
HILBERT FUNCTIONS

JORDAN SCHETTLER

1. Introduction

A Hilbert function (so far as we will discuss) is a map from the nonnegative integers
to themselves which records the lengths of composition series of each layer in a graded
module. In many situations of interest, the Hilbert function attached to a module agrees
for sufficiently large inputs with a polynomial, called a Hilbert polynomial. Thus an infinite
amount of information is encoded in a finite object. Indeed, the degree and coefficients of a
Hilbert polynomial represent important invariants from which one can potentially read off
properties of the module.

Of interest to us here is that the coordinate ring of a projective variety is a graded module
for which there is an associated Hilbert polynomial that tells us information about the space
such as its dimension and degree. Also, there are Hilbert polynomials which capture the
dimension and multiplicity at a point in a quasi-projective variety.

First, we’ll build up the needed machinery with a review of graded modules. Then a crucial
result and corollary about Poincaré series is proved which will allow us to conclude that a
wide range of Hilbert functions have the property of eventually behaving like polynomials
mentioned above. Next, we will explore the appropriate notion of a Hilbert function for a
projective variety. Lastly, Hilbert functions of local rings (in particular, stalks at points in
a quasi-projective variety) are introduced and studied.

An effort was made to include proofs in cases where either the result was fundamental or
the source was unclear. On the other hand, I’ve intentionally omitted standard or otherwise
unenlightening details which can be found in my references.

2. Graded Modules

Definition 2.1. We define CommRing to be the category whose class of objects |CommRing|
consists of all nonzero commutative rings with identity and whose morphisms are ring ho-
momorphisms which preserve 1. Recall that R ∈ |CommRing| is said to be (nicely) graded
(by N0) when

R =
∞⊕
n=0

Rn

as abelian groups with R0 6= {0} and

RiRj ⊆ Ri+j

1
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for all i, j ∈ N0; an R-module M (assumed to be unitary) is graded when

M =
∞⊕
n=0

Mn

as abelian groups and

RiMj ⊆Mi+j

for all i, j ∈ N0.

Example 2.2. The polynomial ring S = R[x0, . . . , xN ] is graded in a natural way whenever
R ∈ |CommRing| by taking Sn equal to the set of homogeneous polynomials in S of degree
n along with 0. Here S is said to be graded by degree. Note that S0 = R.

Remark 2.3. Let R ∈ |CommRing| be graded. Then we may write

1 =
∞∑
n=0

rn

where rn ∈ Rn for all n ∈ N0 and all but finitely many summands are 0. Thus if ρ0 ∈ R0,
then

∞∑
n=0

ρ0rn = ρ0 · 1 = ρ0 ∈ R0,

so ρ0 = ρ0r0 since each ρ0rn ∈ Rn. Hence r0 is a multiplicative identity in R0, so we have
R0 ∈ |CommRing| because R0R0 ⊆ R0 6= {0}; in particular, R is an R0-algebra. Also, it’s
clear that if M is a graded R-module, then Mn is a R0-module for all n ∈ N0.

Lemma 2.4. Let R ∈ |CommRing| be graded. Then R is Noetherian ⇔ (R0 is Noetherian
and R is finitely-generated as an R0-algebra).

Sketch. (⇒) Suppose R is Noetherian. Then the irrelevant ideal

R+ :=
∞⊕
n=1

Rn

is finitely-generated, wlog, by ri ∈ Rk(i) for i = 1, . . . , s, and satisfies R0
∼= R/R+ (thus R0

is Noetherian). One can use induction to show that Rn ⊆ R0[r1, . . . , rs] for all n ≥ 0, so
R = R0[r1, . . . , rs]. (⇐) Conversely, suppose R0 is Noetherian and R is finitely-generated as
an R0-algebra. Then R is Noetherian by the Hilbert basis theorem. �

Lemma 2.5. Let R ∈ |CommRing| be graded and Noetherian, and suppose M is a finitely-
generated graded R-module. Then Mn is a finitely-generated R0-module for all n ∈ N0.
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Proof. We have R = R0[r1, . . . , rs] by lemma 2.4 and M = Rm1 + · · · + Rmt where wlog
ri ∈ Rk(i) for all i = 1, . . . , s and mi ∈ Ml(i) for all i = 1, . . . , t. Thus fixing n ∈ N0 and
m ∈Mn, we have

m =
t∑
i=1

ρimi

for some ρ1, . . . , ρt ∈ R. Since m ∈Mn we may assume ρi ∈ Rn−l(i) for all i = 1, . . . , t where
we use the convention that Rk = {0} whenever 0 > k ∈ Z. Thus each ρi is of the form

