LEHMER’S TOTIENT PROBLEM AND CARMICHAEL
NUMBERS IN A PID

JORDAN SCHETTLER

Abstract. Lehmer’s totient problem consists of determining the set of positive
integers n such that ¢(n)|n—1 where ¢ is Euler’s totient function. It is not obvious
whether there are any composite n satisfying this divisibility condition; in fact, any
such composite n is a Carmichael number (although every known Carmichael num-
ber doesn’t actually have this property). We will generalize the above divisibility
condition (with the cardinality [when finite] of the group of units in a quotient
ring playing the role of ¢(n)), construct a reasonable notion of Carmichael num-
bers in a PID and use a pair of handy short exact sequences to show how similar
statements to those above follow in more generality. Also, we’ll pick up a couple
of generalizations for classical identities involving ¢ along the way. Included will
be a generalization of the work of Korselt and an extension of the work of Alford,
Granville and Pomerance.

1. INTRODUCTION

Euler’s totient function ¢ is defined on ZT by taking ¢(n) to be the number of
positive integers less than or equal to and relatively prime to n. Lehmer’s totient
problem consists of determining the set of n such that ¢(n)|n — 1. Let P denote
the set of primes in ZT. It is clear that o(p) = p — 1|p — 1 for all p € P and that
©(1) = 1|0 = 1 — 1; however, it is not obvious whether there are any composite n
satisfying this divisibility condition. It can be shown that

pn) =n ][ -p"
pln

peP

for all n € Z*. Define K := ZT\({1} UP) and L := {n € K : p(n)|n — 1}. Using
the product formula, one may easily deduce the following facts.

Fact 1.1. If n € L, then

(1) n € K is squarefree, and
(2) pln=p—1n—1 for allp € P.

Having these necessary conditions, one is lead to ask if there are any squarefree,
composite n € ZT with p — 1jn — 1 for all primes p dividing n. Indeed, there
are n having these properties, such integers being Carmichael numbers. More
formally, a Fermat pseudoprime to base a € Z is an integer n € K such that
a™ = a(mod n); we then define a Carmichael number as a positive integer which is
a Fermat pseudoprime to every integer base. Let C' denote the set of Carmichael
numbers. In 1899, Korselt established the following characterization of C.
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Fact 1.2. n € C & n € K is squarefree, and pln = p— 1jn — 1 for all p € P.

The inclusion L C C follows immediately from 1.1 and 1.2, so that if C' were fi-
nite, then L would be finite; however, it has been shown (in [1]) by Alford, Granville,
and Pomerance, that there are, in fact, infinitely many Carmichael numbers. On
the other hand, there are Carmichael numbers n such that n ¢ L (actually, this is
true of every known Carmichael number), so the above containment is proper. For
example, 1729 = 7-13-19 is a Carmichael number by the Korselt criterion since it
is clearly squarefree, composite, and 6,12, 18]1728, but ¢(1729) = 6-12-18 = 2+.3%
does not divide 2° - 33 = 1728, so 1729 ¢ L.

Next we seek a generalization of Lehmer’s totient problem and the notion of
Carmichael numbers in a PID. We denote the sets of units, primes and (non-zero)
zero divisors, in a ring @ (with identity) by U(Q), P(Q) and Z(Q), respectively;
additionally, we define Kg := Q\({0} UU(Q) U P(Q)). Throughout, we let R be a
PID.

2. A FEW PRELIMINARIES AND OBSERVATIONS

Fact 2.1. Ifr € R, then
(1) R/(r) is the disjoint union {(r)} UU(R/(r)) U Z(R/{r)),
(2) r¢U(R)=U(R/(r)) ={s+ (r) € R/{r) : ged{s,r} =1}, and
(3) r#0=Z(R/(r)) ={z+ (r) € R/{r) : {r) C (ged{z,7}) C R}.

Theorem 2.2. Let 0 # r € R and choose a set D of proper divisors of r (i.e.,
divisors of v which are neither units nor associates of r) such that every proper
divisor of v is the associate of some unique element in D. Then the mapping

@: |J UR/(d) = Z(R/(r)) s e+ (d) = e+ (1)
deD
is a bijection.

