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Motivation: Elliptic Curves
over Q



Every elliptic curve E/Q has a Tate-Weierstrass equation

y2 + Axy + By = f (x),

with minimal discriminant ∆E where A,B ∈ Z and f (x) ∈ Z[x ] is
monic of degree 3.

I.e., for every prime p, the reduction Ẽp has
minimal valuation ordp(∆E ).

The L-function of E is defined by an Euler product

L(E , s) =
∏

p

Lp(p−s)−1

where for ap = p + 1− |Ẽp(Fp)|

Lp(T ) =


1− apT + pT 2 good reduction
1− T split multiplicative reduction
1 + T nonsplit multiplicative reduction
1 additive reduction
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Lp(T ) =


1− apT + pT 2 good reduction
1− T split multiplicative reduction
1 + T nonsplit multiplicative reduction
1 additive reduction



This defines an analytic function in the half-plane <(s) > 3/2.

In fact, L extends to an analytic function on all of C and satisfies
a functional equation

L∗(E , s) = ±L∗(E ,2− s)

where
L∗(E , s) = Ns/2(2π)−sΓ(s)L(E , s)

with N = conductor of E .
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The Birch and Swinnerton-Dyer conjecture states that

0 6= lim
s→1

L(E , s)

(s − 1)r =
|X|R

∏
v cv

|E(Q)tors|2
Ω+

where
E(Q) ∼= Zr ⊕ E(Q)tors

and X = Tate-Shaferavich group, R = regulator of E cv =
Tamagawa factor at the place v , and Ω+ = real period of E .

Here Ω+ is the positive generator of R ∩ ΛE where ΛE is the
lattice generated by the period integrals of the invariant
differential

ω =
dx

2y + Ax + B
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Suppose E has either good ordinary or multiplicative reduction
for a prime p. Write the Euler factor at p as

Lp(T )−1 =
1

(1− αpT )(1− βpT )

where αp ∈ Z×p and p|βp.

There is a p-adic L-function Lp(E , s) associated to E defined by
an interpolation property which, in particular, implies

Lp(E ,1) = (1− α−1
p )

L(E ,1)

Ω+
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If E has split reduction at p, then Lp(T ) = 1− T , so αp = 1,
βp = 0, and

Lp(E ,1) = 0 (trivial zero forced by Euler factor)

The Mazur, Tate, Teitelbaum conjecture predicts

L′p(E ,1) = Lp(E)
L(E ,1)

Ω+

where Lp(E) = logp(q)/ordp(q) with Q×p /qZ ∼= E(Qp)
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Write the L-function of E as a Dirichlet series

L(E , s) =
∞∑

n=1

an

ns

Let N = conductor of E . Then for q = e2πiz ,

fE (z) =
∞∑

n=1

anqn

is a weight 2 cusp form for Γ0(N). In fact, f is an eigenform for
Hecke operators T (p) for all primes p - N:

T (p)fE = apfE
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The fact that fE (z) is a cusp form is part of a series of deep
results known as the modularity theorem.

This states, in particular, that there is a surjective morphism (of
curves over Q)

φ : X0(N)→ E

such that φ∗(ω) is a multiple of fE (z) dz.
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We have

2πi
∫ 0

i∞
fE (z) dz = L(E ,1)

= rational multiple of Ω+

In general,

L(E , χ,1) =
τ(χ)

N

N∑
a=1

χ(a)2πi
∫ −a/N

i∞
fE (z) dz
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Modular Forms: Definitions



For k ∈ N0, we have a right action of GL2(Q) on functions f
from the upper half-plane H to C:

f [γ]k (z) := det(γ)k−1(cz + d)−k f (γ(z))

where γ =
(

a b
c d

)
and γ(z) = az+b

cz+d .

For an integer N ≥ 1, we define

Γ(N) := {γ ∈ SL2(Z) : γ ≡
(

1 0
0 1

)
(mod N)}.

A congruence subgroup is a subgroup Γ of SL2(Z) which
contains Γ(N) for some N.

E.g., Γ0(N) (upper triangular modulo N) and Γ1(N) (upper
uni-triangular modulo N) are congruence subgroups.
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The space of weight k modular forms Mk (Γ) is the set of
functions f : H → C such that f [γ]k = f for all γ ∈ Γ and f is
holomorphic on the extended upper half plane H∗ = H ∪ P1(Q)
where we view P1(Q) = Q ∪ {i∞} (the set of cusps).

