Theory of Classical Modular Forms and Symbols

Jordan Schettler

University of California, Santa Barbara

2/22/2013

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Outline

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- 2 Modular Forms: Definitions
- 3 Modular Symbols: Weight 2
- 4 Hecke Operators on Modular Forms
- **5** Modular Symbols: Weight k

Motivation: Elliptic Curves over \mathbb{Q}

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Every elliptic curve E/\mathbb{Q} has a Tate-Weierstrass equation

$$y^2 + Axy + By = f(x),$$

with minimal discriminant Δ_E where $A, B \in \mathbb{Z}$ and $f(x) \in \mathbb{Z}[x]$ is monic of degree 3.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Every elliptic curve E/\mathbb{Q} has a Tate-Weierstrass equation

$$y^2 + Axy + By = f(x),$$

with minimal discriminant Δ_E where $A, B \in \mathbb{Z}$ and $f(x) \in \mathbb{Z}[x]$ is monic of degree 3. I.e., for every prime p, the reduction \widetilde{E}_p has minimal valuation $\operatorname{ord}_p(\Delta_E)$.

Every elliptic curve E/\mathbb{Q} has a Tate-Weierstrass equation

$$y^2 + Axy + By = f(x),$$

with minimal discriminant Δ_E where $A, B \in \mathbb{Z}$ and $f(x) \in \mathbb{Z}[x]$ is monic of degree 3. I.e., for every prime p, the reduction \widetilde{E}_p has minimal valuation $\operatorname{ord}_p(\Delta_E)$.

The *L*-function of *E* is defined by an Euler product

$$L(E,s) = \prod_{\rho} L_{\rho}(\rho^{-s})^{-1}$$

where for $a_{\rho} = \rho + 1 - |\widetilde{E}_{\rho}(\mathbb{F}_{\rho})|$

 $L_{p}(T) = \begin{cases} 1 - a_{p}T + pT^{2} & \text{good reduction} \\ 1 - T & \text{split multiplicative reduction} \\ 1 + T & \text{nonsplit multiplicative reduction} \\ 1 & \text{additive reduction} \end{cases}$

This defines an analytic function in the half-plane $\Re(s) > 3/2$.

This defines an analytic function in the half-plane $\Re(s) > 3/2$.

In fact, L extends to an analytic function on all of $\mathbb C$ and satisfies a functional equation

$$L^*(E, s) = \pm L^*(E, 2-s)$$

where

$$L^*(E,s) = N^{s/2}(2\pi)^{-s}\Gamma(s)L(E,s)$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

with N = conductor of E.

The Birch and Swinnerton-Dyer conjecture states that

$$0 \neq \lim_{s \to 1} \frac{L(E,s)}{(s-1)^r} = \frac{|\mathrm{III}|R \prod_v c_v}{|E(\mathbb{Q})_{\mathrm{tors}}|^2} \Omega_+$$

where

$$E(\mathbb{Q})\cong\mathbb{Z}^r\oplus E(\mathbb{Q})_{\mathrm{tors}}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

and III = Tate-Shaferavich group, R = regulator of $E c_v$ = Tamagawa factor at the place v, and Ω_+ = real period of E.

The Birch and Swinnerton-Dyer conjecture states that

$$0 \neq \lim_{s \to 1} \frac{L(E,s)}{(s-1)^r} = \frac{|\mathrm{III}|R \prod_v c_v}{|E(\mathbb{Q})_{\mathrm{tors}}|^2} \Omega_+$$

where

$$\mathsf{E}(\mathbb{Q})\cong\mathbb{Z}^r\oplus\mathsf{E}(\mathbb{Q})_{\mathsf{tors}}$$

and III = Tate-Shaferavich group, R = regulator of $E c_v$ = Tamagawa factor at the place v, and Ω_+ = real period of E.

Here Ω_+ is the positive generator of $\mathbb{R} \cap \Lambda_E$ where Λ_E is the lattice generated by the period integrals of the invariant differential

$$\omega = \frac{dx}{2y + Ax + B}$$

Suppose *E* has either good ordinary or multiplicative reduction for a prime p. Write the Euler factor at p as

$$L_p(T)^{-1} = \frac{1}{(1 - \alpha_p T)(1 - \beta_p T)}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

where $\alpha_{p} \in \mathbb{Z}_{p}^{\times}$ and $p|\beta_{p}$.

Suppose *E* has either good ordinary or multiplicative reduction for a prime p. Write the Euler factor at p as

$$L_{p}(T)^{-1} = \frac{1}{(1 - \alpha_{p}T)(1 - \beta_{p}T)}$$

where $\alpha_{p} \in \mathbb{Z}_{p}^{\times}$ and $p|\beta_{p}$.

