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ABSTRACT

The well-known Riemann-Hurwitz formula for Riemann surfaces (or the correspond-

ing formulas of the same name for curves/function fields) is used in genus compu-

tations. In 1979, Yûji Kida proved a strikingly analogous formula in [Kid80] for p-

extensions of CM-fields (p an odd prime) which is similarly used to compute Iwasawa

λ-invariants. However, the relationship between Kida’s formula and the statement

for surfaces is not entirely clear since the proofs are of a very different flavor. Also,

there were a few hypotheses for Kida’s result which were not fully satisfying; for ex-

ample, Kida’s formula requires CM-fields rather than more general number fields and

excludes the prime p = 2.

Around a year after Kida’s result was published, Kenkichi Iwasawa used Galois

cohomology in [Iwa81] to establish a more general formula (about representations)

that did not exclude the prime p = 2 nor need the CM-field assumption. Moreover,

Kida’s formula follows as a corollary from Iwasawa’s formula.

We’ll prove a slight generalization of Iwasawa’s formula and use this to give a new

proof of a result of Kida in [Kid79] and Ferrero in [Fer80] which computes λ-invariants

in imaginary quadratic extensions for the prime p = 2. We go on to produce special

generalizations of Iwasawa’s formula in the case of cyclic p-extensions; these formulas

can be realized as statements about Qp-representations, and, in the cases of degree

p or p2, about p-adic integral representations. One upshot of these formulas is a

vanishing criterion for λ-invariants which generalizes a result of Takashi Fukuda et

al. in [FKOT97]. Other applications include new congruences and inequalities for

λ-invariants that cannot be gleaned from Iwasawa’s formula. Lastly, we give a scheme

theoretic approach to produce a general formula for finite, separable morphisms of

Dedekind schemes which simultaneously encompasses the classical Riemann-Hurwitz

formula and Iwasawa’s formula.
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Chapter 1

INTRODUCTION

1.1 Notation

The following notation will be used throughout with a few exceptions:

Symbol Meaning
N0, N the set of nonnegative and positive integers, respectively
Z, Q, R, C the integer, rational, real, and complex numbers, respectively
p, q rational primes
Zp, Qp the p-adic integers and rationals, respectively
|n|p = p−ordp(n) normalized p-adic absolute value
F a field
`, k number fields
L, K Zp-extensions of number fields
Ok, OK rings of integers
Ik, IK groups of invertible ideals
Pk, PK groups of principal invertible ideals
Ck, CK class groups
h(k) the class number of k
Ak, AK p-primary parts of Ck, CK , respectively
G a finite group
O×, OG the units and group ring, respectively, for a ring O
Hn(G,M) nth cohomology group of a ZG-module M
q(M) = pχ(G,M) Herbrand quotient |H

2(G,M)|
|H1(G,M)| when G ∼= Z/(pn)

Hn(L/K,M) Hn(G,M) when G = Gal(L/K)
C a nonsingular, projective curve over F
X,Y schemes
x, y closed points in X,Y , respectively
F(x), F(y) residue fields of x, y
F a sheaf on X
Hn(X,F ) nth sheaf cohomology group
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1.2 Motivation

This dissertation is concerned with constructing and analyzing number theoretic

analogs of the Riemann-Hurwitz formula for curves:

Theorem 1.1 (Hurwitz). Let f : X → Y be a finite, separable morphism of complete,

nonsingular curves1 over an algebraically closed field F . Then if f has only tame

ramification

2gX − 2 = deg(f)(2gY − 2) +
∑
x∈X

(ex − 1) (1.1.1)

where gX , gY are the genera of X, Y , respectively, and ex is the ramification index of

f at x.

The number theoretic analogs of Theorem 1.1 that we are interested in come from

the Iwasawa theory of Zp-extensions k∞ of a number field k. That is, extensions

formed from towers

k = k0 ⊆ k1 ⊆ k2 ⊆ . . . ⊆ k∞

such that

Gal(k∞/k) ∼= Zp and Gal(kn/k) ∼= Z/pnZ ∀n ≥ 0.

The p-part of the class number h(kn) becomes well-behaved moving up the tower as

in the following fundamental theorem of Iwasawa theory.

Theorem 1.2 (Iwasawa’s Growth Formula). Let k∞/k be as above. There are

λ, µ, ν ∈ Z such that if pe(n) is the exact power of p dividing the class number h(kn),

then

e(n) = λn+ µpn + ν

for all sufficiently large n.
1By a curve over a field F , we mean an integral, separated scheme of finite type over F with

dimension 1.
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Definition 1.3. The cyclotomic Zp-extension of a number field k is the unique Zp-

extension of k contained in ∪n≥0k(ζpn). A Zp-field K is the cyclotomic Zp-extension

of some number field k, and the λ-invariant of K/k, denoted by λK , does not depend

on k. The vanishing of the µ-invariant of K/k (as conjectured by Iwasawa) also does

not depend on k, and we denote this by µK = 0.

For a Zp-field K, the ring OK [1/p] is a Dedekind domain whose prime spectrum

plays the role of the curve Y in Theorem 1.1. We have the following observation

about class groups (see [Iwa65]).

IfK is the function field of curve Y as in
Theorem 1.1 and p 6= char(F ) is prime,
the class group CK = Pic0(Y ) satisfies

CK [p∞] ∼= (Qp/Zp)2gY .

If K is a Zp-field with µK = 0 and Y =
Spec(OK [1/p]), the class group CK =
Pic(Y ) satisfies

CK [p∞] ∼= (Qp/Zp)λK .

Table 1.3.1. Similarities in structures of class groups

For this reason, we might expect there to be a parallel of Equation 1.1.1 for

extensions of Zp-fields with λK playing the role of 2gY . Yûji Kida provided the first

such parallel in [Kid80]. Kida’s formula explicitly computes (relative) λ-invariants in

p-extensions of CM Zp-fields L/K for an odd prime p. Roughly a year later in [Iwa81],

Iwasawa proved a formula for cyclic extensions of Zp-fields L/K of order p with p any

prime, and this formula implies Kida’s formula. To state Iwasawa’s formula and other

results, we need the following definition.

Definition 1.4. For a G-module M with G a cyclic p-group we take χ(G,M) ∈ Z

to be the exponent of p in the Herbrand quotient

|H2(G,M)|
|H1(G,M)|

= pχ(G,M)

assuming these quantities are finite.
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Theorem 1.5 (Iwasawa’s Formula). Let L/K be a p-extension of Zp-fields with µK =

0. Suppose G = Gal(L/K) ∼= Z/(p) and that L/K is unramified at the infinite places.

Then

λL = pλK + (p− 1)χ(G,O×L ) +
∑
w-p

(e(w)− 1)

where the sum runs over all places w - p of L and e(w) is ramification index in L/K.

1.3 Preliminary Results

Preliminary to the main results, we prove the following generalization of Iwasawa’s

formula which is in direct analogy with Theorem 1.1 in light of Table 1.2.

Proposition 1.6. Let L/K be a p-extension of Zp-fields with µK = 0. Take X =

Spec(OL[1/p]), Y = Spec(OK [1/p]), and f : X → Y to be the induced morphism.

Then

λL = deg(f)λK − (p− 1)χL/K +
∑
x∈X

(ex − 1) (1.6.1)

where ex is the ramification index of f at x. Here χL/K is an integer defined as

follows: for any composition series 1 = H0 / H1 / · · · / Hn = Gal(L/K) we have

χL/K =
n−1∑
i=0

piχ(Hi+1/Hi, P
Hi
L )

where PL ≤ IL is the subgroup of principal ideals in the invertible ideals of OL.

Iwasawa’s formula assumes that the extension L/K is unramified at the infinite

primes (e.g., this holds when p is odd), and in that case we may replace the χ(G,PL)

with −χ(G,O×L ). However, by stating the formula more generally as above, we can

recover and extend the explicit computations of Bruce Ferrero (see [Fer80]) and Yûji

Kida (see [Kid79]) for λ-invariants of imaginary quadratic number fields.
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Corollary 1.7. Let K be the cyclotomic Z2-extension of the first layer k in the

cyclotomic Zp-extension of Q where p is 2 or a Fermat prime and h(k) is odd (e.g.,

we can take p ∈ {2, 3, 5, 17, 257}). Let L be the cyclotomic Z2-extension of k(
√
−d)

with d ∈ Z squarefree and d > 2 ≥ (d, p). Then

λL = |S| − 1

where S is the set of finite places of L not lying above 2 which are ramified in L/K.

Remark 1.8. Let d > 1 be a squarefree integer with d ≡ 1 (mod 4).

Classical ‘genus theory’ Ferrero and Kida
If S0 is the set of finite primes of ` which
ramify in `/Q = Q(

√
−d)/Q,

C`[2
∞] ∼=

|S0|−1⊕
i=1

Z
(2ai)

for some integers ai ≥ 1.

If S is the set of finite primes of L which
ramify in L/Q∞ = Q∞(

√
−d)/Q∞,

CL[2∞] ∼=
|S|−1⊕
i=1

lim−→
a

Z
(2a)

∼= (Q2/Z2)|S|−1.

(1.8.1)

Table 1.8.1. Comparison of genus theory and Iwasawa theory

The corollary above shows that 1.8.1 continues to hold if we replace Q with k ⊆

Q(ζp2) such that [k : Q] = p - d is one of the first four Fermat primes.

1.4 Main Results

My main results stem from special formulas for λ-invariants in cyclic p-extensions of

Zp-fields.

Theorem 1.9. Let L/K be a cyclic p-extension of Zp-fields with µK = 0. Then

λL − pnλK
p− 1

= pn−1χ(Hn, CL)−
n−1∑
i=1

ϕ(pn−i)χ(Hn/Hi, C
Hi
L )

=
pn

np− n+ 1
χ(Hn, CL) +

n−1∑
i=1

pi(p− 1)

(ip− i+ p)(ip− i+ 1)
χ(Hi, CL)
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where ϕ is the totient function and 1 = H0 / · · · / Hn = Gal(L/K) is the composition

series.

One upshot of Theorem 1.9 is a vanishing criterion for λ-invariants in special ex-

tensions of Zp-fields. This generalizes a result of Takashi Fukuda et al. in [FKOT97].

Theorem 1.10. Let L/K be a cyclic p-extension of Zp-fields which is unramified at

every infinite place. Suppose K is the cyclotomic Zp-extension of a number field k

such that p - h(k) and k has only one prime lying above p. Then λL = 0 if and only

if, for all prime ideals p of K which ramify in L/K and do not lie over p, the order

in CL of the class of the product of prime ideals of L lying over p is prime to p.

Another application of Theorem 1.9 is the derivation of congruences for Iwasawa

λ-invariants. Note that Equations 1.1.1 and 1.6.1 imply that 2gX ≡ 2gY (mod p− 1)

and λL ≡ λK (mod p − 1), respectively, when deg(f) = p. However, there are

stronger congruences in special cases that cannot be deduced from these formulas. For

example, the genus of the Fermat curveXd : xp
d
+yp

d
= zp

d over C is (pd−1)(pd−2)/2,

and Xn/Xn−1 is cyclic of order p, but in fact

2gXn ≡ 2gXn−1 (mod pn−1(p− 1)).

We can prove an Iwasawa theoretic analog of the above congruence.

Theorem 1.11. Let K0 ⊂ K1 ⊂ . . . ⊂ Kn be a tower of Zp-fields with µK0 = 0 such

that for all i = 0, . . . , n the extension Ki/K0 is cyclic of degree pi. Then

λKn ≡ λKi
(mod ϕ(pi+1))

for all i = 0, . . . , n.

Additionally, underlying Theorem 1.9 is structural information about the dual of

the p-primary class group as a Galois module.
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Theorem 1.12. Let K0 ⊂ K1 ⊂ . . . ⊂ Kn be as in Theorem 1.11. Then for Gi =

Gal(Ki/K0) we have the following decomposition of Qp-representations of Gn

CKn [p∞]∗ ⊗Zp Qp
∼= λK0πGn ⊕

n⊕
i=1

(
χ(Gi, CKi

)− χ(Gi−1, CKi−1
)
)
πϕ(pi)

where ∗ denotes the Pontryagin dual, πGn is the regular representation, and πd is the

unique faithful irreducible representation of degree d ∈ {ϕ(p), ϕ(p2), . . . , ϕ(pn)}.

Note: we can recover the first equality in Theorem 1.9 by taking the degrees of the

representations in Theorem 1.12 and collecting like terms.

1.5 Organization

Part I is concerned with known formulas. First, we’ll briefly review the Riemann-

Hurwitz formula for Riemann surfaces in Chapter 2 and then Kida’s formula for

number fields in Chapter 3. In both cases, we’ll give examples and uses. We will

not prove the formula for Riemann surfaces, but we will sketch the ideas involved in

the proof of Kida’s result. Next, a careful look at Iwasawa’s work will be given in

Chapter 4. An effort has been made to avoid simply rehashing the articles [Kid80]

of Kida and [Iwa81] of Iwasawa by instead including background material, organizing

the main arguments succinctly (see the proofs of 3.6, 3.12, and 4.12), elucidating

technical points which were left either unclear or overly general (see Lemmas 4.8 and

4.9, Proposition 4.11, and Remark 4.15), and providing original concrete examples

(see 2.4, 3.10, and 4.16). Throughout, we attempt to give sufficient motivation before

introducing key definitions or results.

Part II addresses proofs of these special formulas and their applications that we

derive for cyclic p-extensions of Zp-fields. First, we prove a few facts about the Euler

characteristic χ(G,−) and outline a general plan of attack for computing invariants

(see Lemma 5.1 and Remark 5.2). Then we revisit Iwasawa’s formula and prove

a slight generalization thereof in Chapter 6 (see Theorem 6.2, Corollary 6.4, and
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Remark 6.5). Next, we compute a decomposition of the the Qp-representation πL/K

of G = Gal(L/K) corresponding to the p-class group AL for degree p extensions L/K

of Zp-fields (see Corollary 6.12). At the end of Chapter 6, we use our generalization

of Iwasawa’s formula to give a new proof of a result of Ferrero found in [Fer80] as

mentioned above (see Lemma 6.15, Proposition 6.16, Remark 6.19, and Proposition

6.24).

In Chapter 7, we use Iwasawa’s method to produce special formulas for cyclic ex-

tensions of degree p2, disprove a “natural conjecture,” discuss the Qp-representation

πL/K again, and finally give an alternative proof for the formulas without using clas-

sification theorems of ZpG-modules (see Proposition 7.2, Corollary 7.3, Example 7.6,

Corollary 7.8, Theorem 7.11, and Corollary 7.12).

We close out Part II with Chapter 8 in which special formulas for lambda invariants

and πL/K in arbitrary cyclic p-extensions are given (see Lemma 8.1, Proposition 8.3,

Theorem 8.4, Corollary 8.5, Corollary 8.6, Theorem 8.8, Lemma 8.9, Proposition

8.11, Remark 8.12, and Corollary 8.13). As mentioned above, the main applications

of these special formulas include congruences and inequalities for λ-invariants that

cannot be gleaned from Iwasawa’s formula (see Corollary 8.7). At the end of Chapter

8, we prove the generalized vanishing criterion for λ-invariants mentioned above (see

Theorem 8.18).

Part III surveys other directions. First, we discuss formulas for the size of the q 6=

p-part of the class group in q-extensions (see Proposition 9.5 and Theorem 9.7). Next,

we delve into a discussion of schemes and the aforementioned geometric interpretation

of Iwasawa’s formula (see Proposition 10.8 and Corollary 10.24).
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Part I

KNOWN FORMULAS
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Chapter 2

CLASSICAL FORMULA FOR SURFACES

In this chapter, we recall the definition of a Riemann surface and of ramification

in holomorphic maps, state the classical Riemann-Hurwitz formula, and show by

example how this formula can be used to compute an unknown genus for a surface

R1 in terms of a known genus for a familiar surface R2 via a map R1 → R2.

2.1 Background

Definition 2.1. Recall that a Riemann surface R is a connected 1-dimensional

complex manifold, so R is a surface in the sense that it has dimension 2 as a real

manifold. In other words, R is a connected, second countable, Hausdorff topological

space and there are charts {(Ui, ϕi)}i∈I with the following three properties

• {Ui}i∈I forms an open cover of R

• ϕi : Ui → C is a homeomorphism onto its image for all i ∈ I

• ϕi ◦ ϕ−1
j is holomorphic on ϕj(Ui ∩ Uj) for all i, j ∈ I.

The genus of R is defined to be the dimension of the C-vector space of holomorphic

one-forms on R, which can be thought of as the number of “handles” in the surface.

Remark 2.2. Let f : R1 → R2 be a nonconstant holomorphic map between compact

Riemann surfaces and fix x ∈ R1. Then by definition there are charts ϕ : U → C

around x and ψ : V → C around f(x) such that

• ψ ◦ f ◦ ϕ−1 is holomorphic on ϕ(U ∩ f−1(V ))

• without loss of generality ϕ(x) = 0 = ψ(f(x)).
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Thus there is a disk |z| < r on which

(ψ ◦ f ◦ ϕ−1)(z) =
∞∑

n=e(x)

anz
n

where ae(x) 6= 0 and e(x) ≥ 1 is called the ramification index of f at x which is

independent of the charts ϕ, ψ. When e(x) > 1, we call x a ramification point of

f and say f is ramified at x.

2.2 Statement and Applications

Theorem 2.3 (Riemann-Hurwitz, late 1800’s). Let f : R1 → R2 be a nonconstant

holomorphic map between compact Riemann surfaces. Then

2g1 − 2 = d(2g2 − 2) +
∑
x∈R1

(e(x)− 1) (2.3.1)

where for i = 1, 2 the surface Ri has genus gi. Here d is the degree (number of sheets)

of f and for all y ∈ R2 ∑
x∈f−1({y})

e(x) = d. (2.3.2)

We do not give a proof of this theorem, but an analytic proof of the statement as

given above can be found in Section 2.5 of [Jos06] and a combinatorial proof using

triangulations can be found on page 19 in [FK80]. However, we want to pay attention

to the way this formula is applied so we can get an idea of how useful a number field

version might be.

Example 2.4. Consider the Fermat curve

F3 = {[z1, z2, z3] ∈ CP2 : z3
1 + z3

2 + z3
3 = 0}

with the subspace topology; we regard CP2 as a 2-dimensional complex manifold

having charts

x = [z1, z2, z3] 7→


(z2/z1, z3/z1) on U1 = {x : z1 6= 0}
(z1/z2, z3/z2) on U2 = {x : z2 6= 0}
(z1/z3, z2/z3) on U3 = {x : z3 6= 0}
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and with the quotient topology given via

CP2 =
C3\{(0, 0, 0)}

∼

with x ∼ y ⇔ x = λy for some λ ∈ C×. Note that F3 is a compact Riemann

surface as an embedded submanifold of CP2 since it’s the level set of a smooth map

CP2 → C : [z1, z2, z3] 7→ z3
1 +z3

2 +z3
3 of constant rank. We have a natural holomorphic

map (see Problem J, Section II.4 from [Mir95])

f : F3 → CP1 : [z1, z2, z3] 7→ [z1, z2].

