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1. Introduction

The Bernoulli numbers are a sequence of rational numbers with many interesting arith-
metic properties. The appearances of Bernoulli numbers throughout mathematics are abun-
dant and include finding a formula for the sum of the mth powers of the first n positive
integers, values of L-functions, Euler-Macluarin summation formulas, and special cases of
Fermat’s Last Theorem. The denominators of the Bernoulli numbers are well understood,
but the numerators are quite mysterious and the object of notable conjectures. We’ll first
review some elementary results, look at special values of L-functions, explain the connection
to class numbers of cyclotomic fields, and finally explore two of the most celebrated theorems
about Bernoulli numbers. The main reference here is the book [10] by Washington which is
used throughout.

2. Basic Properties

The Bernoulli numbers B0, B1, . . . are defined by
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is an even function, we have B1 = −1/2, while B2n+1 = 0 for all n ∈ N. We also have B0 = 1
and for n ≥ 1 the recurrence relation
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In fact, the similarity of (1) to the binomial theorem can be used to define the Bernoulli
numbers in a cute way as mentioned in [2]; i.e., one can use the formal relation

Bn = (B + 1)n

and then change exponents to subscripts after expanding the right hand side. We also define
the Bernoulli polynomials

Bn(x) :=
n∑
k=0

(
n

k

)
Bkx

n−k

which are easily seen to satisfy

(2)
text
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;

moreover, fixing k and using (2) we find that
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∞∑
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so

(3) 1n + 2n + · · ·+ kn =
Bn+1(k + 1)−Bn+1(0)

n + 1
.

In fact, the formula (3) for the sum of the nth powers of the first k positive integers was
the original impetus behind Jacob Bernoulli’s introduction of the numbers named for him
as noted in [5]. One can also show (3) by first proving

Bn(x + 1)−Bn(x) = nxn−1

and then telescoping, which is an easy exercise in [5].
In [9], it is commented that there are essentially only two facts we know about Bernoulli

numbers themselves. One of these is contained in the following theorem.

Theorem 2.1. Suppose p ≡ 3 (mod 4) is prime. Then

B p+1
2
6≡ 0 (mod p).

Exercise 5.9 in [10] suggests how to give an analytic proof of (2.1) for sufficiently large p
by using a theorem of Brauer and Siegel which in this case implies

ln(hQ(
√
−p)) ∼ ln(

√
p).

It is an exercise in [3] to prove for d = −p−1 mod a that

B2m

2m
(a2m − 1) ≡

p−1∑
j=0

j2m−1(dj mod a) (mod p)

from which it it follows that

B2m

2m
(2−2m − 1) ≡ 1

2

(p−1)/2∑
j=0

j2m−1 (mod p)
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which can in turn be used to prove (2.1) for all primes p ≡ 3 (mod 4) by setting m = (p+1)/4.
The other fact, which is the basis for a great deal of the study of Bernoulli numbers and

their applications, is the subject of the following subsection.

2.1. The von Staudt-Clausen Theorem. The following theorem completely characterizes
the denominators of Bernoulli numbers with even index.

Theorem 2.2 (von Staudt-Clausen). For each n ∈ N we have

A2n := B2n +
∑

p prime

p−1|2n

1

p
∈ Z.

Sketch. Let q be an arbitrary prime. It suffices to show A2n is in the ring of q-integers
Z(q) = {x ∈ Q|ordq(x) ≥ 0} since the intersection of all rings of q-integers is Z. Using
induction and formula (3) one can show qB2n ∈ Z(q) and

qB2n ≡ 12n + 22n + · · ·+ (q − 1)2n (mod q).

If q − 1|2n, then

qB2n ≡ 1 + 1 + · · ·+ 1 = q − 1 ≡ −1 (mod q),

so

ordq

(
B2n +

1

q

)
= ordq(qBn + 1)− 1 ≥ 0,

giving A2n ∈ Z(q). If q − 1 - 2n, then for a primitive root g of p

qB2n ≡ g1·2n + g2·2n + · · ·+ g(q−1)·2n =
g2n(q−1) − 1

g2n − 1
≡ 0 (mod q),

so

ordq(B2n) = ordq(qB2n)− 1 ≥ 1− 1 = 0,

again giving A2n ∈ Z(q). �

Corollary 2.3. Let n ∈ N and write B2n = U2n/V2n with U2n, V2n ∈ Z, V2n > 0, and
(U2n, V2n) = 1. Then

V2n =
∏

p prime

p−1|2n

p

is squarefree and divisible by 6.

