Classical Formula for Surfaces

(ida's Formula for Number Fields 000000 00000000 Kida's Argument in a Special Case

A Riemann-Hurwitz Formula for Number Fields

Jordan Schettler

Department of Mathematics University of Arizona

11/25/08

Department of Mathematics University of Arizona

Jordan Schettler

	\frown		nt.	in	
	U	u		IU	

Classical Formula for Surfaces

Kida's Formula for Number Fields

Kida's Argument in a Special Case

Outline

1 Introduction

- 2 Classical Formula for Surfaces
 - Background
 - Statement and Applications

3 Kida's Formula for Number Fields

- Background
- Statement and Applications

4 Kida's Argument in a Special Case

Jordan Schettler

Department of Mathematics University of Arizona

- The well-known Riemann-Hurwitz formula for Riemann surfaces (or more generally function fields) is used in genus computations.
- In the late 1970's, Kida proved an analogous formula for CM-fields which is used to compute Iwasawa invariants.
- I'll discuss/compare both formulas, give examples/uses, and sketch the ideas involved in the proof of Kida's result.

Introduction	Classical Formula for Surfaces	Kida's Formula for Number Fields	Kida's Argument in a Special Case
	000 000000	000000 00000000	

- The well-known Riemann-Hurwitz formula for Riemann surfaces (or more generally function fields) is used in genus computations.
- In the late 1970's, Kida proved an analogous formula for CM-fields which is used to compute Iwasawa invariants.
- I'll discuss/compare both formulas, give examples/uses, and sketch the ideas involved in the proof of Kida's result.

Department of Mathematics University of Arizona

Jordan Schettler

Introduction	Classical Formula for Surfaces	Kida's Formula for Number Fields ০০০০০০ ০০০০০০০০	Kida's Argument in a Special Case

- The well-known Riemann-Hurwitz formula for Riemann surfaces (or more generally function fields) is used in genus computations.
- In the late 1970's, Kida proved an analogous formula for CM-fields which is used to compute Iwasawa invariants.
- I'll discuss/compare both formulas, give examples/uses, and sketch the ideas involved in the proof of Kida's result.

Department of Mathematics University of Arizona

	Classical Formula for Surfaces ●oo ○○○○○○	Kida's Formula for Number Fields ০০০০০০ ০০০০০০০০	Kida's Argument in a Special Case
Background			

Definition

Recall that a <u>Riemann surface</u> R is a connected 1-dimensional complex manifold.

In other words, *R* is a second countable, Hausdorff topological space and \exists charts $\{(U_i, \varphi_i)\}_{i \in I}$ such that

- $\{U_i\}_{i \in I}$ forms an open cover of R
- $\forall i \in I \ \varphi_i : U_i \to \mathbb{C}$ is a homeomorphism onto its image
- $\forall i, j \in I \varphi_i \circ \varphi_i^{-1}$ is holomorphic on $\varphi_j(U_i \cap U_j)$.

	Classical Formula for Surfaces	Kida's Formula for Number Fields ০০০০০০ ০০০০০০০০	Kida's Argument in a Special Case
Background			

Let $f : R_1 \rightarrow R_2$ be a nonconstant holomorphic map between compact Riemann surfaces and fix $p \in R_1$.

 \exists charts $\varphi : U \to \mathbb{C}$ around p and $\psi : V \to \mathbb{C}$ around f(p) s.t.

• $\psi \circ f \circ \varphi^{-1}$ is holomorphic on $\varphi(U \cap f^{-1}(V))$ • wlog $\varphi(p) = 0 = \psi(f(p))$.

	Classical Formula for Surfaces ○○● ○○○○○○	Kida's Formula for Number Fields ০০০০০০ ০০০০০০০০	Kida's Argument in a Special Case
Background			

Remark (continued)

 $\therefore \exists a \text{ disk } |z| < r \text{ on which}$

$$(\psi \circ f \circ \varphi^{-1})(z) = \sum_{n=e(p)}^{\infty} a_n z^n$$

where $a_{e(p)} \neq 0$ and $e(p) \geq 1$ (independent of the charts φ, ψ) is called the <u>ramification index</u> of *f* at *p*. When e(p) > 1, we call *p* a ramification point of *f*.

