γpn − 1)X → Xn

induce
X ∗

n → (X ∗)Γn

which are isos when there is a unique prime P in F lying
over p and P is totally ramified in F∞/F .
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Selmer Groups

(1) reminds us of a Selmer group for an elliptic curve E/Fm:

SelE(Fm)p ≤ H1(Fm, E [p∞])

consists of the classes [φ] with certain local restrictions.
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Selmer Groups

In detail, taking K := Fm, such [φ] satisfy

[φ|GKv
] ∈ im(κv )

for all places v of K where

κv : E(Kv )⊗ (Qp/Zp)→ H1(Kv , E [p∞])

are the Kummer homomorphisms.
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Action of Γ on H1, Sel

Let [φ] ∈ H1(F∞, E [p∞]) and suppose

γ̃ ∈ GF extends γ ∈ Γ.

Then we define

γ · [φ] := [φ
eγ ]

where for α ∈ GF∞

φ
eγ(α) = γ̃φ(γ̃−1αγ̃).
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H1, Sel as Λ-modules

SelE(F∞)p is Γ-invariant under this action.

Every [φ] ∈ H1(F∞, E [p∞]) is killed by a power of T , so both

H1(F∞, E [p∞]) and SelE(F∞)p

are torsion Λ-modules which we give the discrete topology.
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Control Theorem

Continuing this analogy, the corresponding maps in (2) are
pseudo-isos under the right assumptions on p.

Theorem (Mazur)

Suppose E/F has good, ordinary reduction at every prime
of F lying over p. Then the natural maps

SelE(F c
n )p → SelE(F c

∞)Γn
p

have finite ker, coker of bounded order as n varies.
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Working Assumption

Definition
Say E/F is “nice at p” if it has good, ordinary reduction at
every prime of F lying over p and |SelE(F )p| <∞.

Note: The assumption |SelE(F )p| <∞ is equivalent to

rankZ(E(F )) = 0 and |XE(F )p| <∞.
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The Iwasawa Module for E/F

Corollary

If E/F is nice at p, then

X := SelE(F c
∞)∗p

is a finitely generated torsion Λ-module.
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Proof of Corollary

Proof.
Apply control theorem for n = 0, and get

X/TX ∼= XΓ
∼= (SelE(F c

∞)Γp)∗ ∼ SelE(F )∗p is finite.

Done by Nakayama’s lemma and structure theorem.
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Analog of Fundamental Theorem

Theorem (Growth Formula)

If E/F is nice at p, then ∃λ, µ, ν ∈ Z with λ, µ ≥ 0 s.t.
∀n� 0

ordp|X(F c
n )| = λn + µpn + ν

assuming the LHS is always finite.



Iwasawa
Theory of

Elliptic Curves
and BSD in
Rank Zero

Jordan
Schettler

Classical
Theory for
Number
Fields

Theory for
Elliptic Curves

Application to
a Special
Case of BSD

Three
Concrete
Examples

Connection Between Growth Formula and X

In fact, if λE , µE are the invariants of X , we can compute

µ = µE

λ = λE − rankZ(E(F c
∞)).

E.g., we can find λ by applying (−)∗ ⊗Zp Qp to the SES

0→ E(F c
∞)⊗ (Qp/Zp)→ SelE(F c

∞)p →XE(F c
∞)p → 0.
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Main Conjecture for Elliptic Curves

Take F = Q. Then we have the following conjecture.

Conjecture

If E/Q is nice at p, there is a generator fE of (char(X )) s.t.

fE(κs−1 − 1) = Lp(E/Q, s)

for all s ∈ Zp where γ = χ−1(κ)|Qc
∞ .