In fact, there are infinitely many n such that V2n = 6. In particular, by Dirichlet’s theorem
on primes in arithmetic progression there are infinitely many primes of the form p = 3m+1,
and for such a p the only divisors of 2p are 1, 2, p, 2p, but p + 1 isn’t prime since p is an odd
prime and 2p + 1 = 2(3m + 1) + 1 = 3(2m + 1) isn’t prime since m > 0, so V2p = 6.

There are quite a few analogues and generalizations of the von Stuadt-Clausen theorem.
For example, Carlitz proved the following generalization of (2.2) in [2] for H-series (i.e., power
series with rational coefficients) of the form

f(t) =
∞∑
n=1

an
n!

tn
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such that

(4) f ′(t) =
∞∑
n=0

Anf
n(t)

where a1 = 1 = A0 and An ∈ Z for all n.

Theorem 2.4. Suppose f(t) is an H-series satisfying (4) and set

t

f(t)
=

∞∑
n=0

βn
n!

tn.

Then for all n ∈ N

β2n +
∑

p prime

p−1|2n

1

p
e2n/(p−1)
p ∈ Z

where

t =
∞∑
n=1

en
n

f(t)n.

3. L-functions and Kummer’s Congruence’s

3.1. Dirichlet L-functions. For a Dirichlet character χ : Z → C with conductor f there
are generalized Bernoulli numbers

Bn,χ := fn−1

f∑
k=1

χ(k)Bn

(
k

f

)
which satisfy

(5)

f∑
k=1

χ(k)tekt

eft − 1
=

∞∑
n=0

Bn,χ
tn

n!
,

so for the trivial character χ = 1 we get back Bn,1 = Bn when n > 1.
Define the L-series attached to the Dirichlet character χ of conductor f by

L(s, χ) =
∞∑
n−1

χ(n)

ns

for Re(s) > 1. Then

L(s, χ) =

f∑
k=1

χ(k)f−sζ

(
s,

k

f

)
where for b ∈ (0, 1]

ζ(s, b) :=
∞∑
n=0

1

(b + n)s

is the Hurwitz zeta function.
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Theorem 3.1. For each n ∈ N and each b ∈ (0, 1]

ζ(1− n, b) =
−Bn(b)

n
.

In particular,

L(1− n, χ) = −
f∑
k=1

χ(k)fn−1Bn(k/f)

n
= −Bχ,n

n
.

Idea of Proof. Define complex valued functions

F (z) :=
ze(1−b)z

ez − 1

and

H(s) :=

∫
γ

F (z)zs−2 dz

where γ is a path consisting of the positive real axis, a circle around the origin of “small”
radius, and the negative real axis, with the orientation taking this order. The trick is to
evaluate the integral in two different ways. One way uses Cauchy’s residue theorem on
the circle to find H(1 − n) in terms of a coefficient in the power series expansion of F (z)
around z = 0 which, after comparing the definition of F (z) with (5), is not surprisingly
given in terms of a value of the nth Bernoulli polynomial. The other way finds a formula
for H(s) when Re(s) > 1 by shrinking the radius of the circle to make this piece vanish.
Then we combine the remaining two pieces into an improper integral which is evaluated
through rewriting part of the integrand as a geometric series, interchanging summation and
integration, and finally recalling the integral defining the Γ function. The second way gives
H(s) in terms of the Hurwitz zeta function and the aforementioned Γ function. Taking the
limit of this expression as s → 1− n gives the desired result. �

By setting χ = 1 the trivial character, it follows immediately from (3.1) the well-known
result that the Riemann zeta function ζ(s) = L(s, 1) has zeros at the negative even integers
and is rational at the negative odd integers.

