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over Q
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Every elliptic curve E/Q has a Tate-Weierstrass equation
y? + Axy + By = f(x),

with minimal discriminant Ag where A, B € Z and f(x) € Z[x] is
monic of degree 3. l.e., for every prime p, the reduction E, has
minimal valuation ordp(Ag).

The L-function of E is defined by an Euler product

L(E.s) =] Lo(p®)"
p

where for a, = p+ 1 — | Ep(Fp)|

1—apT+pT? good reduction
Lo(T) = 1-T split multiplicative reduction
P 14T nonsplit multiplicative reduction
1 additive reduction



This defines an analytic function in the half-plane ®(s) > 3/2.



This defines an analytic function in the half-plane ®(s) > 3/2.

In fact, L extends to an analytic function on all of C and satisfies
a functional equation

L*(E,s) = +L*(E,2 — s)

where
L*(E,s) = N5/2(2x)~ST(s)L(E, s)

with N = conductor of E.



The Birch and Swinnerton-Dyer conjecture states that
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where
E(Q) =7Z" ® E(Q)tors

and 11T = Tate-Shaferavich group, R = regulator of E ¢, =
Tamagawa factor at the place v, and Q. = real period of E.



The Birch and Swinnerton-Dyer conjecture states that

_L(E,s) |HI|RI],cv
0 ?é !’m (S - 1)r B |E(Q)tors‘2

Q4

where
E(Q) =7Z" ® E(Q)tors

and 11T = Tate-Shaferavich group, R = regulator of E ¢, =
Tamagawa factor at the place v, and Q. = real period of E.

Here Q. is the positive generator of R N Ag where Ag is the
lattice generated by the period integrals of the invariant

differential
ax

YT 2y 1 Ax+B



Suppose E has either good ordinary or multiplicative reduction
for a prime p. Write the Euler factor at p as

’
(1—apT)(1 = fpT)

Lp(T)' =

where oy, € Z; and p|Sp.



Suppose E has either good ordinary or multiplicative reduction
for a prime p. Write the Euler factor at p as

’
(1—apT)(1 = fpT)

Lp(T)' =

where oy, € Z; and p|Sp.

There is a p-adic L-function Ly(E, s) associated to E defined by
an interpolation property which, in particular, implies
L(E, 1)

Ly(E, 1) = (1 —04,;1)97+



If E has split reduction at p, then L,(T) =1 - T, 80 ap = 1,
Bp =0, and

Ly(E, 1) = 0 (trivial zero forced by Euler factor)



If E has split reduction at p, then L,(T) =1 - T, 80 ap = 1,
Bp =0, and

Ly(E, 1) = 0 (trivial zero forced by Euler factor)

The Mazur, Tate, Teitelbaum conjecture predicts

L(E.1)
Q.

Lp(E, 1) = Lp(E)

where £,(E) = log,(q)/ordp(q) with @, /% = E(Qp)



Write the L-function of E as a Dirichlet series
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Let N = conductor of E. Then for g = €72,
fe(z) = anq"
n=1

is a weight 2 cusp form for 'y (N).



Write the L-function of E as a Dirichlet series

o0
an

ns
n=1

L(E,s) =

Let N = conductor of E. Then for g = €77,
fe(z) = anq"
n=1

is a weight 2 cusp form for I'o(N). In fact, f is an eigenform for
Hecke operators T(p) for all primes p 1 N:

T(p)fe = apfe



The fact that fg(z) is a cusp form is part of a series of deep
results known as the modularity theorem.



The fact that fg(z) is a cusp form is part of a series of deep
results known as the modularity theorem.

This states, in particular, that there is a surjective morphism (of
curves over Q)

¢: Xo(N) - E

such that ¢*(w) is a multiple of fg(z) dz.



We have

27TI/ fE E1)

= rational multiple of Q.



We have

27TI/ fE E1)

= rational multiple of Q.

In general,

N —a/N
L(E,x,1) = TE\)/‘Z 27”/ fe(z) dz
I

a=1 o



Modular Forms: Definitions



For k € Ny, we have a right action of GL,(Q) on functions f
from the upper half-plane H to C:

fl(2) := det(y)" " (cz + d) *f((2))

where v = (25) and ~(z) = gjig
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For k € Ny, we have a right action of GL,(Q) on functions f
from the upper half-plane H to C:
f0le(2) := det()* " (cz + d)*f(7(2))

where v = (25) and y(z) = %5,

For an integer N > 1, we define

[(N):={y €SLa(Z) : v = (}9) (mod N)}.

