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Abstract. Lehmer’s totient problem consists of determining the set of positive
integers n such that ϕ(n)|n−1 where ϕ is Euler’s totient function. It is not obvious
whether there are any composite n satisfying this divisibility condition; in fact, any
such composite n is a Carmichael number (although every known Carmichael num-
ber doesn’t actually have this property). We will generalize the above divisibility
condition (with the cardinality [when finite] of the group of units in a quotient
ring playing the role of ϕ(n)), construct a reasonable notion of Carmichael num-
bers in a PID and use a pair of handy short exact sequences to show how similar
statements to those above follow in more generality. Also, we’ll pick up a couple
of generalizations for classical identities involving ϕ along the way. Included will
be a generalization of the work of Korselt and an extension of the work of Alford,
Granville and Pomerance.

1. Introduction

Euler’s totient function ϕ is defined on Z+ by taking ϕ(n) to be the number of
positive integers less than or equal to and relatively prime to n. Lehmer’s totient
problem consists of determining the set of n such that ϕ(n)|n − 1. Let P denote
the set of primes in Z+. It is clear that ϕ(p) = p − 1|p − 1 for all p ∈ P and that
ϕ(1) = 1|0 = 1 − 1; however, it is not obvious whether there are any composite n
satisfying this divisibility condition. It can be shown that

ϕ(n) = n
∏
p|n
p∈P

(1− p−1)

for all n ∈ Z+. Define K := Z+\({1} ∪ P ) and L := {n ∈ K : ϕ(n)|n − 1}. Using
the product formula, one may easily deduce the following facts.

Fact 1.1. If n ∈ L, then
(1) n ∈ K is squarefree, and
(2) p|n ⇒ p− 1|n− 1 for all p ∈ P .

Having these necessary conditions, one is lead to ask if there are any squarefree,
composite n ∈ Z+ with p − 1|n − 1 for all primes p dividing n. Indeed, there
are n having these properties, such integers being Carmichael numbers. More
formally, a Fermat pseudoprime to base a ∈ Z is an integer n ∈ K such that
an ≡ a(mod n); we then define a Carmichael number as a positive integer which is
a Fermat pseudoprime to every integer base. Let C denote the set of Carmichael
numbers. In 1899, Korselt established the following characterization of C.
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Fact 1.2. n ∈ C ⇔ n ∈ K is squarefree, and p|n ⇒ p− 1|n− 1 for all p ∈ P .

The inclusion L ⊆ C follows immediately from 1.1 and 1.2, so that if C were fi-
nite, then L would be finite; however, it has been shown (in [1]) by Alford, Granville,
and Pomerance, that there are, in fact, infinitely many Carmichael numbers. On
the other hand, there are Carmichael numbers n such that n 6∈ L (actually, this is
true of every known Carmichael number), so the above containment is proper. For
example, 1729 = 7 · 13 · 19 is a Carmichael number by the Korselt criterion since it
is clearly squarefree, composite, and 6, 12, 18|1728, but ϕ(1729) = 6 ·12 ·18 = 24 ·34

does not divide 26 · 33 = 1728, so 1729 6∈ L.
Next we seek a generalization of Lehmer’s totient problem and the notion of

Carmichael numbers in a PID. We denote the sets of units, primes and (non-zero)
zero divisors, in a ring Q (with identity) by U(Q), P (Q) and Z(Q), respectively;
additionally, we define KQ := Q\({0} ∪U(Q) ∪ P (Q)). Throughout, we let R be a
PID.

2. A Few Preliminaries and Observations

Fact 2.1. If r ∈ R, then
(1) R/〈r〉 is the disjoint union {〈r〉} ∪ U(R/〈r〉) ∪ Z(R/〈r〉),
(2) r 6∈ U(R) ⇒ U(R/〈r〉) = {s + 〈r〉 ∈ R/〈r〉 : gcd{s, r} = 1}, and
(3) r 6= 0 ⇒ Z(R/〈r〉) = {z + 〈r〉 ∈ R/〈r〉 : 〈r〉 ⊂ 〈gcd{z, r}〉 ⊂ R}.