Then for fixed [z1, z2] ∈ CP1 either

[z1, z2] ∈ {[1,−1], [1,−ω], [1,−ω2]}

where ω = e2πi/3, in which case

f−1({[z1, z2]}) = {[z1, z2, 0]},

or

f−1({[z1, z2]}) = {[z1, z2,−α], [z1, z2,−ωα], [z1, z2,−ω2α]}

where α3 = z3
1 +z3

2 6= 0. Hence the degree of f is 3 and there are exactly 3 ramification

points

[1,−1, 0], [1,−ω, 0], [1,−ω2, 0],

each having ramification index 3. We know that R2 := CP1 is diffeomorphic as a real

manifold to the sphere S2, so CP1 has genus g2 = 0 since the sphere has no holes (see

Figure 2.1).
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Figure 2.1. R2 = CP1 ≈ S2 is a sphere

Hence the Riemann-Hurwitz formula (i.e., equation 2.3.1 in Theorem 2.3 above) with

R1 := F3 gives

2g1 − 2 = 3(2 · 0− 2) + [(3− 1) + (3− 1) + (3− 1)] = 0,

whence F3 has genus g1 = 1. Thus the classification theorem for closed surfaces

implies that F3 is diffeomorphic as a real manifold to the tours T2 (see Figure 2.2).

Figure 2.2. R1 = F3 ≈ T2 is a torus

This means the torus may be “covered” by three sheets, each of which is a copy

of the sphere with an incision. The ramification points are then the points where



24

the sheets overlap. How can we visualize this covering? Let’s begin by making a

semicircular incision along the equator of the sphere and then flattening/stretching

out the resulting sheet into the shape of a rhombus (see Figure 2.3).

Figure 2.3. A sheet in the shape of a rhombus

The solid (respectively dotted) line indicates the presence (respectively absence) of

a boundary. Now we bring three of those sheets (rhombi) together in a triangular

formation and paste along adjacent sides as suggested in Figure 2.4.

1 2

3

Figure 2.4. Three sheets pasted together

Notice that after this pasting the only overlaps are at the points 1, 2, and 3 (where

two sheets lie on top of one another). Next we form a cylinder by pasting the tab at

the top of the previous figure into the slot at the bottom (see Figure 2.5).
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1 2

1 2

3

Figure 2.5. A cylinder

After this pasting the only overlaps are at the points 1, 2, (where two sheets lie on top

of one another) and 3 (where now three sheets lie on top of one another). Finally, we

form a torus by first twisting the cylinder, then pasting the left and right boundaries

together as indicated in Figure 2.6.

1 2

1 2

2 1
3

Figure 2.6. A torus

Of course, the only overlaps are at the points 1, 2, and 3 (where three sheets lie on

top of one another); moreover, these points represent the three ramification points of

f , each with ramification index 3.

The above example gives an illustration of the usefulness of the Riemann-Hurwitz

formula in genus computations. Using similar reasoning, we can show that the genus
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g of the Fermat curve

Fd := {[z1, z2, z3] ∈ CP2 : zd1 + zd2 + zd3 = 0}

is given by

g =
(d− 1)(d− 2)

2
.

Remark 2.5. In Example 2.4, both of the Riemann surfaces involved (the sphere

and the torus) were projective algebraic, meaning that both CP1 and F3 ⊆ CP2 can

be regarded as projective varieties with the Zariski topology instead of as complex

manifolds with the analytic topology. In fact, any nonsingular projective variety over

C can be regarded as a complex manifold. More generally (as described in Appendix

B of [Har97]), there is a functor h from the category of schemes X which are smooth

and of finite type over C to the category of complex manifolds sending X to Xh with

the following properties:

• There is a continuous injection φ : Xh → X such that im(φ) is the set of closed

points in X.

• X is connected if and only if Xh is connected.

• X is proper over C if and only if Xh is compact

• If Xh is compact and Xh
∼= Yh as complex manifolds, then X ∼= Y as schemes.

• dim(X) = dim(Xh)

In particular, if X is a connected curve which is smooth and proper over C, then Xh

is a compact Riemann surface. There is a converse to this statement. Namely, we

have the following theorem.

Theorem 2.6 (Riemann). For every compact Riemann surface R there exists a con-

nected, normal curve X which is projective over C such that Xh
∼= R as a complex

manifold.
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In light of this result, it might not be surprising to learn that there is a general

Hurwitz formula for normal, projective curves over fields from which the classical

Riemann-Hurwitz formula follows as a corollary. The following theorem, whose de-

velopment and proof can be found in Chapter 7 of [Liu02], is such a result.

Theorem 2.7. Let f : X → Y be a finite, separable morphism of normal, projective

curves over a field F with deg(f) = d. Then

2gX − 2 = d(2gY − 2) +
∑
x

(e′x/y − 1)[F(x) : F ]

where gX , gY are the arithmetic genera of X, Y , respectively, and the sum extends

over the closed points x of X with images y in Y . Here F(x) is the residue field at x

and e′x/y = ex/y is the ramification index when char(F(x)) - ex/y (tame ramification)

while e′x/y > ex/y when char(F(x))|ex/y (wild ramification).

Normal projective curves over fields are examples of particularly nice schemes

called Dedekind schemes which are curves (schemes of dimension 1) that have the

favorable property that their local rings at closed points are discrete valuation rings

(DVRs), which are precisely local principal ideal domains that are not fields. An affine

Dedekind scheme is the prime spectrum of a Dedekind domain, i.e., an integrally

closed Noetherian domain in which every nonzero prime ideal is maximal. One of the

main examples of Dedekind domains are the rings of integers in number fields. The

remainder of the text will examine the extent to which Riemann-Hurwitz formulas

exist for number fields.



28

Chapter 3

KIDA’S FORMULA FOR CM-FIELDS

At first blush, there may appear to be little or no connection between compact Rie-

mann surfaces and number fields. As mentioned at the end of Chapter 2, however,

compact Riemann surfaces arise from normal, projective curves over C which are

schemes of dimension 1 whose local rings are DVRs, and this property is shared by

the prime spectra of rings of integers in number fields. We can see some immediate

connections with the proceeding observations. Let `/k be an extension of number

fields and let p be a nonzero prime ideal in the ring of integers Ok of k. Then pO`
factors uniquely into a product of ideals Pe1

1 · · ·P
eg
g where each Pi is a nonzero prime

ideal in O` with ramification index ei = e(Pi/p). Moreover, the degree of `/k is∑
P∈ψ−1({p})

e(P/p)f(P/p) = [` : k]

where each f(Pi/p) = [O`/Pi : Ok/p] is a residue degree and

ψ : Spec(O`)→ Spec(Ok)

is given by P 7→ P ∩ Ok. This gives the analog of equation 2.3.2 in Theorem 2.3.

Of course, this is not simply a coincidence, and, in fact, both of these statements are

special cases of a more general result from algebraic geometry; specifically, such a

result is proved for finite covers of Dedekind schemes in Proposition 1.20 of Chapter

7 from [Sza09].

From the above discussion, it’s clear that the ramification of primes in finite ex-

tensions of number fields behaves like a branched cover of compact Riemann surfaces,

so it seems plausible there should be a formula to determine an invariant of ` in terms

of the corresponding invariant of k, the degree [` : k] of the extension, and a sum
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involving the ramification indices of primes. However, it is not all immediate what

would be an appropriate invariant or even to which type of extensions such a formula

might apply. This chapter is devoted to defining a suitable invariant (= the Iwasawa

λ-invariant), deriving a formula (= Kida’s formula) of the type found in equation 2.3.1

for certain kinds of extensions (= p-extensions of CM-fields), and then demonstrating

how this formula can be used in studying the invariant.

3.1 Background

Remark 3.1. A Zp-extension of a number field k is a field K ⊆ C such that K/k

is Galois and

G := Gal(K/k) ∼= Zp

as topological groups where G has the Krull topology. A subset S of Zp is a nontrivial

closed subgroup if and only if S = pnZp for some n ∈ N0, so by (infinite) Galois theory

the field extensions kα of k contained in K form a tower

k = k0 ⊆ k1 ⊆ k2 ⊆ . . . ⊆ K

such that

Gal(kn/k) ∼= Zp/pnZp ∼= Z/(pn)

for all n ∈ N0. For any such Zp-extension, the growth of the p-primary parts of the

ideal class groups Ckn becomes well-behaved and is described by the following funda-

mental theorem of Iwasawa theory. The first statement of the theorem appeared in

Kenkichi Iwasawa’s 1956 invited address A theorem on Abelian groups and its applica-

tion to algebraic number theory at a summer meeting of the American Mathematical

Society in Seattle.
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Theorem 3.2 (Iwasawa’s Growth Formula). Let K/k be a Zp-extension. Then there

are λ, µ, ν ∈ Z with λ, µ ≥ 0 such that if pen is the exact power of p dividing the class

number h(kn), then

en = λn+ µpn + ν

for all sufficiently large n.

Proof. See [Iwa59a] for the first published proof of this result or see Chapter 13,

Section 3 in Washington’s popular text [Was96].

Theorem 3.3. Let K/k be a Zp-extension. Then the only primes of k which ramify

in K/k lie over p, and one such prime must ramify. Moreover, if

p - h(k)

and k has only one prime lying over p, then

p - h(kn)

for all n ∈ N0, so

λ = µ = ν = 0;

in particular, this is always the case for k = Q.

Proof. It’s clear that infinite places do not ramify in K/k since infinite places have

finite inertia groups (with size 1 or 2) and there are no nontrivial finite subgroups of

Zp. If q is a prime ideal of k which ramifies in K/k and p does not divide the absolute

normN(q), then q is tamely ramified in the abelian extensionK/k, so the ramification

index of q in K/k is finite since it divides N(q)− 1, but this is a contradiction again

since there are no nontrivial finite subgroups of Zp. This shows that only primes

lying above p can ramify, but one such prime must ramify since otherwise the infinite

extension K would be contained in the Hilbert class field, a finite extension, of k. For

a proof of the second statement, see, for example, Proposition (2.1) in [Gre01].
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Definition 3.4. For given k and p, there may be infinitely many Zp-extensions K.

In fact, it should be noted that if k̃ is the compositum of all Zp-extensions of K

contained in C, then by Theorem 13.4 in [Was96]

Gal(k̃/k) ∼= Zr2+1+δk
p

where r2 is the number of complex places of k and δk ≥ 0 is an integer called the

Leopoldt defect of k. It has been conjectured that δk = 0 for all k. The conjecture

is true for k = Q since Theorem 3.3 and the Kronecker Weber theorem together imply

that there is a unique Zp-extension Q∞ of Q. We define a Zp-extension of k

k∞ := kQ∞

called the cyclotomic Zp-extension of k (although Iwasawa refers to this k∞ as a

“basic Zp-extension” in some of his papers). Here k∞ is the unique Zp-extension of

k contained in ∪nk(ζpn). By taking K = k∞ in the growth formula we define the

Iwasawa invariants of k with respect to p as the invariants λ, µ, ν for the extension

K/k:

λp(k) = λ, µp(k) = µ, νp(k) = ν.

From now on we assume all Zp-extensions are cyclotomic Zp-extensions. The reason

for this will become clear in Chapter 4.

The previous discussion gives no hint why the Iwasawa invariant λp(k) for a number

field k should provide a fitting parallel for twice a genus, but we’ll see later that this is

indeed the case. We won’t be dealing directly with the λ-invariant for the remainder

of this chapter, but rather a relative lambda invariant (to be defined below) which

is the difference of two such invariants; in that case, the relative lambda invariant is

actually a parallel of a genus.

Definition 3.5. A totally real number field is a number field whose embeddings

are all real, and a totally complex number field is a number field with no real
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embeddings. A CM-field k is a totally complex quadratic extension of a totally real

number field k+. Some examples of CM-fields are Q(ζn+2) and Q(
√
−n) for some

n ∈ N with Q(ζn+2)+ = Q(ζn+2 + ζ−1
n+2) and Q(

√
−n)+ = Q. Given a CM-field k and

prime p, Theorem 3.2 implies that if pe
−
n is the exact power dividing the relative

class number

h−(kn) :=
h(kn)

h(k+
n )
,

then

e−n = λ−p (k)n+ µ−p (k)pn + ν−p (k)

for all sufficiently large n where for γ ∈ {λ, µ, ν} we define the relative Iwasawa

invariant

γ−p (k) := γp(k)− γp(k+).

3.2 Statement and Applications

We’re now ready to state Kida’s analog of Theorem 2.3. In this result, a subset of

the set of primes not lying above p in a cyclotomic Zp-extension plays the role of

a Riemann surface, the relative Iwasawa invariant λ− plays the role of a genus, and

[`∞ : k∞] plays the role of the degree of a holomorphic map where `/k is a p-extension

of CM-fields. The following is the main theorem in [Kid80].

Theorem 3.6 (Kida, 1979). Let `/k be a p-extension of CM-fields for some odd prime

p. Suppose µ−p (k) = 0. Then µ−p (`) = 0 and we have the formula

2λ−p (`)− 2δ = [`∞ : k∞](2λ−p (k)− 2δ) +
∑

P∈S(`)

(e(P)− 1)

where δ is 1 or 0 if ζp ∈ k or ζp /∈ k, respectively, e(P) is the ramification index of P

in `∞/k∞, and

S(`) := {prime ideals P - p in `∞ : P ∩ O`+∞ splits in `∞/`+
∞}.
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A few remarks are in order about the technical hypotheses needed for Kida’s

formula above. First, the assumption µ−p (k) = 0 holds in many useful contexts as the

following famous theorem (proved in [FW79]) implies.

Theorem 3.7 (Ferrero-Washington, 1979). Let k be an abelian number field and p

be a prime. Then

µp(k) = 0.

In fact, it is not known if the abelian assumption in Theorem 3.7 is needed.

Conjecture 3.8 (Iwasawa). Let k be a number field and p be a prime. Then

µp(k) = 0.

In addition, we may be able to replace the relative Iwasawa invariants λ−, µ− with

λ, µ in Kida’s formula, as the following conjecture suggests.

Conjecture 3.9 (Greenberg). Let k+ be a totally real number field and p be a prime.

Then

λp(k
+) = µp(k

+) = 0.

These observations help explain why Kida’s formula is more applicable than it

appears, as we’ll see with the following example.

Example 3.10. Consider the uniquely determined field `+ in the following tower.

Q(ζ13)

2

Q(cos(2π/13))

2

`+

3

Q

Then `+/Q



34

• is a totally real Galois extension with Gal(`+/Q) ∼= Z/3Z,

• is totally ramified at 13,

• and is unramified outside 13.

Therefore `+(i)/Q(i) is a Z/3Z-extension of CM-fields and

λ−3 (Q(i)) = µ−3 (Q(i)) = 0

by Theorem 3.3 since 3 remains prime in Q(i)/Q and Q(i) has class number 1. Hence

we may apply Kida’s formula with p = 3, k = Q(i), and ` = `+(i), to get

2λ−3 (`)− 2 · 0 = [`∞ : k∞](2 · 0− 2 · 0) +
∑

P∈S(`)

(e(P)− 1).

Of course, [`∞ : k∞] = 3 since [`∞ : k∞] divides [` : k] = 3 while `∞ 6= k∞ because 13

ramifies in `∞/Q but not in k∞/Q. Thus

λ−3 (`) =
1

2

∑
P∈S(`)

(e(P)− 1)

= #{P ∈ S(`) : e(P) > 1}.

We can use induction to show that 3n+1||133n − 1 for all n ∈ N0, so 13 remains prime

in Q∞ since it remains prime in every intermediate field Q(ζ3n)+ with n ∈ N. (In

fact, it’s enough to note that 13 remains prime in the first level; in general, for any

rational prime q there is an n ∈ N0 such that q splits completely in Qn/Q and does

not split in Q∞/Qn.) On the other hand, 13 splits in Q(i)/Q, so there is a unique

prime ideal in O`+∞ lying over 13, and it splits into two prime ideals P1,P2 in `∞/`+
∞

each of which ramifies in `∞/k∞. Therefore the only primes of S(`) which ramify in

`∞/k∞ are P1,P2 since any such prime must lie above either 2 or 13 (because these

are the only primes in Q other than 3 which ramify in `+
∞(i)/Q) but no prime lying

above 2 ramifies in `∞/k∞ since 2 does not ramify in `+/Q. We conclude λ−3 (`) = 2.



35

Moreover, using a more general construction of the same flavor, Kida’s formula

can be used to prove the following remarkable result found in [FOO06].

Theorem 3.11 (Fujii-Ohgi-Ozaki, 2006). Let p ∈ {3, 5} and n ∈ N0. Then there is

a CM-field ` such that µp(`) = µ−p (`) = 0 and

λp(`) = λ−p (`) = n.

3.3 Outline of Kida’s Argument

Now we’ll sketch part of the proof that Kida originally gave for Theorem 3.6 in his

1980 paper [Kid80]. A special case of the theorem is presented first. Then the version

as stated above is deduced from this. Later, will give a proof of the special case using

the techniques found in [Iwa81], so we forego the proof here. An alternate proof of

Kida’s formula was provided in [Sin84] by Sinnott using p-adic L-functions.

Theorem 3.12 (Special Case of Theorem 3.6). Let `/k be a p-extension of CM-fields

for some odd prime p. Suppose µ−p (k) = 0 and [` : k] = [`∞ : k∞] = p. Define s∞ to

be half the number of ramified primes in S(`). Then µ−p (`) = 0 and

λ−p (`) = pλ−p (k) + (p− 1)(s∞ − δ),

where δ = 1 if ζp ∈ k while δ = 0 if ζp /∈ k.

Proof. See Remark 4.15.

Proof of Theorem 3.6. We have µ−p (k) = 0⇒ µ−p (`) = 0 by, for example, [Iwa73a].

Assume first that [` : k] = [`∞ : k∞] = pm+1 for some m ∈ N0. We’ll show Theorem

3.6 holds for this case by induction on m. The base case m = 0 holds by Theorem

3.12. Suppose then that Theorem 3.6 holds for p-extensions `′/k′ of CM-fields with

µ−p (k′) = 0 and [`′ : k′] = [`′∞ : k′∞] = pm. We know there is an intermediate field k′′

such that k′′/k is Galois and [` : k′′] = [`∞ : k′′∞] = p. (This field corresponds to the
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cyclic subgroup generated by an element of order p in the center of Gal(`/k).) In fact,

k′′ must be a CM-field, so Theorem 3.6 is true for k′′/k by our induction hypothesis,

giving µ−p (k′′) = 0 and

λ−p (k′′)− δ = pm(λ−p (k)− δ) +
1

2

∑
p∈S(k′′)

(e′′(p)− 1)

where e′′(p) is the ramification index of p in k′′∞/k∞. Consequently, Theorem 3.6 must

also be true for `/k′′, so µ−p (`) = 0 and

λ−p (`)− δ = p(λ−p (k′′)− δ) +
1

2

∑
P∈S(`)

(e′(P)− 1)

where e′(P) is the ramification index of P in `∞/k
′′
∞. Each p ∈ S(k′′) must either

ramify or split in `∞/k
′′
∞. To see this, note that p is unramified (see Theorem 3.3)

and finitely split in k′′∞/k′′ (which we’ll prove in Lemma 4.2), so the residue field of

p in k′′∞ is of the form Fqp∞ which has no extensions of degree p and thus p cannot

remain inert in `∞/k′′∞. If p ramifies, then there is a unique P ∈ S(`) lying over p, in

which case

e(P)− 1 = e′(P)e′′(p)− 1 = pe′′(p)− 1 = e′(P)− 1 + p(e′′(p)− 1).

If p splits, then there are exactly p primes P1, . . . ,Pp ∈ S(`) lying over p, in which

case
p∑
i=1

(e(Pi)− 1) =

p∑
i=1

(e′′(p)− 1) =

p∑
i=1

(e′(Pi)− 1) + p(e′′(p)− 1).