Jordan Schettler

	Classical Formula for Surfaces	Kida's Formula for Number Fields	Kida's Argument in a Special Case
	000 000000	000000 00000000	
0	Angelianting		

Theorem (Riemann-Hurwitz, late 1800's)

р

With f as above, $\exists d \in \mathbb{N}$ (= degree of f) such that $\forall q \in R_2$

$$\sum_{\in f^{-1}(\{q\})} e(p) = d.$$

Moreover, we have the formula

$$2g_1 - 2 = d(2g_2 - 2) + \sum_{p \in R_1} (e(p) - 1)$$

where for i = 1, 2 the surface R_i has genus g_i (= # of "holes").

Jordan Schettler

Department of Mathematics University of Arizona

	Classical Formula for Surfaces	Kida's Formula for Number Fields 000000 00000000	Kida's Argument in a Special Case
Statement and	Applications		

Example

Consider the Fermat curve

$$F_3 = \{ [x, y, z] \in \mathbb{CP}^2 : x^3 + y^3 + z^3 = 0 \}.$$

Note that F_3 is a compact (:: it's a closed subset of a compact space) Riemann surface and we have a natural mapping

$$f: F_3 \to \mathbb{CP}^1$$

given by

$$[x, y, z] \mapsto [x, y].$$

Jordan Schettler

Department of Mathematics University of Arizona

	Classical Formula for Surfaces	Kida's Formula for Number Fields 000000 00000000	Kida's Argument in a Special Case
Statement and	Applications		

Example (continued)

Fix $[x, y] \in \mathbb{CP}^1$. Then either

1
$$[x, y] \in \{[1, -1], [1, -\omega], [1, -\omega^2]\}$$
 where $\omega = e^{2\pi i/3}$, in which case

$$f^{-1}(\{[x,y]\}) = \{[x,y,0]\},\$$

or

2

$$f^{-1}(\{[x, y]\}) = \{[x, y, -\alpha], [x, y, -\omega\alpha], [x, y, -\omega^2\alpha]\}$$

where $\alpha^3 = x^3 + y^3 \neq 0$.

Department of Mathematics University of Arizona

Jordan Schettler

	Classical Formula for Surfaces	Kida's Formula for Number Fields ০০০০০০ ০০০০০০০০	Kida's Argument in a Special Case
Statement and	Applications		

Example (continued)

 \therefore the degree of f is 3 and \exists exactly 3 ramification points

$$[1, -1, 0], [1, -\omega, 0], [1, -\omega^2, 0],$$

each having ramification index 3.

 $\because \mathbb{CP}^1 \approx \mathbb{S}^2$ has genus 0 the Riemann-Hurwitz formula gives

$$2g-2=3(2\cdot 0-2)+[(3-1)+(3-1)+(3-1)]=0,$$

whence F_3 has genus g = 1.

Jordan Schettler

Department of Mathematics University of Arizona

	$\sim \sim$	\mathbf{n}	5	
	JU	ωı	IU	

Classical Formula for Surfaces

Kida's Formula for Number Fields

Kida's Argument in a Special Case

Statement and Applications

Example (continued)

 \therefore $F_3 \approx \mathbb{T}^2$, so the torus may be cut into three spheres as illustrated below where the ramification points are the intersections of multiple sheets.

