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Definition
A (discrete) dynamical system (S, φ) is a set S and a map

φ : S → S.

The orbit of α ∈ S is

Orbφ(α) := {φn(α) : n ∈ N0}

where

φn =


idS for n = 0

φ ◦ φ ◦ · · · ◦ φ︸ ︷︷ ︸
n times

for n ≥ 1.
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Definition (continued)
We categorize points of finite orbit into the following subsets

Fix(φ) fixed φ(α) = α

⊇

Per(φ) periodic φn(α) = α some n ≥ 1

⊇

PrePer(φ) preperiodic φm+n(α) = φm(α) some m ≥ 0, n ≥ 1

Points of infinite orbit will (in this talk) be called wandering.
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Example
Consider

φ : Z→ Z : x 7→ x2 − 3.

Then

Fix(φ) = {},

Per(φ) = {−2,1},

PrePer(φ) = {−2,−1,1,2}.
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Usually, S has some additional structure (algebraic, topological,
analytic) and φ is related to this structure.

For our purposes, S will be PN(F ) for a field F , and φ will be a
morphism defined over F .
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Ultimately, we’ll be interested in morphisms on PN(K ) for a
number field K . Beforehand, we consider rational maps

φ(z) ∈ Kv (z)

on P1(Kv ) where

Kv = completion of K at a place v .
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If v is archimedean, then Kv ∼= R or C. This is the context of
classical dynamics, which we consider first.

If v is nonarchimedean, then Kv is a finite extension of Qp for
some prime p. This is a natural starting point for arithmetic
dynamics, which we’ll consider second.
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Classical Dynamics
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Definitions

Each φ(z) ∈ C(z) is viewed as a map from

P1(C) = {[z,1] : z ∈ C} ∪ {[1,0]} = C ∪ {∞}

to itself and, as such, is open and Lipschitz with respect to the
chordal metric ρ(·, ·) defined by

ρ([x1, y1], [x2, y2]) :=
|x1y2 − x2y1|√

|x1|2 + |y1|2
√
|x2|2 + |y2|2

.
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Definitions

If we identify P1(C) = S2 ⊆ R3 via the stereographic projection
from the unit sphere as seen below, then

ρ(P1,P2) =
1
2
(length of the chord joining P1 and P2)
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Definitions

Definition
If α ∈ C is a periodic point of φ(z) ∈ C(z), the multiplier of α is

λφ(α) := (φm)′(α)

where α has exact period m = |Orbφ(α)|.

If∞ ∈ Per(φ), we take

λφ(∞) := λφ(z−1)−1(0).
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Definitions

Definition (continued)
With α, φ as above, note that

|φm(z)− α| ≈ |λφ(α)| · |z − α|

for z in a small neighborhood of α, so we say β ∈ Per(φ) is...


superattracting if |λφ(β)| = 0
attracting if |λφ(β)| < 1
neutral if |λφ(β)| = 1
repelling if |λφ(β)| > 1.
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Definitions

Definition (continued)
With φ as above, we define the Fatou set of φ as

F(φ) := maximal open set on which
{φn : n ∈ N} is equicontinuous,

and we define the Julia set of φ as

J (φ) := P1(C)\F(φ).
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Definitions

Remark
Points in F(φ) which are close together tend to stay close
together under iterates of φ. In fact,

{attracting periodic points} ⊆ F(φ) = φ(F(φ))

Points in J (φ) which are close together tend to drift apart under
iterates of φ. In fact,

{repelling periodic points} ⊆ J (φ) = φ(J (φ)).
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Examples

Example
When φ(z) = z2, the Julia set J (φ) is the unit circle...
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Examples

Example
When φ(z) = z2 − 2, the Julia set J (φ) is a line segment...
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Examples

Example
When φ(z) = z2 − 1, the Julia set J (φ) is fractal-like...
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Examples

Example
When φ(z) = z2 + i , the Julia set J (φ) is again fractal-like...
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Examples