Therefore ∑
P∈S(`)

(e(P)− 1) =
∑

P∈S(`)

(e′(P)− 1) + p
∑

p∈S(k′′)

(e′′(p)− 1),

so

λ−p (`)− δ = p

pm(λ−p (k)− δ) +
1

2

∑
p∈S(k′′)

(e′′(p)− 1)

+
1

2

∑
P∈S(`)

(e′(P)− 1)

= pm+1(λ−p (k)− δ) +
1

2

∑
P∈S(`)

(e(P)− 1),
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whence Theorem 3.6 is true whenever [` : k] = [`∞ : k∞]. If [` : k] 6= [`∞ : k∞],

then there is a CM-field k′ such that k′∞ = k∞ and `/k′ is Galois extension of degree

[`∞ : k∞]. It turns out that λ−p (k′) = λ−p (k) (see Corollary 4.5 below), so the theorem

holds in this case as well.
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Chapter 4

IWASAWA’S FORMULA FOR Zp-FIELDS

As promised, we now examine a more general number theoretic Riemann-Hurwitz

formula proved by Iwasawa in [Iwa81]. In the paper, Iwasawa proves various decom-

position formulas for representations of Galois groups and then obtains expressions

involving λ-invariants by taking the degrees of the representations. Since we are only

interested here in the invariants we will not prove the statements about representa-

tions (although one does not have to do much more work than is done below to get

them).

4.1 Background and Lemmas

Definition 4.1. A Zp-field K ⊆ C for some prime p is a finite extension K/Q∞.

Equivalently, K = k∞ is the cyclotomic Zp-extension of a number field k. To see the

equivalence of these definitions, note that the primitive element theorem implies a

Zp-field is of the form Q∞(α) = Q(α)∞ for some α ∈ C algebraic over Q∞, and Q(α)

is a number field since α is also algebraic over Q.

Lemma 4.2. Let K be a Zp-field. Given a rational prime q, there are only finitely

many finite places v of K above q.

Proof. Note that the decomposition subgroup Z in Gal(K/k) ∼= Zp of a finite place

v above q is closed, so Z is either trivial or has finite index. However, Z cannot be

trivial since [Kv : kv|k ] =∞ because [∪nQq(ζpn) : Qq] =∞.

Remark 4.3. Let K = k∞ be a Zp-field. Let v be a finite place of K, and for each

n ∈ N0 let v(n) be the place of kn below v. For n ∈ N0 ∪ {∞}, let Ikn denote the

group of invertible ideals of Okn . If m ∈ N0, then the cyclic subgroup Iv(m) ≤ Ikm
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generated by the maximal ideal in Okm associated to v(m) injects into Iv(n) whenever

m ≤ n ∈ N0. Thus we may define a subgroup Iv ≤ IK of invertible ideals of K by

Iv := lim−→
n

Iv(n).

(Note that Iv is independent of k since if also K = k′∞, then km = kk′ = k′n for some

m,n ∈ N0.) In fact,

lim−→
n

Ikn
∼= IK =

⊕
v

Iv

where v ranges over all finite places on K with

Iv ∼=
{

Z if v - p⋃
n≥0 p

−nZ if v|p.

As usual, we define class group of K by CK := IK/PK where

PK := {xOK : x ∈ K×}

is the subgroup of principal inveritble ideals. We write AK for the p-primary part of

CK .

Now we state a crucial structure theorem for AK whose proof may be found in

[Iwa73b], [Iwa59a], or Proposition 2.5.1 in [Gre10]. Since AK is a torsion abelian

p-group, we may regard it as a torsion Zp-module.

Theorem 4.4. Let K = k∞ be a Zp-field. Then there is a Zp-module A′ such that

AK ∼= (Qp/Zp)λp(k) ⊕ A′

as Zp-modules where pnA′ = 0 for some n ∈ N0. Moreover, µp(k) = 0 implies A′ = 0,

and µp(k) > 0 implies A′ is infinite.

Corollary 4.5. Let K = k∞ be a Zp-field. Suppose K = k′∞ for another number field

k′. Then λp(k′) = λp(k), and µp(k′) = 0 if and only if µp(k) = 0.
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Proof. We have

AK ∼= (Qp/Zp)λp(k) ⊕ A′ ∼= (Qp/Zp)λp(k′) ⊕ A′′

where pnA′ = pmA′′ = 0 for some n,m ∈ N0. Multiplication by pn+m is a surjective

Zp-endomorphism on Qp/Zp, so if φ : AK → AK is multiplication by pn+m, then

(Qp/Zp)λp(k) ∼= im(φ) ∼= (Qp/Zp)λp(k′)

as Zp-modules, so applying the functor HomZp(−,Qp/Zp) yields

Zλp(k)
p

∼= Zλp(k′)
p

as Zp-modules, whence λp(k) = λp(k
′) upon comparing ranks since Zp is a PID. The

second statement follows by observing that

µp(k
′) = 0⇒ A′′ = 0⇒ dimFp(AK/pAK) = 0

while µp(k′) > 0⇒ A′′ 6= pA′′ ⇒ dimFp(AK/pAK) > 0.

Definition 4.6. Let K = k∞ be a Zp-field. Then by Corollary 4.5 we may define

λK := λp(k), and we may write µK = 0 whenever µp(k) = 0.

With Theorem 4.4 in hand, we can now explain (as in [Iwa65]) why λK provides an

apt counterpart for twice the genus. Let C be a nonsingular, projective curve1 over

an algebraically closed field F ; e.g., we’ve noted that a compact Riemann surface

arises from such a curve with F = C. At the beginning of Chapter 3, we saw that

nonzero prime ideals in the ring of integers for a number field k act like points on

a surface with respect to ramification. In fact, the natural analog for Ik is the free

Z-module Div(C) (the divisor group) generated by the closed points on C since they

are both groups of discretely valued places. However, if K = k∞ is the cyclotomic Zp-

extension for some prime p, then IK ∼= lim−→n
Ikn as defined above is no longer the free

1by a curve I mean a separated, integral scheme of dimension one
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Z-module generated by the nonzero primes of OK . As we’ll see, the right match for

the class group CK is the Jacobian J(C) := Div0(C)/P (C) where Div0(C) ≤ Div(C)

is the subgroup of divisors degree 0 and P (C) is the set of principal divisors. If

p 6= char(F ), the p-primary part Jp(C) of the Jacobian satisfies

Jp(C) ∼= (Qp/Zp)2g

as Zp-modules where the genus g of C is defined to be the F -dimension of the space

Ω1
C/F of all regular differential one-forms on C. Equivalently, g is the dimension of the

canonical divisor class (see [Sha94]). When µK = 0, this is exactly the same result

one obtains for AK with λK filling the part of 2g.

As found above, p-extensions of CM-fields (as compared to nonconstant holomor-

phic maps) formed the right framework for Kida’s formula, so since we wish to derive

a similar formula for general Zp-fields it’s natural to consider (as we do in Remark

4.7 below) Galois extensions of Zp-fields.

We’ll also find the need to study Galois cohomology groups and duality thereof.

To motivate why we should do so, we briefly explain here a Riemann-Hurwitz formula

similar to Theorem 2.3 for nonsingular, projective curves over an algebraically closed

field F . One method to prove the result for a finite, separable morphism f : C1 → C2

of these curves is by using the induced short exact sequence of relative differential

sheaves on C1

0→ f ∗ΩC2/F → ΩC1/F → ΩC1/C2 → 0

to obtain a long exact sequence of F -vector spaces in sheaf cohomology. Then we

take Euler characteristics χ. Next, we let gi be the genus of Ci and use Serre duality

to compute

χ(ΩCi/F ) = −χ(OCi) = gi − 1.
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Then we let K2 be a canonical divisor of C2, n be the degree of f , and apply Riemann-

Roch to compute

χ(f ∗ΩC2/F ) = χ(f ∗K2) = deg(f ∗K2) + 1− g1 = n(2g2 − 2) + 1− g1.

Putting it all together, we get

2g1 − 2 = n(2g2 − 2) + χ(ΩC1/C2) = n(2g2 − 2) + deg(D)

where D is the ramification divisor for f . We cannot mimic this proof exactly, but

we can use some of the same type of techniques. In particular, we’ll use short exact

sequences of G-modules and group cohomology instead of short exact sequences of

sheaves and sheaf cohomology, and we’ll use Herbrand quotients instead of Euler

characteristics.

Remark 4.7. Assume L/K is a finite Galois extension of Zp-fields with G :=

Gal(L/K). Then IK , IL are naturally G-modules, and for each finite place v of K we

find that

IL,v :=
⊕
w|v

Iw

is a G-submodule of IL. Thus Remark 4.3 implies

IL =
⊕
v

IL,v

as G-modules where v ranges over all finite places of K, so taking group cohomology

gives

Hn(L/K, IL) ∼=
⊕
v

Hn(L/K, IL,v)

for all n ∈ N0.

We’ll need the following two lemmas when computing with long exact sequences

on group cohomology.
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Lemma 4.8. Let L/K be a finite p-extension of Zp-fields for some prime p. Suppose

v is a finite place on K. Then for all n ∈ N we have

Hn(L/K, IL,v) ∼=
{

Z/eZ if v - p and 2|n
0 otherwise

as abelian groups where e is the ramification index of v in L/K.

Proof. First, suppose v - p. Let w be a place on L which lies over v, and let

Z ≤ G := Gal(L/K) denote the decomposition group of w. Then

IL,v ∼= Z(G/Z) ∼= HomZ(ZG,Z)

as G-modules where Z has trivial G-action, so for all n ∈ N Shapiro’s lemma implies

Hn(L/K, IL,v) ∼= Hn(G,HomZ(ZG,Z)) ∼= Hn(Z,Z)

as abelian groups. On the other hand, v is tamely ramified in the p-extension L/K,

so Z ∼= Z/eZ since the decomposition group Z is equal to the inertia group here,

giving

Hn(L/K, IL,v) ∼=
{
H2(Z/eZ,Z) ∼= (Z/eZ)⊗Z Z ∼= Z/eZ if 2|n
H1(Z/eZ,Z) ∼= HomZ(Z/eZ,Z) ∼= 0 if 2 - n

for all n ∈ N.

Now suppose v|p. Then Remark 4.3 implies IL,v ∼= (∪n≥0p
−nZ)g as abelian groups

for some g ∈ N, so for each a ∈ IL,v there is a unique a′ ∈ IL,v such that a = pa′. On

the other hand, G is a finite p-group, so by Corollary 16.5 in [HS97] we have

pmHn(G, IL,v) = 0

for all n ∈ N where |G| = pm. Thus

Hn(L/K, IL,v) ∼= 0

for all n ∈ N.
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Lemma 4.9. Let L/K be a cyclic p-extension of Zp-fields for some prime p. Suppose

L/K is unramified at every infinite place of K. Then for all n ∈ N we have

Hn(L/K,L×) ∼= 0.

Proof. We know that H1(L/K,L×) ∼= 0 by Hilbert’s Theorem 90, so since G :=

Gal(L/K) is cyclic it suffices to show H2(L/K,L×) ∼= 0. As argued in Chapter 5 of

[Koc97],

H2(L/K,L×) ∼= Br(L/K)

where Br(L/K) is the kernel of the natural homomorphism on Brauer groups

φ : Br(K)→ Br(L).

In fact, Br(L/K) is contained in the p-part of Br(K) since G is a finite p-group, so if

L = `∞ and K = k∞ for some number fields ` and k, then by the proof of Proposition

9 in Chapter II of [Ser97] it’s enough to show that for sufficiently large n ∈ N0 the

natural map

φn,∞ :
⊕
v|∞

Br(kn,v)→
⊕
w|∞

Br(`n,w)

is injective where v and w range over all infinite places of kn and `n, respectively.

Choose n large enough so that `n/kn is unramified at every infinite place of kn. Fix

x = (xv) ∈ ker(φn,∞). Suppose x 6= 0. Then xv 6= 0 for some real place v on kn, so

xv ∈ Br(kn,v) ∼= Br(R) = {[R], [H]} corresponds to the quaternion algebra H. Thus

for each real place w on `n lying over v we have that φn,∞(x)w ∈ Br(`n,w) ∼= Br(R)

also corresponds to the quaternion algebra, but φn,∞(x) = 0, so there are no such

real places lying over v, which is a contradiction since `n/kn is unramified at every

infinite place of kn.

Next, we define a p-Pontryagin dual functor ∗ on (compact or discrete) ZpG-

modules and then prove a congener of Serre duality for group cohomology.
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Definition 4.10. Let G be a cyclic p-group. Fix a ZpG-homomorphism ϕ : A→ B,

and define ϕ∗ : B∗ → A∗ by mapping f ∈ B∗ := HomZp(B,Qp/Zp) to

ϕ∗(f) := f ◦ ϕ ∈ A∗ := HomZp(A,Qp/Zp).

The following proposition is a special of a more general duality (see, for example,

[NSW08]), but we give here an ad hoc proof for completeness.

Proposition 4.11. Let G be a cyclic p-group. Then ∗ defines an exact, additive

contravariant functor from the category of ZpG-modules A to itself such that we have

ZpG-isomorphisms

(1) Hn(G,A∗) ∼= Hn(G,A)∗ for all n ∈ N0

(2) Z∗p ∼= Qp/Zp

(3) (Qp/Zp)∗ ∼= Zp

where A∗ has the diagonal action of G and Zp,Qp/Zp have the trivial action of G.

Proof. It’s clear that ∗ is a well-defined additive contravariant functor, and exactness

follows by observing that Qp/Zp is an injective Zp-module. Write G = 〈g〉 with

|G| = pm and define ZpG-endomorphisms

ϕA,g : A→ A : a 7→ (g − 1)a

ψA,g : A→ A : (gp
m−1 + · · ·+ 1)a,

so that im(ψA,g) ⊆ AG and by cyclicity of G (see Section 7 of Chapter IV in [HS97])

H1(G,A) ∼=
ker(ψA,g)
im(ϕA,g)

∼= H2(G,A)

H2(G,A) ∼=
ker(ϕA,g)
im(ψA,g)

∼= H1(G,A).

Note that the map ψA,g is actually independent of the choice of generator g, as are

the sets ker(ϕA,g) and im(ϕA,g); the notation is merely for symmetry and consistency.



46

To prove (1) for n = 0, let ι : AG ↪→ A denote the inclusion mapping, and note that

the induced ZpG-epimorphism

ι∗ : A∗ → (AG)∗

has kernel precisely (g−1 − 1)A∗ since

f ∈ ker(ι∗)⇔ f |AG = 0⇔ ker(f) ⊇ AG = ker(ϕA,g)

⇔ f descends to map on A/ker(ϕA,g) ∼= im(ϕA,g).

To prove (1) for n ≥ 1, first note that the canonical surjections

π1 : A� coker(ψA,g),

π2 : A� coim(ϕA,g)

induce ZpG-isomorphisms

α1 := π∗1|ker(ψ
∗
A,g) : coker(ψA,g)∗ → ker(ψ∗A,g) = ker(ψA∗,g−1)

α2 := π∗2|im(ϕ∗A,g) : coim(ψA,g)
∗ → im(ϕ∗A,g) = im(ϕA∗,g−1).

In fact, for the natural maps

i : im(ϕA∗,g−1) ↪→ ker(ψA∗,g−1)

j : coker(ψA,g) � coim(ϕA,g)

we have i = α1 ◦ j∗α−1
2 , so

H1(G,A∗) ∼= coker(i) ∼= coker(j∗) ∼= ker(j)∗ ∼= H1(G,A)∗,

and similarly H2(G,A∗) ∼= H2(G,A)∗. Statements (2), (3) are clear.

4.2 Statement, Proof, and Applications

Theorem 4.12 (Iwasawa, 1980). Let L/K be a Z/(p)-extension of Zp-fields for some

prime p. Suppose L/K is unramified at every infinite place of K and that µK = 0.
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Then µL = 0 and we have the formula

λL +H = [L : K](λK +H) +
∑
w-p

(e(w)− 1)

where e(w) is the ramification index in L/K of a finite place w - p of L, and

pH = q(O×L ) =
|H2(L/K,O×L )|
|H1(L/K,O×L )|

is the Herbrand quotient of the Gal(L/K)-module O×L .

Proof. First, we use the ideas found in [Iwa73a] to show µL = 0. We know there is a

Z/pZ-extension of number fields `/k with L = `∞ and K = k∞ (see the above proof

of Theorem 3.6), and K ∩ `/k is an extension of degree at most p, so either K ∩ ` = k

or K ∩ ` = k1. If K ∩ ` = k1, then ` = k1 and consequently µp(`) = pµp(k) = 0, so we

may assume K ∩ ` = k. The proof of Theorem 11 in [Iwa59a] (or Proposition 13.23 in

[Was96]) shows that for k′ ∈ {k, `} the sequence rank(A(k′n)) := dimFp(A(k′n)⊗Z Fp)

is bounded if and only if µp(k′) = 0, so rank(A(kn)) is bounded and we need to prove

rank(A(`n)) is bounded. For each n ∈ N0 let v1, . . . , vsn denote the places on kn which

are ramified in `n/kn with corresponding inertia groups T1, . . . , Tsn in Gal(Mn/kn)

where Mn is the maximal abelian extension of kn contained in the p-Hilbert class

field N`n of `n. Then each Ti is a cyclic group of order p and

Gal(Mn/Nkn) = T1 · · ·Tsn .

Therefore

rank(A(`n)) = rank(Gal(N`n/`n))

≤ p · rank

(
Gal(N`n/`n)

Gal(N`n/`n)g−1

)
= p · rank

(
Gal(N`n/`n)

Gal(N`n/Mn)

)
= p · rank(Gal(Mn/`n))

≤ p · rank(Gal(Mn/kn))
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≤ p(rank(Gal(Mn/Nkn)) + rank(Gal(Nkn/kn)))

≤ p(sn + rank(A(kn))).

Thus it’s enough to show sn is bounded. Note that `n = kn` since K ∩ ` = k. This

implies that any prime ideal q in kn which ramifies in `n is a factor of a prime ideal p

in k which ramifies in `, but there are only finitely many non-archimedean places in

K lying above every such p by Lemma 4.2, so sn is bounded since for n sufficiently

large `n/kn is unramified at every infinite place.

Now let S be the set of finite places v - p of K which are ramified in L/K. Define

IS :=
⊕
v∈S

IL,v

IL,S := IL/IS ∼=
⊕
v/∈S

IL,v

PL,S :=
PL + IS
IS

.

Then for G := Gal(L/K) = 〈g〉 we have the following canonical short exact sequences

of G-modules

PL,S ↪→ IL,S � CL,S

O×L,S ↪→ L× � PL,S

where

CL,S :=
IL,S
PL,S

=
IL/IS

(PL + IS)/IS
∼=

IL
PL + IS

∼=
CL

(PL + IS)/PL
.