Department of Mathematics University of Arizona

	Classical Formula for Surfaces ○○○ ○○○○○●	Kida's Formula for Number Fields ০০০০০০ ০০০০০০০০	Kida's Argument in a Special Case
Statement and	Applications		

More generally, the Riemann-Hurwitz formula implies that the genus g of the Fermat curve

$$F_d := \{ [x, y, z] \in \mathbb{CP}^2 : x^d + y^d + z^d = 0 \}$$

is given by

$$g=\frac{(d-1)(d-2)}{2}$$

Jordan Schettler

Department of Mathematics University of Arizona

Classical Formula for Surfaces	Kida's Formula for Number Fields	Kida's Argun
	00000	

Background

Remark

Assume *E* is a \mathbb{Z}_p -extension of a number field *F* for some prime *p*, i.e. *E*/*F* is Galois and

$$G := \operatorname{Gal}(E/F) \cong \mathbb{Z}_p.$$

The nontrivial closed subgroups of \mathbb{Z}_p are $p^n \mathbb{Z}_p$ for each $n \in \mathbb{N}_0$, so the extensions F_α of F contained in E form a tower

$$F = F_0 \subseteq F_1 \subseteq F_2 \subseteq \ldots \subseteq E$$

such that

$$\forall n \in \mathbb{N}_0 \quad \operatorname{Gal}(F_n/F) \cong \mathbb{Z}_p/p^n \mathbb{Z}_p \cong \mathbb{Z}/p^n \mathbb{Z}.$$

Jordan Schettler

Department of Mathematics University of Arizona

Theorem (Iwasawa's Growth Formula, 1973)

Let E/F be as above. Then $\exists \lambda, \mu, \nu \in \mathbb{Z}$ with $\lambda, \mu \ge 0$ such that the exponent e_n of p occurring in the class number $h(F_n)$ is given by

$$\boldsymbol{e}_{\boldsymbol{n}} = \lambda \boldsymbol{n} + \mu \boldsymbol{p}^{\boldsymbol{n}} + \boldsymbol{\nu}$$

for all sufficiently large n.

Jordan Schettler

Department of Mathematics University of Arizona

	Classical Formula for Surfaces	Kida's Formula for Number Fields	Kida's Argument in a Special Case
Background			

Let E/F be as above. Then the only primes of F which ramify in E/F lie over p, and one such prime must ramify. Moreover, if

 $p \nmid h(F)$

and exactly one prime of F ramifies in E/F, then

 $\forall n \in \mathbb{N}_0 \quad p \nmid h(F_n),$

so

$$\lambda = \mu = \nu = \mathbf{0};$$

in particular, this is always the case for $F = \mathbb{Q}$.

Jordan Schettler

Department of Mathematics University of Arizona

	Classical Formula for Surfaces	Kida's Formula for Number Fields	Kida's Argument in a Special Case
Background			

For given *F* and *p*, there may be infinitely many \mathbb{Z}_p -extensions, but $\exists ! \mathbb{Z}_p$ -extension \mathbb{Q}_{∞} of \mathbb{Q} , so there's a canonical choice

$$\mathsf{F}_\infty:=\mathsf{F}\mathbb{Q}_\infty$$

called the cyclotomic \mathbb{Z}_p -extension of F.

: by taking $E = F_{\infty}$ in the growth formula we may define the <u>lwasawa invariants</u> of *F* as

$$\lambda_{\rho}(F) = \lambda, \ \mu_{\rho}(F) = \mu, \ \nu_{\rho}(F) = \nu.$$

Department of Mathematics University of Arizona

Jordan Schettler

	Classical Formula for Surfaces	Kida's Formula for Number Fields ○○○○○○○ ○○○○○○○○	Kida's Argument in a Special Case
Dealers			

Definition

A <u>CM-field</u> *K* is a totally complex quadratic extension of a totally real number field *K*₊. In other words, $[K : K_+] = 2$, $[K_+ : \mathbb{Q}] < \infty$, and

$$\forall \mathsf{embeddings} \ \iota : K \rightarrowtail \mathbb{C} \quad \mathsf{im}(\iota) \nsubseteq \mathbb{R}$$

while

$$\forall embeddings \ \iota : K_+ \rightarrowtail \mathbb{C} \quad im(\iota) \subseteq \mathbb{R}.$$

Jordan Schettler

Department of Mathematics University of Arizona

	Classical Formula for Surfaces	Kida's Formula for Number Fields 00000 00000000	Kida's Argument in a Special Case
Background			