Theorem 2.2. Let 0 6= r ∈ R and choose a set D of proper divisors of r (i.e.,
divisors of r which are neither units nor associates of r) such that every proper
divisor of r is the associate of some unique element in D. Then the mapping

Φ :
⋃

d∈D

U(R/〈d〉) → Z(R/〈r〉) : e + 〈d〉 7→ e
r

d
+ 〈r〉

is a bijection.

Proof. First, if e1 + 〈d1〉 = e2 + 〈d2〉 ∈ Dom(Φ), then wlog d1 = d2 ∈ D since
the union is disjoint and associates in D are equal, so that e1 − e2 = qd1 for some
q ∈ R, and hence e1r/d1 − e2r/d2 = qr, giving Φ(e1 + 〈d1〉) = Φ(e2 + 〈d2〉); thus
Φ is well-defined. Secondly, if e + 〈d〉 ∈ Dom(Φ) with d ∈ D, then r/d is a gcd of
{er/d, r} since gcd{e, d} = 1 by 2 in 2.1, but 〈r〉 ⊂ 〈d〉 ⊂ R, so that 〈r〉 ⊂ 〈r/d〉 =
〈gcd{er/d, r}〉 ⊂ R, and hence Φ(e + 〈d〉) ∈ Z(R/〈r〉) by 3 in 2.1; thus Φ is into.
Next, if z + 〈r〉 ∈ Z(R/〈r〉), then we may choose a gcd g of {z, r} with r/d ∈ D,
so that by writing z = eg for some e ∈ R, we get 1 = gcd{z/g, r/g} = gcd{e, r/g}
while 〈r〉 ⊂ 〈gcd{z, r}〉 = 〈g〉 ⊂ R by 3 in 2.1, and hence 〈r〉 ⊂ 〈r/g〉 ⊂ R,
giving e + 〈r/g〉 ∈ Dom(Φ) with Φ(e + 〈r/g〉) = er/(r/g) + 〈r〉 = z + 〈r〉; thus
Φ is surjective. Finally, if Φ(e1 + 〈d1〉) = Φ(e2 + 〈d2〉) with d1, d2 ∈ D, then
e1r/d1− e2r/d2 = qr for some q ∈ R, so that e1d2− e2d1 = qd1d2, and hence d1|d2

and d2|d1 since gcd{e1, d1} = 1 = gcd{e2, d2} by 2 in 2.1, giving d1 = d2, which
shows e1 − e2 = qd1, so e1 + 〈d1〉 = e2 + 〈d2〉; thus Φ is injective. Therefore Φ is a
bijection. �

Note that if r ∈ R and R/〈r〉 is finite (as we shall later assume for r 6= 0), then
〈r〉 ⊂ 〈d〉 ⊂ R ⇒ |R/〈r〉| ≥ |R/〈d〉| ≥ |U(R/〈d〉)|, so that∑
〈r〉⊂〈d〉⊂R

|U(R/〈d〉)| = |Z(R/〈r〉)| = |R/〈r〉\({〈r〉}∪U(R/〈r〉))| = |R/〈r〉|−|U(R/〈r〉)|−1
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by 2.2 and 1 in 2.1. In this way, 2.2 generalizes the identity∑
d|n

ϕ(d) = n

for each n ∈ Z+ since the above comments show that∑
d|n

1 6=d6=n

ϕ(d) =
∑

nZ⊂dZ⊂Z
|U(Z/dZ)| = |Z/nZ| − |U(Z/nZ)| − 1 = n− ϕ(n)− ϕ(1).

In 1932, Lehmer showed that any n ∈ L must have at least 7 distinct prime
factors, but this bound has since been improved to 14 (see [3]); we will use 2.2 to
prove a similar statement in F [x] where F is a finite field.

3. Useful Homomorphisms

Next, we review a series of mappings and decomposition properties (proofs some
of these can found, for example, in [4]) which will be used to prove 1.1, 1.2, and
the product formula for ϕ, in a more general setting.