Thus we have long exact sequences

· · · → H1(G, IL,S)→ H1(G,CL,S)→ H2(G,PL,S)→ H2(G, IL,S)→ · · ·

· · · → H1(G,L×)→ H1(G,PL,S)→ H2(G,O×L,S)→ H2(G,L×)→ · · ·

but Lemmas 4.8 and 4.9 imply

Hn(G, IL,S) ∼=
⊕
v/∈S

Hn(G, IL,v) ∼= 0

Hn(G,L×) ∼= 0
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for all n ∈ N, so since G ∼= Z/pZ we find

Hn(G,AL,S) ∼= Hn(G,CL,S) ∼= Hn+1(G,PL,S) ∼= Hn+2(G,O×L,S) ∼= Hn(G,O×L,S)

for all n ∈ N where AL,S is the p-primary part of CL,S. In fact, AL,S ∼= AL/AS where

AS is the p-primary part of CS := (PL + IS)/PL ∼= IS/(PL ∩ IS). Observe that CS

injects into the ideal class group of a number field since S is a set of finitely many

non-p-places, so |AS| < ∞. For each n ∈ N0 multiplication by pn is a surjective

Zp-endomorphism on Qp/Zp and every cyclic subgroup of Qp/Zp is the kernel of such

a map. Moreover, Theorem 4.4 shows that AL ∼= (Qp/Zp)λL as Zp-modules since

µL = 0, and every cyclic subgroup of (Qp/Zp)λL is, after a Zp-automorphism, the

image of a cyclic subgroup C under the natural injection ι1 : Qp/Zp � (Qp/Zp)λL

onto the first summand, so

(Qp/Zp)λL
ι1(C)

∼=
Qp/Zp
C

⊕ (Qp/Zp)λL−1 ∼= (Qp/Zp)λL

as Zp-modules. Therefore induction on the size of AS proves that

AL,S ∼= (Qp/Zp)λL

as Zp-modules. Thus the map

AL,S → (A∗L,S)∗ : a 7→ (f 7→ f(a))

defines a ZpG-isomorphism, so Proposition 4.11 implies

Hn(G,AL,S) ∼= Hn(G,A∗L,S)∗.

On the other hand, A∗L,S ∼= ZλLp as Zp-modules, so the Krull-Schmidt theorem holds

for the ZpG-module A∗L,S by [Rei61], but (as found in [BG64] or seen by modifying the

methods in Section 74 of [CR66]) the only finitely-generated indecomposable ZpG-

modules up to isomorphism are ZpG, IpG = (g − 1)ZpG (the augmentation ideal),

and Zp with trivial G-action, giving

A∗L,S
∼= ZpGr ⊕ IpGs ⊕ Ztp
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as ZpG-modules for some uniquely determined r, s, t ∈ N0. Hence

λL = rankZp(A∗L,S) = pr + (p− 1)s+ t = p(r + t) + (p− 1)(s− t),

and

H1(G,AL,S) ∼=(H1(G,ZpG)∗)r ⊕ (H1(G, IpG)∗)s ⊕ (H1(G,Zp)∗)t

∼= (0∗)r ⊕ (0∗)s ⊕ ((Zp/pZp)∗)t

∼= (Zp/pZp)t

H2(G,AL,S) ∼= (H2(G,ZpG)∗)r ⊕ (H2(G, IpG)∗)s ⊕ (H2(G,Zp)∗)t

∼= (0∗)r ⊕ ((IpG/IpG
2)∗)s ⊕ (0∗)t

∼= (Zp/pZp)s

as ZpG-modules. In particular, since the Herbrand quotient is multiplicative on short

exact sequences of G-modules (see, for example, Proposition 10 in [AW67]) we get

ps−t = q(AL,S) = q(O×L,S) = q(O×L,S/O
×
L )q(O×L ) = pd+H

where

pd = q(O×L,S/O
×
L ) = q(PS) = q(IS)/q(CS) = q(IS)

by lem. 4.8
= p|S|

since CS finite implies q(CS) = 1 (again, see [AW67]).

Consider the natural map φ : AK,S → AGL,S. We claim ker(φ), coker(φ) are finite.

To prove this, we’ll show that the natural map Φ: CK,S → CG
L,S has finite kernel

and cokernel. From the above long exact sequences in cohomology of G we get the
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following commutative diagram with exact rows and columns

0

��

// 0

��

// ker(Φ)

��
0 // PK,S //

��

IK,S //

��

CK,S

Φ
��

// 0

0 // PG
L,S

//

����

IGL,S
Ψ //

��

CG
L,S

// //

��

H2(O×L,S)

H1(O×L,S) // 0 // coker(Φ).

Thus ker(Φ) ∼= H1(O×L,S) and coker(Φ) = coker(Ψ) ∼= H2(O×L,S) are finite. This

proves the claim, so the induced map on Zp-modules

Zr+tp ⊕ (Zp/pZp)s ∼= (A∗L,S)G
by 4.11∼= (AGL,S)∗

φ∗−→ A∗K,S
∼= ZλKp

has kernel and cokernel which are torsion Zp-modules, giving r + t = λK . Therefore

λL +H = pλK + (p− 1)(d+H) +H = p(λK +H) + (p− 1)d,

as needed.

Remark 4.13. We can use Theorem 4.12 and induction to express λL in terms of λK

whenever L/K is a finite p-extension of Zp-fields which is unramified at the infinite

places and with µK = 0. Note that since finite p-groups are solvable, there is a tower

K = K0 ⊆ K1 ⊆ . . . ⊆ Kn = L

of Z/(p)-extensions Ki/Ki−1. Define HL/K by

pHL/K =
n∏
i=1

pp
n−i

qi(O×Ki
).

where

qi(−) =
|H2(Ki/Ki−1,−)|
|H1(Ki/Ki−1,−)|
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is the Herbrand quotient for the cyclic group Gal(Ki/Ki−1). Later, we’ll see by Corol-

lary 6.4 thatHL/K is independent of the choice of tower when we prove a generalization

of the following corollary.

Corollary 4.14. Let L/K be a finite p-extension of Zp-fields which is unramified at

every infinite place. Suppose µK = 0. Then µL = 0 and

λL = [L : K]λK + (p− 1)HL/K +
∑
w-p

(e(w)− 1)

where e(w) is the ramification index in L/K of a finite place w - p of L, and HL/K is

as in the previous remark.

Remark 4.15. As Iwasawa mentions in [Iwa81], we can use the methods of Theorem

4.12 above to give an alternate proof of Kida’s formula, and we’ll do so here. Specif-

ically, let `/k be a finite p-extension of CM-fields for some odd prime p, and suppose

µ−p (k) = 0. We’ve seen above that the general form of Kida’s formula follows from

Theorem 3.12, so we may assume [L : K] = p where K = k∞, L = `∞. Then also

µ−p (`) = 0, and AL,S ∼= A−L,S ⊕ AL+,S as ZpG-modules with A−L,S
∼= (Qp/Zp)λ

−
p (`) as

Zp-modules. (Note that this direct sum may fail to hold if p = 2.) By using similar

arguments to those used in proving Iwasawa’s formula, we find that

λ−p (`) +H− = p(λ−p (k) +H−) +
1

2

∑
P∈S(`)

(e(P)− 1)

with pH
−

= q(O×L/O
×
L+) = q(WL/{±1}) = q(VL) where VL is the p-part of the set

WL of roots of unity in L. If ζp /∈ k, then VL = {1}, so q(VL) = 1, giving H− = 0. If

ζp ∈ k, then

VL ∼= Qp/Zp

as G-modules with trivial action, so

pH
−

=

∣∣∣∣ ZpZ ⊗Z
Qp

Zp

∣∣∣∣∣∣∣∣HomZ

(
Z
pZ
,
Qp

Zp

)∣∣∣∣ =
1

p
,
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giving H− = −1.

We conclude with an example demonstrating how Theorem 4.12 can be used in sit-

uations where Kida’s formula does not apply (i.e., for the prime p = 2 and non-CM

fields).

Example 4.16. Take p = 2, K = k∞, and L = `∞ with k = Q(i) and ` = Q(i,
√

6).

Of course, the number fields k+ = Q, k = Q(i), and `+ = Q(
√

6) each have class

number 1, so all of their Iwasawa invariants vanish by Theorem 3.3 since 2 ramifies in

k and `+. Also, both L/K and L+/K+ are Z/2Z-extensions of Z2-fields, so we may

apply Theorem 4.12 to both cases since K is totally complex and L+ is totally real.

We get

λL = 2λK +H + d = H + d

0 = λL+ = 2λK+ +H+ + d+ = H+ + d+

where 2H = q(O×L ), 2H
+

= q(O×L+) are Herbrand quotients and d (resp. d+) is the

number of non-2-places on K (resp. K+) which are ramified in L/K (resp. L+/K+).

On the other hand, we’ve seen that H −H+ = H− = −1 by the same argument used

in Remark 4.15. (In fact, Kida’s formula holds in the case p = 2 as shown by Sinnott

in [Sin84], but we can’t make the same conclusions about the p-primary part of the

class group again since we may no longer have the decomposition AL ∼= A−L ⊕ AL+ .)

Hence

λL = −1− d+ + d.

Clearly, d+ ≥ 1 since 3 ramifies in Q(
√

6)/Q while 3-places do not ramify in Z2-

extensions of number fields, namely, Q∞/Q. In fact, d+ = 1 since 8||32 − 1 implies

that there is exactly one prime 3 lying above 3 in Q∞. In addition, we claim that

d = 2. To see this, note that 3 must either split or ramify in Q∞(i)/Q∞, but it does
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not ramify since 3 does not ramify in Q(i)/Q. Hence there are exactly 2 primes lying

above 3 in K = Q∞(i), giving d ≤ 2 as claimed. Therefore

λL = −1− d+ + d = −1− 1 + 2 = 0,

but this result cannot be immediately deduced from Theorem 3.3 since ` = Q(i,
√

6)

has class number 2. On the other hand, Q(i,
√

6) has the same cyclotomic Z2-

extension as Q(i,
√

3) which does has class number 1, so we can also deduce λL = 0

from this plus Theorem 3.3.
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Part II

FORMULAS FOR CYCLIC
p-EXTENSIONS
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Chapter 5

THE EULER CHARACTERISTIC

Suppose L/K is a cyclic p-extension of Zp-fields with µK = 0. We can express λL

in terms of λK by Corollary 4.14 assuming no infinite places ramify, but we’d like

to know if we can get any additional information using cyclicity. Indeed, this will

be the case, and a key gadget which we’ll need is an Euler characteristic χ; take

〈g〉 = G = Gal(L/K) and for any ZG-module M with finite cohomology groups

H1, H2 define

χ(G,M) := ordp

(
|H2(G,M)|
|H1(G,M)|

)
= ordp

(
|ker(ϕM,g)/im(ψM,g)|
|ker(ψM,g)/im(ϕM,g)|

)
where (as in the proof of Proposition 4.11)

ϕM,g : M →M : m 7→ (g − 1)m

ψM,g : M →M : m 7→ (g|G|−1 + g|G|−2 + · · ·+ 1)m.

Using the notation q(−) for the Herbrand quotient as in Chapter 4, we have the

relation

pχ(G,M) = q(M).

Thus χ is additive on short exact sequences of G-modules with finite H2, H1 since

Herbrand quotients are multiplicative. In fact, we have the following computation of

χ for the p-primary part of the class group.

Lemma 5.1. Suppose L/K is a cyclic p-extension of Zp-fields with G = Gal(L/K).

Then

χ(G,AL) = −χ(G,PL) +
∑
u-p

ordp(e(w/u))
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where e(w/u) is the ramification index in L/K for a finite place w of L lying over

u - p. If, in addition, L/K is unramified at every infinite place, then

−χ(G,PL) = χ(G,O×L ).

Proof. As noted in Lemma 4.8,

pmHn(G,CL) = 0

for all n ∈ N where pm = |G|, but Hn distributes over direct sums (a fact which we’ve

also used in Remark 4.7), so we can (1) split up CL into a direct sum of its primary

components (since it’s a torsion abelian group), (2) pull out the direct sum, and (3)

take the p-primary part of each summand. This will show that

Hn(G,AL) ∼= Hn(G,CL)

for all n ∈ N since a q-primary component BL of CL with q 6= p is uniquely divisible

by p. Alternatively, Hn(G,BL) is a Zq-module since BL is a Zq-module, but p is

invertible in Zq, so Hn(G,BL) = 0. We could also note, as Romyar Sharifi pointed

out, that H i(G,CL/AL) = 0 for i ≥ 1 since CL/AL consists of prime-to-p torsion.

Thus using additivity, Remark 4.7, and Lemma 4.8, we get

χ(G,AL) = χ(G,CL) = χ(G, IL/PL)

= −χ(G,PL) + χ(G, IL)

= −χ(G,PL) +
∑
u

χ(G, IL,u)

= −χ(G,PL) +
∑
u-p

ordp(e(w/u)).

If, in addition, L/K is unramified at every infinite place, then Lemma 4.9 implies

χ(G,L×) = 0,
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so using additivity again gives

−χ(G,PL) = −χ(G,L×/O×L )

= χ(G,O×L )− χ(G,L×)

= χ(G,O×L ),

as claimed.

Remark 5.2. Assume further that µK = 0 (as is conjectured) in addition to assuming

that L/K is a cyclic p-extension of Zp-fields with G = Gal(L/K). Then also µL = 0

(see the proof of Theorem 4.12), so if

(−)∗ := HomZp(−,Qp/Zp)

denotes the p-Pontryagin dual functor as in Chapter 4, then Theorem 4.4 and Propo-

sition 4.11 together imply that

A∗L
∼=Zp ((Qp/Zp)λL)∗ ∼=Zp ((Qp/Zp)∗)λL ∼=Zp ZλLp

is a ZpG-module which is free of finite rank λL over Zp. Thus

A∗L
∼=
⊕
n

Man
n

is a direct sum of finitely many pairwise non-isomorphic indecomposable ZpG-modules

Mn each with finite rank over Zp. By the work of Reiner in [Rei61], we know that

the Krull-Schmidt theorem holds for ZpG-modules, so this decomposition is unique

up to ordering and choices Mn of representatives of isomorphism classes. Note that

Proposition 4.11 and the fact that finite abelian p-groups A are self dual (i.e., A ∼= A∗)

together imply

χ(G,M∗) = ordp

(
|H2(G,M∗)|
|H1(G,M∗)|

)
= ordp

(
|H1(G,M)∗|
|H2(G,M)∗|

)
= ordp

(
|H1(G,M)|
|H2(G,M)|

)
= −ordp

(
|H2(G,M)|
|H1(G,M)|

)
= −χ(G,M)
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when these quantities are finite, and additivity along with the first isomorphism

theorem imply

χ(G,MG) = χ(G,M/(g − 1)M) = χ(G,M)− χ(G, (g − 1)M)

= χ(G,M)− χ(G,M/MG) = χ(G,M)− (χ(G,M)− χ(G,MG))

= χ(G,MG).

Hence for any subgroups N ≤ H ≤ G we find

χ(H/N,ALN ) = −χ(H/N, (ANL )∗)
by prop 4.11

= −χ(H/N, (A∗L)N)

= −χ(H/N, (A∗L)N) = −
∑
n

anχ(H/N,MN
n ). (5.2.1)

We can then compare these computations to

λL = rankZp(A∗L) =
∑
n

anrankZp(Mn) (5.2.2)

and

λK = rankZp(A∗K)
proof of 4.12

= rankZp((AGL)∗)

= rankZp((A∗L)G) = rankZp((A∗L)G)

=
∑
n

anrankZp(MG
n ). (5.2.3)

Used in conjunction with Lemma 5.1, the above Equations 5.2.1, 5.2.2, and 5.2.3,

should allow one to express λL in terms of (1) λK , (2) Euler characteristics of prin-

cipal ideals or units, and (3) ramification indices of finite places not lying above p,

just so long as we can classify the Mn sufficiently well. Now when |G| ≤ p2, the

work of Heller and Reiner in [HR62] shows that there are finitely many isomorphism

classes of indecomposable ZpG-modules with finite Zp-rank; moreover, we can classify

these indecomposables Mn well enough to determine all possible χ(H/N,MN
n ) and

rankZp(MN
n ). We’ll see later, however, that we can play a similar game for |G| > p2

even though there are infinitely many isomorphism classes of indecomposables in this

case.
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Chapter 6

DEGREE p

In this chapter, we focus on the case that L/K is a cyclic p-extension of Zp-fields with

〈g〉 = G = Gal(L/K) ∼= Z/(p) and µK = 0. First, we’ll prove a mild generalization of

Iwasawa’s formula (see Theorem 4.12) using the Euler characteristic χ. Specifically,

we won’t need the assumption that infinite places are unramified and we won’t “re-

move” the finite places not lying above p which ramify. We will, however, take for

granted the fact that µK = 0 implies µL = 0 since we already proved this when we

went through Iwasawa’s proof. In the last section, p = 2 will be treated in the case

of an imaginary quadratic extension of Q∞. In the process, we’ll give a slick proof

of Ferrero’s and Kida’s well-known lambda computations. Then we’ll extend these

computations to a larger class of fields.

As mentioned in the proof of Theorem 4.12, we have the following description of

the indecomposable ZpG-modules which are free of finite rank over Zp (attributed to

Diederichsen, or see [CR66]).

Theorem 6.1. Let 〈g〉 = G ∼= Z/(p). The only indecomposable ZpG-modules which

are free of finite rank over Zp are (up to isomorphism) Zp, ZpG, and IpG = (g−1)ZpG.

6.1 Iwasawa’s Formula Revisited

In 1980, Iwasawa (see [Iwa81]) used Theorem 6.1 to prove the following generalization

of Kida’s formula (see [Kid80]) in the case where L/K is unramified at infinite places.

We give an alternative proof (of a slight generalization) here which still retains the

basic flavor.
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Theorem 6.2. Let L/K be a Z/(p)-extension of Zp-fields for some prime p with

G = Gal(L/K). Suppose µK = 0. Then µL = 0 and

λL = pλK − (p− 1)χ(G,PL) +
∑
w-p

(e(w)− 1)

where e(w) is the ramification index in L/K of a finite place w - p. In fact,

A∗L
∼= Zap ⊕ (ZpG)λK−a ⊕ (IpG)|S|−χ(G,PL)+a

as ZpG-modules.

Proof. Use Theorem 6.1 for 〈g〉 = G to write

A∗L
∼= Zap ⊕ (ZpG)b ⊕ (IpG)c

as ZpG-modules for some nonnegative integers a, b, c. We have already computed

the Zp-ranks, G-invariants, and Euler characteristics, of these indecomposables in the

proof of Theorem 4.12. The results are summarized in Table 6.2.1. Thus if S is the

rankZp(−) (−)G H2(G,−) H1(G,−) χ(G,−)
Zp 1 Zp Zp/pZp 0 1
ZpG p Zp 0 0 0
IpG p− 1 0 0 Zp/pZp −1

Table 6.2.1. Cohomology for extensions of degree p

set of finite places of K not lying above p which ramify in L/K, then Lemma 5.1 and

the last column in Table 6.2.1 imply

−χ(G,PL) + |S| = χ(G,AL) = −χ(G,A∗L) = −a · 1− b · 0− c · (−1) = −a+ c.

On the other hand, equations 5.2.2, 5.2.3 in Remark 5.2 and the first two columns in

Table 6.2.1 show that

λK = a · 1 + b · 1 + c · 0 = a+ b,
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and

λL = a · 1 + b · p+ c(p− 1) = p(a+ b) + (p− 1)(−a+ c)

= pλK − (p− 1)χ(G,PL) + (p− 1)|S|,

as needed.

Remark 6.3. We can use Theorem 6.2 and induction to express λL in terms of λK

whenever L/K is a finite p-extension of Zp-fields with µK = 0. Note that since finite

p-groups are solvable, there is a tower

K = K0 ⊆ K1 ⊆ . . . ⊆ Kn = L

of Z/(p)-extensions. Define HL/K by

HL/K = −
n∑
i=1

pn−iχ(Gal(Ki/Ki−1), PKi
).

We’ll see in the corollary below that HL/K is independent of the choice of tower.