ρi =

J(i)∑
j=1

fj(r1, . . . , rs)

where every fj ∈ R0[x1, . . . , xs] is a sum of monomials of bounded degree (with a bound that
may be taken independent of i). Therefore Mn is a finitely-generated R0-module. �

3. Poincaré Series

Definition 3.1. Let R ∈ |CommRing|. A function λ from a subclass S of the class all
R-modules to Z is said to be additive on S if

λ(B) = λ(A) + λ(C)

whenever

0→ A→ B → C → 0

is a short exact sequence of R-modules in S .

Remark 3.2. Let R ∈ |CommRing| be graded and Noetherian, and suppose λ is an additive
function with values in Z on the class S all finitely-generated R0-modules. Then by lemma
2.5 we may define the Poincaré series of a finitely-generated graded R-module M as

PM(x) =
∞∑
n=0

λ(Mn)xn ∈ Z[[x]].

Theorem 3.3 (Hilbert-Serre). Let R, λ,M be as in remark 3.2. Then

PM(x) =
f(x)

s∏
i=1

(1− xk(i))

for some f(x) ∈ Z[x] and some k(1), . . . , k(s) ∈ N0.
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Proof. By lemma 2.4 we may write R = R0[r1, . . . , rs] where wlog ri ∈ Rk(i) for all i =
1, . . . , s. We’ll use induction on s. If s = 0, then R = R0, so M is a finitely generated
R0-module, say

M = R0m1 + · · ·+R0mt

where wlog mi ∈ Ml(i) for all i = 1, . . . , t, but then Mn = {0} for n > max{l(1), . . . , l(t)},
whence PM(x) is a polynomial because λ(Mn) = 0 for all sufficiently large n by additivity
(apply λ to the SES consisting entirely of 0’s). Now assume s > 0 and that the statement
holds for s− 1. For every n ∈ N0, consider the multiplication map

ϕn : Mn →Mn+k(s) : m 7→ rsm,

which gives rise to short exact sequences of R0-modules

ker(ϕn) ↪→ Mn � rsMn

rsMn ↪→ Mn+k(s) � Mn+k(s)/rsMn,

so additivity gives

λ(Mn+k(s))− λ(Mn) = λ(Mn+k(s)/rsMn)− λ(ker(ϕn)).

Note that (assuming wlog k(s) > 0)

R′ := R0[r1, . . . , rs−1] ∼= R/rsR =
∞⊕
n=0

(Rn + rsR)/rsR

is a graded element of |CommRing| with the last equality on the right as abelian groups. In
fact,

K :=
∞⊕
n=0

ker(ϕn) ∼= ker(ϕ0 ⊕ ϕ1 ⊕ · · · )

and

L :=
∞⊕
n=0

Mn/(Mn ∩ rsM) ∼=
∞⊕
n=0

(Mn + rsM)/rsM = M/rsM
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are finitely-generated graded R′-modules. Thus the induction hypothesis implies that there
are fL(x), fK(x) ∈ Z[x] such that

(1− xk(s))PM(x) =
∞∑
n=0

λ(Mn)xn −
∞∑
n=0

λ(Mn)xn+k(s)

= g(x) +
∞∑
n=0

(λ(Mn+k(s))− λ(Mn))xn+k(s)

= g(x) +
∞∑
n=0

(λ(Mn+k(s)/rsMn)− λ(ker(ϕn)))xn+k(s)

= PL(x)− xk(s)PK(x)

=
fL(x)− xk(s)fK(x)

s−1∏
i=1

(1− xk(i))

=
f(x)

s−1∏
i=1

(1− xk(i))

where

g(x) =

k(s)−1∑
n=0

λ(Mn)xn ∈ Z[x]

f(x) = fL(x)− xk(s)fK(x) ∈ Z[x].

�

Corollary 3.4. Let R, λ,M be as in 3.2. If R = R0[r1, . . . , rs] for some r1, . . . , rs ∈ R1,
then there exists an hM(x) ∈ Q[x] called the Hilbert polynomial of M such that

λ(Mn) = hM(n)

for all sufficiently large n ∈ N0.