Given a CM-field *K* and a prime *p*, the exponent e_n^- of *p* occurring in the relative class number $h^-(K_n) = h(K_n)/h(K_{n,+})$ is given by

$$\boldsymbol{e}_{\boldsymbol{n}}^{-} = \lambda_{\boldsymbol{p}}^{-}(\boldsymbol{K})\boldsymbol{n} + \mu_{\boldsymbol{p}}^{-}(\boldsymbol{K})\boldsymbol{p}^{\boldsymbol{n}} + \nu_{\boldsymbol{p}}^{-}(\boldsymbol{K})$$

for all sufficiently large *n* where for $\gamma \in \{\lambda, \mu, \nu\}$ we take

$$\gamma_{p}^{-}(K) := \gamma_{p}(K) - \gamma_{p}(K_{+}).$$

Jordan Schettler

Department of Mathematics University of Arizona

	Classical Formula for Surfaces	Kida's Formula for Number Fields	Kida's Argument in a Special (
		0000000	

Statement and Applications

Theorem (Kida, 1979)

Suppose L/K is a finite *p*-extension of CM-fields with *p* an odd prime & $\mu_p^-(K) = 0$. Then $\mu_p^-(L) = 0$ and we have the formula

$$2\lambda_{p}^{-}(L) - 2\delta = [L_{\infty}:K_{\infty}](2\lambda_{p}^{-}(K) - 2\delta) + \sum_{\mathfrak{P}\in\mathcal{S}(L)}(e(\mathfrak{P}) - 1)$$

where δ is 1 or 0 if $\zeta_p \in K$ or $\zeta_p \notin K$, respectively, $e(\mathfrak{P})$ is the ramification index of \mathfrak{P} in L_{∞}/K_{∞} , and

 $S(L) := \{ \text{prime ideals } \mathfrak{P} \nmid p \text{ in } L_{\infty} : \mathfrak{P} \text{ splits in } L_{\infty,+} \}.$

Jordan Schettler

Department of Mathematics University of Arizona

Classical Formula for Surfaces

Kida's Formula for Number Fields

Statement and Applications

Remark

The hypothesis $\mu_p^-(K) = 0$ holds in many useful contexts.

Theorem (Ferrero-Washington, 1979)

Let F be an abelian number field and p be a prime. Then

$$\mu_p(F)=0.$$

Conjecture (Iwasawa)

Let F be a number field and p be a prime. Then $\mu_p(F) = 0$.

Jordan Schettler

Department of Mathematics University of Arizona

	Classical Formula for Surfaces	Kida's Formula for Number Fields ○○○○○○ ○○●○○○○○	Kida's Argument in a Special Case
Statement and	Applications		

We may be able to replace the relative Iwasawa invariants λ^-, μ^- with λ, μ in Kida's formula, as the following conjecture suggests.

Conjecture (Greenberg)

Let K_+ be a totally real number field and p be a prime. Then

$$\lambda_{\rho}(K_{+}) = \mu_{\rho}(K_{+}) = \mathbf{0}.$$

Jordan Schettler

Department of Mathematics University of Arizona

Classical Formula for Surfaces	Kida's Formula for Numbe
000	000000
	0000000

r Fields

Statement and Applications

Theorem (Iwasawa, 1980)

Suppose L/K is a $\mathbb{Z}/p\mathbb{Z}$ -extension of number fields with p prime, L_{∞}/K_{∞} unramified at every infinite place of K_{∞} , & $\mu_p(K) = 0$. Then $\mu_p(L) = 0$ and we have the formula

$$\lambda_{p}(L) + h_{2} - h_{1} = [L_{\infty} : K_{\infty}](\lambda_{p}(K) + h_{2} - h_{1}) + \sum_{w \nmid p} (e(w) - 1)$$

where w ranges over all non-p-places of L_{∞} , e(w) is the ramification index of w in L_{∞}/K_{∞} , and for i = 1, 2

$$h_i = rank \ of \ H^i(L_{\infty}/K_{\infty}, \mathcal{O}_{L_{\infty}}^{ imes}).$$