Fact 3.1. If n, α1, α2, . . . , αn ∈ Z+, and p1, p2, . . . , pn ∈ P (R) are pairwise non-
associate, then

(1) R/〈pα1
1 pα2

2 · · · pαn
n 〉 ∼= R/〈pα1

1 〉 ⊕R/〈pα2
2 〉 ⊕ · · · ⊕R/〈pαn

n 〉, and
(2) U(R/〈pα1

1 pα2
2 · · · pαn

n 〉) ∼= U(R/〈pα1
1 〉)⊕ U(R/〈pα2

2 〉)⊕ · · · ⊕ U(R/〈pαn
n 〉).

Fact 3.2. If r ∈ R and α ∈ Z+, then

β1 : R/〈r〉 → R/〈rα〉 : e + 〈r〉 7→ erα−1 + 〈rα〉

is a group monomorphism, and if, in addition, r 6∈ U(R) and α > 1, then

β2 : R/〈r〉 → U(R/〈rα〉) : e + 〈r〉 7→ 1 + erα−1 + 〈rα〉

is a group monomorphism.

Fact 3.3. If d, r ∈ R and d|r, then

γ1 : R/〈r〉 → R/〈d〉 : e + 〈r〉 7→ e + 〈d〉

is a group epimorphism, and if, in addition, d 6∈ U(R), then

γ2 : U(R/〈r〉) → U(R/〈d〉) : e + 〈r〉 7→ e + 〈d〉

is a group epimorphism.

Fact 3.4. If r ∈ R and α ∈ Z+, then

0 −→ R/〈r〉 β1−→ R/〈rα〉 γ1−→ R/〈rα−1〉 −→ 0

is a short exact sequence, and if, in addition, r 6∈ U(R) and α > 1, then

0 −→ R/〈r〉 β2−→ U(R/〈rα〉) γ2−→ U(R/〈rα−1〉) −→ 0

is a short exact sequence.
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4. Generalizations of L and C

Now we are ready to restate Lehmers totient problem in R. We know that
Z/aZ is finite for each a ∈ Z\{0}, and we analogously suppose that R/〈r〉 is finite
whenever 0 6= r ∈ R. If n ∈ K, then taking R = Z and r = n in 2.1, we get
n ∈ L ⇔ |U(Z/nZ)| = ϕ(n)|n − 1 = |Z/nZ| − 1 = |U(Z/nZ)| + |Z(Z/nZ)| ⇔
|U(Z/nZ)| | |Z(Z/nZ)|. In this way, we are motivated to make the definition
LR := {r ∈ KR : |U(R/〈r〉)| | |Z(R/〈r〉)|}; we remove the primes in R from
consideration since (as in Z) such elements provide trivial satisfaction of the divis-
ibility condition. We being by generalizing the product formula for ϕ stated in the
introduction.

Theorem 4.1. Let 0 6= r ∈ R\U(R). Then

|U(R/〈r〉)| = |R/〈r〉|
∏

〈r〉⊆〈p〉
p∈P (R)

(
1− |R/〈p〉|−1

)
.

Proof. Let p ∈ P (R). We claim that |U(R/〈pα〉)| = |R/〈pα〉|(1− |R/〈p〉|−1) for all
α ∈ Z+, which we prove by induction. If α = 1, then |U(R/〈pα〉)| = |U(R/〈p〉)| =
|R/〈p〉| − 1 = |R/〈pα〉|(1 − |R/〈p〉|−1) since R/〈p〉 is a field. Now suppose α > 1
and |U(R/〈pα−1〉)| = |R/〈pα−1〉|(1− |R/〈p〉|−1). Then setting r = p in 3.4, we get

|U(R/〈pα〉)| = |Ker(γ2)||U(R/〈pα−1〉)| = |Im(β2)||U(R/〈pα−1〉)|
= |R/〈p〉||U(R/〈pα−1〉)| = |R/〈p〉||R/〈pα−1〉|(1− |R/〈p〉|−1)
= |R/〈p〉|(|R/〈pα〉|/|Ker(γ1)|)(1− |R/〈p〉|−1) = |R/〈p〉|(|R/〈pα〉|/|Im(β1)|)(1− |R/〈p〉|−1)
= |R/〈p〉|(|R/〈pα〉|/|R/〈p〉|)(1− |R/〈p〉|−1) = |R/〈pα〉|(1− |R/〈p〉|−1).