Theorem
Suppose φ(z) ∈ C(z) has degree d ≥ 2. Then

I J (φ) = {repelling periodic points} 6= {}

I J (φ) = P1(C)⇔ J (φ)◦ 6= {}

I ∃ ≤ 2d − 2 non-repelling periodic orbits in P1(C).
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Arithmetic Dynamics
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For the remainder of the talk we fix the following notation:

I K is a number field

I p is a maximal ideal of OK

I | · |p is the standard absolute value

I Kp is the completion of K w.r.t. | · |p

I Fp is the residue field of OKp

I p = char(Fp)
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Finite Extensions of Qp

Again, each φ(z) ∈ Kp(z) is viewed as a map from

P1(Kp) = {[z,1] : z ∈ Kp} ∪ {[1,0]} = Kp ∪ {∞}

to itself and, as such, is Lipschitz with respect to the p-adic
chordal metric ρp(·, ·) defined by

ρp([x1, y1], [x2, y2]) :=
|x1y2 − x2y1|p

max{|x1|p, |y1|p}max{|x2|p, |y2|p}
.
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Finite Extensions of Qp

Definition
If α ∈ Kp is periodic for φ(z) ∈ Kp(z), the multiplier is again

λφ(α) := (φm)′(α)

where m = |Orbφ(α)|. Again we say β ∈ Per(φ) is...


superattracting if |λφ(β)|p = 0
attracting if |λφ(β)|p < 1
neutral if |λφ(β)|p = 1
repelling if |λφ(β)|p > 1.
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Finite Extensions of Qp

Let

OKp
� Fp : α 7→ α̃

denote the natural projection, and define

P1(Kp)→ P1(Fp) : P 7→ P̃

by

[x , y ] 7→
[
x̃/a, ỹ/a

]

where |a|p = max{|x |p, |y |p}.
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Finite Extensions of Qp

Every φ(z) ∈ Kp(z) can be written as

φ(z) = f (z)/g(z)

where

f (z),g(z) ∈ OKp
[z]

and f̃ (z) 6= 0 or g̃(z) 6= 0 in Fp[z]. Thus

φ̃(z) := f̃ (z)/g̃(z)

is a rational map on P1(Fp).
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Finite Extensions of Qp

Definition
We say φ(z) ∈ Kp(z) has good reduction when

deg(φ) = deg(φ̃);

equivalently, there are no solutions [x , y ] ∈ P1(Fp) to

ydeg(f ) f̃ (x/y) = ydeg(g)g̃(x/y) = 0
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Finite Extensions of Qp

Theorem
Suppose φ(z) ∈ Kp(z) has good reduction. Then

I ρp(φ(P1), φ(P2)) ≤ ρp(P1,P2)

I φ̃n(P1) = φ̃n(P̃1)

for all P1,P2 ∈ P1(Kp) and all n ∈ N0.
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Finite Extensions of Qp

Corollary
Suppose φ(z) ∈ Kp(z) has good reduction. Then

I J (φ) = {}

I P̃er(φ) ⊆ Per(φ̃).
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Finite Extensions of Qp

In fact, we have the following more precise statement.

Theorem
Suppose φ(z) ∈ Kp(z) has good reduction and degree d ≥ 2.
Let P ∈ Per(φ). Then

|Orbφ(P)| = |Orb
φ̃
(P̃)| · |{λ

φ̃
(P̃), λ

φ̃
(P̃)2, . . .}| · pn

for some n ∈ N0.
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Finite Extensions of Qp

Example
Let f (x) ∈ Q[x ] have degree d ≥ 2.

Suppose f (x) has good reduction in both Q2(x) and Q3(x).

Consider a periodic point α ∈ Q of f (x).
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Finite Extensions of Qp

Example (continued)
On the one hand, f (x) has good reduction in Q2(x).

Hence

|Orbf (α)| = 2m

for some m ∈ N0 since

|Orbf̃ (α̃)| = 1 or 2 and |{λf̃ (α̃), λf̃ (α̃)
2, . . .}| = 1.
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Finite Extensions of Qp

Example (continued)
On the other hand, f (x) has good reduction in Q3(x).