Corollary 6.4. Let L/K be a p-extension of Zp-fields. Suppose µK = 0. Then µL = 0

and

λL = [L : K]λK + (p− 1)HL/K +
∑
w-p

(e(w)− 1)

where e(w) is the ramification index in L/K of a finite place w - p and HL/K is as in

Remark 6.3.

Proof. We use induction on n where pn = [L : K]. If n = 1, this is just Theorem

6.2. Suppose the formula holds for n− 1 and let’s use the notation in Remark 6.3, so

λKn−1 = [Kn−1 : K]λK + (p− 1)HKn−1/K +
∑
vn−1-p

(e(vn−1)− 1)
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where e(vn−1) is the ramification index in Kn−1/K of a finite place vn−1 - p, and

HKn−1/K = −
n−1∑
i=1

pn−1−iχ(Gal(Ki/Ki−1), PKi
).

Of course, the formula also holds for the Z/(p)-extension L/Kn−1, so

λL = [L : Kn−1]λKn−1 + (p− 1)HL/Kn−1 +
∑
w-p

(e(w/wn−1)− 1)

e(w/wn−1) is the ramification index in L/Kn−1 of a finite place w lying over wn−1,

and

HL/Kn−1 = −χ(Gal(L/Kn−1), PL).

Thus we find

λL = pλKn−1 + (p− 1)HL/Kn−1 +
∑
w-p

(e(w/wn−1)− 1) =

pnλK + (p− 1)(pHKn−1/K +HL/Kn−1) + p
∑
vn−1-p

(e(vn−1)− 1) +
∑
w-p

(e(w/wn−1)− 1).

Hence the corollary follows from the following two computations:

pHKn−1/K +HL/Kn−1 = −p
n−1∑
i=1

pn−1−iχ(Gal(Ki/Ki−1), PKi
)− χ(Gal(L/Kn−1), PL)

= −
n∑
i=1

pn−iχ(Gal(Ki/Ki−1), PKi
)

= HL/K ,

and ∑
w-p

(e(w)− 1) =
∑
vn−1-p

∑
w|vn−1

(e(w)− 1)

=
∑
vn−1-p

∑
w|vn−1

(e(w/vn−1)e(vn−1)− 1)

=
∑
vn−1-p

∑
w|vn−1

(e(w/vn−1)(e(vn−1)− 1) + e(w/vn−1)− 1)
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=
∑
vn−1-p

∑
w|vn−1

e(w/vn−1)(e(vn−1)− 1) +
∑
w-p

(e(w/wn−1)− 1)

=
∑
vn−1-p

p(e(vn−1)− 1) +
∑
w-p

(e(w/wn−1)− 1)

where the last equality follows from the fact that finite places not lying above p either

split or ramify in a cyclic degree p extension of Zp-fields (see the proof of Theorem

3.6).

Remark 6.5. Let L/K be as in Corollary 6.4 with µK = 0. Again using the notation

of Remark 6.3, Lemma 5.1 can be used to show

n∑
i=1

ϕ(pn+1−i)χ(Gal(Ki/Ki−1), AKi
)

= −(p− 1)
n∑
i=1

pn−iχ(Gal(Ki/Ki−1), PKi
) +

n∑
i=1

ϕ(pn+1−i)
∑
vi−1-p

ordp(e(vi/vi−1))

= (p− 1)HL/K +
∑
w-p

(e(w)− 1),

so we can restate the formula of Corollary 6.4 in the following form, which we’ll find

useful in Chapter 8:

λL = [L : K]λK +
n∑
i=1

ϕ(pn+1−i)χ(Gal(Ki/Ki−1), AKi
).

Now we take note of a few immediate implications of Theorem 6.2.

Corollary 6.6. Let L/K be a Z/(p)-extension of Zp-fields for some prime p with

G = Gal(L/K). Suppose µK = 0. Then

1. λL ≡ λK (mod p− 1)

2. λL ≡ χ(G,PL)− |S| = −χ(G,AL) (mod p)

3. ordp|H2(G,PL)| ≤ λK + ordp|H1(G,PL)|+ |S|

where S is the set of finite places of K not lying above p which ramify in L/K.
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Proof. Theorem 6.2 immediately implies 1 and 2. To prove 3 we need only note that

0 ≤ λL − λK
p− 1

= λK − ordp|H2(G,PL)|+ ordp|H1(G,PL)|+ |S|

which completes the proof.

As shown in the discussion preceding Proposition 3.1 of [FKOT97], we can improve

upon the inequality in part 3 of Corollary 6.6 in the case where λK = 0.

Lemma 6.7. Let L/K be a Z/(p)-extension of Zp-fields which is unramified at every

infinite place. Suppose µK = λK = 0. Then

ordp|H2(G,PL)| = ordp|H1(G,O×L )| ≤ |S|

where G = Gal(L/K).

This result combined with Theorem 6.2 immediately implies the following corol-

lary, which is Proposition 3.1 in [FKOT97].

Corollary 6.8. Let L/K be a Z/(p)-extension of Zp-fields which is unramified at

every infinite place. Suppose µK = λK = 0. Then λL = 0 if and only if

|S| − ordp|H1(G,O×L )| = 0 = ordp|H2(G,O×L )|

where G = Gal(L/K).

The following lemma of Iwasawa is mentioned in [Iwa89] and gives Theorem 3.5

(the main result) of [FKOT97], which we have stated below as Theorem 6.10 in a

slightly more general form. We’ll prove a generalization of this lemma and theorem

in Chapter 8.

Lemma 6.9 (Iwasawa). Let L/K be a Z/(p)-extension of Zp-fields which is unram-

ified at every infinite place. Suppose K = k∞ is the cyclotomic Zp-extension of a

number field k such that p - h(k) and k has only one prime lying above p. Then

ordp|H2(G,O×L )| = 0.
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where G = Gal(L/K).

Theorem 6.10 (T. Fukuda et al., 1997). Let L/K be a Z/(p)-extension of Zp-fields

which is unramified at every infinite place. Suppose K = k∞ is the cyclotomic Zp-

extension of a number field k such that p - h(k) and k has only one prime lying above

p. Then λL = 0 if and only if the ideal class of every finite place of L not lying above

p which is ramified in L/K has order prime to p in the class group CL.

Example 6.11. In [FKOT97], the authors use Theorem 6.10 to examine the p = 3

case when L/K = `∞/Q∞ where `/Q is a cyclic cubic extension of prime conductor

f ≡ 1 (mod 3). Since one can verify that 3 - h(`), if 3 does not split in `/Q, then

λL = 0 by Theorem 3.3. If 3 does split in `/Q and f 6≡ 1 (mod 9), then |S| = 1 and

λL = 0 by the theorem since again 3 - h`. Let’s give a small explicit example. Let α

be a root of

x3 + x2 − 20x− 9,

and take ` = Q(α). Then ` ⊆ Q(ζ61)+, so 3 splits and only 61 ramifies in `/Q. Also,

61 remains prime in Q∞/Q, so |S| = 1 and the class of the unique prime above 61 in

L has order prime to 3 in CL since we can check that h(`) = 1.

6.2 Qp-Representations

The proof of Theorem 6.2 actually shows more than just a formula for lambda invari-

ants. It shows a statement about representations (a mild generalization of Theorem 6

in [Iwa81]). Let L/K and G = Gal(L/K) be as in Theorem 6.2 with µK = 0. Define

VL := A∗L ⊗Zp Qp,

and consider the corresponding representation

πL/K : G→ GL(VL).

Then there is the following result about the decomposition of πL/K .
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Corollary 6.12. Let L/K and G = Gal(L/K) be as in Theorem 6.2 with µK = 0.

Then we have an isomorphism of Qp-representations

πL/K ∼= λKπG ⊕ (|S| − χ(G,PL))πp−1.

where |S| is number of finite places of L not lying above p which ramify in L/K, πG

is the regular representation of G over Qp, and πp−1 is the unique faithful irreducible

representation of G over Qp.

Proof. In the notation of the theorem with 〈g〉 = G we have

VL ∼= (Zap ⊕ (ZpG)b ⊕ (IpG)c)⊗Zp Qp
∼= Qa

p ⊕ (QpG)b ⊕ ((g − 1)QpG)c

as QpG-modules. Now

QpG ∼=
Qp[x]

(xp − 1)
∼=

Qp[x]

(x− 1)
⊕ Qp[x]

(Φp(x))
∼= Qp ⊕ (g − 1)QpG,

as QpG-modules, so in fact

VL ∼= Qa
p ⊕Qb

p ⊕ ((g − 1)QpG)b ⊕ ((g − 1)QpG)c

∼= Qa+b
p ⊕ ((g − 1)QpG)a+b ⊕ ((g − 1)QpG)−a+c

∼= (QpG)a+b ⊕ ((g − 1)QpG)−a+c

∼= (QpG)λK ⊕ ((g − 1)QpG)|S|−χ(G,PL).

Note that if |S| − χ(G,PL) happens to be negative we interpret the above isomor-

phism as a difference of representations. Hence it suffices to show that (g − 1)QpG

corresponds to the unique faithful irreducible representation of G over Qp. Suppose

πp−1 : G → GL(V ) is a faithful irreducible representation of G over Qp. It’s enough

to prove V ∼= (g−1)QpG as QpG-modules. Since V is a simple QpG-module we know

that V ∼= QpG/M for some maximal ideal M of QpG. Now

QpG ∼= Qp[x]/(xp − 1),
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soM corresponds to either (x−1)/(xp−1) or (Φp(x))/(xp−1) under this isomorphism,

but (x− 1)/(xp − 1) corresponds to the trivial representation (not faithful), whence

V ∼=
Qp[x]/(xp − 1)

(Φp(x))/(xp − 1)
∼=

Qp[x]

(Φp(x))
∼=

Qp[x]

((xp − 1)/(x− 1))
∼=

(x− 1)

(xp − 1)
∼= (g − 1)QpG,

which finishes the proof.

6.3 p = 2

In this section, we’ll investigate the change in lambda invariants for quadratic ex-

tensions of Z2-fields. We reprove an independently known result of Ferrero ([Fer80])

and Kida ([Kid79]) from a different viewpoint that lends itself to natural general-

izations that can be used in constructing prescribed lambda invariants for quadratic

extensions of bases other than Q∞. We have a formula which describes the change

in lambda invariants. Namely, we have Iwasawa’s formula, but in general we have

to replace χ(G,O×L ) with −χ(G,PL) since H2(G,L×) is nonzero whenever there are

infinite places which ramify (see Theorem 6.2). We’ll need the following two results

of Greenberg and Weber.

Theorem 6.13 (Greenberg). Suppose F ′/F is a quadratic extension of number fields

and let t∞ = # infinite places of F which ramify in F ′. Then

χ(F ′/F,O×F ′) = t∞ − 1.

Proof. See Remark 1.2.6 in [Gre10].

Theorem 6.14 (Weber). Let kn denote the nth layer of the cyclotomic Z2-extension

of k = Q. Then every totally positive element of O×kn is a square in O×kn.

Proof. See Sätze 6 and 25 in [Has52].

We’ll also need the following lemma, which will be used again along with Theorem

6.13 and a generalization of Theorem 6.14 later.
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Lemma 6.15. Let d > 1 be a squarefree integer. Suppose F is a number field with

discriminant ∆F such that (d,∆F )|2. Then 4OF (
√
−d) ⊆ OF +

√
−dOF .

Proof. Without loss of generality, we have
√
−d /∈ F . Pick an arbitrary element ε

in OF (
√
−d). Then ε is of the form

ε = x+ y
√
−d

where x, y ∈ F , and the norm and trace of ε over F are in OF . In other words,

2x ∈ OF and x2 + dy2 ∈ OF .

Hence it suffices to show that 4y ∈ OF . We immediately see that

d(2y)2 ∈ OF .

Let P be a prime ideal of OF . Suppose vP(4y) < 0. We will obtain a contradiction.

Take e := vP(2) ≥ 0, −m := vP(y) = vP(4y)− 2e < 0, and n := vP(d) ≥ 0. Then

2e−m = vP(4y) < 0

and

n+ 2(e−m) = vP(d(2y)2) ≥ 0.

If e = 0 (i.e., P does not lie above 2), then n ≥ 2m ≥ 2, so P ∩ Z = (q) 6= (2)

ramifies in F/Q because P2|dOF and d is squarefree, but this is a contradiction since

(d,∆F )|2. Thus e > 0 and either n = 0 (i.e., 2 - d) or n = e (i.e., 2|d). It cannot be

the case that n = 0 since then 2(e−m) ≥ 0 implies

2e−m ≥ e−m ≥ 0,

which contradicts 2e−m < 0. Hence n = e, so

2(2e−m) ≥ 3e− 2m = n+ 2(e−m) ≥ 0,

but again this contradicts 2e−m < 0.



70

Proposition 6.16. Let K = k∞ be the cyclotomic Z2-extension of k = Q and L = `∞

be the cyclotomic Z2-extension of an imaginary quadratic number field ` = Q(
√
−d)

with d ∈ Z squarefree and d > 2. Then

χ(G,PL) = 1

where again G = Gal(L/K).

Proof. We’ll show that |H1(G,PL)| = 1 and |H2(G,PL)| = 2. For each n ∈ N∪{∞}

there is an exact sequence

0→ H1(Gn, P`n)→ H2(Gn,O×`n)→ H2(Gn, `
×
n )→ H2(Gn, P`n)→ H1(Gn,O×`n)→ 0

where Gn = Gal(`n/kn). Let Nn : `n → kn denote the norm map for all n ∈ N∪{∞}.

Then Theorem 6.14 implies that for all n ∈ N we have

O×kn ∩N∞(L×) = (O×kn)2 = Nn(O×`n)

where (O×kn)2 denotes the set of squares of units. Hence

O×K ∩N∞(L×) = (O×K)2 = N∞(O×L ),

so we have a commutative diagram

H2(G,O×L ) //

∼

��

H2(G,L×)

∼

��
O×K/(O

×
K)2 // K×/N∞(L×)

where the horizontal maps are the natural maps and the vertical maps are isomor-

phisms. Thus

H1(G,PL) ∼= ker(O×K/(O
×
K)2 → K×/N∞(L×)) = (O×K ∩N∞(L×))/(O×K)2 = 0,

and likewise H1(Gn, P`n) = 0 for all n ∈ N. For all n ∈ N let t∞(n) = # infinite

places of kn which ramify in `n/kn. Then using Theorem 6.14 and Dirichlet’s unit
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theorem shows

|H2(Gn,O×`n)| =
∣∣∣∣ O×kn(O×kn)2

∣∣∣∣ = 2t∞(n)+0−1+1 = 2t∞(n).

Also,

|H2(G, `×n )| = 2t∞(n),

so the natural map

H2(Gn,O×`n)
∼−→ H2(Gn, `

×
n )

is an isomorphism by the pigeonhole principle (an injection of finite sets of the same

size is a bijection) and, in particular, the natural map

O×kn/(O
×
kn

)2 ∼−→ k×n /Nn(`×n )

is onto, i.e.,

k×n = O×knNn(`×n ).

This implies that

K× = O×KN∞(L×),

so we also have that the natural map

H2(G,O×L )
∼−→ H2(G,L×)

is an isomorphism, so for all n ∈ N ∪ {∞} we have

H2(Gn, P`n) ∼= H1(Gn,O×`n)

by the long exact sequence in cohomology. Now for n ∈ N we have

|Un/Vn| = |H1(Gn,O×`n)| =
|H2(Gn,O×`n)|

2χ(Gn,O×`n )
=

2t∞(n)

2t∞(n)−1
= 2
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by Theorem 6.13 where Un is the norm 1 units in O`n and Vn = {ū/u : u ∈ O×`n}. We

claim Un/Vn is generated by the coset of −1. To prove this, it’s enough to show that

−1 /∈ Vn. If not, then −1 = ū/u for some u ∈ O×`n , so lemma 6.15 implies

u = i
a
√
d

4

where a ∈ Okn . Of course, u ∈ O×`n is a unit, so u−1 ∈ O`n is an integer, giving

u−1 = −i 4

a
√
d

= i
b
√
d

4

for some b ∈ Okn . Hence abd = −42, so d divides 42 = 24 in Okn , but that means

d divides 24 in Z. Therefore d = 1 or d = 2 since d is a squarefree positive integer,

which contradicts our assumption that d > 2, so indeed Un/Vn (has order 2 and) is

generated by the coset of −1. It follows that U∞/V∞ has order 2 and is generated by

the coset of −1 since by the claim

U∞ =
∞⋃
n=0

Un =
∞⋃
n=0

〈−1〉Vn = 〈−1〉V∞

while −1 /∈ Vn for every n implies

−1 /∈ V∞,

which finishes the proof.

Corollary 6.17. Let L/K be as in Proposition 6.16. Then

λL = −1 + |S|

where S is the set of finite non-2-places of L which are ramified in L/K.

Proof. We simply apply Iwasawa’s formula with χ(G,O×L ) replaced by −χ(G,PL)

(i.e., by Theorem 6.2) to get

λL = 2λK − (2− 1)χ(G,PL) +
∑
w-p

(ew − 1)

= 2 · 0− 1 +
∑
w∈S

(2− 1)

= −1 + |S|
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as claimed.

A couple of remarks are in order. First, we’ll discuss the cases which the proposition

did not cover. Second, we’ll give an alternative argument for one step in the proof

of Proposition 6.16 which simplifies the one given above (and does not exclude d ∈

{1, 2}), but which has the disadvantage of not having an obvious generalization.

Remark 6.18. In the cases where ` = Q(
√
−d) with d = 1 or d = 2, we know that

Q(
√
−d) is a UFD and 2 ramifies in `/Q, so λL = 0 since there’s only one prime which

ramifies in L/` and 2 - h` = 1 (see Theorem 3.3). Thus applying the same formula

we used in the above corollary gives us

0 = λL = 2λK − (2− 1)χ(G,PL) +
∑
w-2

(ew − 1) = 2 · 0− χ(G,PL) + 0 = −χ(G,PL).

Remark 6.19. As we mentioned above, we can simplify the proof of Proposition 6.16

while including the case d ∈ {1, 2} at the same time. We won’t require Theorem 6.13

of Greenberg, but we will use a result of Hasse’s which Ferrero used in [Fer80]. It

states that if kn is the nth level of the cyclotomic Z2-extension of Q and `n = kn(
√
−d)

where d ∈ N is squarefree, then

O×`n = O×knµ`n

where µ`n is the set of roots of unity in `n, so we also have

O×L = O×KµL

where K = k∞ and L = `∞. Hence for n ∈ N ∪ {∞}

Un := {u ∈ O×`n : |u|2 = 1} = µ`n

(since the only norm one units in Okn are ±1) and

Vn := {ū/u : u ∈ O×`n} = {ū/u : u ∈ µ`n} = µ2
`n ,
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so we get

H1(Gn,O×`n) ∼= Un/Vn = µ`n/µ
2
`n
∼= (µ`n [2∞])/(µ`n [2∞])2.

If d /∈ {1, 2}, then µL[2∞] = {1,−1}, so

H1(G,O×L ) ∼= {1,−1}/{1} ∼= Z/(2).

If d ∈ {1, 2}, then µL = µ2∞ = µ2
L is the 2-primary part of the set of all roots of unity,

so

H1(G,O×L ) ∼= µ2∞/µ2∞ = 0.