The space of weight k cusp forms Sk (Γ) is the set of f ∈ Mk (Γ)
which vanish on the cusps.

These are finite dimensional C-vector spaces, and, in fact, for
odd weight k we have Mk (Γ0(N)) = 0.

Note: For k even, dimC Mk (Γ(1) = bk/12c (resp. bk/12c+ 1) if
k ≡ 2 (mod 12) (resp. k 6≡ 2 (mod 12)). Also,
dimC Sk (Γ(1)) = dimC Mk (Γ(1))− 1.
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The nonnormalized Eisenstein series of weight 2k (k > 1) is

G2k (z) =
∑

m,n∈Z
(m,n)6=(0,0)

1
(mz + n)2k

We have G2k ∈ M2k (Γ(1)).

In fact,
M2k (Γ(1)) = S2k (Γ(1))⊕ CG2k

The normalized Eisenstein series of weight 2k (k > 1) is

E2k =
(2k − 1)!

2(2πi)2k G2k = −B2k

4k
+
∞∑

n=1

σ2k−1(n)qn
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For g2
60 = G4, g3

140 = G6, there is an elliptic curve y2 = g(x)

where the cubic g(x) = 4x3 − g2x − g3 has discriminant

16(g3
2 − 27g2

3)

We define the normalized modular discriminant

∆ =
g3

2 − 27g2
3

(2π)12 ∈ S12(Γ(1))

Actually, a modular form of any weight for Γ(1) is in C[G4,G6].
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∆(z) =
∞∑

n=1

τ(n)qn

where τ(n) : N→ Z is Ramanujan’s tau function, which turns
out to be multiplicative, i.e., τ(mn) = τ(m)τ(n) whenever
(m,n) = 1, and satisfies interesting congruences like

τ(n) ≡ σ11(n) (mod 691)

where σ11(n) =
∑

d |n d11.

In fact, ∆(z) = (η(z))24 where

η(z) = q1/12
∞∏

n=1

(1− qn)

is Dedekind’s eta function.
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Consider
h(z) = (η(z)η(11z))2

We have h(z) ∈ S2(Γ0(11)).

Also, note that fE (z) ∈ S2(Γ0(N)) where N = conductor of E .
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Modular Symbols: Weight 2



Note: f [γ]2k = f is equivalent to f (z)(dz)k = f (γ(z))(dγ(z))k .

If f ∈ S2(Γ0(N)), then f (z) dz represents a holomorphic 1-form
on the compact Riemann surface X0(N) = H∗/Γ0(N).

In fact, the genus of X0(N) is g = dimC S2(Γ0(N)).

If N = p ≡ −1 (mod 12) is a prime, then g = (p + 1)/12.

Thus S2(Γ0(11)) = C(η(z)η(11z))2.
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We define the period integrals of f ∈ S2(Γ) for Γ a congruence
subgroup by

I(r , s) := 2πi
∫ s

r
f (z) dz

where r , s ∈ P1(Q) = Q ∪ {i∞}.

The period integrals for f ∈ S2(Γ0(N)) span a lattice Λf in C. So
each f gives an elliptic curve C/Λf . That an elliptic curve E/Q
gives a cusp form fE comes from the modularity theorem.

(Drinfeld-Manin) Each element in ΛfE is of the form

aΩ+ + bΩ−

for some a,b ∈ Q with bounded denominators where Ω− is the
positive imaginary generator of ΛE ∩ iR.
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Let Div0 denote the divisors of degree zero on P1(Q).

We get a map ψf ∈ Hom(Div0,C) given by Z-linearly extending

s − r 7→ I(r , s)

In fact, the Γ-invariance of f (z) dz shows that ψf is in the space
of C-valued modular symbols

SymbΓ(C) := HomΓ(Div0,C)

where Γ acts trivially on C.



Let Div0 denote the divisors of degree zero on P1(Q).

We get a map ψf ∈ Hom(Div0,C) given by Z-linearly extending

s − r 7→ I(r , s)

In fact, the Γ-invariance of f (z) dz shows that ψf is in the space
of C-valued modular symbols

SymbΓ(C) := HomΓ(Div0,C)

where Γ acts trivially on C.



Let Div0 denote the divisors of degree zero on P1(Q).

We get a map ψf ∈ Hom(Div0,C) given by Z-linearly extending

s − r 7→ I(r , s)

In fact, the Γ-invariance of f (z) dz shows that ψf is in the space
of C-valued modular symbols

SymbΓ(C) := HomΓ(Div0,C)

where Γ acts trivially on C.