Note: Again we can choose κ = 1 + p.
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A Couple of Remarks

Suppose E/Q is nice at p and (fE) = (char(X )). We know

|E(Q)| <∞,

so

E(Q)⊗ (Qp/Zp) = 0 and SelE(Q)p ∼= XE(Q)p.
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A Couple of Remarks

Moreover, we’ve seen

|X/TX | <∞,

but if Y = Λ/(T k ), then

Y/TY ∼= Λ/(T ) ∼= Zp

is infinite, so T - fE(T ), and, in particular,

fE(0) 6= 0.
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Interpolation

Lp(E/Q, s) interpolates L(E/Q, s) in the following way:

If φ is a finite order character of Z×p /µp−1 with conductor pn,

Lp(E/Q, φ̄, 1) = βn
p(1− φ(p)βpp−1)2 L(E/Q, φ, 1)

ΩEτ(φ)

where τ(−) denotes a Gauss sum.
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The Value at s = 1

If fE is as in the main conjecture and φ is trivial, then

φ = φ̄ has conductor 1 = p0,

so

fE(0) = Lp(E/Q, 1) = (1− βpp−1)2 L(E/Q, 1)

ΩE
.
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Notation

Here

ΩE =

∫
E(R)

∣∣∣∣ dx
2y + a1x + a3

∣∣∣∣
where

y2 + a1xy + a3y = x3 + a2x2 + a4x + a6

is a global minimal Weierstrass equation.
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Notation

Also,
1

(1− αpp−s)(1− βpp−s)

is the Euler factor at p in L(E/Q, s) with

αp + βp = 1 + p − |Ẽ(Fp)|
αpβp = p

and choosing
αp ∈ Z×p .



Iwasawa
Theory of

Elliptic Curves
and BSD in
Rank Zero

Jordan
Schettler

Classical
Theory for
Number
Fields

Theory for
Elliptic Curves

Application to
a Special
Case of BSD

Three
Concrete
Examples

Featured Result

Theorem
If E/Q is nice at p and fE generates (char(X )), then

fE(0) ≡
(1− βpp−1)2|XE(Q)p|

∏
bad ` c(p)

`

|E(Q)p|2
mod Z×p

where c(p)
` = p-part of the Tamagawa factor for a prime `.
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The Payoff

Assuming the main conjecture and |XE(Q)| <∞, we get...

Corollary

If E/Q is nice at p, then

L(E/Q, 1)

ΩE
≡
|XE(Q)|

∏
` c`

|E(Q)|2
mod Z×p .
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Outline of Proof for Featured Result

If Y = Λ/(g) with g(0) 6= 0, then |Y Γ| = 1 and

|YΓ| =
∣∣∣∣ Y
TY

∣∣∣∣ = ∣∣∣∣ Λ

(T , g)

∣∣∣∣ = ∣∣∣∣ Zp

(g(0))

∣∣∣∣ ≡ g(0) mod Z×p .
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Outline of Proof Continued

Taking Euler characteristics yields

|SΓ|
|SΓ|

=
|XΓ|
|XΓ|

≡ fE(0) mod Z×p

where we fix the notation S = SelE(Qc
∞)p.
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Outline of Proof Continued

We have a commutative diagram with exact rows

SelE(Q)p

s
��

// // H1(Q, E [p∞]) // //

h
��

GE(Q)

g
��

SΓ // // H1(Qc
∞, E [p∞])Γ // GE(Qc

∞)Γ.
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Outline of Proof Continued

Turns out coker(h) = 0, so we get an exact sequence

0→ ker(s)→ ker(h)→ ker(g)→ coker(s)→ 0.

Thus

|SΓ|/|SelE(Q)p| = |coker(s)|/|ker(s)| = |ker(g)|/|ker(h)|.
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Outline of Proof Continued

Since E(Qc
∞)p is known to be finite, we get

|ker(h)| = |H1(Γ, E(Qc
∞)p)| = |(E(Qc

∞)p)Γ|
= |E(Qc

∞)Γp| = |E(Q)p|

so

fE(0) ≡
|XE(Q)p| · |ker(g)|
|SΓ| · |E(Q)p|

mod Z×p .
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Outline of Proof Continued

The snake lemma (again) and a theorem of Cassels imply

|ker(g)| = |ker(r)| · |SΓ|
|E(Q)p|

where we have a natural map

r : PE(Q)→ PE(Qc
∞)

with
PE(K ) :=

∏
places v

on K

coker(κv ).
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Outline of Proof Continued

Combining the above expressions gives

fE(0) ≡
|XE(Q)p| · |ker(r)|

|E(Q)p|2
mod Z×p .