Now write r = upα1
1 pα2

2 · · · pαn
n where u ∈ U(R), n, α1, α2, . . . , αn ∈ Z+, and

p1, p2, . . . , pn ∈ P (R) are pairwise non-associate. Then using 3.1, we have

|U(R/〈r〉)| = |U(R/〈pα1
1 〉)| · · · |U(R/〈pαn

n 〉)|
= |R/〈pα1

1 〉|(1− |R/〈p1〉|−1) · · · |R/〈pαn
n 〉|(1− |R/〈pn〉|−1)

= |R/〈r〉|
∏

〈r〉⊆〈p〉
p∈P (R)

(
1− |R/〈p〉|−1

)
.

�

We now attempt to justify our definition of LR with the following theorem, which
is a generalization of 1.1.

Theorem 4.2. If r ∈ LR, then
(1) r ∈ KR is squarefree, and
(2) p|r ⇒ |R/〈p〉| − 1 | |R/〈r〉| − 1 for all p ∈ P (R).

Proof. Let r ∈ LR, so that, by definition, r ∈ Kr. Suppose r is not squarefree.
Then there is a p ∈ P (R) such that pα|r with α > 1. Hence |R/〈p〉| | |U(R/〈pα〉)|
by 3.2, but |U(R/〈pα〉)| | |U(R/〈r〉)| by 3.1 and also |U(R/〈r〉)| | |Z(R/〈r〉)| =
|R/〈r〉|−1−|U(R〈r〉)| by assumption and 1 in 2.1, so |R/〈p〉| | |R/〈r〉|−1. On the
other hand, |R/〈p〉| | |R/〈pα〉| | |R/〈r〉| by 3.2 and 3.1, which is a contradiction
since |R/〈p〉| > 1 because p ∈ P (R). Next, if p ∈ P (R) and p|r, then |R/〈p〉| − 1 =
|U(R/〈p〉)| | |U(R/〈r〉)| | |R/〈r〉|−1 by 3.1 and assumption since r is squarefree.

�
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Next we prove a statement similar to the Korselt criterion in 1.2. First, for
each a ∈ R we define aFR := {r ∈ KR : r|a|R/〈r〉| − a}, so that for a ∈ Z, aFZ
is the set of Fermat pseudoprimes to base a along with their negatives. Also, we
once again exclude units and primes from consideration. It is then fitting to define
CR := {r ∈ R : r ∈ aFR ∀a ∈ R} as an analog of C.

Theorem 4.3. r ∈ CR ⇔ r ∈ KR is squarefree, and p|r ⇒ |R/〈p〉|−1 | |R/〈r〉|−1
for all p ∈ P (R).

Proof. (⇒) First, suppose r ∈ CR, so that r ∈ KR since CR ⊆ 1FR ⊆ KR. If
p ∈ P (R) and p|r, then r|p|R/〈r〉| − p while |R/〈r〉| > 1 since r 6∈ U(R), so p2 does
not divide r, giving that r is squarefree; also, U(R/〈p〉) is cyclic since p ∈ P (R),
so |a + 〈p〉| = |U(R/〈p〉)| = |R/〈p〉| − 1 for some a + 〈p〉 ∈ U(R/〈p〉), but p|r and
r|a|R/〈r〉| − a with gcd{a, p} = 1, giving p|a|R/〈r〉|−1 − 1, giving a|R/〈r〉|−1 + 〈p〉 =
1 + 〈p〉, so |R/〈p〉| − 1 = |a + 〈p〉| | |R/〈r〉| − 1. (⇐) Conversely, suppose r ∈ KR

is squarefree, and p|r ⇒ |R/〈p〉| − 1 | |R/〈r〉| − 1 for all p ∈ P (R). Let a ∈ R and
p ∈ P (R) with p|r. Then |R/〈r〉|− 1 = q(|R/〈p〉|− 1) for some q ∈ R. If p does not
divide a, then a+ 〈p〉 ∈ U(R/〈p〉), so a|R/〈r〉|−1 + 〈p〉 = aq(|R/〈p〉|−1) + 〈p〉 = 1+ 〈p〉,
giving p|a|R/〈r〉|−1 − 1 and p|a|R/〈r〉| − a; also, if p|a, then clearly p|a|R/〈r〉| − a. In
either case, each prime divisor of r divides a|R/〈r〉| − a, so r|a|R/〈r〉| − a since r is
squarefree. Thus r ∈ aFR for all a ∈ R, so r ∈ CR. �

Corollary 4.4. LR ⊆ CR.