For Γ = Γ0(N) or Γ1(N), there is an involution ι on SymbΓ(C)
given by

ι(ϕ)(D) = ϕ(
(−1 0

0 1

)
D)

since here
(−1 0

0 1

)
normalizes Γ.

Thus, in this case, each ψf gives two modular symbols ψ+
f , ψ−f

with ψf = ψ+
f + ψ−f .

Also, any ϕ ∈ HomΓ(Div,C) will restrict ϕ|Div0 , but such a ϕ is
just a function which is constant on the cusps P1(Q)/Γ.

Moreover, ψ ∈ SymbΓ(C) is determined by its values on
generators of Div0 as a Z[Γ]-module.
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Every degree zero divisor is the sum of unimodular divisors
[γ] := [b,d ]− [a, c] where γ =

(
a b
c d

)
∈ Γ(1).

This follows from Manin’s continued fraction trick: if pn,qn are
the numerator and denominator (resp.) of the nth convergent in
the continued fraction expansion of some real number,

pn−1qn − pnqn−1 = (−1)n

For example,

[4,7]− [0,1] =

[4,7]− [−1,−2] + [1,2]− [1,1] + [−1,−1]− [−1,0] + [1,0]− [0,−1]

=

[(
−1 4
−2 7

)]
+

[(
1 1
1 2

)]
+

[(
−1 −1
0 −1

)]
+

[(
0 1
−1 0

)]
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In fact, if α, β ∈ Γ(1), then α([β]) = [αβ]. In other words, the
divisor of the product αβ is the divisor obtained by applying α to
the divisor [β] via Möbius transformation.

Therefore, Div0 is generated as a Z[Γ]-module by a set of coset
representatives for Γ in Γ(1).

A modular symbol ψ ∈ SymbΓ(C) is completely determined by
it value on [Γ(1) : Γ] divisors. Note, e.g., that

[Γ(1) : Γ0(N)] = N
∏
p|N

(1 + p−1).
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Hecke Operators on
Modular Forms



Conceptual Definition for Level 1

We can view modular forms f ∈ Mk (Γ(1)) as functions F on
lattices Λ ⊂ C. (Here F (Z + zZ) = f (z).)

Then for each n ∈ N we define

(T (n)F )(Λ) =
∑
Λ′≤Λ

[Λ:Λ′]=n

F (Λ′)



Conceptual Definition for Level 1

We can view modular forms f ∈ Mk (Γ(1)) as functions F on
lattices Λ ⊂ C. (Here F (Z + zZ) = f (z).)

Then for each n ∈ N we define

(T (n)F )(Λ) =
∑
Λ′≤Λ

[Λ:Λ′]=n

F (Λ′)



For each integer n ≥ 1, define Xn ⊆ M2(Z) to be the matrices of
determinant n in Hermite normal form, i.e.,(

a b
0 d

)
with ad = n and d > b ≥ 0

The Hecke operator T (n) acts on Mk (Γ(1)) by

T (n)f =
∑
γ∈Xn

f [γ]k

If n = p is prime,

T (p)f = f
[(

p 0
0 1

)]
k +

p−1∑
a=0

f
[(

1 a
0 p

)]
k
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For any integers m,n ≥ 1,

T (m)T (n) = T (n)T (m)

If (m,n) = 1, then

T (mn) = T (m)T (n)

For a prime p,

T (pn) = T (pn−1)T (p)− pk−1T (pn−2)
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When we have a Fourier series

f =
∞∑

n=0

cnqn,

for q = e2πiz and the Hecke action can be described by

T (n)f =
∞∑

m=0

 ∑
d |(n,m)

dk−1cmn/d2

qm,

so for n = p prime

T (p)f =
∞∑

m=0

(
cmp + pk−1cm/p

)
qm

where cm/p = 0 if p - m. (T (n) preserves Mk (Γ(1)), Sk (Γ(1)).)
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Conceptual Definition for S2(Γ0(N))

The complex points of Y0(N) = H/Γ0(N) are in natural bijection
with pairs (E ,C) where E/C is an elliptic curve and 〈P〉 ≤ E(C)
is cyclic of order N.