Note also that on the finite levels we have

Un/Vn =

{
µ2n+2/µ2n+1 if d = 1
µ2n+1/µ2n if d = 2,

which paints a nice picture of why H1 is still of order two on the finite levels but

collapses on the infinite level when d ∈ {1, 2}. Coincidentally, this gives a proof of

Greenberg’s Theorem 6.13 in the special case where F ′/F is an imaginary quadratic

extension of Q.

Now consider taking the cyclotomic Z2-extension K of a number field k 6= Q with

a version of Weber’s theorem holding for K and perhaps λK = 0. We’d like to be

able to explicitly compute the lambda invariant of L = K(
√
−d) for squarefree d ∈ N

by computing χ(G,PL) with G = Gal(L/K). We’ll use the following two theorems,

the first of which generalizes Weber’s theorem.

Theorem 6.20 (Hughes and Mollin, 1983). Let `/k be a cyclic 2-extension of real

abelian number fields. Suppose Gal(k/Q) has exponent n such that −1 is congruent

to a power of 2 modulo n, and, if k 6= `, suppose that exactly one prime ramifies in

`/k. If h(k) is odd, then every totally positive element of O×` is a square in O×` .

Proof. See the Theorem in Section 3 of [HM83].
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Corollary 6.21. Let ` = Q(ζp + ζ−1
p ) where p is a Fermat prime. Then every totally

positive element of O×` is a square in O×` .

Corollary 6.22. Let kn be the nth layer in the cyclotomic Z2-extension of the first

layer k in the cyclotomic Zp-extension of Q where p is a Fermat prime. Suppose h(k)

is odd. Then every totally positive element of O×kn is a square in O×kn.

Theorem 6.23 (Ichimura and Nakajima, 2009). Let Q∞ be the cyclotomic Zp-

extension of Q for some prime p < 500. Then CQ∞ [2] is trivial. In fact, the class

number of every number field contained in Q∞ is odd.

Proof. See Proposition 1 and its proof in Section 3 of [IN10].

Proposition 6.24. Let K = k∞ be the cyclotomic Z2-extension of the first layer k in

the cyclotomic Zp-extension of Q where p is 2 or a Fermat prime and h(k) is odd (e.g.,

we can take p ∈ {2, 3, 5, 17, 257}), and let L = `∞ be the cyclotomic Z2-extension of

` = k(
√
−d) with d ∈ Z squarefree and d > 2 ≥ (d, p). Then

χ(G,PL) = 1

where again G = Gal(L/K).

Proof. The proof runs as the proof of Proposition 6.16 mutatis mutandis.

Corollary 6.25. Let L/K be as in Proposition 6.24. Then

λL = −1 + |S|

where S is the set of finite non-2-places of L which are ramified in L/K.

Proof. We only need to prove that λK = 0 which will follow from Theorem 3.3 once

we show that 2 remains inert in k. When p = 2, this is clear, so we may assume

p = 22n + 1 for some n ∈ N0. For every m ∈ N, we have that Fm − 2 = 22m − 1 =
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F0F1 · · ·Fm−1 is a product of consecutive Fermat numbers Fi = 22i + 1, but this

identity also shows that Fermat numbers are pairwise relatively prime, so p2 - 22m−1

since p = Fn. This means that the multiplicative order of 2 modulo p2 is not a power

of 2 which forces the residue degree of 2 in Q(ζp2) to be divisible by p. Consequently,

the residue degree of 2 in k is p which is equivalent to 2 being inert in k.
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Chapter 7

DEGREE p2

In this chapter, we suppose that L/K is a cyclic p-extension of Zp-fields with 〈g〉 =

G = Gal(L/K) ∼= Z/(p2) and µK = 0. First, we’ll prove a formula relating λL

to λK in the flavor of 6.2 using nearly identical techniques. Again, we won’t use the

assumption that infinite places are unramified and we won’t “remove” the finite places

not lying above p which ramify. The formula will not be the same as we would get

from Remark 6.4. Next, we will disprove (by explicit counter-example) a conjecture

which is tempting to make though nonetheless false. We’ll also give a decomposition

of representations of the same type as Remark 6.12. In the last section, we’ll give

an alternative proof of the special formula for cyclic extensions of degree p2. This

alternative proof will suggest that it is unnecessary to have a complete description of

indecomposable ZpG-modules which are free of finite Zp-rank.

We have the following description of the indecomposable ZpG-modules which are

free of finite rank over Zp due to Heller and Reiner in 1962 (see [HR62]).

Theorem 7.1. Let 〈g〉 = G ∼= Z/(p2). The only indecomposable ZpG-modules which

are free of finite rank over Zp are (up to isomorphism) A = Zp, B = ZpG/(Φp(g)),

C = ZpG/(Φp2(g)), E = ZpG/(gp − 1), and extensions

I1, . . . , Ip−2 of C by A⊕ E

II1, . . . , IIp of C by E

III1, . . . , IIIp−1 of C by A⊕B

IV of C by A

V1, . . . , Vp−1 of C by B,
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so there are exactly

4 + (p− 2) + p+ (p− 1) + 1 + (p− 1) = 4p+ 1

isomorphism classes.

7.1 Special Formulas for Z/(p2)-Extensions

Proposition 7.2. Let L/K be a Z/(p2)-extension of Zp-fields for some prime p with

G = Gal(L/K), and let L/K1 be the unique proper subextension with N = Gal(L/K1)

as seen in the following tower

L

N∼=Z/(p)

G∼=Z/(p2) K1

G/N∼=Z/(p)

K

Suppose µK = 0. Then µK1 = µL = 0 and

−pχ(G,PL) = −(2p− 1)χ(G/N,PK1)− χ(N,PL) + (p− 1)|Ssplit
ram |

where Ssplit
ram is the set of finite places of K not lying above p which ramify in K1/K

but split in L/K1.

Proof. Use Theorem 7.1 for 〈g〉 = G to write

A∗L
∼= Aa ⊕Bb ⊕ Cc ⊕ Ee ⊕ I i11 ⊕ · · · II ii11 ⊕ · · · III iii11 ⊕ · · · IV iv ⊕ V v1

1 ⊕ · · ·

as ZpG-modules for some nonnegative integers a, b, c, e, i1, . . ., ip−2, ii1, . . ., iip, iii1,

. . ., iiip−1, iv, v1, . . ., vp−1. We want to apply the same ideas laid out in Chapter

5 and used in the proof of Theorem 6.2, so we need to know Zp-ranks, invariants,
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and Euler characteristics, for each indecomposable M and each submodule MN . We

begin by computing the Zp-ranks for the ZpG-modules A, B, C, and E; we find

rankZp(A) = rankZp(Zp) = 1

rankZp(B) = dimQp(B ⊗Zp Qp) = dimQp(Qp[x]/(Φp(x))) = deg(Φp(x)) = p− 1

rankZp(C) = dimQp(C ⊗Zp Qp) = dimQp(Qp[x]/(Φp2(x))) = deg(Φp2(x)) = p2 − p

rankZp(E) = dimQp(E ⊗Zp Qp) = dimQp(Qp[x]/(xp − 1)) = deg(xp − 1) = p.

We know that Zp-ranks are additive on short exact sequences, so the above ranks are

enough to determine all the Zp-ranks for ZpG-modules. For example,

rankZp(I1) = rankZp(A⊕ E) + rankZp(C)

= rankZp(A) + rankZp(E) + p2 − p

= 1 + p+ p2 − p

= p2 + 1.

Now we compute G-invariants for the ZpG-modules A, B, C, and E; we find

AG = ZGp = Zp

BG = {0} since (x− 1,Φp(x)) = 1 in Zp[x]

CG = {0} since (x− 1,Φp2(x)) = 1 in Zp[x]

EG = Φp(g)E ∼= ZpG/(g − 1) ∼= Zp since (x− 1, xp − 1) = x− 1 in Zp[x].

Note that since CG ∼= 0, any extension Y of C by X has G-invariants Y G ∼= XG; this

follows because the short exact sequence

0→ X → Y → C → 0

gives rise to the long exact sequence in cohomology

0→ XG → Y G → CG → H1(G,X)→ · · · .
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In addition, G-invariants distribute over direct sums, so knowing the above invariants

allows us to easily find all other G-invariants for ZpG-modules. For example, it’s now

obvious that

IG1
∼= (A⊕ E)G = AG ⊕ EG ∼= Z2

p.

Likewise, Euler characteristics are additive on short exact sequences, so it suffices to

only do these computations for A,B,C, and E. We get

χ(G,A) = ordp

(
|A/p2A|
|{0}/{0}|

)
= ordp(|Z/(p2)|) = 2

χ(G,B) = ordp

(
|{0}/{0}|
|B/(g − 1)B|

)
= −ordp(Zp[1]/(Φp(1))) = −ordp(Z/(p)) = −1

χ(G,C) = ordp

(
|{0}/{0}|
|C/(g − 1)C|

)
= −ordp(Zp[1]/(Φp2(1))) = −ordp(Z/(p)) = −1

χ(G,E) = ordp

(
|Φp(g)E/Φp2(g)Φp(g)E|

|{0}/{0}|

)
= ordp(|Zp/Φp2(1)Zp|) = 1

Now, for example, it’s clear that

χ(G, I1) = χ(G,A⊕ E) + χ(G,C) = χ(G,A) + χ(G,E)− 1 = 2 + 1− 1 = 2.

The results of these computations (as well as possibleH2,H1 which we won’t need) are

summarized in Table 7.2.1. This table agrees with computations found in [Par66].

Now we do the same calculations with the above modules now regarded as ZpN -

modules. We already know the Zp-ranks, so we turn immediately to finding the

N -invariants. We get

AN = ZNp = Zp

BN = B ∼= Zp−1
p since (xp − 1,Φp(x)) = Φp(x) in Zp[x]

CN = {0} since (xp − 1,Φp2(x)) = 1 in Zp[x]

EN = E ∼= Zpp since (xp − 1, xp − 1) = xp − 1 in Zp[x].

Again we have CN ∼= 0, so knowing the above invariants is enough to determine all

the other N -invariants for ZpN -modules. Next, we take Euler characteristics (noting
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rankZp(−) (−)G H2(G,−) H1(G,−) χ(G,−)
A 1 Zp Zp/p2Zp 0 2
B p− 1 0 0 Zp/pZp −1
C p2 − p 0 0 Zp/pZp −1
E p Zp Zp/pZp 0 1

I1, . . . , Ip−2 p2 + 1 Z2
p

Zp/p2Zp
(Zp/pZp)2

Zp/p2Zp ⊕ Zp/pZp

0
0

Zp/pZp
2

II1, . . . , IIp p2 Zp
0

Zp/pZp
0

Zp/pZp
0

III1, . . . , IIIp−1 p2 Zp
Zp/p2Zp
Zp/p2Zp
Zp/pZp

Zp/p2Zp
(Zp/pZp)2

Zp/pZp
0

IV p2 − p+ 1 Zp Zp/pZp 0 1

V1, . . . , Vp−1 p2 − 1 0
0
0

Z/p2Zp
(Zp/pZp)2 −2

Table 7.2.1. Cohomology for extensions of degree p2

that B and E have trivial N -action) and find

χ(N,A) = ordp

(
|A/pA|
|{0}/{0}|

)
= ordp(|Z/(p)|) = 1

χ(N,B) = (p− 1)χ(N,Zp) = p− 1

χ(N,C) = −ordp

(∣∣∣∣ C

(g − 1)C

∣∣∣∣)− ordp

(∣∣∣∣ (g − 1)C

(g − 1)2C

∣∣∣∣)− · · · = −p
χ(N,E) = pχ(N,Zp) = p

The results of these computations are summarized in Table 7.2.2 where n = 0, . . . , p

and m = 0, . . . , p − 1. Finally, we go through the calculations for AN , BN , . . . now

regarded as Zp[G/N ]-modules. We know the Zp-ranks by inspection of N -invariants

column in Table 7.2.2, so we again jump to the G/N -invariants. To compute the

G/N -invariants, we must first understand the G/N -action on the N -invariants. We
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(−)N H2(N,−) H1(N,−) χ(N,−)
A Zp Zp/pZp 0 1
B Zp−1

p (Zp/pZp)p−1 0 p− 1

C 0 0 (Zp/pZp)p −p
E Zpp (Zp/pZp)p 0 p

I1, . . . , Ip−2 Zp+1
p (Zp/pZp)n+1 (Zp/pZp)n 1

II1, . . . , IIp Zpp (Zp/pZp)n (Zp/pZp)n 0

III1, . . . , IIIp−1 Zpp (Zp/pZp)n (Zp/pZp)n 0

IV Zp Zp/pZp (Zp/pZp)p −p+ 1
V1, . . . , Vp−1 Zp−1

p (Zp/pZp)m (Zp/pZp)m+1 −1

Table 7.2.2. Cohomology for the subgroup N

have

AN = A ∼= Zp

BN = B ∼= (g − 1)Zp[G/N ] since rankZp(B) = p− 1 and B has non-trivial G-action

CN = {0}

EN = E = Zp〈g〉/(gp − 1) ∼= Zp[〈g〉/〈gp〉] = Zp[G/N ].

Now the invariants and Euler characteristics follow easily from Table 6.2.1 in the

proof of Theorem 6.2. The results are summarized in Table 7.2.3.

As in Chapter 6, we let S denote the set of finite places of K not lying above p

which ramify in L/K. Then S is the disjoint union

Ssplit
ram ∪ Sram

split ∪ Sram
ram

where Ssplit
ram consists of those places in S which ramify in K1/K but split in L/K1,

Sram
split consists of those places in S which split in K1/K but ramify in L/K1, and Sram

ram

consists of those places in S which are totally ramified in L/K. Note that we’re

using again here the fact that finite primes must either split or ramify in a degree p
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(−)G/N H2(G/N,−) H1(G/N,−) χ(G/N,−)
AN Zp Zp/pZp 0 1
BN 0 0 Zp/pZp −1
CN 0 0 0 0
EN Zp 0 0 0

IN1 , . . . , I
N
p−2 Z2

p Zp/pZp 0 1

IIN1 , . . . , II
N
p Zp 0 0 0

IIIN1 , . . . , III
N
p−1 Zp Zp/pZp Zp/pZp 0

IV N Zp Zp/pZp 0 1
V N

1 , . . . , V N
p−1 0 0 Zp/pZp −1

Table 7.2.3. Cohomology for the quotient G/N

extension of Zp-fields (see the proof of Theorem 3.6). For convenience, we define

i := i1 + i2 + . . . ip−2

ii := ii1 + ii2 + . . . iip

iii := iii1 + iii2 + . . . iiip−1

v := v1 + v2 + . . . vp−1

and

α := c+ i+ ii+ iii+ iv + v

β := b− c+ e− iv

γ := a− b+ i+ iv − v.

Thus Lemma 5.1, Remark 5.2, and the above tables imply

− χ(G,PL) + |Ssplit
ram |+ |Sram

split|+ 2|Sram
ram | = χ(G,AL) = −χ(G,A∗L)

= −(2a− b− c+ e+ 2i+ iv − 2v)

= −(b− c+ e− iv + 2a− 2b+ 2i+ 2iv − 2v)

= −(β + 2γ),
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− χ(N,PL) + p|Sram
split|+ |Sram

ram | = χ(N,AL) = −χ(N,A∗L)

= −(a+ (p− 1)b− pc+ pe+ i− (p− 1)iv − v)

= −(pb− pc+ pe− piv + a− b+ i+ iv − v)

= −(pβ + γ),

and

− χ(G/N,PK1) + |Ssplit
ram |+ |Sram

ram | = χ(G/N,AK1) = χ(G/N,ANL )

= −χ(G/N, (ANL )∗) = −χ(G/N, (A∗L)N) = −χ(G/N, (A∗L)N)

= −(a− b+ i+ iv − v)

= −γ.

Hence

− pχ(G,PL) + p|Ssplit
ram |+ p|Sram

split|+ 2p|Sram
ram |

= pχ(G,AL)

= −pβ − 2pγ

= (2p− 1)(−γ)− (pβ + γ)

= (2p− 1)χ(G/N,AK1) + χ(N,AL)

= (2p− 1)(−χ(G/N,PK1) + |Ssplit
ram |+ |Sram

ram |)− χ(N,PL) + p|Sram
split|+ |Sram

ram |

= −(2p− 1)χ(G/N,PK1)− χ(N,PL) + (2p− 1)|Ssplit
ram |+ p|Sram

split|+ 2p|Sram
ram |

which proves Proposition 7.2. Notice that we did not use α. We will make use of α

in the proof of the following corollary.

Corollary 7.3. Let L/K be as in Proposition 7.2. Suppose µK = 0. Then µK1 =

µL = 0 and

λL = p2λK − (p− 1)(pχ(G,PL) + (p− 1)(−χ(G/N,PK1) + |Ssplit
ram |)) +

∑
w-p

(e(w)− 1)

= (1− p)λK1 + p(2p− 1)λK + p(p− 1)(|Ssplit
ram |+ |Sram

split|+ 2|Sram
ram | − χ(G,PL))
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where e(w) is the ramification index in L/K of a finite place w of L.

Although Corollary 7.3 follows easily from Proposition 7.2 combined with Remark

6.4, we’ll give a direct proof here.

Proof. By Remark 5.2 and the tables in the proof of Proposition 7.2 we find

λL = rankZp(A∗L)

= a+ (p− 1)(b+ pc) + pe+ (p2 + 1)i+ p2(ii+ iii) + (p2 − p+ 1)iv + (p2 − 1)v

= p2(c+ i+ ii+ iii+ iv + v) + p(b− c+ e− iv) + a− b+ i+ iv − v

= p2α + pβ + γ

λK1 = rankZp(A∗K1
) = rankZp((A∗L)N)

= a+ (p− 1)b+ pe+ (p+ 1)i+ p(ii+ iii) + iv + (p− 1)v

= p(b+ e+ i+ ii+ iii+ v) + a− b+ i+ iv − v

= p(α + β) + γ

λK = rankZp(A∗K) = rankZp((A∗K1
)G/N) = rankZp(((A∗L)N)G/N) = rankZp((A∗L)G)

= a+ e+ 2i+ ii+ iii+ iv

= α + β + γ.

Therefore

λL − p2λK
p− 1

=
p2α + pβ + γ − p2α− p2β − p2γ

p− 1
=
−(p2 − p)β − (p2 − 1)γ

p− 1

=− pβ − (p+ 1)γ = −p(β + 2γ)− (p− 1)(−γ)

=− pχ(G,PL) + p|Ssplit
ram |+ p|Sram

split|+ 2p|Sram
ram |

− (p− 1)(−χ(G/N,PK1) + |Ssplit
ram |+ |Sram

ram |)

=− (pχ(G,PL) + (p− 1)(−χ(G/N,PK1) + |Ssplit
ram |))

+ p|Ssplit
ram |+ p|Sram

split|+ (p+ 1)|Sram
ram |

=− (pχ(G,PL) + (p− 1)(−χ(G/N,PK1) + |Ssplit
ram |))
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+
1

p− 1

∑
w-p

(e(w)− 1)

and

λL − p(2p− 1)λK
p− 1

=
p2α + pβ + γ − p(2p− 1)α− p(2p− 1)β − p(2p− 1)γ

p− 1

=
(p− p2)α + (−2p2 + 2p)β + (−2p2 + p+ 1)γ

p− 1

=− pα− 2pβ − (2p+ 1)γ

=− (p(α + β) + γ)− p(β + 2γ)

=− λK1 + p(−χ(G,PL) + |Ssplit
ram |+ |Sram

split|+ 2|Sram
ram |)

which proves the corollary.

Now we take note of a few immediate implications of Corollary 7.3.