Department of Mathematics University of Arizona

Jordan Schettler

Classical Formula for Surfaces

Kida's Formula for Number Fields

Kida's Argument in a Special Case

Statement and Applications

Example

$$\mathbb{Q}(\zeta_{13}) \\ |_{2} \\ \mathbb{Q}(\cos(2\pi/13)) \\ |_{2} \\ F \\ |_{3} \\ \mathbb{Q}$$

Consider the ! field *F* in the tower. Then F/\mathbb{Q} ...

- is totally real
- is Galois
- has $\operatorname{Gal}(F/\mathbb{Q})\cong\mathbb{Z}/3\mathbb{Z}$
- is unramified outside 13
- is totally ramified at 13
- remains prime at 3.

Department of Mathematics University of Arizona

Jordan Schettler

Classical Formula for Surfaces	Kida's Formula for Number Fields	Kida's Argument in a Special Cas
	00000000	

Statement and Applications

Example (continued)

Note that $F(i)/\mathbb{Q}(i)$ is a $\mathbb{Z}/3\mathbb{Z}$ -extension of CM-fields and

 $\lambda_3^-(\mathbb{Q}(i)) = \mu_3^-(\mathbb{Q}(i)) = 0$

 \therefore 3 remains prime in $\mathbb{Q}(i)/\mathbb{Q}$ and $\mathbb{Q}(i)$ has class number 1.

Using Kida's formula with p = 3, $K = \mathbb{Q}(i)$, and L = F(i), gives

$$2\lambda_3^-(L)-2\cdot 0=[L_\infty:K_\infty](2\cdot 0-2\cdot 0)+\sum_{\mathfrak{P}\in\mathcal{S}(L)}(e(\mathfrak{P})-1).$$

Department of Mathematics University of Arizona

Jordan Schettler

Classical Formula for Surfaces	Kida's Formula for Number Fields	
000	000000	
	00000000	

Example (continued)

Statement and Applications

Also, $[L_{\infty}: K_{\infty}] = [L:K] = 3$, so we get

$$\lambda_{3}^{-}(L) = \frac{1}{2} \sum_{\mathfrak{P} \in S(L)} (e(\mathfrak{P}) - 1)$$

= #{\mathcal{P} \in S(L) : e(\mathcal{P}) > 1}
= #{\mathcal{P} rime ideals \mathcal{P} in L_{\infty} : \mathcal{P}|13}
= 2

Jordan Schettler

Department of Mathematics University of Arizona

	Classical Formula for Surfaces	Kida's Formula for Number Fields ○○○○○ ○○○○○○●	Kida's Argument in a Special Cas
Statement and	Applications		

In fact, using a more general construction, Kida's formula can be used to prove the following result.

Theorem (Fujii-Ohgi-Ozaki, 2004)

Let $p \in \{3,5\}$ and $n \in \mathbb{N}_0$. Then $\exists CM$ -field L such that $\mu_p(L) = \mu_p^-(L) = 0$ and

$$\lambda_p(L) = \lambda_p^-(L) = n.$$

Department of Mathematics University of Arizona

Jordan Schettler

Introduction

Classical Formula for Surfaces

Kida's Formula for Number Fields

Theorem (Special Case)

Suppose L/K is a $\mathbb{Z}/p\mathbb{Z}$ -extension of CM-fields with p an odd prime & $\mu_p^-(K) = 0$ such that

■
$$[L_{\infty} : K_{\infty}] = p$$

■ ∃prime ideal $\mathfrak{Q} \nmid p$ in L which ramifies in L/K.

Then $\mu_p^-(L) = 0$ and we have the formula

$$\lambda_{p}^{-}(L) = p\lambda_{p}^{-}(K) + (p-1)(s_{\infty} - \delta)$$

where δ is as above and $2s_{\infty} = \#\{\mathfrak{P} \in S(L) : e(\mathfrak{P}) > 1\}$.