Proof. First, if e + (d1) = ez + (d2) € Dom(®), then wlog di = dy € D since
the union is disjoint and associates in D are equal, so that e; — es = qd; for some
g € R, and hence eyr/dy — ear/ds = qr, giving ®(eq + (d1)) = P(ezx + (da)); thus
® is well-defined. Secondly, if e 4+ (d) € Dom(®) with d € D, then r/d is a ged of
{er/d,r} since gcd{e,d} =1 by 2 in 2.1, but (r) C (d) C R, so that (r) C (r/d) =
(ged{er/d,r}) C R, and hence ®(e + (d)) € Z(R/(r)) by 3 in 2.1; thus @ is into.
Next, if z + (r) € Z(R/(r)), then we may choose a ged g of {z,r} with r/d € D,
so that by writing z = eg for some e € R, we get 1 = ged{z/g,r/g} = ged{e,r/g}
while (r) C (ged{z,7}) = (¢9) € R by 3 in 2.1, and hence (r) C (r/g) C R,
giving e + (r/g) € Dom(®) with ®(e + (r/g)) = er/(r/g) + (r) = z + (r); thus
® is surjective. Finally, if ®(e; + (d1)) = P(ez + (d2)) with di,d2 € D, then
e1r/dy — ear/ds = qr for some g € R, so that ejds — ead; = qdids, and hence d; |da
and da|dy since ged{e1,d1} =1 = ged{ea,d2} by 2 in 2.1, giving d; = da, which
shows e; — es = qdy, so e1 + {d1) = e3 + {da); thus ® is injective. Therefore ® is a
bijection. (I

Note that if r € R and R/(r) is finite (as we shall later assume for r # 0), then
(r) C{d) € R = [R/(r)| = [R/{d)| > [U(R/(d))], so that

Y UR/@)] = 1Z(R/(r) = IR/ {W\(L{r) VU (R/(r)| = |R/(r)|=U(R/{r))|-1

(ryC(d)CR
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by 2.2 and 1 in 2.1. In this way, 2.2 generalizes the identity
> p(d) =mn
d|n

for each n € Z1 since the above comments show that

Yoowld= Y |UZ/dZ)| = |Z/nZ| - |U(Z/nZ)| = 1 = n — p(n) - p(1).
d|n nZCdZLCZ
1#d#n

In 1932, Lehmer showed that any n € L must have at least 7 distinct prime
factors, but this bound has since been improved to 14 (see [3]); we will use 2.2 to
prove a similar statement in F[z] where F' is a finite field.

3. USEFUL HOMOMORPHISMS

Next, we review a series of mappings and decomposition properties (proofs some
of these can found, for example, in [4]) which will be used to prove 1.1, 1.2, and
the product formula for ¢, in a more general setting.

Fact 3.1. If n,aq,00,...,an € ZT, and p1,p2,...,pn € P(R) are pairwise non-
associate, then

(1) R/(p1'p5* -+ pm) = R/(p7™") ® R/(p3*) ® - ® R/(py"), and
(2) U(R/(pY'pa* - pam)) 2 U(R/(p1™") @ U(R/(p3?)) © - ® U(R/(pim))-

Fact 3.2. Ifr € R and o € Z', then
Bi:R/(r) — R/(r®) e+ (r) s er®™h + (r%)
is a group monomorphism, and if, in addition, r ¢ U(R) and a > 1, then
Ba: R/{(ry = UR/(r™) e+ (r) = 14+ er® 4 (r®)
is a group monomorphism.
Fact 3.3. Ifd,r € R and d|r, then
" R/(r) = R/(d) : e+ (r) — e+ (d)
is a group epimorphism, and if, in addition, d ¢ U(R), then
Y2 2 U(R/(r)) = U(R/(d)) : e+ (r) — e+ (d)
s a group eptmorphism.
Fact 3.4. Ifr € R and o € Z*, then
0— R/(r) P, R/(r*y X% R/(re7Yy — 0
is a short exact sequence, and if, in addition, r € U(R) and o > 1, then
0— R/(r) 5 UR/(r)) 22 U(R/ (1) — 0

is a short exact sequence.
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4. GENERALIZATIONS OF L AND C