A congruence subgroup is a subgroup I' of SL»(Z) which
contains '(N) for some N.

E.g., Fo(N) (upper triangular modulo N) and I'{(N) (upper
uni-triangular modulo N) are congruence subgroups.



The space of weight k modular forms M(I') is the set of
functions f: % — C such that flk = ffor all v € I and f is
holomorphic on the extended upper half plane #* = H UP'(Q)
where we view P'(Q) = QU {iocc} (the set of cusps).
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The space of weight k modular forms M(I') is the set of
functions f: % — C such that flk = ffor all v € I and f is
holomorphic on the extended upper half plane #* = H UP'(Q)
where we view P'(Q) = QU {iocc} (the set of cusps).

The space of weight k cusp forms Si(I) is the set of f € M(I')
which vanish on the cusps.

These are finite dimensional C-vector spaces, and, in fact, for
odd weight k we have My (Io(N)) = 0.

Note: For k even, dimc Mk(IF'(1) = |k/12] (resp. |k/12]| + 1) if
k=2 (mod 12) (resp. k # 2 (mod 12) ). Also,
dimg Sk(M'(1)) = dime Mi(F(1)) —
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The nonnormalized Eisenstein series of weight 2k (k > 1) is

1
G2k(z) = Z (mz+ n)gk
m,nez
(m,n)#(0,0)

We have Gpx € Mok (T(1)).

In fact,
Mok(T(1)) = Sok(F(1)) © CGax

The normalized Eisenstein series of weight 2k (k > 1) is

(2k —1)! Bk &
Eox = ?GZk = T4k + ;(72k1(n)qn



For & = G4, %5 = G, there is an elliptic curve y? = g(x)
where the cubic g(x) = 4x3 — gox — g3 has discriminant

16(95 — 2793)
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For & = G4, %5 = G, there is an elliptic curve y? = g(x)
where the cubic g(x) = 4x3 — gox — g3 has discriminant

16(95 — 2793)

We define the normalized modular discriminant

_ g5 —27g5

A (271')12

S 812(F(1 ))

Actually, a modular form of any weight for (1) is in C[Gj4, Gg].



A(z) =) r(n)q"

n=1
where 7(n): N — Z is Ramanujan’s tau function, which turns
out to be multiplicative, i.e., 7(mn) = 7(m)7(n) whenever
(m, n) = 1, and satisfies interesting congruences like
7(n) = o11(n) (mod 691)

where o11(n) = > g, d™.



A(z) =Y 7(nq"
n=1

where 7(n): N — Z is Ramanujan’s tau function, which turns
out to be multiplicative, i.e., 7(mn) = 7(m)r(n) whenever
(m, n) = 1, and satisfies interesting congruences like

7(n) = o11(n) (mod 691)
where o11(n) = > g, d™.
In fact, A(z) = (n(z2))?* where
77(2) — q1/12 H(1 o qn)
n=1

is Dedekind’s eta function.



Consider



Consider

We have h(z) € Sy(Ip(11)).



Consider

We have h(z) € Sy(Ip(11)).

Also, note that fz(z) € Sy(Ig(N)) where N = conductor of E.



Modular Symbols: Weight 2
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Note: fDlek = f is equivalent to f(2)(dz)k = f((2))(dv(2))*.

If f € Sa(IFo(N)), then f(z) dz represents a holomorphic 1-form
on the compact Riemann surface Xp(N) = H*/To(N).

In fact, the genus of Xy(N) is g = dim¢ So(Tp(N)).

If N=p=—1 (mod 12) is a prime, then g = (p + 1)/12.

Thus Sx(To(11)) = C(n(2)n(112))2.
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gives a cusp form fz comes from the modularity theorem.



We define the period integrals of f € Sy(I') for I' a congruence
subgroup by

I(r,s) = 2ni / C1(2) dz

where r, s € P'(Q) = QU {iocc}.

The period integrals for f € Sy(I'o(N)) span a lattice As in C. So
each f gives an elliptic curve C/As. That an elliptic curve E/Q
gives a cusp form fg comes from the modularity theorem.