There is a *p*-adic *L*-function $L_p(E, s)$ associated to *E* defined by an interpolation property which, in particular, implies

$$L_{\rho}(E,1) = (1 - \alpha_{\rho}^{-1}) \frac{L(E,1)}{\Omega_{+}}$$

(日) (日) (日) (日) (日) (日) (日)

If *E* has split reduction at *p*, then $L_p(T) = 1 - T$, so $\alpha_p = 1$, $\beta_p = 0$, and

 $L_{p}(E, 1) = 0$ (trivial zero forced by Euler factor)

If *E* has split reduction at *p*, then $L_p(T) = 1 - T$, so $\alpha_p = 1$, $\beta_p = 0$, and

 $L_{p}(E, 1) = 0$ (trivial zero forced by Euler factor)

The Mazur, Tate, Teitelbaum conjecture predicts

$$L'_{
ho}(E,1) = \mathcal{L}_{
ho}(E) rac{L(E,1)}{\Omega_+}$$

where $\mathcal{L}_{\rho}(E) = \log_{\rho}(q) / \operatorname{ord}_{\rho}(q)$ with $\overline{\mathbb{Q}}_{\rho}^{\times} / q^{\mathbb{Z}} \cong E(\overline{\mathbb{Q}}_{\rho})$

Write the *L*-function of *E* as a Dirichlet series

$$L(E,s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s}$$

Write the L-function of E as a Dirichlet series

$$L(E,s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s}$$

Let N = conductor of E. Then for $q = e^{2\pi i z}$,

$$f_E(z) = \sum_{n=1}^{\infty} a_n q^n$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

is a weight 2 cusp form for $\Gamma_0(N)$.

Write the *L*-function of *E* as a Dirichlet series

$$L(E,s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s}$$

Let N = conductor of E. Then for $q = e^{2\pi i z}$,

$$f_E(z) = \sum_{n=1}^{\infty} a_n q^n$$

is a weight 2 cusp form for $\Gamma_0(N)$. In fact, *f* is an eigenform for Hecke operators T(p) for all primes $p \nmid N$:

$$T(p)f_E = a_p f_E$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

The fact that $f_E(z)$ is a cusp form is part of a series of deep results known as the modularity theorem.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

The fact that $f_E(z)$ is a cusp form is part of a series of deep results known as the modularity theorem.

This states, in particular, that there is a surjective morphism (of curves over $\mathbb{Q})$

 $\phi\colon X_0(N)\to E$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

such that $\phi^*(\omega)$ is a multiple of $f_E(z) dz$.

We have

$$2\pi i \int_{i\infty}^{0} f_{E}(z) dz = L(E, 1)$$

= rational multiple of Ω_+

We have

$$2\pi i \int_{i\infty}^{0} f_{E}(z) \, dz = L(E, 1)$$

= rational multiple of Ω_+

In general,

$$L(E,\chi,1) = \frac{\tau(\chi)}{N} \sum_{a=1}^{N} \overline{\chi}(a) 2\pi i \int_{i\infty}^{-a/N} f_E(z) dz$$

Modular Forms: Definitions

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

$$f^{[\gamma]_k}(z) := \det(\gamma)^{k-1}(cz+d)^{-k}f(\gamma(z))$$

where $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ and $\gamma(z) = \frac{az+b}{cz+d}$.

$$f^{[\gamma]_k}(z) := \det(\gamma)^{k-1}(cz+d)^{-k}f(\gamma(z))$$

where $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ and $\gamma(z) = \frac{az+b}{cz+d}$.

For an integer $N \ge 1$, we define

$$\Gamma(N) := \{ \gamma \in \mathsf{SL}_2(\mathbb{Z}) : \gamma \equiv \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \pmod{N} \}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

$$f^{[\gamma]_k}(z) := \det(\gamma)^{k-1}(cz+d)^{-k}f(\gamma(z))$$

where $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ and $\gamma(z) = \frac{az+b}{cz+d}$.

For an integer $N \ge 1$, we define

$$\Gamma(N) := \{ \gamma \in \mathsf{SL}_2(\mathbb{Z}) : \gamma \equiv \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \pmod{N} \}.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

A congruence subgroup is a subgroup Γ of $SL_2(\mathbb{Z})$ which contains $\Gamma(N)$ for some N.

$$f^{[\gamma]_k}(z) := \det(\gamma)^{k-1}(cz+d)^{-k}f(\gamma(z))$$

where $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ and $\gamma(z) = \frac{az+b}{cz+d}$.

For an integer $N \ge 1$, we define

$$\Gamma(N) := \{ \gamma \in \mathsf{SL}_2(\mathbb{Z}) : \gamma \equiv \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \pmod{N} \}.$$

A congruence subgroup is a subgroup Γ of $SL_2(\mathbb{Z})$ which contains $\Gamma(N)$ for some N.

E.g., $\Gamma_0(N)$ (upper triangular modulo *N*) and $\Gamma_1(N)$ (upper uni-triangular modulo *N*) are congruence subgroups.

The space of weight k modular forms $M_k(\Gamma)$ is the set of functions $f: \mathcal{H} \to \mathbb{C}$ such that $f^{[\gamma]_k} = f$ for all $\gamma \in \Gamma$ and f is holomorphic on the extended upper half plane $\mathcal{H}^* = \mathcal{H} \cup \mathbb{P}^1(\mathbb{Q})$ where we view $\mathbb{P}^1(\mathbb{Q}) = \mathbb{Q} \cup \{i\infty\}$ (the set of cusps).

(ロ) (同) (三) (三) (三) (○) (○)

The space of weight *k* modular forms $M_k(\Gamma)$ is the set of functions $f: \mathcal{H} \to \mathbb{C}$ such that $f^{[\gamma]_k} = f$ for all $\gamma \in \Gamma$ and *f* is holomorphic on the extended upper half plane $\mathcal{H}^* = \mathcal{H} \cup \mathbb{P}^1(\mathbb{Q})$ where we view $\mathbb{P}^1(\mathbb{Q}) = \mathbb{Q} \cup \{i\infty\}$ (the set of cusps).