Also, if χ is an odd character (i.e., χ(−1) = −1), then we have special function values at
s = 1 for L-functions involving generalized Bernoulli numbers of the form B1,ψ. Namely,

L(1, χ) =
πi

f
B1,χ

f∑
k=1

χ(k)e2πik/f .

Now returning to the case of χ = 1, we recall Euler’s famous formula for the values of the
Riemann zeta function at the positive even integers which can be shown with the functional
equation.

Theorem 3.2. For each n ∈ N

ζ(2n) = (−1)n+1 (2π)2n

2(2n)!
B2n.

Of course ζ(2n) > 0 for n ∈ N and ζ(x) → 1 as x →∞ so we obtain the following result
via Stirling’s formula n! ∼ (n/e)n

√
2πn as pointed out in [1].
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Corollary 3.3. The sequence B2, B4, . . . ∈ Q× alternates in sign and

|B2n| ∼ 4π
√

e
( n

πe

)2n+1/2

as n →∞.

3.2. p-adic L-functions. In the last section we saw how special values of complex valued L-
functions were related to Bernoulli numbers. It’s also fruitful to consider L-functions arising
from the non-archimedean valuations of Q, namely the p-adic absolute values. We work in
the completion Cp of the algebraic closure Qp of the completion Qp of Q with respect to the
p-adic norm. Here a function f : Cp → Cp is analytic at x when f may be expanded in a
power series about x with some positive radius of convergence. We define p-adic meromorphic
analogously.

Let p be an odd prime. Then for a ∈ Zp with p - a let ω(a) ∈ Zp denote the unique
(p− 1)st root of unity such that

a ≡ ω(a) (mod p).

Theorem 3.4. For each odd prime p and each Dirichlet character χ of conductor f , there
exists a p-adic meromorphic L-function Lp(s, χ) on {s ∈ Cp : |s| < p(p−2)/(p−1)} with

Lp(1− n, χ) = −(1− χω−n(p)pn−1)
Bn,χω−n

n

for all n ∈ N. Actually, Lp(s, χ) is analytic whenever χ 6= 1 and Lp(s, 1) is analytic except
for a simple pole at s = 1 with residue 1− 1/p.

Also, we have information about the coefficients when we expand about s = 1 for L-
functions on nontrivial characters.

Theorem 3.5. If χ 6= 1 and p2 - f , then there are a0, a1, . . . ∈ Zp such that

Lp(s, χ) = a0 + a1(s− 1) + a2(s− 1)2 + · · ·
with p|an for n ∈ N.

Now we can combine the two previous results to arrive the following beautiful and useful
congruences due to Kummer.

Corollary 3.6 (Kummer’s Congruences). Let a, m, n ∈ N with 2m ≡ 2n (mod (p− 1)pa−1)
and 2n 6≡ 0 (mod p− 1). Then

(1− p2m−1)
B2m

2m
≡ (1− p2n−1)

B2n

2n
(mod pa)

Proof. Since p− 1 - 2n We have that the conductor of ω2n is p, which isn’t divisible by p2, so

−(1− p2m−1)
B2m

2m
= Lp(1− 2m,ω2m) = a0 + a1(−2m) + a2(−2m)2 + · · ·

≡ a0 + a1(−2n) + a2(−2n)2 + · · · = Lp(1− 2n, ω2n) = −(1− p2n−1)
B2n

2n
.

�

Actually, although using the coefficients in a power series expansion of a p-adic L-function
to prove the Kummer congruences is slick and insightful, these congruences can be proved
using purely elementary techniques. For example, the following congruences, credited to
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Voronoi, can be used to prove (3.6), but to prove them requires only the von Staudt-Clausen
theorem as demonstrated in [5].

Theorem 3.7. Let a, m, n ∈ N and B2m = U2m/V2m with U2m, V2m ∈ Z and (U2m, V2m) = 1.
Then (a, n) = 1 ⇒

(a2m − 1)U2m ≡ 2ma2m−1V2m

n−1∑
j=1

j2m−1

⌊
ja

n

⌋
(mod n).

4. Fermat’s Last Theorem

Fermat’s Last Theorem (FLT) asserts that n ≥ 3 ⇒ @solutions x, y, z ∈ Z to the equation

xn + yn = zn

such that
0 6= xyz.