Proof. By theorem 3.3 we have

PM(x) =
f(x)

(1− x)s
=

g(x)

(1− x)w

where g(x) ∈ Z[x] and g(1) 6= 0. Thus writing

g(x) =
N∑
n=0

anx
n

and noting that (with the convention
(
n
−1

)
= 0 = 1−

(−1
−1

)
for n ∈ N0)

(1− x)−w =
∞∑
n=0

(
w + n− 1

w − 1

)
xn,
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we find N ≤ n ∈ N0 implies

λ(Mn) =
N∑
i=0

ai

(
w + n− i− 1

w − 1

)
which is a polynomial in n with leading term

g(1)

(w − 1)!
nw−1.

�

4. Hilbert Functions

Remark 4.1. Recall that if R ∈ |CommRing| is Artinian and M is a finitely-generated R-
module, then every chain of submodules of length n

M = M0 > M1 > . . . > Mn = {0}

can be extended to a composition series (i.e., a maximal chain) and that every such compo-
sition series has the same length. We write `R(M) for the common length of all composition
series. Note that `R is additive on the class of all finitely-generated R-modules. To see this,
suppose

A
f

� B
g
� C

is a short exact sequence of finitely-generated R-modules. Let

A0 > . . . > Aa

be a composition series for A and

C0 > . . . > Cc

be a composition series for C. Then

B = g−1(C0) > . . . > g−1(Cc) = f(A0) > . . . > f(Aa) = {0}

is a composition series for B of length a+ c.

Definition 4.2. Let R ∈ |CommRing| be graded and finitely-generated as an R0-algebra
with R0 Artinian, and suppose M is a finitely-generated graded R-module. Then R0 is
Noetherian by Hopkin’s theorem, so R is Noetherian by 2.4, whence 2.5 and 4.1 allow us to
define the Hilbert function of M by

HM(n) := `R0(Mn)

for all n ∈ N0.
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Remark 4.3. Suppose R ∈ |CommRing| is Artinian and let S := R[x0, . . . , xN ] be graded
by degree. Then since x0, . . . , xN ∈ S1 remark 4.1 and corollary 3.4 imply that for every
finitely-generated graded S-module M there is a Hilbert polynomial hM(x) ∈ Q[x] such that

hM(n) = HM(n)

for all sufficiently large n ∈ N0. In fact, if w is the order of the pole at x = 1 in PM(x), then
by 3.4 we have deg(hM) = w − 1.

Definition 4.4. Let X ⊆ PN be a projective variety. Recall that k[X] = S/I(X) where
S = k[x0, . . . , xN ] for an algebraically closed field k and I(X) is the homogeneous radical
ideal in S consisting of those polynomials which vanish on all of X. Then k[X] is a finitely-
generated graded S-module (S graded by degree) with

k[X]n = (Sn + I(X))/I(X)

and S0 = k Artinian, so we may define the Hilbert function of X by

HX(n) := Hk[X](n) = `k(k[X]n) = dimk((Sn + I(X))/I(X))

for all n ∈ N0, which by 4.3 agrees for sufficiently large n with the Hilbert polynomial of
X given by

hX(x) := hk[X](x) ∈ Q[x].

Example 4.5. Consider X = PN . Then k[X] = S, so

HPN (n) = dimk(Sn) = #monic monomials of degree n =

(
N + n

N

)
,

giving

hPN (x) =
1

N !
(x+N)(x+N − 1) · · · (x+ 1) =

1

N !
xN +

N + 1

2(N − 1)!
xN−1 + · · ·+ 1.

As we’ll see below, this implies the “degree” of PN is 1.

Theorem 4.6. Let X ⊆ PN be a projective variety with dim(X) = D. Then deg(hX) = D
(with the convention deg(0) = −1), and if X 6= ∅, then the leading term of hX(x) is

dxD

D!

for some d ∈ N called the degree of X. Moreover, if X = V (F ) is a hypersurface, then
d = deg(F ).