The class of a point λ ∈ H corresponds to(
C

Z + λZ
,

(1/N)Z + λZ
Z + λZ

)

When (n,N) = 1 there are two natural maps

π1 : Y0(n · N)→ Y0(N) : (E , 〈Q〉) 7→ (E , 〈Qn〉)
π2 : Y0(n · N)→ Y0(N) : (E , 〈Q〉) 7→ (E/〈QN〉, 〈Q〉/〈QN〉)
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These maps extend uniquely to maps on X0:

X0(n · N)
π1

yyssssssssss
π2

%%KKKKKKKKKK

X0(N) X0(N)

∃action on S2(Γ0(N)) ∼= holomorphic 1-forms on X0(N) given by

T (n)f = : π1∗(π
∗
2(f (z)dz))

and there is a similar definition when (n,N) 6= 1.
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Action for any weight k and level N

We define T (p) for primes p and extend multiplicatively.

If p - N, then T (p) acts on f as before.

If p|N, the we have

T (p)f =

p−1∑
a=0

f
[(

1 a
0 p

)]
k
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Modular Symbols: Weight k



For f ∈ Sk (Γ) with Γ = Γ1(N), we have a Fourier series

f (z) =
∞∑

k=1

cnqn

with q = e2πiz .

The L-function of f is the Dirichlet series (or Mellin transform)

L(f , s) =
∑
n=1

cn

ns

= (2π)sΓ(s)−1
∫ ∞

0
f (it)ts dt

t
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If we change variables to z = it , we get special values of L

2πi
∫ 0

i∞
f (z)z j dz =

j!
(−2πi)j L(f , j + 1)

for 0 ≤ j ≤ k − 2.

We want a target space to encode the period integrals

Ij(r , s) = 2πi
∫ s

r
f (z)z j dz

for the k − 1 values of j ∈ {0,1, . . . , k − 2}.
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Define Vg(C) to be the space of homogeneous polynomials
P(X ,Y ) ∈ C[X ,Y ] of degree g.

For f ∈ Sk (Γ) with a Γ a congruence subgroup, we have a
homomorphism

ψf : Div0 → Vk−2(C)

This is given by Z-linearly extending

s − r 7→ 2πi
∫ s

r
f (z)(zX + Y )k−2 dz
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There is a right action of GL(Q) on Vg(C) given by

(P|γ)(X ,Y ) = P(dX − cY ,−bX + aY )

where γ =
(

a b
c d

)
.

With this action, ψf is in the space of Vk−2(C)-valued modular
symbols

SymbΓ(Vk−2(C)) = HomΓ(Div0,Vk−2(C))

If ϕ ∈ Hom(Div0,Vk−2(C)), then ϕ is a modular symbol if

ϕ(γD)|γ = ϕ(D)

for all D ∈ Div0 and all γ ∈ Γ.
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In fact, the GL2(Q) action on Vk−2(C) was defined so that the
association f 7→ ψf is equivariant:

ψf [γ]k (D) = ψf (D)|γ

We have a right GL2(Q)-action on modular symbols ϕ:

(ϕ|γ)(D) = ϕ(γD)|γ

(Note: ϕ|γ = ϕ for all γ ∈ Γ)
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For a prime p, we define the action of a Hecke operator T (p) on
SymbΓ(Vk−2(C)) via the double coset:

Γ
(

1 0
0 p

)
Γ =

∐
γ∈X

Γγ

Then define

T (p)ϕ =
∑
γ∈X

ϕ|γ

Note: for Γ = Γ0(N) and p - N, this action is

T (p)ϕ = ϕ|
(

p 0
0 1

)
+

p−1∑
a+0

ϕ|
(

1 a
0 p

)
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Eichler-Shimura Theorem

For Γ = Γ1(N), there is an isomorphism

SymbΓ(Vk−2(C)) ∼= Mk (Γ)⊕ Sk (Γ)

which respects the Hecke action on both sides.

Note that Mk (Γ) = Ek (Γ)⊕ Sk (Γ), so there are two copies of the
cusp forms in the modular symbols, which correspond to ψ+

f
and ψ−f obtained from the involution ι =

(−1 0
0 1

)
.

The Eisenstein series Ek (Γ) correspond to those symbols
obtained from taking a Γ-invariant homomorphism on Div and
then restricting to Div0.
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which respects the Hecke action on both sides.

Note that Mk (Γ) = Ek (Γ)⊕ Sk (Γ), so there are two copies of the
cusp forms in the modular symbols, which correspond to ψ+

f
and ψ−f obtained from the involution ι =

(−1 0
0 1

)
.

The Eisenstein series Ek (Γ) correspond to those symbols
obtained from taking a Γ-invariant homomorphism on Div and
then restricting to Div0.
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