Hence

|Orbf (α)| = 2r · 3n

for some r ∈ {0,1,2}, n ∈ N0 since

|Orbf̃ (α̃)| = 1,2, or 3 and |{λf̃ (α̃), λf̃ (α̃)
2, . . .}| = 1 or 2.
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Finite Extensions of Qp

Example (continued)
Thus

|Orbf (α)| = 1,2, or 4.

Each of these possibilities is realized for α = 0 and...

I f (x) = x2

I f (x) = x2 − 1

I f (x) = x4 + 348
35 x3 + 123

7 x2 − 1243
35 x + 1
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Finite Extensions of Qp

Theorem (Narkiewicz)
Let f (x) ∈ Z[x ] be monic of degree d ≥ 2. Suppose P ∈ P1(Q)
is a periodic point for f . Then

|Orbf (P)| = 1 or 2.
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Finite Extensions of Q

The above example generalizes over an arbitrary number field.

Theorem
Let φ(z) ∈ K (z) have degree d ≥ 2. Suppose φ(z) has good
reduction in Kp(z) and Kq(z) with q - p. Then ∀α ∈ Per(φ)

|Orbφ(α)| ≤ (N(p)2 − 1)(N(q)2 − 1).
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Finite Extensions of Q

Now we turn to morphisms φ : PN(K )→ PN(K ), i.e.

φ(P) = [f0(P), . . . , fN(P)] where f0, . . . , fN ∈ K [x0, . . . , xN ]

are homogeneous polynomials of the same degree s.t.

f0(X ) = · · · = fN(X ) = 0

has no solutions in PN(K ).

Say φ is defined over K when we can take f0, . . . , fN ∈ K [X ].
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Finite Extensions of Q

Definition
We define the relative height of P = [x0, . . . , xN ] ∈ PN(K ) by

HK (P) :=
∏

v

max{|x0|v , . . . , |xN |v}[Kv :Qv ]

where the product ranges over all places v on K .

We write

hK (P) := log(HK (P)).
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Finite Extensions of Q

Definition
More generally, we define the absolute height of P ∈ PN(Q) as

H(P) := HL(P)1/[L:Q]

for any number field L such that P ∈ P1(L).

We write

h(P) := log(H(P)).
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Finite Extensions of Q

Lemma
For every C ∈ R

|{P ∈ PN(K ) : HK (P) ≤ C}| <∞,

so also
|{P ∈ PN(K ) : hK (P) ≤ C}| <∞.
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Finite Extensions of Q

Lemma
Let φ : PN(K )→ PN(K ) be a morphism. Then ∃C1,C2 > 0 s.t.

C1H(P)d ≤ H(φ(P)) ≤ C2H(P)d

for all P ∈ PN(K ) where d = deg(φ).
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Finite Extensions of Q

Theorem (Northcott)
Let φ : PN(K )→ PN(K ) be a morphism of degree d ≥ 2 defined
over K . Then

PrePer(φ)

is a set of bounded height. In particular,

|PrePer(ψ)| <∞

where
ψ = φ|PN(K ) : P

N(K )→ PN(K ).
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Finite Extensions of Q

Proof.
There is a constant C s.t. for every Q ∈ PN(K ) we have

dh(Q)− C ≤ h(φ(Q)),

so if φm(P) has exact period n, then induction gives

dm(h(P)− C) ≤ h(φm(P))

and

dn(h(φm(P))− C)) ≤ h(φn(φm(P))) = h(φm(P)).
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Finite Extensions of Q

Proof continued.
Therefore

h(P) ≤ 1
dm h(φm(P)) + C ≤ 1

dm ·
dn

dn − 1
C + C ≤ 3C.
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Finite Extensions of Q

Remark
We need the morphism assumption in Northcott’s theorem. To
see why, consider the rational map

φ : P2(Q) 99K P2(Q) : [x , y , z] 7→ [x2, y2, xz].

Then
Fix(φ) ∩ P2(Q) ⊇ {[1,0,1], [1,0,2], . . .}

is infinite.
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