The space of weight *k* cusp forms $S_k(\Gamma)$ is the set of $f \in M_k(\Gamma)$ which vanish on the cusps.

(日) (日) (日) (日) (日) (日) (日)

The space of weight *k* modular forms $M_k(\Gamma)$ is the set of functions $f: \mathcal{H} \to \mathbb{C}$ such that $f^{[\gamma]_k} = f$ for all $\gamma \in \Gamma$ and *f* is holomorphic on the extended upper half plane $\mathcal{H}^* = \mathcal{H} \cup \mathbb{P}^1(\mathbb{Q})$ where we view $\mathbb{P}^1(\mathbb{Q}) = \mathbb{Q} \cup \{i\infty\}$ (the set of cusps).

The space of weight *k* cusp forms $S_k(\Gamma)$ is the set of $f \in M_k(\Gamma)$ which vanish on the cusps.

These are finite dimensional \mathbb{C} -vector spaces, and, in fact, for odd weight *k* we have $M_k(\Gamma_0(N)) = 0$.

(日) (日) (日) (日) (日) (日) (日)

The space of weight *k* modular forms $M_k(\Gamma)$ is the set of functions $f: \mathcal{H} \to \mathbb{C}$ such that $f^{[\gamma]_k} = f$ for all $\gamma \in \Gamma$ and *f* is holomorphic on the extended upper half plane $\mathcal{H}^* = \mathcal{H} \cup \mathbb{P}^1(\mathbb{Q})$ where we view $\mathbb{P}^1(\mathbb{Q}) = \mathbb{Q} \cup \{i\infty\}$ (the set of cusps).

The space of weight *k* cusp forms $S_k(\Gamma)$ is the set of $f \in M_k(\Gamma)$ which vanish on the cusps.

These are finite dimensional \mathbb{C} -vector spaces, and, in fact, for odd weight *k* we have $M_k(\Gamma_0(N)) = 0$.

Note: For *k* even, dim_C $M_k(\Gamma(1) = \lfloor k/12 \rfloor$ (resp. $\lfloor k/12 \rfloor + 1$) if $k \equiv 2 \pmod{12}$ (resp. $k \not\equiv 2 \pmod{12}$). Also, dim_C $S_k(\Gamma(1)) = \dim_C M_k(\Gamma(1)) - 1$.

$$G_{2k}(z) = \sum_{\substack{m,n \in \mathbb{Z} \ (m,n) \neq (0,0)}} \frac{1}{(mz+n)^{2k}}$$

$$G_{2k}(z) = \sum_{\substack{m,n \in \mathbb{Z} \ (m,n) \neq (0,0)}} \frac{1}{(mz+n)^{2k}}$$

We have $G_{2k} \in M_{2k}(\Gamma(1))$.

$$G_{2k}(z) = \sum_{\substack{m,n \in \mathbb{Z} \ (m,n) \neq (0,0)}} \frac{1}{(mz+n)^{2k}}$$

We have $G_{2k} \in M_{2k}(\Gamma(1))$.

In fact,

$$M_{2k}(\Gamma(1)) = S_{2k}(\Gamma(1)) \oplus \mathbb{C}G_{2k}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

$$G_{2k}(z) = \sum_{\substack{m,n \in \mathbb{Z} \\ (m,n) \neq (0,0)}} \frac{1}{(mz+n)^{2k}}$$

We have $G_{2k} \in M_{2k}(\Gamma(1))$.

In fact,

$$M_{2k}(\Gamma(1)) = S_{2k}(\Gamma(1)) \oplus \mathbb{C}G_{2k}$$

The normalized Eisenstein series of weight 2k (k > 1) is

$$E_{2k} = \frac{(2k-1)!}{2(2\pi i)^{2k}}G_{2k} = -\frac{B_{2k}}{4k} + \sum_{n=1}^{\infty}\sigma_{2k-1}(n)q^n$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

For $\frac{g_2}{60} = G_4$, $\frac{g_3}{140} = G_6$, there is an elliptic curve $y^2 = g(x)$ where the cubic $g(x) = 4x^3 - g_2x - g_3$ has discriminant

$$16(g_2^3 - 27g_3^2)$$

(ロ) (同) (三) (三) (三) (○) (○)

For $\frac{g_2}{60} = G_4$, $\frac{g_3}{140} = G_6$, there is an elliptic curve $y^2 = g(x)$ where the cubic $g(x) = 4x^3 - g_2x - g_3$ has discriminant

$$16(g_2^3 - 27g_3^2)$$

We define the normalized modular discriminant

$$\Delta = rac{g_2^3 - 27g_3^2}{(2\pi)^{12}} \in S_{12}(\Gamma(1))$$

(日) (日) (日) (日) (日) (日) (日)
For $\frac{g_2}{60} = G_4$, $\frac{g_3}{140} = G_6$, there is an elliptic curve $y^2 = g(x)$ where the cubic $g(x) = 4x^3 - g_2x - g_3$ has discriminant

$$16(g_2^3 - 27g_3^2)$$

We define the normalized modular discriminant

$$\Delta = rac{g_2^3 - 27g_3^2}{(2\pi)^{12}} \in S_{12}(\Gamma(1))$$

Actually, a modular form of any weight for $\Gamma(1)$ is in $\mathbb{C}[G_4, G_6]$.