(Drinfeld-Manin) Each element in Ay_ is of the form
aQ+ + bQ_

for some a, b € Q with bounded denominators where Q_ is the
positive imaginary generator of Ag N iR.



Let Divg denote the divisors of degree zero on P'(Q).
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Let Divg denote the divisors of degree zero on P'(Q).

We get a map ¢y € Hom(Divg, C) given by Z-linearly extending

Ss—r—I(r,s)

In fact, the I-invariance of f(z) dz shows that v is in the space
of C-valued modular symbols

Symb(C) := Homg(Divg, C)

where I acts trivially on C.
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For ' =To(N) or I'1(N), there is an involution . on Symb(C)
given by
Up)(D) = ((7 7) D)

since here (' 9) normalizes T.

Thus, in this case, each ¢ gives two modular symbols w,*, (U
with ¢r = ¥ + ;.

Also, any ¢ € Homr(Div, C) will restrict ¢|piy,, but such a ¢ is
just a function which is constant on the cusps P'(Q)/T.

Moreover, ¢ € Symb(C) is determined by its values on
generators of Divy as a Z[l']-module.
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This follows from Manin’s continued fraction trick: if p,, g, are
the numerator and denominator (resp.) of the nth convergent in
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Every degree zero divisor is the sum of unimodular divisors
[v] :==[b,d] — [a,c] where vy = (25) e I'(1).

This follows from Manin’s continued fraction trick: if p,, g, are
the numerator and denominator (resp.) of the nth convergent in
the continued fraction expansion of some real number,

Pn—10n — PnGn—1 = (=1)"

For example,
[4,7] — [0,1] =
4,7] - [-1,-2]+[1,2] - [1,1] + [-1,—1] = [-1,0] + [1,0] — [0, —1]

-G )G 2GS o)



In fact, if a, 5 € T(1), then «([5]) = [@f]. In other words, the
divisor of the product af is the divisor obtained by applying « to
the divisor [3] via Mdbius transformation.
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In fact, if a, 5 € T(1), then «([5]) = [@f]. In other words, the
divisor of the product af is the divisor obtained by applying « to
the divisor [3] via Mdbius transformation.

Therefore, Divg is generated as a Z[']-module by a set of coset
representatives for I in I'(1).

A modular symbol ¢» € Symb(C) is completely determined by
it value on [[(1) : '] divisors. Note, e.g., that

[F(1) : Fo(M)] = NTJ(1 +p7").

pIN



Hecke Operators on
Modular Forms



Conceptual Definition for Level 1

We can view modular forms f € My (I'(1)) as functions F on
lattices A C C. (Here F(Z + zZ) = f(z2).)



Conceptual Definition for Level 1

We can view modular forms f € My (I'(1)) as functions F on
lattices A C C. (Here F(Z + zZ) = f(z2).)

Then for each n € N we define

(T(MFAN) = > F(N)
N<A
[A:N]=n
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For each integer n > 1, define X, C M»(Z) to be the matrices of
determinant n in Hermite normal form, i.e.,

a b ,
<O d) withad=nandd >b>0

The Hecke operator T(n) acts on My (I'(1)) by
T(n)f =Y folk

YEXn

If n= pis prime,
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For any integers m,n > 1,

If (m,n) =1, then



For any integers m,n > 1,

If (m,n) =1, then

For a prime p,

T(p") = T(P" ") T(p) — p* ' T(p"?)



When we have a Fourier series
oo
f=> cnd",
n=0

for g = €™ and the Hecke action can be described by

T(n Z ( Z a“- mn/d2> qm7

d|(n,m)



When we have a Fourier series
f=> cnq",
n=0
for g = €™ and the Hecke action can be described by
T(n Z Z a“- mn/d2 qm7
d|(n,m)

so for n = p prime

= io: (Cmp + pk_1Cm/p) q”

m=

o

where ¢y, p = 0if pt m. (T(n) preserves My(I'(1)), Sk(T'(1)).)