Proof. If r ∈ LR, then r ∈ KR, but r is squarefree and |R/〈p〉| − 1 | |R/〈r〉| − 1
for all primes p dividing r by 4.2, so r ∈ CR by 4.3. �

5. A Couple of Examples

Using the above results, we now examine LR and CR for some specific cases.
First, let F be a field, so that F [x] is a PID. Now let f(x) ∈ F [x] with n =
deg(f(x)) > 0. Then the set {1 + 〈f(x)〉, x + 〈f(x)〉, . . . , xn−1 + 〈f(x)〉} forms
a basis of F [x]/〈f(x)〉 as an F -vector space. Hence F [x]/〈f(x)〉 is finite for all
nonzero f(x) ⇔ F is finite. Accordingly, we now assume that F is finite.

Theorem 5.1. Suppose f(x) ∈ LF [x] and p(x) ∈ P (F [x]). Then p(x)|f(x) ⇒
deg(p(x))|deg(f(x)).

Proof. Suppose p(x)|f(x), and let m = deg(p(x)), n = deg(f(x)) and q = |F |. Then
qm−1 = |F [x]/〈p(x)〉|−1 | |F [x]/〈f(x)〉|−1 = qn−1, so qm−1 = (qm−1, qn−1) =
q(m,n) − 1, giving m = (m,n), and hence deg(p(x)) = m|n = deg(f(x)). �

Now we use 2.2 to obtain a lower bound for the number of distinct prime factors
of elements of LF [x].

Theorem 5.2. Suppose f(x) ∈ LF [x]. Then f(x) has at least dlog2(|F | + 1)e
distinct prime factors.

Proof. First, f(x) 6∈ U(F [x]) and f(x) 6∈ P (F [x]), so using 2.2 gives

1 ≤ |Z(F [x]/〈f(x)〉)|
|U(F [x]/〈f(x)〉)|

=
∑

〈f(x)〉⊂〈d(x)〉⊂F [x]

|U(F [x]/〈d(x)〉)|
|U(F [x]/〈f(x)〉)|

.
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Now let d(x) be a proper divisor of f(x). Then f(x)/d(x) 6∈ U(F [x]), so p(x)|f(x)/d(x)
for some p(x) ∈ P (F [x]). Hence

|F |deg(p(x)) − 1 = |U(F [x]/〈p(x)〉)|
∣∣∣ |U(F [x]/〈f(x)/d(x)〉)| = |U(F [x]/〈f(x)〉)|

|U(F [x]/〈d(x)〉)|
since f(x) is squarefree by 4.3. Now deg(p(x)) > 0 since p(x) is prime, so

|U(F [x]/〈d(x)〉)|
|U(F [x]/〈f(x)〉)|

≤ 1
|F |deg(p(x)) − 1

≤ 1
|F | − 1

,

but the number of proper divisors (up to associate) of f(x) is 2k − 2 where k is the
number of distinct prime factors of f(x) again since f(x) is squarefree, so summing
over the last inequality gives

1 ≤
∑

〈f(x)〉⊂〈d(x)〉⊂F [x]

1
|F | − 1

=
2k − 2
|F | − 1

,

and hence log2(|F |+ 1) = log2(|F | − 1 + 2) ≤ log2(2k − 2 + 2) = k. �

As mentioned above, it is unknown whether or not L = ∅; however, the following
simple, yet important, example demonstrates that LR isn’t always empty.

Theorem 5.3. There exists a PID R such that LR 6= ∅.