$$\Delta(z) = \sum_{n=1}^{\infty} \tau(n) q^n$$

where $\tau(n) \colon \mathbb{N} \to \mathbb{Z}$ is Ramanujan's tau function, which turns out to be multiplicative, i.e., $\tau(mn) = \tau(m)\tau(n)$ whenever (m, n) = 1, and satisfies interesting congruences like

 $\tau(n) \equiv \sigma_{11}(n) \pmod{691}$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

where $\sigma_{11}(n) = \sum_{d|n} d^{11}$.

$$\Delta(z) = \sum_{n=1}^{\infty} \tau(n) q^n$$

where $\tau(n) \colon \mathbb{N} \to \mathbb{Z}$ is Ramanujan's tau function, which turns out to be multiplicative, i.e., $\tau(mn) = \tau(m)\tau(n)$ whenever (m, n) = 1, and satisfies interesting congruences like

 $\tau(n) \equiv \sigma_{11}(n) \pmod{691}$

where $\sigma_{11}(n) = \sum_{d|n} d^{11}$.

In fact, $\Delta(z) = (\eta(z))^{24}$ where

$$\eta(z) = q^{1/12} \prod_{n=1}^{\infty} (1-q^n)$$

is Dedekind's eta function.

Consider

$$h(z) = (\eta(z)\eta(11z))^2$$

Consider

$$h(z) = (\eta(z)\eta(11z))^2$$

We have $h(z) \in S_2(\Gamma_0(11))$.

Consider

$$h(z) = (\eta(z)\eta(11z))^2$$

We have $h(z) \in S_2(\Gamma_0(11))$.

Also, note that $f_E(z) \in S_2(\Gamma_0(N))$ where N = conductor of E.

・ロト・四ト・日本・日本・日本・日本

Modular Symbols: Weight 2

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

▲□▶▲□▶▲□▶▲□▶ □ のへで

If $f \in S_2(\Gamma_0(N))$, then f(z) dz represents a holomorphic 1-form on the compact Riemann surface $X_0(N) = \mathcal{H}^*/\Gamma_0(N)$.

If $f \in S_2(\Gamma_0(N))$, then f(z) dz represents a holomorphic 1-form on the compact Riemann surface $X_0(N) = \mathcal{H}^*/\Gamma_0(N)$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

In fact, the genus of $X_0(N)$ is $g = \dim_{\mathbb{C}} S_2(\Gamma_0(N))$.

If $f \in S_2(\Gamma_0(N))$, then f(z) dz represents a holomorphic 1-form on the compact Riemann surface $X_0(N) = \mathcal{H}^*/\Gamma_0(N)$.

In fact, the genus of $X_0(N)$ is $g = \dim_{\mathbb{C}} S_2(\Gamma_0(N))$.

If $N = p \equiv -1 \pmod{12}$ is a prime, then g = (p+1)/12.

If $f \in S_2(\Gamma_0(N))$, then f(z) dz represents a holomorphic 1-form on the compact Riemann surface $X_0(N) = \mathcal{H}^*/\Gamma_0(N)$.

In fact, the genus of $X_0(N)$ is $g = \dim_{\mathbb{C}} S_2(\Gamma_0(N))$.

If $N = p \equiv -1 \pmod{12}$ is a prime, then g = (p+1)/12.

Thus $S_2(\Gamma_0(11)) = \mathbb{C}(\eta(z)\eta(11z))^2$.

$$I(r,s) := 2\pi i \int_r^s f(z) \, dz$$

where $r, s \in \mathbb{P}^1(\mathbb{Q}) = \mathbb{Q} \cup \{i\infty\}.$

$$I(r,s) := 2\pi i \int_r^s f(z) \, dz$$

where $r, s \in \mathbb{P}^1(\mathbb{Q}) = \mathbb{Q} \cup \{i\infty\}$.

The period integrals for $f \in S_2(\Gamma_0(N))$ span a lattice Λ_f in \mathbb{C} .

$$I(r,s) := 2\pi i \int_r^s f(z) \, dz$$

where $r, s \in \mathbb{P}^1(\mathbb{Q}) = \mathbb{Q} \cup \{i\infty\}.$

The period integrals for $f \in S_2(\Gamma_0(N))$ span a lattice Λ_f in \mathbb{C} . So each f gives an elliptic curve \mathbb{C}/Λ_f .

$$I(r,s) := 2\pi i \int_r^s f(z) \, dz$$

where $r, s \in \mathbb{P}^1(\mathbb{Q}) = \mathbb{Q} \cup \{i\infty\}$.

The period integrals for $f \in S_2(\Gamma_0(N))$ span a lattice Λ_f in \mathbb{C} . So each *f* gives an elliptic curve \mathbb{C}/Λ_f . That an elliptic curve E/\mathbb{Q} gives a cusp form f_E comes from the modularity theorem.

(日) (日) (日) (日) (日) (日) (日)

$$I(r,s) := 2\pi i \int_r^s f(z) \, dz$$

where $r, s \in \mathbb{P}^1(\mathbb{Q}) = \mathbb{Q} \cup \{i\infty\}$.

The period integrals for $f \in S_2(\Gamma_0(N))$ span a lattice Λ_f in \mathbb{C} . So each *f* gives an elliptic curve \mathbb{C}/Λ_f . That an elliptic curve E/\mathbb{Q} gives a cusp form f_E comes from the modularity theorem.