Now we are ready to restate Lehmers totient problem in R. We know that
Z/aZ is finite for each a € Z\{0}, and we analogously suppose that R/(r) is finite
whenever 0 # r € R. If n € K, then taking R = Z and r = n in 2.1, we get
n € L & |UZ/nZ)| = p(n)in—1 = 1|Z/nZ| — 1 = \UZ/nZ)| + |Z(Z/nZ)| <
{U(Z/nZ)| | |Z(Z/nZ)|. In this way, we are motivated to make the definition
L := {r € Kg : [UR/(r)| | |Z(R/(r))|}; we remove the primes in R from
consideration since (as in Z) such elements provide trivial satisfaction of the divis-
ibility condition. We being by generalizing the product formula for ¢ stated in the
introduction.

Theorem 4.1. Let 0 # r € R\U(R). Then
UR/ () =R/ T] (1= IR/ ®)7).

(r)S(p)

pEP(R)
Proof. Let p € P(R). We claim that |U(R/(p®))| = |R/{(p™)|(1 — |R/{p)|~!) for all
a € Z*, which we prove by induction. If o = 1, then |[U(R/(p*))| = |U(R/(p))| =
IR/ (p)| — 1 = |R/(p™)|(1 — |R/(p)|~') since R/(p) is a field. Now suppose o > 1
and |U(R/(p®~1))| = |R/{p>*~1)|(1 — |[R/(p)|~!). Then setting r = p in 3.4, we get

UR/ ()| = [Ker(3)[[UR/(p*H))| = Im(B2)||U(R/(p*))|
= [R/WIIUR/ =) = [R/ DR/ (1)1~ [R/(p) ")
[R/ PR/ (p™)|/|Ker(v)) (1 = [R/(p)| ™) = [R/(p)(IR/{p™)|/Mm(B1)[)(L — |R/{p)| ™)
= [R/WIIR/)/IR/ )N~ [R/(D)|71) = |R/(p™)|(1 — |R/(p)| ).
Now write 7 = up{*p3?---pd» where u € U(R), n,a1,0qz,...,a, € ZT, and
P1,D2,- -, Pn € P(R) are pairwise non-associate. Then using 3.1, we have
UR/D = [UR/ @] |UR/ )]

[R/ Q= [R/ ()| 7H) -+ IR/ (p)|(1 = [R/ {pu)|7)
R/ TT (= 1R/@)).

(r)S(p)
pEP(R)

O

We now attempt to justify our definition of Ly with the following theorem, which
is a generalization of 1.1.

Theorem 4.2. Ifr € Lg, then
(1) r € Kg is squarefree, and
(2) plr = [R/{p)| =1 | [R/(r)| =1 for all p € P(R).

Proof. Let r € Lg, so that, by definition, r € K,.. Suppose r is not squarefree.
Then there is a p € P(R) such that p*|r with a > 1. Hence |R/(p)| | |[U(R/{p®))|
by 3.2, but [U(R/ ()] | [U(R/(r))| by 3.1 and also [U(R/()] | [Z(R/(r)] =
|R/(rY|—1—|U(R{r))| by assumption and 1 in 2.1, so |R/{(p)| | |R/{r)|—1. On the
other hand, |R/{(p)| | |R/{p*)| | |R/(r)| by 3.2 and 3.1, which is a contradiction
since |[R/(p)| > 1 because p € P(R). Next, if p € P(R) and p|r, then |R/(p)| — 1 =
[UR/{p))| | [UR/{r))| | |R/{r)|—1 by 3.1 and assumption since r is squarefree.

(]
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Next we prove a statement similar to the Korselt criterion in 1.2. First, for
each a € R we define ,Fr := {r € Kp : r[a®/{" — 4}, so that for a € Z, ,Fy,
is the set of Fermat pseudoprimes to base a along with their negatives. Also, we
once again exclude units and primes from consideration. It is then fitting to define
Cr:={re€R:r e ,Fr Ya € R} as an analog of C.

Theorem 4.3. r € Cgr < r € Kpg is squarefree, and p|r = |R/(p)|—1 | |R/{r)|—1
for allp € P(R).