Conceptual Definition for Sy(I'o(N))

The complex points of Yo(N) = H /To(N) are in natural bijection
with pairs (E, C) where E/C is an elliptic curve and (P) < E(C)
is cyclic of order N.
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Conceptual Definition for Sy(I'o(N))

The complex points of Yo(N) = H /To(N) are in natural bijection
with pairs (E, C) where E/C is an elliptic curve and (P) < E(C)
is cyclic of order N. The class of a point A € H corresponds to

C  (1/N)Z+\Z
L+ T+ ML

When (n, N) = 1 there are two natural maps

m1: Yo(n-N) — Yo(N): (E,(Q)) — (E,(Q"))
m2: Yo(n- N) = Yo(N): (E.(Q)) = (E/(@"). (@)/(Q"))



These maps extend uniquely to maps on Xp:

Xo(n-N)



These maps extend uniquely to maps on Xp:
Xo(n-N)

Xo(N) Xo(N)

Jaction on S>(Ip(N)) = holomorphic 1-forms on Xo(N) given by
T(n)f=:m.(m2(f(2)dz))

and there is a similar definition when (n, N) # 1.
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Action for any weight k and level N

We define T(p) for primes p and extend multiplicatively.

If pt N, then T(p) acts on f as before.

If p|N, the we have

a=0



Modular Symbols: Weight k
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For f € Sk(I') with ' = I'1(N), we have a Fourier series
f(z)=> cnq"
k=1

with g = e°™=.

The L-function of f is the Dirichlet series (or Mellin transform)

Cn

L(f,S): F

n=1
= (2m)Sr(s)~! /OOO f(it)tsof



If we change variables to z = it, we get special values of L

0 .
. i J! .
/ — 7
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If we change variables to z = it, we get special values of L

j! .
2y L(f,j+1)

0 )
27ri/ f(z)z dz =
ioco

for0<j< k-2

We want a target space to encode the period integrals

S .
li(r,s) = 27ri/ f(z)z/ dz
r

forthe k — 1 values of j € {0,1,... , k — 2}.



Define V,(C) to be the space of homogeneous polynomials
P(X,Y) € C[X, Y] of degree g.
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Define V,(C) to be the space of homogeneous polynomials
P(X,Y) € C[X, Y] of degree g.

For f € Sk(I') with a I a congruence subgroup, we have a

homomorphism
1/),«3 DiVo — Vk_g(C)

This is given by Z-linearly extending

S
S—r zm'/ f(z)(zX + V) 2dz
r
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where y = (25).
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There is a right action of GL(Q) on V(C) given by
(Ply)(X,Y) = P(dX — cY,—bX + aY)

where y = (25).

With this action, v is in the space of Vi_»(C)-valued modular
symbols

Symbr(Vk_g(C)) = Homr(Divo, Vk_g(C))

If » € Hom(Divy, Vk_2(C)), then ¢ is a modular symbol if

@(yD)|y = »(D)

forall D € Divgandall v € T.



In fact, the GL»(Q) action on Vj_»(C) was defined so that the
association f +— 1) is equivariant:

Q;Z)f["/]k(D) = ¢f(D)|’Y



In fact, the GL»(Q) action on Vj_»(C) was defined so that the
association f +— 1) is equivariant:

Q;Z)f["/]k(D) = ¢f(D)|’Y

We have a right GL,(Q)-action on modular symbols ¢:

(l7)(D) = p(vD)|y

(Note: |y = forally €T)



For a prime p, we define the action of a Hecke operator T(p) on
Symb(Vi_2(C)) via the double coset:

r(gg)r:]_[rry

veX
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For a prime p, we define the action of a Hecke operator T(p) on
Symb(Vi_2(C)) via the double coset:

r(gg)r:]_[rry
yeX

Then define

T(p)p = el

veX

Note: for I = I'y(N) and p 1 N, this action is

-1
T(p)e =l (59) +szD (33)

a+0



Eichler-Shimura Theorem
For ' = I'1(N), there is an isomorphism
Symby(Vi—2(C)) = Mi(") & Sk(I")

which respects the Hecke action on both sides.
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which respects the Hecke action on both sides.

Note that M (') = Ex(I') & Sk(I), so there are two copies of the

cusp forms in the modular symbols, which correspond to ¢,+

and ¢, obtained from the involution . = (' 9).



Eichler-Shimura Theorem

For ' = I'1(N), there is an isomorphism
Symby(Vi—2(C)) = My(T') & Sk(T)

which respects the Hecke action on both sides.

Note that M (') = Ex(I') & Sk(I), so there are two copies of the
cusp forms in the modular symbols, which correspond to ¢,+

and ¢, obtained from the involution . = (' 9).

The Eisenstein series E,(I') correspond to those symbols
obtained from taking a I'-invariant homomorphism on Div and
then restricting to Divg.
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