(Drinfeld-Manin) Each element in $\Lambda_{f_{F}}$ is of the form

$$a\Omega_+ + b\Omega_-$$

for some $a, b \in \mathbb{Q}$ with bounded denominators where Ω_{-} is the positive imaginary generator of $\Lambda_{E} \cap i\mathbb{R}$.

Let Div_0 denote the divisors of degree zero on $\mathbb{P}^1(\mathbb{Q})$.

Let Div_0 denote the divisors of degree zero on $\mathbb{P}^1(\mathbb{Q})$.

We get a map $\psi_f \in Hom(Div_0, \mathbb{C})$ given by \mathbb{Z} -linearly extending

 $s-r\mapsto l(r,s)$

Let Div_0 denote the divisors of degree zero on $\mathbb{P}^1(\mathbb{Q})$.

We get a map $\psi_f \in Hom(Div_0, \mathbb{C})$ given by \mathbb{Z} -linearly extending

$$s-r\mapsto l(r,s)$$

In fact, the Γ -invariance of f(z) dz shows that ψ_f is in the space of \mathbb{C} -valued modular symbols

$$\mathsf{Symb}_{\Gamma}(\mathbb{C}) := \mathsf{Hom}_{\Gamma}(\mathsf{Div}_0,\mathbb{C})$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

where Γ acts trivially on \mathbb{C} .

$$\iota(\varphi)(D) = \varphi(\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} D)$$

since here $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$ normalizes Γ .

$$\iota(\varphi)(D) = \varphi(\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} D)$$

since here $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$ normalizes Γ .

Thus, in this case, each ψ_f gives two modular symbols ψ_f^+ , ψ_f^- with $\psi_f = \psi_f^+ + \psi_f^-$.

$$\iota(\varphi)(D) = \varphi(\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} D)$$

since here $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$ normalizes Γ .

Thus, in this case, each ψ_f gives two modular symbols ψ_f^+ , ψ_f^- with $\psi_f = \psi_f^+ + \psi_f^-$.

Also, any $\varphi \in \text{Hom}_{\Gamma}(\text{Div}, \mathbb{C})$ will restrict $\varphi|_{\text{Div}_0}$, but such a φ is just a function which is constant on the cusps $\mathbb{P}^1(\mathbb{Q})/\Gamma$.

(日) (日) (日) (日) (日) (日) (日)

$$\iota(\varphi)(D) = \varphi(\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} D)$$

since here $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$ normalizes Γ .

Thus, in this case, each ψ_f gives two modular symbols ψ_f^+ , ψ_f^- with $\psi_f = \psi_f^+ + \psi_f^-$.

Also, any $\varphi \in \text{Hom}_{\Gamma}(\text{Div}, \mathbb{C})$ will restrict $\varphi|_{\text{Div}_0}$, but such a φ is just a function which is constant on the cusps $\mathbb{P}^1(\mathbb{Q})/\Gamma$.

Moreover, $\psi \in \text{Symb}_{\Gamma}(\mathbb{C})$ is determined by its values on generators of Div_0 as a $\mathbb{Z}[\Gamma]$ -module.

Every degree zero divisor is the sum of *unimodular divisors* $[\gamma] := [b, d] - [a, c]$ where $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma(1)$.

Every degree zero divisor is the sum of *unimodular divisors* $[\gamma] := [b, d] - [a, c]$ where $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma(1)$.

This follows from Manin's continued fraction trick: if p_n , q_n are the numerator and denominator (resp.) of the *n*th convergent in the continued fraction expansion of some real number,

$$p_{n-1}q_n - p_nq_{n-1} = (-1)^n$$

Every degree zero divisor is the sum of *unimodular divisors* $[\gamma] := [b, d] - [a, c]$ where $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma(1)$.

This follows from Manin's continued fraction trick: if p_n , q_n are the numerator and denominator (resp.) of the *n*th convergent in the continued fraction expansion of some real number,

$$p_{n-1}q_n - p_nq_{n-1} = (-1)^n$$

For example,

$$\begin{split} & [4,7] - [0,1] = \\ & [4,7] - [-1,-2] + [1,2] - [1,1] + [-1,-1] - [-1,0] + [1,0] - [0,-1] \\ & = \left[\begin{pmatrix} -1 & 4 \\ -2 & 7 \end{pmatrix} \right] + \left[\begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \right] + \left[\begin{pmatrix} -1 & -1 \\ 0 & -1 \end{pmatrix} \right] + \left[\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \right] \end{split}$$

Therefore, Div_0 is generated as a $\mathbb{Z}[\Gamma]$ -module by a set of coset representatives for Γ in $\Gamma(1)$.

(日) (日) (日) (日) (日) (日) (日)

Therefore, Div_0 is generated as a $\mathbb{Z}[\Gamma]$ -module by a set of coset representatives for Γ in $\Gamma(1)$.

A modular symbol $\psi \in \text{Symb}_{\Gamma}(\mathbb{C})$ is completely determined by it value on $[\Gamma(1) : \Gamma]$ divisors.

Therefore, Div_0 is generated as a $\mathbb{Z}[\Gamma]$ -module by a set of coset representatives for Γ in $\Gamma(1)$.