The statement would follow if it were true for n = 4 and n = p an odd prime. Euler handled
the instance n = 4, and the instance n = p is traditionally broken up into two cases: in the
first case p - xyz and in the second case p - xy while p|z.

Both of the above cases can be dealt with using minimal machinery in the special scenario
when p is a regular prime, i.e. p does not divide the class number h of Q(ζp) where ζp is a
primitive pth root of unity:

Theorem 4.1.
p is a regular prime ⇒ FLT is true for n = p

Thus it is of interest to determine which primes are regular and which are irregular,
meaning not regular. It turns out that

p is irregular ⇔ p|h− := h/h+

where h+ is the class number of the maximal real subfield Q(ζp+ ζ−1
p ). In fact, it’s a famous

conjecture of Vandiver that p - h+ for all p. Moreover, in [10] the formula

h− = 2p

p−2∏
j=1

j odd

(
−1

2
B1,ωj

)
≡

p−4∏
j=1

j odd

(
−1

2

Bj+1

j + 1

)
(mod p)

is derived with the help of the Kummer congruences where ω is as in the previous section,
and this is further used to show the following theorem.

Theorem 4.2. As above, for each n ∈ N0 write Bn = Un/Vn where (Un, Vn) = 1. Then

p|h− ⇔ p|Unfor some n ∈ {2, 4, . . . , p− 3}.

Actually, it follows from (2.2) that B2, B4, . . . , Bp−3 are in the ring of p-integers Z(p) =
{q ∈ Q|ordp(q) ≥ 0}, so combining the above statements gives

p is regular ⇔ B2, B4, . . . , Bp−3 ∈ Z×
(p)

as noted in [5]. The Kummer congruences can also be used to show that there are, in
fact, infinitely many irregular primes, although it’s still unknown whether or not there exist
infinitely many regular primes. However, all is not lost from this direction of FLT. In
particular, as long as a prime p is not ”too” irregular, similar methods can be applied to
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confirm FLT in that case. In particular, define the index of irregularity i(p) to be the number
of Bm with m ∈ {2, 4, . . . , p − 3} which have numerators divisible by p. Then we have the
following result.

Theorem 4.3. We have i(p) <
√

p − 2 ⇒ xp + yp = zp has no solutions x, y, z ∈ Z with
p - xyz.

5. Theorems of Herbrand and Ribet

Let p be an odd prime and C = A/Ap where A = Cl(K) is the ideal class group of
K := Q(ζp) with ζp = e2πi/p. Take

∆ := Gal(K/Q) ∼= Z/(p− 1).

Then there is a group action of ∆ on C given as follows: for the equivalence class [I] ∈ A of

a fractional ideal I in K take [I] = [I]Ap ∈ C and

g · [I] = [g(I)]

for each g ∈ G. Also, C is an Fp-vector space of dimension n < ∞ since cp = 0 for all c ∈ C
and |C| < ∞. Moreover, for each g ∈ G the map

Lg : C → C

given by

c 7→ g · c
is an invertible Fp-linear transformation. In this way, C is an Fp∆-module.

Now consider the Fp-character group

IrrFp(∆) = 〈χ〉 ∼= Z/(p− 1).

Then (by say 2.1.7 in [8] or similar results) we have

C =

p−1⊕
k=1

C(χ1−k)

as Fp∆-modules where

C(χk) = εk · C
are the χk-isotypical components with block idempotents

εk =
χk(1)

|∆|
∑
g∈∆

χk(g−1)g =
1

p− 1

∑
g∈∆

χ−k(g)g.

By χk-isotypical we mean that for each g ∈ ∆, C(χk) is the eigenspace of Lg corresponding
to the eigenvalue χk(g).

Throughout the remainder of this section fix k ∈ {2, 4, . . . , p− 3}. It turns out that

C(χ1−k) 6= 0 ⇔ ordp(Bk) > 0.

The forward direction of this statement was proved by Herbrand in 1932, while the backward
direction was proved by Ribet in 1976.
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5.1. Herbrand’s Theorem. In this subsection we’ll state Stickelberger’s theorem and give
an indication of how this along with the Voronoi congruences is used to prove the following
theorem of Herbrand as seen in [5].