Proof. (=) First, suppose r € Cg, so that r € Kg since Cr C 1Fr C Kg. If
p € P(R) and plr, then r|p/®/ (" — p while |[R/(r)| > 1 since r ¢ U(R), so p* does
not divide r, giving that r is squarefree; also, U(R/(p)) is cyclic since p € P(R),
so la + (p)| = |U(R/(p))| = |R/(p)| — 1 for some a + (p) € U(R/{p)), but p|r and
rlal B/ — q with ged{a, p} = 1, giving p|a! /=1 — 1, giving a!F/(MI=1 4 (p) =
14 (p),so |R/{p)| —1=|a+ (p)| | |[R/{r)| — 1. (<) Conversely, suppose r € Kg
is squarefree, and p|r = |R/(p)| —1 | |R/(r)| —1 for all p € P(R). Let a € R and
p € P(R) with p|r. Then |R/(r)| —1 = ¢q(|R/(p)| — 1) for some ¢ € R. If p does not
divide a, then a+ (p) € U(R/(p)), so al /=1 4 (p) = qa(UR/PI=1) 4 () = 1+ (p),
giving pla!®/{N=1 — 1 and p|al®/ (" — a; also, if p|a, then clearly p|al/ (" —qa. In
either case, each prime divisor of r divides a!®/ (" — a, so r|al™/{" — g since r is
squarefree. Thus r € ,Fg for all a € R, so r € Ckg. O

Corollary 4.4. Lp C Cg.

Proof. If r € Lg, then r € Kg, but r is squarefree and |R/(p)| —1 | |R/{r)| —1
for all primes p dividing r by 4.2, so r € Cr by 4.3. |

5. A COUPLE OF EXAMPLES

Using the above results, we now examine Lr and Cpg for some specific cases.
First, let F' be a field, so that F[z] is a PID. Now let f(x) € F[z] with n =
deg(f(x)) > 0. Then the set {1 + (f(z)),z + (f(x)),...,2" 1 + (f(x))} forms
a basis of Flx]/(f(x)) as an F-vector space. Hence F[z]|/{f(z)) is finite for all
nonzero f(x) < F is finite. Accordingly, we now assume that F' is finite.

Theorem 5.1. Suppose f(x) € Ly and p(x) € P(F[x]). Then p(z)|f(x) =
deg(p(x))] deg(f(x)).

Proof. Suppose p(x)|f(x), and let m = deg(p(x)),n = deg(f(x)) and ¢ = |F|. Then
q"=1=|Flz]/{p(x)| =1 | [Flz]/{(f(z))|-1=¢"—1,50¢" =1 = (¢"—1,¢" 1) =
q\"™™ — 1, giving m = (m,n), and hence deg(p(z)) = m|n = deg(f(z)). O

Now we use 2.2 to obtain a lower bound for the number of distinct prime factors
of elements of Lp(,.

Theorem 5.2. Suppose f(x) € Lpp,). Then f(x) has at least [logy(|F| + 1)]
distinct prime factors.

Proof. First, f(x) ¢ U(F|x]) and f(x) € P(F[z]), so using 2.2 gives

[Z(Flz]/{f(x))] _ U (Flz]/{d(x)))]
P OER @] 2 U(F[z]/(f ()]

(f(@))C(d(z))CF[z]
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Now let d(x) be a proper divisor of f(x). Then f(x)/d(x) & U(F[x]), so p(z)|f(x)/d(x)
for some p(x) € P(Fz]). Hence
_ |UF[=]/(f ()]

F9800) 1 = U (P e | 10/ @) /] = (o]

since f(x) is squarefree by 4.3. Now deg(p(z)) > 0 since p(z) is prime, so
UFR/A@) 1 1
[U(F[z]/(f(x))] ~ |[F[des®) —1 = |F| - 1"

but the number of proper divisors (up to associate) of f(x) is 2¥ —2 where k is the

number of distinct prime factors of f(x) again since f(x) is squarefree, so summing
over the last inequality gives

1 2k — 2
1< =
- 2 [Fl-1 [F[ -1
(f(@))C(d(z))CFx]
and hence log, (| F| + 1) = logy (| F| — 1 +2) < log,(2F —2+2) = k. O

As mentioned above, it is unknown whether or not L = (); however, the following
simple, yet important, example demonstrates that Ly isn’t always empty.