Proof. To show hX has degree D, we use induction on D. If D = −1, then X = ∅, so
I(X) = S and k[X]n = (Sn + S)/S ∼= {0} for all n ∈ N0, giving `k(k[X]n) ≡ 0, whence
hX = 0 as needed. Now suppose D ≥ 0 and that deg(hY ) = dim(Y ) whenever Y ⊆ PN
has dim(Y ) < D. We may assume X is irreducible (see [3], pg.s 50-51, for this reduction).
Then I(X) = p is a homogeneous prime ideal. Note that xi /∈ p for some i ∈ {0, . . . , N}
since otherwise ∅ = V (p) = V (I(X)) = X. Hence Y := X ∩ V (xi) = V (p + xiS) has
dim(Y ) = D− 1. Then xi ∈ S1 is not a zero divisor of k[X] since S/p is an integral domain
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and xi /∈ p, so using the notation in the proof of theorem 3.3 we have maps (which are now
injective)

ϕn = k[X]n → k[X]n+1 : m 7→ xim

for all n ∈ N0. Injectivity implies K ∼= {0}, so fK(x) = 0 and

(1− x)Pk[X](x) = PL(x),

whence the proof of corollary 3.4 implies

leading term of hX(x) =
d

(w − 1)!
xw−1

where d := g(1) ∈ N (since g(x) ∈ Z[x] and hX(n) = `k(k[X]n) ≥ 0 for sufficiently large
n ∈ N0). Thus

deg(hX) + 1 = w

= order of pole at 1 in Pk[X](x)

= 1 + order of pole at 1 in PL(x)

= 2 + deg(hL).

On the other hand,

L ∼=
∞⊕
n=0

k[X]n + xik[X]

xik[X]
=

∞⊕
n=0

(Sn + xiS + p)/p

(xiS + p)/p
∼=

∞⊕
n=0

k[Y ]n = k[Y ],

so the induction hypothesis gives

deg(hX) = 1 + deg(hL) = 1 + dim(Y ) = D.

Now assume X = V (F ) is a hypersurface. Then if n ≥ δ := deg(F ), we have

Sn + (F )

(F )
∼=

Sn
Sn ∩ (F )

= Sn/FSn−δ,

so

HV (F )(n) = dimk(Sn/FSn−δ)

= dimk(Sn)− dimk(Sn−δ)

=

(
N + n

N

)
−
(
N + n− δ

N

)
=

1

N !
nN +

N + 1

2(N − 1)!
nN−1 · · · − 1

N !
nN − −2δ +N + 1

2(N − 1)!
nN−1 · · · .

Thus

leading term of hV (F )(x) =

(
N + 1

2(N − 1)!
− −2δ +N + 1

2(N − 1)!

)
xN−1

=
δ

(N − 1)!
xN−1,

giving d = δ = deg(F ) (and dim(X) = N − 1, as expected). �
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5. Local Rings and Multiplicity

Definition 5.1. Given R ∈ |CommRing| and a proper ideal I of R, we define the associated
graded ring of R with respect to I by

grI(R) :=
∞⊕
n=0

In/In+1

as abelian groups with I0 = R where for a ∈ I i, b ∈ Ij we have a well-defined product given
by

(a+ I i+1)(b+ Ij+1) := ab+ I i+j+1 ∈ I i+j/I i+j+1.

If M is an R-module, then an I-filtration F of M is a decreasing chain of submodules

M = M0 ≥M1 ≥M2 ≥ . . .

such that
IMn ⊆Mn+1

for all n ∈ N0; if, in addition, IMn = Mn+1 for all sufficiently large n ∈ N0, we say F is
stable. We define the associated graded module of M with respect to F by

grF(M) :=
∞⊕
n=0

Mn/Mn+1

as abelian groups. This becomes a grI(R)-module by taking

(r + I i+1)(m+Mj+1) := rm+Mi+j+1

whenever r ∈ I i, m ∈Mj.

Lemma 5.2. Let R, I,M,F be as in definition 5.1 with R Noetherian. Suppose M is finitely
generated over R and that F is stable. Then grF(M) is a finitely-generated grI(R)-module.

Proof. See Proposition 10.22 in [1]. �

Remark 5.3. Let R ∈ |CommRing| be local and Noetherian with maximal ideal m, and
suppose M is a finitely generated R-module. Then there’s a natural stable m-filtration F of
M given by

M = m0M ≥ mM ≥ m2M ≥ . . . .