Theorem 5.1 (Herbrand). We have

C(χ1−k) 6= 0 ⇒ ordp(Bk) > 0.

To prove the contrapositive of Herbrand’s theorem assuming ordp(Bk) = 0 it’s enough to
show

C(χ1−k) = 0.

Define the Stickelberger element θ ∈ Q∆ by

θ :=

p−1∑
t=1

frac

(
t

p

)
σ−1
t

where σt ∈ ∆ sends ζp to ζtp and frac(x) denotes the fractional part of a real number x. Now
define the Stickelberger ideal S ⊆ Z∆ to be

S := Z∆ ∩ θZ∆.

Theorem 5.2 (Stickelberger). The Stickelberger ideal S annihilates the ideal class group A
of K = Q(ζp) (and therefore also annihilates C).

For each t ∈ {1, . . . , p− 1} take

rt := (σt − t)θ.

The following lemma is established in [5]

Lemma 5.3. We have rt ∈ S for all t.

We are now in a position to give a sketch of Herbrand’s theorem as found in [5].

Sketch of Proof of (5.1). Suppose ordp(Bk) = 0. Check that for s ∈ {1, . . . , p− 1} we have

rs = −
p−1∑
t=1

⌊
st

p

⌋
σ−1
t .

Let c ∈ C(χ1−k). Then by (5.2) and (5.3)

1 = rs · c = c
Pp−1

t=1 b st
p ctp−2+k

= c
Pp−1

t=1 b st
p ctk−1

.

On the other hand, if Bk = Uk/Vk with Uk, Vk ∈ Z and (Uk, Vk) = 1, then by the Voronoi
congruences

c(sk−1)Uk = cks
k−1
Pp−1

t=1 b st
p ctk−1

= 1.

Thus choosing s to be a primitive root modulo p we get p - sk− 1, but by assumption p - Uk,
so

c = 1.

Therefore C(χ1−k) = 0.
�
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5.2. Ribet’s Theorem. The goal of this subsection is to sketch the ideas involved in proving
the following converse to Herbrand’s theorem as seen in [6].

Theorem 5.4 (Ribet). We have

ordp(Bk) > 0 ⇒ C(χ1−k) 6= 0.

Let E be the maximal unramified p-extension of K. Then there’s a map φE/K from the
fractional ideals F of K into H := Gal(E/K) given by sending a prime ideal p in OK to the
Artin symbol (E/K, p) ∈ H. The kernel of this map is FpP where P is the set of principal
fractional ideals. Thus there is a group isomorphism

Art : C → H

given by

[I] 7→
∏
pα||I

(E/K, p)α

with

C = A/Ap =
F/P

(F/P)p
=

F/P
ker(φE/K)/P

∼= F/ ker(φE/K).

Also, ∆ acts on H as follows: for g ∈ ∆ and h ∈ H, we have that

K → K ↪→ E

is a Q-algebra homomorphism from K to E which extends uniquely to a Q-algebra isomor-
phism g̃ from E to E, so we may define a Q-algebra isomorphism

g · h = g̃ ◦ h ◦ g̃−1,

but note that if x ∈ K, then g̃−1(x) ∈ K, giving (g · h)(x) = x and g · h ∈ H. Moreover, Art
preserves the ∆-actions, so to prove Ribet’s theorem assuming ordp(Bk) > 0 it’s enough to
find an intermediate field F 6= K in E/K such that

g · a = χ1−k(g)a

whenever g ∈ ∆ and a ∈ Gal(F/K). This suffices because F 6= K implies Gal(E/F ) 6= H,
so

Gal(F/K) ∼=
H

Gal(E/F )
� 0

by the fundamental theorem of Galois theory. Such an F can be constructed using the
following theorem.

Theorem 5.5. ordp(Bk) > 0 ⇒ there is a finite extension F/Fp and representation

ρ : GQ = Gal(Q/Q) → GL2(F)

such that

(i) ρ is unramified at all primes different than p,

(ii) ρ is a reducible non-semisimple representation (i.e, p|im(ρ)) of the form(
1 ∗
0 χk−1

)
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with the ∗ nontrivial, and

(iii) ρ|D is semisimple (i.e., p - ρ(D)) where D ≤ GQ is a decomposition group of p.