It remains to compute

|ker(r)| = |ker(rp)|
∏
bad `

|ker(r`)|

where
rv : coker(κv )→ coker(κw )

for some place w |v of Qc
∞.
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Outline of Proof Continued

If E/Q has bad reduction at `, then

|ker(r`)| = c(p)
` ,

while

|ker(rp)| = |Ẽ(Fp)p|2 ≡ |Ẽ(Fp)|2 = (1 + p − αp − βp)2

= (1− βp)2(1− αp)2 ≡ (1− αp)2

≡ (1− βpp−1)2 mod Z×p ,

which completes the sketch.
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Example 1.

Consider the elliptic curve E : y2 = x3 − x . We have

∆ = 26 and j = 26 · 33,

so E has additive reduction at 2 & good reduction otherwise.
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Example 1. Continued

Let p be a prime with p ≡ 1 (mod 4).

Then the coefficient of xp−1 in

(x3 − x)(p−1)/2

is

(−1)(p−1)/4 6≡ 0 (mod p),

whence E has ordinary reduction at p.
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Example 1. Continued

Note that

(x , y) 7→ (−x , iy)

has order 4 in AutQ(i)(E), so E has complex mult over Q(i).

In fact, the Coates-Wiles theorem applies, and we get

E(Q) ⊆ E(Q(i)) = E(Q(i))tors.
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Example 1. Continued

If Ẽ3, Ẽ5 denote the reduction mod 3, 5, resp, then

Ẽ3(F3) = {O, (0, 0), (±1, 0)}

and

Ẽ5(F5) = {O, (0, 0), (±1, 0), (2,±1), (−2,±2)},

so

E(Q) = E [2∞] = E [2] = {O, (0, 0), (±1, 0)} ∼= (Z/2Z)2.
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Example 1. Continued

In fact, it can also be shown that

XE(Q) = 0.

In particular, E is nice at p and |E(Q)p| = 1, so

fE(0) ≡ |Ẽ(Fp)p|2 · c(p)
2 mod Z×p .
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Example 1. Continued

Now c2 ≤ 4 since E has add red’n at 2, so p - c2.

Also,

E(Q) ↪→ E(Qp)[2] � Ẽ(Fp),

so if |Ẽ(Fp)p| > 1, then

4p ≤ |Ẽ(Fp)| < 1 + p + 2
√

p

which is a contradiction.
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Example 1. Continued

Thus
fE(0) ≡ 1 mod Z×p ,

so
µE = λE = 0

and
X ∼ 0.
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Example 2.

Now consider E : y2 = x3 + x2 − 647x − 6555. We have

∆ = 29 · 35 and j =
26 · 9713

35 ,

so E has additive reduction at 2, multiplicative reduction at
3, & good reduction otherwise.
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Example 2. Continued

Let p = 5.

Then the reduction of E mod 5 is Ẽ : y2 = x3 + x2 + 3x .

The coefficient of x5−1 in

(x3 + x2 + 3x)(5−1)/2

is

7 6≡ 0 (mod 5),

whence E has ordinary reduction at 5.
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Example 2. Continued

E is related by a 5-isogeny defined over Q to

E ′ : y2 = x3 + x2 − 7x + 5.

This curve has the property that

SelE ′(Q)5 → SelE ′(Qc
∞)Γ5

is surjective.
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Example 2. Continued

Ẽ ′ = Ẽ mod 5, so again we have good, ord red’n at 5.