Proof. Consider f(x) = x(x + 1) ∈ Z/2Z[x]. Now f(x) is clearly nonzero, nonunit,
nonprime and of degree 2, while x, x + 1 ∈ P (Z/2Z[x]) are nonassociate and of
degree 1. Hence, using 4.1, |U(Z/2Z[x]/〈f(x)〉)| = 22(1− 1/2)(1− 1/2) = 1 divides
every positive integer, so f(x) ∈ LZ/2Z[x]. �

We now turn our attention to CF [x] and immediately obtain the following corol-
lary of 4.3, which shows, in particular, that CF [x] is always nonempty.

Corollary 5.4. Let f(x) ∈ F [x] be a product of two or more pairwise nonassociate
linear factors. Then f(x) ∈ CF [x].

Proof. Write f(x) = u(x− a1) · · · (x− ak) for some u, a1, . . . , ak ∈ F where the ais
are distinct and k > 1. For each i ∈ {1, . . . , k}, x−ai ∈ P (F [x]) with deg(x−ai) =
1, so |F [x]/〈x − ai〉| − 1 = |F | − 1 | |F |k − 1 = |F [x]/〈f(x)〉| − 1. Therefore
f(x) ∈ CF [x] by 4.3 since f(x) ∈ KF [x] is squarefree by construction. �

Next, we consider the Gaussian integers Z[i] := {a + bi : a, b ∈ Z}. First, Z[i]
is clearly a subring (with 1) of the field C of complex numbers, so that Z[i] is an
integral domain. Also, the square modulus is a Euclidean norm on Z[i], so Z[i] is
a Euclidean domain, and hence a PID. Also, if 0 6= w ∈ Z[i], then there are finitely
many lattice points in the open disk centered at the origin with radius |w| in the
complex plane, so Z[i]/〈w〉 is finite. Next, we recall a few statements about Z[i].

Fact 5.5. U(Z[i]) = {1,−1, i,−i}.

Fact 5.6. P (Z[i]) is the disjoint union of the sets {a : |a| ∈ P ∧ a ≡ 3 (mod 4)},
{bi : |b| ∈ P ∧ b ≡ 3 (mod 4)} and {a + ib ∈ Z[i]\(Z ∪ Zi) : a2 + b2 ∈ P}.

Fact 5.7. |Z[i]/〈n〉| = n2 ∀n ∈ Z+.

It was commented above that C is infinite (see [1]). We now show that the
corresponding statement holds in Z[i]. We make use of some elementary number
theory.
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Theorem 5.8. CZ[i] is infinite.

Proof. By Dirichlet’s theorem on primes in arithmetic progression (or by a simpler
argument with a weaker statement), we know that there are infinitely many primes
in Z+ of the form 4n + 1. We claim that each such prime is in CZ[i]. Let p =
4n + 1 ∈ P ⊆ Z[i], so that p is nonzero, nonunit by 5.5 and nonprime by 5.6 since
|p| = 4n + 1 ≡ 1 (mod 4). Also, by Fermat’s theorem, we know that p = a2 + b2 =
(a + bi)(a − bi) for some a, b ∈ Z+, but then a + bi, a − bi ∈ P (Z[i]) again by 5.6.
It cannot be the case that a = b since otherwise a|p and a = 1 because a < p with
p = 1 + 1 = 2 not of the required form. On the other hand, the set of associates of
a+bi is, by 5.5, exactly {a+bi,−a−bi,−b+ai, b−ai}, so if a−bi were an associate of
a+bi, then a−bi = b−ai since b−ai is the only associate of a+bi with a positive real
part and a negative imaginary part because a, b > 0, but this is a contradiction since
a 6= b. Thus, p is squarefree in Z[i], so p2 = |Z[i]/〈p〉| = |Z[i]/〈a + bi〉||Z[i]/〈a− bi〉|
by 5.7 and 3.1, which gives |Z[i]/〈a + bi〉| = p = |Z[i]/〈a − bi〉| since Z[i]/〈a + bi〉
and Z[i]/〈a − bi〉 are nontrivial and p is prime. Therefore p ∈ CZ[i] by 4.3 since
|Z[i]/〈a± bi〉| − 1 = p− 1|(p + 1)(p− 1) = p2 − 1 = |Z[i]/〈p〉| − 1. �
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