To get F with this theorem let F ′ ⊆ Q be the fixed field of ker(ρ) and K⊗(k−1) ⊆ K be
the fixed field of ker(χk−1). Then Gal(K⊗(k−1)/Q) acts on H ′ := Gal(E/K⊗(k−1)) with

g · a = χ1−k(g)a

whenever g ∈ Gal(K⊗(k−1)/Q) and a ∈ H ′. Now H ′ ≤ H ∼= C is abelian with Cp ∼= {1}, so
H ′ ∼= (Z/pZ)m for some m ∈ N0, but (ii) implies m 6= 0, so p is unramified in E/K⊗(k−1)

since the primes above p split in E/K⊗(k−1) by (iii). Thus E/K⊗(k−1) is unramified since (i)
implies it’s unramified away from p, so taking

F := KF ′

gives the needed field since K and F ′ are linearly disjoint over K⊗(k−1).
After the sufficiency of (5.5) is secured, the objective becomes to find a representation ρ

satisfying the above properties (i)-(iii). To accomplish this one needs to use ideas from the
study of modular forms. A modular form of weight k for a subgroup Γ′ ⊆ Γ := SL2(Z) with
character

ε : (Z/NZ)× → C×

is an analytic function f on the upper half-plane H ⊆ C with a Fourier series of the form
∞∑
n=0

an(f)qn

where q = e2πiz such that

f

(
az + b

cz + d

)
= ε(d)(cz + d)kf(z)

whenever (
a b
c d

)
∈ Γ′.

Denote the set of all such functions by Mk(Γ
′, ε). If f ∈ Mk(Γ

′, ε) also has a0 = 0, then f is
called a cuspform. Denote the set of all cuspforms in Mk(Γ

′, ε) by Sk(Γ
′, ε). Now specialize

Γ′ to be the congruence subgroup

Γ0(N) :=

{(
a b
c d

)
∈ Γ

∣∣∣∣ c ≡ 0 (mod N)

}
.

There is an action of Hecke operators Tn for n ∈ N on Sk(Γ0(N), ε). A form which is an
eigenvector for some Tn is called an eigenform. The notion of an eigenform is a very useful
one since it gives us information about the Fourier coefficients as noted in [7]. In our case,
if f is an eigenform for almost all Tr with r prime, then the Fourier coefficients an(f) lie in
a number field and, more importantly, for each prime ` there is a representation

ρf : GQ → GL2(E)

where E is a finite extension of Q`. This `-adic representation is absolutely irreducible
(i.e., is remains irreducible whenever viewed as a representation over a larger field) and is
unramified at almost all primes r with ` excluded from that list. However, ρf may or may
not be semisimple. Now we carefully choose a basis such that with respect to this basis the
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representation takes values in GL2(OE) where OE is the ring of integers of E. We can then
reduce ρf modulo the maximal ideal of OE to get a representation

ρf : GQ → GL2(F)

for some finite extension F of F`. Now we can set ` = p and ask what choice of f will have a
reduction ρf which satisfies the properties in (5.5). It’s a critical proposition of Ribet’s which
explains that a reduction ρf satisfying (ii) exists when some reduction of ρf is reducible and

its semisimplification is isomorphic to 1 ⊕ χk−1. One can get the reducible condition if f
looks modulo p like the Eisenstein series

−Bk

2k
+

∞∑
n=1

σk−1(n)qn

where
σk−1(n) =

∑
d|n

dk−1.

Thus under the assumption ordp(Bk) > 0 one would like to prove the existence of a cuspform
f ∈ Sk(Γ) with algebraic Fourier coefficients an(f) satisfying the congruences

an(f) ≡ σk−1(n) (mod ℘)

where ℘ is a place above p. The University of Arizona’s own Kirti Joshi suggests how to find
such an f by considering a polynomial in the discriminant function. Using these ideas along
with some other results like the Chebotarev density theorem, a lemma due to Deligne-Serre
and a theorem of Brauer Nesbitt, one can find a representation ρ satisfying properties (i)
and (ii) of (5.5). To get property (iii), however, one needs to use yet more machinery.
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