SelE ′(Q) = 0 assuming BSD, so E ′ is nice at 5 and

X ′/TX ′ = X ′
Γ
∼= (SelE ′(Qc

∞)Γ5)∗ = 0.

Thus X ′ = 0 by Nakayama’s lemma, giving

µE ′ = λE ′ = 0.
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Example 2. Continued

E , E ′ are isogenous over Q and E is also nice at 5, so

λE = λE ′ = 0.

E.g., we can find λE by applying (−)∗ ⊗Z5 Q5 to the map

SelE(Qc
∞)5 → SelE ′(Qc

∞)5 = 0

with ker and coker of exponent 5 induced by an isogeny.
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Example 2. Continued

Now c2 ≤ 4 since E has add red’n at 2, so 5 - c2.

Also, E has split mult red’n at 3 since

b2 := a2
1 + 4a2 = 02 + 4 · 1

is a square in F3, so c3 = −ord3(j) = 5.
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Example 2. Continued

In fact, |E(Q)| = 2 and |Ẽ(F5)| = 4, so

fE(0) ≡ 5 mod Z×5 .

Thus µE = 1 and
X ∼ Λ/(5).
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Example 3.

Now consider E : y2 + xy = x3 − 3x + 1. We have

∆ = 26 · 17 and j =
53 · 293

26 · 17
,

so E has multiplicative reduction at 2, 17 & good reduction
otherwise.
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Example 3. Continued

Let p = 3.

Then we can check that

Ẽ(F3) = {O, (0,±1), (±1, 1), (−1, 0)} ∼= Z/(6),

whence E has ord red’n at 3.

SelE(Q) = 0 assuming BSD, so E is nice at 3.
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Example 3. Continued

In fact, if Ẽ5 denotes the reduction mod 5, then

{O, (±2, 1), (0,±1)} ⊆ E(Q) � Ẽ5(F5) ∼= Z/(6),

so

E(Q) ∼= Z/(6).
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Example 3. Continued

Also, E has split mult red’n at 2, 17, so

c2 = −ord2(j) = 6 and c17 = −ord17(j) = 1.

Hence

fE(0) ≡ 3 mod Z×3 ,

and, in particular, fE is irreducible.
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Example 3. Continued

Note that
Qc

1 = Q(α)

and
(α,−α) ∈ E(Qc

1)

where
α := ζ9 + ζ−1

9 .
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Example 3. Continued

It turns out that

E(Qc
∞)tors = E(Q),

so
V := E(Qc

1)⊗Q3

is a nonzero, faithful Q3-representation of

G := Gal(Qc
1/Q) ∼= Z/(3).
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Example 3. Continued

We know
dimQ3(V ) = rankZ(E(Qc

1)) <∞

and ∃exactly 2 finite dim’l, simple Q3G-modules up to iso...

namely, Q3 with trivial G-action and the module W afforded
by the matrix representation

ρ : G→ GL2(Q3) : γ|Qc
1
7→
(

0 −1
1 −1

)
.
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Example 3. Continued

Therefore ∃n ∈ N s.t.

V ∼= W n

since no point of infinite order in E(Qc
1) can be fixed by G.

Consider

M :=

(
W ⊗Z3

Q3

Z3

)n
∼= V ⊗Z3

Q3

Z3

∼= E(Qc
1)⊗

Q3

Z3

as Λ-mods where ρ : Z3[Γ]→ M2(Q3) is a hom of rings.
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Example 3. Continued

Note that

ρ(T ) = ρ(γ − 1) =

(
−1 −1
1 −2

)
has characteristic polynomial

θ(x) = x2 + 3x + 3,

so

char(M∗) = θ(T )n.
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Example 3. Continued

On the other hand, M is a submodule of X ∗, so

θ(T )n|fE(T ),

giving (θ) = (fE). Thus µE = 0, λE = 2 and

X ∼ Λ/(T 2 + 3T + 3).
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