A modular symbol $\psi \in \text{Symb}_{\Gamma}(\mathbb{C})$ is completely determined by it value on $[\Gamma(1) : \Gamma]$ divisors. Note, e.g., that

$$[\Gamma(1):\Gamma_0(N)] = N \prod_{p|N} (1+p^{-1}).$$

(日) (日) (日) (日) (日) (日) (日)

Hecke Operators on Modular Forms

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Conceptual Definition for Level 1

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

We can view modular forms $f \in M_k(\Gamma(1))$ as functions F on lattices $\Lambda \subset \mathbb{C}$. (Here $F(\mathbb{Z} + z\mathbb{Z}) = f(z)$.)

Conceptual Definition for Level 1

We can view modular forms $f \in M_k(\Gamma(1))$ as functions F on lattices $\Lambda \subset \mathbb{C}$. (Here $F(\mathbb{Z} + z\mathbb{Z}) = f(z)$.)

Then for each $n \in \mathbb{N}$ we define

$$(T(n)F)(\Lambda) = \sum_{\substack{\Lambda' \leq \Lambda \\ [\Lambda:\Lambda'] = n}} F(\Lambda')$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

For each integer $n \ge 1$, define $X_n \subseteq M_2(\mathbb{Z})$ to be the matrices of determinant *n* in Hermite normal form, i.e.,

$$egin{pmatrix} a & b \\ 0 & d \end{pmatrix}$$
 with $ad = n$ and $d > b \ge 0$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

For each integer $n \ge 1$, define $X_n \subseteq M_2(\mathbb{Z})$ to be the matrices of determinant *n* in Hermite normal form, i.e.,

$$\begin{pmatrix} a & b \\ 0 & d \end{pmatrix}$$
 with $ad = n$ and $d > b \ge 0$

The Hecke operator T(n) acts on $M_k(\Gamma(1))$ by

$$T(n)f = \sum_{\gamma \in X_n} f^{[\gamma]_k}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ
For each integer $n \ge 1$, define $X_n \subseteq M_2(\mathbb{Z})$ to be the matrices of determinant *n* in Hermite normal form, i.e.,

$$\begin{pmatrix} a & b \\ 0 & d \end{pmatrix}$$
 with $ad = n$ and $d > b \ge 0$

The Hecke operator T(n) acts on $M_k(\Gamma(1))$ by

$$T(n)f = \sum_{\gamma \in X_n} f^{[\gamma]_k}$$

If n = p is prime,

$$T(p)f = f\left[\begin{pmatrix}p & 0\\ 0 & 1\end{pmatrix}\right]_{k} + \sum_{a=0}^{p-1} f\left[\begin{pmatrix}1 & a\\ 0 & p\end{pmatrix}\right]_{k}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

For any integers $m, n \ge 1$,

$$T(m)T(n) = T(n)T(m)$$

For any integers $m, n \ge 1$,

$$T(m)T(n) = T(n)T(m)$$

If (m, n) = 1, then

T(mn) = T(m)T(n)

For any integers $m, n \ge 1$,

$$T(m)T(n) = T(n)T(m)$$

If (m, n) = 1, then

$$T(mn) = T(m)T(n)$$

For a prime *p*,

$$T(p^n) = T(p^{n-1})T(p) - p^{k-1}T(p^{n-2})$$

When we have a Fourier series

$$f=\sum_{n=0}^{\infty}c_nq^n,$$

for $q = e^{2\pi i z}$ and the Hecke action can be described by

$$T(n)f = \sum_{m=0}^{\infty} \left(\sum_{d \mid (n,m)} d^{k-1} c_{mn/d^2} \right) q^m,$$

When we have a Fourier series

$$f=\sum_{n=0}^{\infty}c_nq^n,$$

for $q = e^{2\pi i z}$ and the Hecke action can be described by

$$T(n)f = \sum_{m=0}^{\infty} \left(\sum_{d \mid (n,m)} d^{k-1} c_{mn/d^2} \right) q^m,$$

so for n = p prime

$$T(p)f = \sum_{m=0}^{\infty} \left(c_{mp} + p^{k-1} c_{m/p} \right) q^m$$

where $c_{m/p} = 0$ if $p \nmid m$. (T(n) preserves $M_k(\Gamma(1))$, $S_k(\Gamma(1))$.)

Conceptual Definition for $S_2(\Gamma_0(N))$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

The complex points of $Y_0(N) = \mathcal{H}/\Gamma_0(N)$ are in natural bijection with pairs (E, C) where E/\mathbb{C} is an elliptic curve and $\langle P \rangle \leq E(\mathbb{C})$ is cyclic of order *N*.

Conceptual Definition for $S_2(\Gamma_0(N))$

The complex points of $Y_0(N) = \mathcal{H}/\Gamma_0(N)$ are in natural bijection with pairs (E, C) where E/\mathbb{C} is an elliptic curve and $\langle P \rangle \leq E(\mathbb{C})$ is cyclic of order *N*. The class of a point $\lambda \in \mathcal{H}$ corresponds to

$$\left(\frac{\mathbb{C}}{\mathbb{Z}+\lambda\mathbb{Z}},\frac{(1/N)\mathbb{Z}+\lambda\mathbb{Z}}{\mathbb{Z}+\lambda\mathbb{Z}}
ight)$$

Conceptual Definition for $S_2(\Gamma_0(N))$

The complex points of $Y_0(N) = \mathcal{H}/\Gamma_0(N)$ are in natural bijection with pairs (E, C) where E/\mathbb{C} is an elliptic curve and $\langle P \rangle \leq E(\mathbb{C})$ is cyclic of order *N*. The class of a point $\lambda \in \mathcal{H}$ corresponds to

$$\left(\frac{\mathbb{C}}{\mathbb{Z} + \lambda \mathbb{Z}}, \frac{(1/N)\mathbb{Z} + \lambda \mathbb{Z}}{\mathbb{Z} + \lambda \mathbb{Z}} \right)$$