Theorem 5.3. There exists a PID R such that Lr # 0.

Proof. Consider f(x) = x(z + 1) € Z/2Z[z]. Now f(z) is clearly nonzero, nonunit,
nonprime and of degree 2, while z,2 + 1 € P(Z/2Z[z]) are nonassociate and of
degree 1. Hence, using 4.1, |U(Z/2Z[x]/(f(z)))| = 22(1 —1/2)(1 —1/2) = 1 divides
every positive integer, so f(x) € Lz 274]- O

We now turn our attention to Cr[,; and immediately obtain the following corol-
lary of 4.3, which shows, in particular, that Cr[,) is always nonempty.

Corollary 5.4. Let f(x) € F[x] be a product of two or more pairwise nonassociate
linear factors. Then f(x) € Cply.

Proof. Write f(x) = u(z —ay)--- (v — ag) for some w,aq,...,ar € F where the a;s
are distinct and k > 1. For each i € {1,...,k}, x —a; € P(F[z]) with deg(x —a;) =
1, so |Flz]/{x —a))| -1 = |F| -1 | |F|* -1 = |F[z]/{f(z))| — 1. Therefore
f(x) € Cpy by 4.3 since f(z) € Kpp,) is squarefree by construction. O

Next, we consider the Gaussian integers Z[i] := {a + bi : a,b € Z}. First, ZJ[i]
is clearly a subring (with 1) of the field C of complex numbers, so that Z[i] is an
integral domain. Also, the square modulus is a Euclidean norm on Z[i], so Z[i] is
a Euclidean domain, and hence a PID. Also, if 0 # w € Z][i], then there are finitely
many lattice points in the open disk centered at the origin with radius |w| in the
complex plane, so Z[i]/(w) is finite. Next, we recall a few statements about Z[i].

Fact 5.5. U(Z[i]) = {1,-1,i,—i}.
Fact 5.6. P(Z[i]) is the disjoint union of the sets {a : |a|] € P ANa = 3 (mod 4)},
{bi:|b] € PAb=3(mod 4)} and {a +ib € Z[i]\(Z U Zi) : a®> + b* € P}.
Fact 5.7. |Z[i]/{(n)| = n? V¥n € Z*.
It was commented above that C' is infinite (see [1]). We now show that the

corresponding statement holds in Z[i]. We make use of some elementary number
theory.
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Theorem 5.8. Uy is infinite.

Proof. By Dirichlet’s theorem on primes in arithmetic progression (or by a simpler
argument with a weaker statement), we know that there are infinitely many primes
in Z* of the form 4n + 1. We claim that each such prime is in Cz;). Let p =
4dn 4+ 1 € P C ZJi], so that p is nonzero, nonunit by 5.5 and nonprime by 5.6 since
Ip| = 4n +1 =1 (mod 4). Also, by Fermat’s theorem, we know that p = a® + b =
(a + bi)(a — bi) for some a,b € Z*, but then a + bi,a — bi € P(Z[i]) again by 5.6.
It cannot be the case that a = b since otherwise a|p and a = 1 because a < p with
p=1+1= 2 not of the required form. On the other hand, the set of associates of
a+bi is, by 5.5, exactly {a+bi, —a—bi, —b+ai,b—ai}, so if a—bi were an associate of
a—+0bi, then a—bi = b—ai since b—ai is the only associate of a+bi with a positive real
part and a negative imaginary part because a, b > 0, but this is a contradiction since
a # b. Thus, p is squarefree in Z[i], so p? = |Z[i]/(p)| = |Z]i]/{a + bi)||Z[i]/(a — bi)|
by 5.7 and 3.1, which gives |Z[i]/{a + bi)| = p = |Z[i]/{a — bi)| since Z[i]/{a + bi)
and Zli]/(a — bi) are nontrivial and p is prime. Therefore p € Cz;) by 4.3 since
1Z[i]/(a £ bi)] =1 =p—1|(p+ 1)(p— 1) =p* — 1 = |Z[i] /{p)| — 1. O
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