Corollary 7.4. Let L/K be as in Proposition 7.2. Suppose µK = 0. Then

1. λL ≡ λK (mod p− 1)

2. λL ≡ λK1 (mod p(p− 1))

3. λL ≡ χ(G/N,PK1)− |Ssplit
ram | − |Sram

ram | = −χ(G/N,AK1) (mod p)

4. λL ≡ χ(N,PL)− p|Sram
split| − |Sram

ram | = −χ(N,AL) (mod p2)

5. ordp|H2(G,PL)| ≤ 2λK + ordp|H1(G,PL)|+ |Ssplit
ram |+ |Sram

split|+ 2|Sram
ram |

Proof. Corollary 7.3 immediately implies 1, 2, 3, and 4. To prove 5 we need only

note that

0 ≤ λL − λK1

p(p− 1)
+
λK1 − λK
p− 1

=
λL − (1− p)λK1 − pλK

p(p− 1)

= 2λK − ordp|H2(G,PL)|+ ordp|H1(G,PL)|+ |Ssplit
ram |+ |Sram

split|+ 2|Sram
ram |

which completes the proof.



87

Remark 7.5. Let L/K be as in Proposition 7.2 with µK = 0. As we’ll see later, we

don’t need Theorem 7.1 to prove any of Proposition 7.2, Corollary 7.3, or Corollary

7.8 below, but by using it we get more information in the form of a decomposition of

A∗L into non-isomorphic indecomposable ZpG-modules. There does not seem to be a

simple way of determining each of the exponents a, b, c, e, i1, . . ., ip−2, ii1, . . ., iip,

iii1, . . ., iiip−1, iv, v1, . . . vp−1 which appear, but we can determine b, c, e in terms of

the others and Euler characteristics. To do this we note (by the computations in the

proof of Proposition 7.2) that

b = a+ i+ iv − v − γ = a+ i+ iv − v − χ(G/N,PK1) + |Ssplit
ram |+ |Sram

ram |

= a+ i+ iv − v + χ(G/N,AK1),

β = −2γ + χ(G,PL)− |Ssplit
ram | − |Sram

split| − 2|Sram
ram |

= −2χ(G/N,PK1) + χ(G,PL) + |Ssplit
ram | − |Sram

split|,

α = λK − β − γ = λK + χ(G/N,PK1)− χ(G,PL) + |Sram
split|+ |Sram

ram |,

c = −(i+ ii+ iii+ iv + v) + λK + χ(G/N,PK1)− χ(G,PL) + |Sram
split|+ |Sram

ram |

= −(i+ ii+ iii+ iv + v) + λK + χ(G,AL)− χ(G/N,AK1),

e = β − b+ c+ iv = −(a+ 2i+ ii+ iii+ iv) + λK .

Moreover, knowing these values for b, c, e in terms of a, i1, . . ., ip−2, ii1, . . ., iip, iii1,

. . ., iiip−1, iv, v1, . . . vp−1 and Euler characteristics is sufficient to prove Corollary 7.3

(by computing the Zp-rank of A∗L) and Corollary 7.8 (by tensoring A∗L with Qp). In

the case where λK = 1, we find that i = 0 and exactly one of a, e, ii, iii, iv is 1 while

the rest are 0. For example, if λK = 1 = a we get

A∗L
∼= A⊕B1−v+χ(G/N,AK1

) ⊕ C−v+χ(G,AL)−χ(G/N,AK1
) ⊕ V v1

1 ⊕ · · · ⊕ V
vp−1

p−1

as ZpG-modules. In the case where λK = 0, things simplify significantly since then

0 = a = e = i = ii = iii = iv, so

A∗L
∼= B−v+χ(G/N,AK1

) ⊕ C−v+χ(G,AL)−χ(G/N,AK1
) ⊕ V v1

1 ⊕ · · · ⊕ V
vp−1

p−1
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as ZpG-modules where V1, . . . , Vp−1 are extensions of C by B. Further simplifying to

p = 2 yields

A∗L
∼= B−v+χ(G/N,AK1

) ⊕ C−v+χ(G,AL)−χ(G/N,AK1
) ⊕ V v

1

with

B ∼=
Z2G

(g + 1)
,

C ∼=
Z2G

(g2 + 1)
,

V1
∼=

Z2G

(g + 1)(g2 + 1)

as Z2G-modules.

Let L/K be as in Proposition 7.2 with µK = 0. It would be nice to have a formula

for λL in which only one Euler characteristic appears. After all, the extension L/K

is cyclic, so maybe we can get away with only using χ(G,PL). In light of Kida’s

formula (Theorem 3.6) and Theorem 6.2, it is natural to ask whether or not there is

a constant cp depending on p but not on L/K such that

λL
?
= p2λK − cpχ(G,PL) +

∑
w-p

(e(w)− 1). (7.5.1)

If there was such a constant cp, then using Kida’s formula in the case where p is odd

and L/K is an extension of CM-fields with maximal real subfields L+/K+ shows that

−(p2 − 1)δ = λ−L − p
2λ−K −

∑
p-w

(e(w)− 1) +
∑
p-w+

(e(w+)− 1)

= −cp(χ(G,PL)− χ(G+, PL+)) = cpχ(G,O×L/O
×
L+)

= cpχ(G, µL[p∞]) = cp(−2δ)

where δ = 0 if ζp /∈ K and δ = 1 if ζp ∈ K. Thus if there is such a cp, it must be

(p2 − 1)/2. Hence Corollary 7.3 implies that Equation 7.5.1 is equivalent to

−p
2 − 1

2
χ(G,PL)

?
= −(p− 1)(pχ(G,PL) + (p− 1)(−χ(G/H,PK1) + |Ssplit

ram |)),



89

and simplifying gives

−χ(G,PL)
?
= −2χ(G/N,PK1) + 2|Ssplit

ram |. (7.5.2)

It’s easy to show that Equation 7.5.2 holds whenever −β = |Ssplit
ram |+ |Sram

split| since then

−(β + 2γ) = −χ(G,PL) + |Ssplit
ram |+ |Sram

split|+ 2|Sram
ram | = −χ(G,PL)− β + 2|Sram

ram |

and so

−χ(G,PL) = −2γ − 2|Sram
ram | = −2χ(G/N,PK1) + 2|Ssplit

ram |;

also, if β = 0, then

− χ(G,PL) + |Ssplit
ram |+ |Sram

split|+ 2|Sram
ram | = −2γ

= −2χ(G/N,PK1) + 2|Ssplit
ram |+ 2|Sram

ram |,

so

−χ(G,PL) = −2χ(G/N,PK1) + |Ssplit
ram | − |Sram

split|,

which means Equation 7.5.2 holds in this case if and only if L/K is totally ramified,

whence |Ssplit
ram | + |Sram

split| = 0 = −β is just a special case of the above. However,

Equation 7.5.2 appears to be false in general assuming Greenberg’s conjecture 3.9

that the lambda invariants for totally real fields are all zero. In fact, it may be

possible to construct an explicit counterexample as follows. Using Iwasawa’s formula

and Kida’s formula in tandem, we get formulas for χ(G/N,O×K1
) = −χ(G/N,PK1)

and χ(N,O×L ) = −χ(N,PL) when L/K is an extension of CM-fields and p is an odd

prime. Namely,

χ(G/N,O×K1
) =

λK1 − λK
p− 1

− |Ssplit
ram | − |Sram

ram |

=
λ−K1
− λ−K

p− 1
− |Ssplit

ram | − |Sram
ram | (7.5.3)

= −δ − |Ssplit+
ram+ | − |Sram+

ram+ |
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where Ssplit+
ram+ is the set of finite places of K not lying above p which ramify in K+

1 /K
+

and split in L+/K+
1 , etc; likewise

χ(N,O×L ) = −δ − p|Sram+
split+| − |S

ram+
ram+ | (7.5.4)

where again δ = 0 if ζp /∈ K and δ = 1 if ζp ∈ K. On the one hand, we know that

pχ(G,O×L ) = (2p− 1)χ(G/N,O×K1
) + χ(N,O×L ) + (p− 1)|Ssplit

ram |

by Proposition 7.2. On the other hand, Equation 7.5.2 says

pχ(G,O×L )
?
= 2pχ(G/N,O×K1

) + 2p|Ssplit
ram |,

so this amounts to the statement that

(2p− 1)χ(G/N,O×K1
) + χ(N,O×L ) + (p− 1)|Ssplit

ram |
?
= 2pχ(G/N,O×K1

) + 2p|Ssplit
ram |,

or, equivalently, using Equations 7.5.3 and 7.5.4 yields

−δ − p|Sram+
split+| − |S

ram+
ram+ | = χ(N,O×L )

?
= χ(G/N,O×K1

) + (p+ 1)|Ssplit
ram |

= −δ − |Ssplit+
ram+ | − |Sram+

ram+ |+ (p+ 1)|Ssplit
ram |.

Simplifying gives

0
?
= p|Sram+

split+|+ (p+ 1)|Ssplit
ram | − |S

split+
ram+ | ≥ p|Sram+

split+|+ p|Ssplit+
ram+ |

which is false unless |Sram+
split+| = |Ssplit+

ram+ | = 0, i.e., the only primes which ramify in

L+/K+ are totally ramified. We now provide a concrete example showing that it is

possible to have an extension L+/K+ which has a ramified prime that is not totally

ramified.

Example 7.6. Let p = 3 and consider the number field Q(ζ133). We have an isomor-

phism

(Z/(133))× ∼= Gal(Q(ζ133)/Q)
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induced by a 7→ (ζ133 7→ ζa133). Take `+ := Q(ζ133)〈−1〉 = Q(ζ133 + ζ−1
133) to be the

maximal real subfield and define

k+ := Q(ζ133)〈4,−1〉 ⊆ `+.

Then

Gal(`+/k+) ∼= 〈4,−1〉/〈−1〉 = 〈4〈−1〉〉 ∼= Z/(9),

so L := `(i)∞, K := k(i)∞ are CM-Z3-fields with

Gal(L/K) ∼= Gal(L+/K+) ∼= Gal(`+/k+) ∼= Z/(9).

There are four subfields of Q(ζ133) which have degree 3 over Q. One of them is

Q(ζ7+ζ−1
7 ) in which 19 does not ramify, but one can check that 19 ramifies in the other

three. In particular, 19 ramifies in Q(ζ133)〈2,−1〉/Q. Also, Q(ζ133)/`+ is unramified at

19, and the ramification index of 19 in Q(ζ133)/Q is 18 since 19 is totally ramified

in Q(ζ19)/Q and is unramified in Q(ζ7)/Q. Thus 19 is totally ramified in k+/Q, and

the unique prime P in k+ lying above 19 has ramification index 3 in `+/k+. The

information is summarized in the following diagram.

Q(ζ133)

2
e7=1
e19=118

e7=1
e19=18

llllllllllllllll e7=6
e19=1

6 SSSSSSSSSSSSSSSS

Q(ζ7)

2
e7=2
e19=1

`+ = Q(ζ133 + ζ−1
133)

9
e7=1
e19=3

llllllllllllll

SSSSSSSSSSSSSS
Q(ζ19)

e7=1
e19=22

Q(ζ7 + ζ−1
7 )

3

e7=3
e19=1 SSSSSSSSSSSSSSSSS k+

6
e7=6
e19=6

Q(ζ19 + ζ−1
19 )

e7=1
e19=9

9

kkkkkkkkkkkkkkkkk

Q

This means there’s a prime which is ramified but not totally ramified in L+/K+. As

noted above, this would produce a counterexample to Equation 7.5.2 assuming that,

at least in this case, λL+ = λK+
1

= λK+ = 0.
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Remark 7.7. A formula which uses only Euler characteristics involving G is given

by

λL = (2ϕ(p2) + 1)λK + ϕ(p2)χ(G,AL)− ϕ(p)2χ(G,AK1).

Proofs of this formula as well as of Proposition 7.2 without using the classification of

indecomposable Zp-free ZpG-modules are given later in the chapter.

7.2 Qp-Representations

Evoking the ideas of Section 6.2 in the last chapter, the proofs of Proposition 7.2

and Remark 7.3 actually show more than just formulas for Euler characteristics and

lambda invariants. They show a statement about representations. Let L/K1/K,

G = Gal(L/K), and N = Gal(L/K1), be as in Proposition 7.2 with µK = 0. Define

VL := A∗L ⊗Zp Qp,

and consider the corresponding representation

πL/K : G→ GL(VL).

Then there is the following result about the decomposition of πL/K .

Corollary 7.8. Let L/K1/K, G = Gal(L/K), and N = Gal(L/K1), be as in Propo-

sition 7.2 with µK = 0. Then we have an isomorphism of Qp-representations

πL/K ∼= λKπG ⊕ χ(G/N,AK1)πp−1 ⊕ (χ(G,AL)− χ(G/N,AK1))πp(p−1)

where πG is the regular representation and πd is the unique faithful irreducible repre-

sentation of degree d ∈ {p− 1, p(p− 1)}.
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Proof. We’ll use all the notation in the proof of Proposition 7.2. Upon tensoring

with Qp, all extensions become split extensions, so we have

VL ∼=
(

Qp[x]

(x− 1)

)a+e+i+ii+iii+iv

⊕
(
Qp[x]

Φp(x)

)b+e+i+ii+iii+v
⊕
(

Qp[x]

Φp2(x)

)c+i+ii+iii+iv+v

=

(
Qp[x]

(x− 1)

)α+β+γ

⊕
(
Qp[x]

Φp(x)

)α+β

⊕
(

Qp[x]

Φp2(x)

)α
as QpG-modules where our generator g of G acts as x on Qp[x]. Now

QpG ∼=
Qp[x]

(xp2 − 1)
∼=

Qp[x]

(x− 1)
⊕ Qp[x]

(Φp(x))
⊕ Qp[x]

(Φp2(x))

as QpG-modules, so in fact

VL ∼=
(

Qp[x]

(xp2 − 1)

)α+β+γ

⊕
(
Qp[x]

Φp(x)

)−γ
⊕
(

Qp[x]

Φp2(x)

)−(β+γ)

∼=
(

Qp[x]

(xp2 − 1)

)λK
⊕
(
Qp[x]

Φp(x)

)χ(G/N,AK1
)

⊕
(

Qp[x]

Φp2(x)

)χ(G,AL)−χ(G/N,AK1
)

Note that if either χ(G/N,AK1) or χ(G,AL)− χ(G/N,AK1) happen to be negative,

we interpret the above isomorphism as differences of representations. Now suppose

πd : G→ GL(Vd) is a faithful irreducible representation of G over Qp of some degree

d. Since Vd is a simple QpG-module we know that Vd ∼= QpG/Md for some maximal

ideal Md

QpG ∼= Qp[x]/(xp
2 − 1),

soMd corresponds to either (x−1)/(xp
2−1), (Φp(x))/(xp

2−1), or (Φp2(x))/(xp
2−1),

under this isomorphism, but (x−1)/(xp−1) corresponds to the trivial representation

(not faithful), whence either

Vd ∼=
Qp[x]/(xp

2 − 1)

(Φp(x))/(xp2 − 1)
∼=

Qp[x]

(Φp(x))

or

Vd ∼=
Qp[x]/(xp

2 − 1)

(Φp2(x))/(xp2 − 1)
∼=

Qp[x]

(Φp2(x))

which finishes the proof.
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7.3 Alternative Proof of Proposition 7.2

As mentioned earlier in this chapter, if we only care about formulas for lambda

invariants (and not about representations), then we actually don’t need the structure

Theorem 7.1. In this section, we’ll show how to rederive Proposition 7.2 using some

simple results about Herbrand quotients inspired by a section in Artin and Tate’s

Class Field Theory ([AT09]).

Let A be an abelian group and suppose there are endomorphisms α, β of A such

that α ◦ β = 0 = β ◦ α. Following [AT09], we define

qα,β(A) =
|ker(α)/im(β)|
|ker(β)/im(α)|

when these quantities are finite. When G = 〈g〉 is a finite cyclic group and A is

ZG-module, denote by h(G,A) the Herbrand quotient of A with respect to G, i.e.,

h(G,A) = qϕ,ψ(A)

where (as in Chapter 5 and as in the proof of Proposition 4.11)

ϕ = ϕA,g : A→ A : a 7→ (g − 1)a

ψ = ψA,g : A→ A : a 7→ (g|G|−1 + g|G|−2 + · · ·+ 1)a.

Lemma 7.9. Let A be an abelian group and suppose there are endomorphisms α, β

of A such that α ◦ β = β ◦ α. Then

q0,α◦β(A) = q0,α(A)q0,β(A)

when these quantities are defined.

Proof. We have exact sequences

0→ ker(β) ↪→ β−1(ker(α))
β−→ β(A) ∩ ker(α)→ 0,

0→ ker(α) ∩ ker(β) ↪→ ker(β)
α−→ α(ker(β))→ 0
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so

|β−1(ker(α))| = |A/β(A)||β(A)/α(β(A))|,

|ker(β)| = |ker(α) ∩ ker(β)||α(ker(β))|.

Also, α maps ker(β) to itself and maps β(A) to itself since α commutes with β, so

q0,α(A) = q0,α(ker(β))q0,α(β(A)).

Therefore

q0,α◦β(A) =
|A/α(β(A))|
|ker(α ◦ β)|

=
|A/β(A)||β(A)/α(β(A))|

|β−1(ker(α))|

=
|A/β(A)||β(A)/α(β(A))|
|ker(β)||β(A) ∩ ker(α)|

= q0,β(A)q0,α(β(A))

= q0,β(A)q0,α(A)q0,α(ker(β))−1

= q0,β(A)q0,α(A)
|ker(α) ∩ ker(β)|
|ker(β)/α(ker(β))|

= q0,β(A)q0,α(A)

as needed.

We can use this lemma to get the following theorem which computes Herbrand quo-

tients of Z/(p)-modules A in terms of the multiplication maps 0: A→ A : a 7→ 0 and

p : A→ A : a 7→ pa.

Theorem 7.10. Let G = 〈g〉 ∼= Z/(p2) for some prime p, N = 〈gp〉, and A be a

ZG-module. Suppose q0,p(A) is defined. Then

h(N,A)p−1 =
q0,p(A

N)p

q0,p(A)

and likewise

h(G/N,AN)p−1 =
q0,p(A

G)p

q0,p(AN)
.

Proof. See the proof of Theorem q.4 in [AT09].
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We can analogously compute Herbrand quotients of Z/(p2)-modules in terms of the

multiplication maps by p and 0 on submodules.

Theorem 7.11. Let G, N , and A be as in Theorem 7.10. Suppose q0,p2(A) is defined.

Then

h(G,A)p(p−1) =
q0,p(A

G)2p2−p

q0,p(A)q0,p(AN)p−1
.