When (n, N) = 1 there are two natural maps

$$\begin{aligned} \pi_1 \colon Y_0(n \cdot N) &\to Y_0(N) \colon (E, \langle Q \rangle) \mapsto (E, \langle Q^n \rangle) \\ \pi_2 \colon Y_0(n \cdot N) &\to Y_0(N) \colon (E, \langle Q \rangle) \mapsto (E/\langle Q^N \rangle, \langle Q \rangle/\langle Q^N \rangle) \end{aligned}$$

These maps extend uniquely to maps on X_0 :

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

These maps extend uniquely to maps on X_0 :

∃action on $S_2(\Gamma_0(N))$ ≅ holomorphic 1-forms on $X_0(N)$ given by

$$T(n)f = : \pi_{1*}(\pi_2^*(f(z)dz))$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

and there is a similar definition when $(n, N) \neq 1$.

Action for any weight k and level N

(ロ)、(型)、(E)、(E)、 E) のQの

We define T(p) for primes p and extend multiplicatively.

Action for any weight k and level N

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

We define T(p) for primes p and extend multiplicatively.

If $p \nmid N$, then T(p) acts on f as before.

Action for any weight k and level N

We define T(p) for primes p and extend multiplicatively.

If $p \nmid N$, then T(p) acts on f as before.

If p|N, the we have

$$T(p)f = \sum_{a=0}^{p-1} f^{\left[\begin{pmatrix} 1 & a \\ 0 & p \end{pmatrix}\right]_k}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Modular Symbols: Weight k

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

For $f \in S_k(\Gamma)$ with $\Gamma = \Gamma_1(N)$, we have a Fourier series

$$f(z) = \sum_{k=1}^{\infty} c_n q^n$$

with
$$q = e^{2\pi i z}$$
.

For $f \in S_k(\Gamma)$ with $\Gamma = \Gamma_1(N)$, we have a Fourier series

$$f(z)=\sum_{k=1}^{\infty}c_nq^n$$

with $q = e^{2\pi i z}$.

The *L*-function of *f* is the Dirichlet series (or Mellin transform)

$$L(f,s) = \sum_{n=1}^{\infty} \frac{c_n}{n^s}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

For $f \in S_k(\Gamma)$ with $\Gamma = \Gamma_1(N)$, we have a Fourier series

$$f(z) = \sum_{k=1}^{\infty} c_n q^n$$

with $q = e^{2\pi i z}$.

The *L*-function of *f* is the Dirichlet series (or Mellin transform)

$$L(f, s) = \sum_{n=1}^{\infty} \frac{c_n}{n^s}$$
$$= (2\pi)^s \Gamma(s)^{-1} \int_0^\infty f(it) t^s \frac{dt}{t}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

If we change variables to z = it, we get special values of L

$$2\pi i \int_{i\infty}^{0} f(z) z^{j} dz = \frac{j!}{(-2\pi i)^{j}} L(f, j+1)$$

for $0 \leq j \leq k - 2$.

If we change variables to z = it, we get special values of L

$$2\pi i \int_{i\infty}^{0} f(z) z^{j} dz = \frac{j!}{(-2\pi i)^{j}} L(f, j+1)$$

for $0 \le j \le k - 2$.

We want a target space to encode the period integrals

$$I_j(r,s) = 2\pi i \int_r^s f(z) z^j \, dz$$

for the k - 1 values of $j \in \{0, 1, ..., k - 2\}$.

Define $V_g(\mathbb{C})$ to be the space of homogeneous polynomials $P(X, Y) \in \mathbb{C}[X, Y]$ of degree g.

Define $V_g(\mathbb{C})$ to be the space of homogeneous polynomials $P(X, Y) \in \mathbb{C}[X, Y]$ of degree g.

For $f \in S_k(\Gamma)$ with a Γ a congruence subgroup, we have a homomorphism

 $\psi_f \colon \mathsf{Div}_0 \to V_{k-2}(\mathbb{C})$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Define $V_g(\mathbb{C})$ to be the space of homogeneous polynomials $P(X, Y) \in \mathbb{C}[X, Y]$ of degree g.

For $f \in S_k(\Gamma)$ with a Γ a congruence subgroup, we have a homomorphism

$$\psi_f \colon \mathsf{Div}_0 \to V_{k-2}(\mathbb{C})$$

This is given by $\mathbb Z\text{-linearly extending}$

$$s-r\mapsto 2\pi i\int_r^s f(z)(zX+Y)^{k-2}\,dz$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

There is a right action of $GL(\mathbb{Q})$ on $V_g(\mathbb{C})$ given by

$$(P|\gamma)(X,Y) = P(dX - cY, -bX + aY)$$

<□ > < @ > < E > < E > E のQ @

where $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

There is a right action of $GL(\mathbb{Q})$ on $V_g(\mathbb{C})$ given by

$$(P|\gamma)(X,Y)=P(dX-cY,-bX+aY)$$
 where $\gamma=inom{a\ b\ c\ d}$).