Department of Mathematics University of Arizona

Jordan Schettler

Classical Formula for Surfaces	Kida's Formula for Number Fields	Kida's Argument in a Special Case
000	000000	

Sketch.

 $\forall n \in \mathbb{N}_0 \ L_{n+1}/K_n$ is a type (p, p)-extension, so $\exists p + 1$ proper intermediate fields $L_{n,i}$. The analytic class number formula \Rightarrow

$$\frac{\#A^{-}(L_n)}{\#A^{-}(K_n)} = \prod_{i=0}^{p} \frac{\#A^{-}(L_{n,i})}{\#A^{-}(K_n)}$$

where $A(F) \cong A^{-}(F) \oplus A(F_{+})$ is the Sylow-*p* subgroup of the class group Cl(F).

Jordan Schettler

Department of Mathematics University of Arizona

Classical Formula for Surfaces

(ida's Formula for Number Fields 000000 00000000

Sketch Continued.

•
$$\mu_p^-(K) = 0 \Rightarrow \mu_p^-(L) = 0$$
 and for $F = K, L$

$$\lambda_{\rho}^{-}(F) = \log_{\rho}(\#A^{-}(F_{n+1})/\#A^{-}(F_{n})) = d^{(\rho)}(A^{-}(F_{n}))$$

for sufficiently large *n* where $d^{(p)}(X) = \dim_{\mathbb{F}_p}(X/pX)$.

• (*p* odd and $\mathfrak{Q} \nmid p$ ramified in L/K) \Rightarrow

 $A^{-}(K_n), A^{-}(L_{n,i})$ naturally embed into $A^{-}(L_{n+1})$

Jordan Schettler

Department of Mathematics University of Arizona

roo	luoti	
 1111		

Sketch Continued.

The above two facts can be used to show

$$d^{(p)}(\mathbf{A}^{-}(L_{n,i})^{\mathbf{G}_{n,i}}) = \lambda^{-}(\mathbf{K}) + \mathbf{s}_{n} - \delta$$

for sufficiently large *n* where $G_{n,i} = \text{Gal}(L_{n,i}/K_n)$ and

 $2s_n = \#\{\mathfrak{P} \nmid p \text{ in } L_n : \text{ramifies in } L_n/K_n, \text{ splits in } L_n/L_{n,+}\}.$

Jordan Schettler

Department of Mathematics University of Arizona

Introduction	Introduction			
	minouucion	Intro	dulotic	٦n
		IIIII U	uuciii	211

Sketch Continued.

Now $L_n = L_{n,j}$, $K_{n+1} = L_{n,k}$ for some j, k, so for large n

$$\begin{array}{lll} \lambda_{p}^{-}(L) &=& d^{(p)}(A^{-}(L_{n})) \\ &\leq& (p-1)d^{(p)}(A^{-}(L_{n})^{G_{n,j}}) + d^{(p)}(A^{-}(K_{n})) \\ &=& (p-1)(\lambda^{-}(K) + s_{n} - \delta) + \lambda^{-}(K) \\ &=& p\lambda^{-}(K) + (p-1)(s_{\infty} - \delta) \end{array}$$

Jordan Schettler

Department of Mathematics University of Arizona

Classical Formula for Surfaces

Kida's Formula for Number Fields

Sketch Continued.

and

$$\begin{split} \lambda_{p}^{-}(L) &= \lambda^{-}(K) + \sum_{i \neq j, k} \log_{p} \left(\# A^{-}(L_{n,i}) / \# A^{-}(K_{n}) \right) \\ &\geq \lambda^{-}(K) + \sum_{i \neq j, k} d^{(p)} (A^{-}(L_{n,i})^{G_{n,i}}) \\ &= \lambda^{-}(K) + (p-1)(\lambda^{-}(K) + s_{n} - \delta) \\ &= p\lambda^{-}(K) + (p-1)(s_{\infty} - \delta). \end{split}$$

Department of Mathematics University of Arizona

Jordan Schettler