Hence grF(M) is a finitely generated grm(R)-module by 5.2. Also grm(R)0 = R/m is a field
(so Artinian) and if m1, . . . ,ms generate m as an R-module, then

grm(R) = (R/m)[m1 + m2, . . . ,ms + m2].

In particular, grm(R) is finitely generated as an R/m-algebra. Thus in the context of defini-
tion 4.2 we may define the Hilbert function of M by

HM(n) := HgrF (M)(n) = dimR/m(mnM/mn+1M)
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for all n ∈ N0. As in remark 4.3, we have mi + m2 ∈ grm(R)1 for all i = 1, . . . , s, so again by
corollary 3.4 there is a Hilbert polynomial hM of M with

hM(n) = HM(n)

for all sufficiently large n ∈ N0.

Definition 5.4. Let X ⊆ PN be a quasi-projective variety and fix p ∈ X 6= ∅. Then the
stalk O := OX,p of X at p is a local Noetherian ring with, say, maximal ideal m, so remark
5.3 allows us to define Hilbert function of X at p as

HX,p(n) := dimk(O/mn) =
n−1∑
i=0

dimk(m
iO/mi+1O) =

n−1∑
i=0

HO(i)

for all n ∈ N0 where k = O/m.

Theorem 5.5. Let X, p,O,m be as in 5.4 with Dp = dimp(X). There there is an hX,p ∈ Q[x]
called the Hilbert polynomial of X at p such that

hX,p(n) = HX,p(n)

for all sufficiently large n ∈ N0. In fact, the leading term of hX,p is

m

Dp!
xDp

for some m ∈ N. Moreover, if X = V (f) ⊆ AN is a hypersurface, then m is the multiplicity
mp(X) of p on X.

Proof. Note that
HX,p(n+ 1)−HX,p(n) = HO(n) = hO(n)

for all sufficiently large n ∈ N0. This implies HX,p is a polynomial function hX,p with rational
coefficients for large n. In fact, if the leading term of hX,p(x) is αxβ, then the above relation
along with the proof of corollary 3.4 implies

m

(w − 1)!
xw−1 = leading term of hO

= αβxβ−1

where w is the order of pole at x = 1 in PgrF (O)(x) and m = g(1) ∈ N (again positivity
follows since HX,p ≥ 0), so β = w and α = m/w!. The Krull dimension theorem implies that

w = least #generators of m

= dim(O)

= dimp(X)

= Dp

(see [1], pg.s 119-121). Now assume X = V (f) ⊆ AN is a hypersurface and denote µ =
mp(X). Then wlog p = (0, . . . , 0), so setting I = (x1, . . . , xN) and R = k[x1, . . . , xN ], we
have

O/mn ∼= R/(In, f)
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for all n ∈ N0. Also, for n ≥ µ there’s a short exact sequence of k-vector spaces

R/In−µ � R/In � R/(In, f)
r + In−µ 7→ fr + In

r + In 7→ r + (In, f)

where injectivity of the first map can be seen as follows, while exactness elsewhere is clear.
Let r ∈ R, and write

f = fµ + fµ+1 + · · · and r = rν + rν+1 + · · ·
where fi, ri ∈ Ri for all i and fµ 6= 0 6= rν . Hence if fr ∈ In, then µ+ ν ≥ n, so ν ≥ n− µ,
giving r ∈ In−µ. Note that R/In is generated as a k-vector space by all monic monomials
having degree less than n, so

dimk(R/I
n) =

n−1∑
j=0

#monic monomials of degree j

=
n−1∑
j=0

(
N − 1 + j

N − 1

)

=
N+n−2∑
j=N−1

(
j

N − 1

)
=

(
N + n− 1

N

)
.

Therefore

HX,p(n) = dimk(O/mn)

= dimk(R/(I
n, f))

= dimk(R/I
n)− dimk(R/I

n−µ)

=

(
N + n− 1

N

)
−
(
N + n− µ− 1

N

)
=

(n+N − 1) · · ·n− (n− µ+N − 1) · · · (n− µ)

N !

=
1

N !

(
nN +

(
N

2

)
nN1 · · · − nN −

(
−Nµ+

(
N

2

))
nN−1 · · ·

)
=

µ

(N − 1)!
nN−1 + · · ·

for all sufficiently large n ∈ N0, giving

leading term of hX,p(x) =
µ

(N − 1)!
xN−1,

whence m = µ = mp(X). �
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