With this action, ψ_f is in the space of $V_{k-2}(\mathbb{C})$ -valued modular symbols

$$\operatorname{Symb}_{\Gamma}(V_{k-2}(\mathbb{C})) = \operatorname{Hom}_{\Gamma}(\operatorname{Div}_{0}, V_{k-2}(\mathbb{C}))$$

(ロ)、(型)、(E)、(E)、 E) のQの

There is a right action of $GL(\mathbb{Q})$ on $V_g(\mathbb{C})$ given by

$$(P|\gamma)(X,Y)=P(dX-cY,-bX+aY)$$
 where $\gamma=inom{a\ b\ c\ d}$).

With this action, ψ_f is in the space of $V_{k-2}(\mathbb{C})$ -valued modular symbols

$$\mathsf{Symb}_{\Gamma}(V_{k-2}(\mathbb{C})) = \mathsf{Hom}_{\Gamma}(\mathsf{Div}_0, V_{k-2}(\mathbb{C}))$$

If $\varphi \in \text{Hom}(\text{Div}_0, V_{k-2}(\mathbb{C}))$, then φ is a modular symbol if

$$\varphi(\gamma D)|\gamma = \varphi(D)$$

for all $D \in \text{Div}_0$ and all $\gamma \in \Gamma$.

In fact, the $GL_2(\mathbb{Q})$ action on $V_{k-2}(\mathbb{C})$ was defined so that the association $f \mapsto \psi_f$ is equivariant:

$$\psi_{f^{[\gamma]_k}}(D) = \psi_f(D)|\gamma$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

In fact, the $GL_2(\mathbb{Q})$ action on $V_{k-2}(\mathbb{C})$ was defined so that the association $f \mapsto \psi_f$ is equivariant:

$$\psi_{f^{[\gamma]_k}}(D) = \psi_f(D)|\gamma$$

We have a right $GL_2(\mathbb{Q})$ -action on modular symbols φ :

$$(\varphi|\gamma)(D) = \varphi(\gamma D)|\gamma$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

(Note: $\varphi | \gamma = \varphi$ for all $\gamma \in \Gamma$)

For a prime *p*, we define the action of a Hecke operator T(p) on Symb_{Γ}($V_{k-2}(\mathbb{C})$) via the double coset:

$$\Gamma\left(\begin{smallmatrix}1&0\\0&p\end{smallmatrix}\right)\Gamma=\coprod_{\gamma\in X}\Gamma\gamma$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

For a prime *p*, we define the action of a Hecke operator T(p) on Symb_{Γ}($V_{k-2}(\mathbb{C})$) via the double coset:

$$\Gamma\left(\begin{smallmatrix}1&0\\0&\rho\end{smallmatrix}\right)\Gamma=\coprod_{\gamma\in X}\Gamma\gamma$$

Then define

$$T(p)arphi = \sum_{\gamma \in X} arphi | \gamma$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

For a prime *p*, we define the action of a Hecke operator T(p) on Symb_{Γ}($V_{k-2}(\mathbb{C})$) via the double coset:

$$\Gamma\left(\begin{smallmatrix}1&0\\0&\rho\end{smallmatrix}\right)\Gamma=\coprod_{\gamma\in X}\Gamma\gamma$$

Then define

$$T(p) arphi = \sum_{\gamma \in X} arphi | \gamma|$$

Note: for $\Gamma = \Gamma_0(N)$ and $p \nmid N$, this action is

$$T(\boldsymbol{p})\varphi = \varphi \left| \begin{pmatrix} p & 0 \\ 0 & 1 \end{pmatrix} + \sum_{a+0}^{p-1} \varphi \left| \begin{pmatrix} 1 & a \\ 0 & p \end{pmatrix} \right|$$

▲□▶▲□▶▲目▶▲目▶ 目 のへで

Eichler-Shimura Theorem

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

For $\Gamma = \Gamma_1(N)$, there is an isomorphism

$$\operatorname{Symb}_{\Gamma}(V_{k-2}(\mathbb{C})) \cong M_k(\Gamma) \oplus S_k(\Gamma)$$

which respects the Hecke action on both sides.

Eichler-Shimura Theorem

(日) (日) (日) (日) (日) (日) (日)

For $\Gamma = \Gamma_1(N)$, there is an isomorphism

$$\mathsf{Symb}_{\mathsf{\Gamma}}(V_{k-2}(\mathbb{C}))\cong M_k(\mathsf{\Gamma})\oplus \mathcal{S}_k(\mathsf{\Gamma})$$

which respects the Hecke action on both sides.

Note that $M_k(\Gamma) = E_k(\Gamma) \oplus S_k(\Gamma)$, so there are two copies of the cusp forms in the modular symbols, which correspond to ψ_f^+ and ψ_f^- obtained from the involution $\iota = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$.

Eichler-Shimura Theorem

For $\Gamma = \Gamma_1(N)$, there is an isomorphism

$$\mathsf{Symb}_{\mathsf{\Gamma}}(V_{k-2}(\mathbb{C}))\cong M_k(\mathsf{\Gamma})\oplus \mathcal{S}_k(\mathsf{\Gamma})$$

which respects the Hecke action on both sides.

Note that $M_k(\Gamma) = E_k(\Gamma) \oplus S_k(\Gamma)$, so there are two copies of the cusp forms in the modular symbols, which correspond to ψ_f^+ and ψ_f^- obtained from the involution $\iota = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$.

The Eisenstein series $E_k(\Gamma)$ correspond to those symbols obtained from taking a Γ -invariant homomorphism on Div and then restricting to Div₀.