Proof. We want to analyze

h(G,A) = h(G,AG)h(G,Ag−1) = q0,p2(A
G)h(G,Ag−1)

= q0,p2(A
G)h(G, (AN)g−1)h(G,Ag

p−1) (7.11.1)

where, for example, Ag−1 = im(ϕ). Note that

h(G,Ag
p−1) = qg−1,0(Ag

p−1) = q0,g−1(Ag
p−1)−1 (7.11.2)

and that Lemma 7.9 gives

q0,p(g−1)(A
gp−1) = q0,p(A

gp−1)q0,g−1(Ag
p−1). (7.11.3)

Of course, we also know that Φp2(g) annihilates Agp−1, so g acts as a primitive p2th

root of unity on Agp−1, which implies that p acts as (g − 1)p
2−p times a unit in the

group ring. Consequently,

q0,p(g−1)(A
gp−1) = q0,(g−1)p2−p+1(A

gp−1) = q0,g−1(Ag
p−1)p

2−p+1 (7.11.4)

by repeated application of Lemma 7.9. Thus combining Equations 7.11.2, 7.11.3, and

7.11.4, gives

h(G,Ag
p−1)p

2−p 7.11.2
= q0,g−1(Ag

p−1)−(p2−p) =
q0,g−1(Ag

p−1)

q0,g−1(Agp−1)p2−p+1

7.11.4
=

q0,g−1(Ag
p−1)

q0,p(g−1)(Ag
p−1)

7.11.3
=

1

q0,p(Ag
p−1)

(7.11.5)

=
q0,p(A

N)

q0,p(A)
.
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Therefore Equations 7.11.1 and 7.11.5 together give

h(G,A)p(p−1) 7.11.1
= q0,p2(A

G)p(p−1)h(G, (AN)g−1)p(p−1)h(G,Ag
p−1)p(p−1)

7.11.5
= q0,p2(A

G)p(p−1)h(G, (AN)g−1)p(p−1) q0,p(A
N)

q0,p(A)

= q0,p2(A
G)p(p−1)

(
h(G/N,AN)

h(G/N,AG)

)p(p−1)
q0,p(A

N)

q0,p(A)

= q0,p2(A
G)p(p−1)h(G/N,AN)p(p−1)

q0,p(AG)p(p−1)
· q0,p(A

N)

q0,p(A)

thm 7.10
= q0,p2(A

G)p(p−1) q0,p(A
G)p

2
/q0,p(A

N)p

q0,p(AG)p(p−1)
· q0,p(A

N)

q0,p(A)

= q0,p(A
G)2p(p−1) q0,p(A

G)p

q0,p(AN)p
· q0,p(A

N)

q0,p(A)

=
q0,p(A

G)2p2−p

q0,p(A)q0,p(AN)p−1

as claimed.

Now we can put Theorems 7.10 and 7.11 together to relate various Herbrand quotients

of subgroups and quotient groups.

Corollary 7.12. Let G, N , and A be as in Theorem 7.10. Suppose q0,p2(A) is defined.

Then

h(G,A)p = h(N,A)h(G/N,AN)2p−1.

Also,

h(G,AN)2 =
h(G/N,AN)2

h(G,AG)
.

Proof. On the one hand, Theorem 7.10 implies

h(N,A)p−1h(G/N,AN)(2p−1)(p−1) =
q0,p(A

N)p

q0,p(A)

(
q0,p(A

G)p

q0,p(AN)

)2p−1

=
q0,p(A

G)2p2−p

q0,p(A)q0,p(AN)p−1
.
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On the other hand, Theorem 7.11 says

h(G,A)p(p−1) =
q0,p(A

G)2p2−p

q0,p(A)q0,p(AN)p−1
.

These quantities are equal, and thus the first statement follows by taking (p − 1)th

roots. Now plug in A = AN . Then we get

h(G,AN)p(p−1) =
q0,p(A

G)2p2−p

q0,p(AN)p
=

(
q0,p(A

G)p

q0,p(AN)

)p
q0,p(A

G)p(p−1)

= h(G/N,AN)p(p−1)q0,p(A
G)p(p−1),

so

h(G,AN)2 =
h(G/N,AN)2

q0,p(AG)2
=
h(G/N,AN)2

h(G,AG)

which proves the second statement.

Remark 7.13. Once again, let G, N , and A be as in Theorem 7.10. Suppose q0,p2(A)

is defined. Then Remark 7.12 holds. In particular, we can let A = AL where L/K,

G, N are as Proposition 7.2 since

q0,p2(AL) = q0,p2((Qp/Zp)λL) =

(
1

|(Qp/Zp)[p2]|

)λL
= p−2λL .

Taking p-orders in the first statement of Corollary 7.12 yields

pχ(G,AL) = χ(N,AL) + (2p− 1)χ(G/N,ANL ),

so this along with Lemma 5.1 gives another proof of Proposition 7.2. We are also in

position to give a proof of the formula in Remark 7.7. We use Corollaries 6.4 and

7.12 to find

λL
6.4
= p2λK + (p− 1)(pχ(G/N,AK1) + χ(N,AL))

7.12
= p2λK + (p− 1)(−(p− 1)χ(G/N,AK1) + pχ(G,AL)),
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but taking p-orders in the second statement of Corollary 7.12 yields

2χ(G,AK1) = 2χ(G/N,AK1)− χ(G,AK) = 2χ(G/N,AK1) + 2λK ,

so in fact

λL = p2λK + (p− 1)(−(p− 1)(−λK + χ(G,AK1)) + pχ(G,AL))

= (2p(p− 1) + 1)λK − (p− 1)2χ(G,AK1) + p(p− 1)χ(G,AL)

which is precisely the formula in Remark 7.7.
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Chapter 8

DEGREE ≥ p3

In this chapter, we suppose that G ∼= Z/(pn) for some arbitrary n. In [HR63], it was

shown that for n ≥ 3 there are infinitely many isomorphism classes of indecomposable

ZpG-modules which are free of finite rank over Zp. It should still be possible, however,

to produce formulas similar to those found in the previous chapter, so long as we can

classify the indecomposables up to Zp-rank, invariants, and Herbrand quotients. After

all, we discovered in the last section of the previous chapter that the structure theorem

for ZpG-modules for G ∼= Z/(p2) (Theorem 7.1) was unnecessary to prove Proposition

7.2. We begin with the following lemma. If M is an R-module (R a commutative

ring with 1), we say a submodule N ≤ M is R-pure when rM ∩ N ⊆ rN for every

r ∈ R.

Lemma 8.1. Let G = 〈g〉 ∼= Z/(pn) for some prime p and some n ∈ N. Suppose

M is a ZpG-module which is free of finite rank over Zp. Then there is a short exact

sequence of ZpG-modules

0→M ′ →M → Zp[ζpn ]⊕r → 0

where M ′ is a Zp-pure ZpG-submodule of M which is annihilated by gpn−1 − 1 and

Zp[ζpn ] has ZpG-module structure given by

Zp[ζpn ] ∼=
ZpG

Φpn(g)ZpG

with Φpn(x) = pnth cyclotomic polynomial.

Proof. Define

M ′ := {m ∈M : (gp
n−1 − 1)m = 0}.
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Then M ′ is a ZpG-submodule of M since it’s the kernel of a ZpG-homomorphism,

namely, the multiplication by gpn−1 − 1 map on M . We know M ′ is Zp-pure since if

rm = m′ for some r ∈ Zp, some m ∈M , and some m′ ∈M ′, then

r((gp
n−1 − 1)m) = (gp

n−1 − 1)(rm) = (gp
n−1 − 1)m′ = 0,

so (gp
n−1 − 1)m = 0 (i.e., m ∈ M ′) because M is Zp-torsion free. Also, M/M ′ is

annihilated by Φpn(g) since

(gp
n−1 − 1)(Φpn(g)m) = ((gp

n−1 − 1)(Φpn(g))m = (gp
n − 1)m = 0

for all m ∈M . Thus M/M ′ is a Zp[ζpn ]-module which (since M ′ ≤M is Zp-pure and

Zp is a PID) is free of finite rank over Zp. Note that Zp ∩Zp[ζpn ]α is a non-zero ideal

of Zp when 0 6= α ∈ Zp[ζpn ], so if αm = 0 for some m ∈M/M ′, then rm = β(αm) = 0

where 0 6= r = βα ∈ Zp for some β ∈ Zp[ζpn ], so m = 0 because M/M ′ is Zp-free.

HenceM/M ′ is torsion free as a Zp[ζpn ]-module; moreover,M/M ′ is finitely generated

over Zp[ζpn ] since it’s finitely generated over Zp. Thus M/M ′ is free of finite rank

over Zp[ζpn ] since Zp[ζpn ] is a PID.

This lemma suggests that it may suffice to compute Zp-ranks and Euler characteristics

for ZpG modules of the form Zp[ζpi ]. This is indeed the case, and Proposition 8.3

below makes this idea precise. In the proof of the proposition, we’ll need the five-

term, inflation-restriction exact sequence, so we recall the statement here.

Theorem 8.2 (Inflation-Restriction Sequence). Let G be a profinite group and N be

a closed normal subgroup. Then for every ZG-module M there is an exact sequence

0→ H1(G/N,MN)
inf−→ H1(G,M)

res−→ H1(N,M)G/N

→ H2(G/N,MN)
inf−→ H2(G,M)

where inf denotes inflation and res denotes restriction.
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8.1 General Formulas for Z/(pn)-Extensions

Proposition 8.3. Let G = 〈g〉 ∼= Z/(pn) for some prime p and some n ∈ N0. Suppose

M is a ZpG-module which is free of finite rank over Zp. Then there is a sequence

r0, . . . , rn ∈ N0 such that for every subgroup Ni = 〈gpi〉 with 0 ≤ i ≤ n we have

rankZp(MNi) =
i∑
t=0

rtϕ(pt)

and

χ(Ni,M) = (n− i)
i∑
t=0

rtϕ(pt)− pi
n∑

t=i+1

rt.

Proof. We use induction on n and Lemma 8.1. If n = 0, then ZpG ∼= Zp = Zp[ζp0 ]

and M ∼= Zp[ζp0 ]r0 is a free Zp-module for some r0 ∈ N0, so the proposition is clear

in this case since 0 ≤ i ≤ n = 0 implies

rankZp(MN0) = rankZp(M) = r0 =
0∑
t=0

rtϕ(pt)

and

χ(N0,M) = 0 = (0− 0)
0∑
t=0

rtϕ(pt)− p0

0∑
t=1

rt,

where
0∑
t=1

rt = 0

is an empty sum. Now suppose n ≥ 1 and the proposition is true for n − 1. By

Lemma 8.1, we have a short exact sequence of ZpG-modules

0→M ′ →M → Zp[ζpn ]⊕rn → 0

where M ′ can be regarded as a ZpG′-module where G′ = G/Nn−1
∼= Z/(pn−1). By

induction, there is a sequence r0, . . . , rn−1 ∈ N0 such that for every subgroup N ′i =
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Ni/Nn−1 with 0 ≤ i ≤ n− 1 we have

rankZp(MNi) = rankZp(M ′Ni) = rankZp(M ′N ′i ) =
i∑
t=0

rtϕ(pt)

and

χ(N ′i ,M
′) = (n− 1− i)

i∑
t=0

rtϕ(pt)− pi
n−1∑
t=i+1

rt

since Zp[ζpn ]Ni = 0. We need to compute the difference χ(Ni,M
′) − χ(N ′i ,M

′),

which we do using the inflation-restriction sequence (Theorem 8.2). We get an exact

sequence

0→ H1(N ′i ,M
′)→ H1(Ni,M

′)→ H1(Nn−1,M
′)N

′
i → H2(N ′i ,M

′)→ H2(Ni,M
′).

Moreover, we can determine the cokernel of the last map. In fact, as in the proof of

Proposition 4.11, we have

H2(N ′i ,M
′) ∼=

M ′N ′i

(1 + gpi + · · ·+ gpi(pn−1−i−1))M ′

and

H2(Ni,M
′) ∼=

M ′Ni

(1 + gpi + · · ·+ gpi(pn−i−1))M ′ ,

but

(1 + gp
n−1

+ · · ·+ gp
n−1(p−1))(1 + gp

i

+ · · ·+ gp
i(pn−1−i−1))

= 1 + gp
i

+ · · ·+ gp
i(pn−i−1),

so the last map in the sequence is multiplication by 1 + gp
n−1

+ · · ·+ gp
n−1(p−1); thus

its cokernel is

M ′Ni

(1 + gpn−1 + · · ·+ gpn−1(p−1))M ′N ′i
=

M ′Ni

pM ′Ni
.
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Therefore applying ordp| − | to the exact sequence gives

χ(Ni,M
′)− χ(N ′i ,M

′) = ordp|M ′Ni/pM ′Ni | = rankZp(M ′Ni) =
i∑
t=0

rtϕ(pt)

since H1(Nn−1,M
′) = 0. Hence

χ(Ni,M) = χ(Ni,M
′) + rnχ(Ni,Zp[ζpn ])

= χ(N ′i ,M
′) +

i∑
t=0

rtϕ(pt) + rnχ(Ni,Zp[ζpn ])

= (n− i)
i∑
t=0

rtϕ(pt)− pi
n−1∑
t=i+1

rt + rnχ(Ni,Zp[ζpn ]),

but H2(Ni,Zp[ζpn ]) = 0 and

H1(Ni,Zp[ζpn ]) =
Zp[ζpn ]

(ζp
i

pn − 1)
∼=

Zp[x]

(xpi − 1) + (Φpn(x))
∼=

Zp[Z/(pi)]
(Φpn(1))

=
Zp[Z/(pi)]

(p)
,

so χ(Ni,Zp[ζpn ]) = −pi as needed. Also, it’s clear that χ(Nn,M) = 0 and

rankZp(MNn) = rankZp(M)

= rankZp(M ′) + rnrankZp(Z[ζpn ])

=
n−1∑
t=0

rtϕ(pt) + rnϕ(pn),

which finishes the proof of the proposition.

Now we use Proposition 8.3 to prove generalizations of Propositions 7.2 and Corollary

7.3. The idea is to regard the ri’s as n + 1 place-holders and to find rational depen-

dence among n + 2 vectors. In other words, we’ll use some linear algebra. First, we

relate n+1 lambda invariants (corresponding to Zp-ranks of (A∗Kn
)Ni) to χ(Gn, AKn).

The formula we’ll get is a generalization of the formula from the second equality in

Corollary 7.3.
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Theorem 8.4. Let p be prime and K0 ⊆ K1 ⊆ . . . ⊆ Kn be a tower of Zp-fields such

that for all i the extension Ki/K0 is cyclic of degree pi. Suppose µK0 = 0. Then

µK1 = · · · = µKn = 0 and
n−1∑
i=0

ϕ(pi)λKn−i
= pn−1(1 + n(p− 1))λK0 + ϕ(pn)χ(Gn, AKn)

where Gn = Gal(Kn/K0).

Proof. We apply Proposition 8.3 to the ZpGn-module A∗Kn
, which is free of finite

rank λKn over Zp. Thus there is a sequence r0, r1, . . . , rn ∈ N0 such that for all

i = 0, 1, . . . , n we have

λKi
= rankZp(A∗Ki

) = rankZp((A∗Kn
)Ni) =

i∑
t=0

rtϕ(pt)

χ(Gn, AKn) = −χ(N0, A
∗
Kn

) = −nr0 +
n∑
t=1

rt

where Ni = Gal(Kn/Ki). Hence
n−1∑
i=0

ϕ(pi)λKn−i
=

n−1∑
i=0

n−i∑
t=0

rtϕ(pi)ϕ(pt)

=
n−1∑
i=0

ϕ(pi)r0 +
n∑
t=1

n−t∑
i=0

ϕ(pi)ϕ(pt)rt

=

(
1 + (p− 1)

n−2∑
j=0

pj

)
r0 +

n∑
t=1

rtϕ(pt)

(
1 + (p− 1)

n−t−1∑
j=0

pj

)
= pn−1r0 + ϕ(pn)(r1 + · · ·+ rn)

= pn−1(1 + n(p− 1))r0 + ϕ(pn)(−nr0 + r1 + · · · rn)

= pn−1(1 + n(p− 1))λK0 + ϕ(pn)χ(Gn, AKn)

which finishes the proof.

Corollary 8.5. Under the same assumptions as Theorem 8.4, we have

λKn = pnλK0 + ϕ(pn)χ(Gn, AKn)− (p− 1)
n−1∑
i=1

ϕ(pi)χ(Gi, AKi
)

where Gi = Gal(Ki/K0).
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Proof. We’ll use strong induction on n. First, it’s clear that the statement holds

when n = 0. (It’s also clear in the case n = 1 since then the statement is just Theorem

6.2.) Now take n ≥ 1. Suppose the statement holds for all cyclic p-extensions of degree

≤ pn−1. Then by Theorem 8.4 we get

λKn = pn−1(1 + n(p− 1))λK0 + ϕ(pn)χ(Gn, AKn)−
n−1∑
i=1

ϕ(pi)λKn−i

induc.
= pn−1(1 + n(p− 1))λK0 + ϕ(pn)χ(Gn, AKn)

−
n−1∑
i=1

ϕ(pi)

(
pn−iλK0 + ϕ(pn−i)χ(Gn−i, AKn−i

)− (p− 1)
n−i−1∑
j=1

ϕ(pj)χ(Gj, AKj
)

)
= pn−1(1 + n(p− 1))λK0 + ϕ(pn)χ(Gn, AKn)− pn−1(p− 1)(n− 1)λK0

− (p− 1)
n−1∑
i=1

ϕ(pn−1)χ(Gn−i, AKn−i
) + (p− 1)

n−1∑
i=1

n−i−1∑
j=1

ϕ(pi)ϕ(pj)χ(Gj, AKj
)

= pnλK0 + ϕ(pn)χ(Gn, AKn)− (p− 1)ϕ(pn−1)χ(Gn−1, AKn−1)

− (p− 1)
n−2∑
j=1

ϕ(pn−1)χ(Gj, AKj
) + (p− 1)

n−2∑
j=1

ϕ(pj)

(
n−j−1∑
i=1

ϕ(pi)

)
χ(Gj, AKj

)

= pnλK0 + ϕ(pn)χ(Gn, AKn)− (p− 1)ϕ(pn−1)χ(Gn−1, AKn−1)

− (p− 1)
n−2∑
j=1

ϕ(pj)pn−j−1χ(Gj, AKj
) + (p− 1)

n−2∑
j=1

ϕ(pj)(pn−j−1 − 1)χ(Gj, AKj
)

= pnλK0 + ϕ(pn)χ(Gn, AKn)− (p− 1)ϕ(pn−1)χ(Gn−1, AKn−1)

− (p− 1)
n−2∑
j=1

ϕ(pj)χ(Gj, AKj
)

= pnλK0 + ϕ(pn)χ(Gn, AKn)− (p− 1)
n−1∑
j=1

ϕ(pj)χ(Gj, AKj
)

as needed.

Now we combine this corollary with Remark 6.5 to get the following generalization

of Proposition 7.2.
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Corollary 8.6. Under the same assumptions as Theorem 8.4, we have

pn−1χ(Gn, AKn) =
n−1∑
i=1

ϕ(pi)χ(Gi, AKi
) +

n∑
i=1

pn−iχ(Ni−1/Ni, AKi
).

where Ni = Gal(Kn/Ki) and again Gi = Gal(Ki/K0).

Proof. We have

pn−1χ(Gn, AKn) =
n−1∑
i=1

ϕ(pi)χ(Gi, AKi
) +

λKn − pnλK0

p− 1

=
n−1∑
i=1

ϕ(pi)χ(Gi, AKi
) +

n∑
i=1

pn−iχ(Ni−1/Ni, AKi
)

where the first equality follows from Corollary 8.5 and the second equality follows

from Remark 6.5.

Corollary 8.7. Let L/K = Kn/K0 be as in Theorem 8.4. Suppose µK = 0. Then

1. λL ≡ λKi
(mod ϕ(pi+1)) for every i = 0, . . . , n

2. (a) λL ≡ −pn−1χ(G,AL)− (p− 1)
∑n−1

i=1 ϕ(pi)χ(Gi, AKi
) (mod pn)

(b) p - n− 1⇒ λL ≡
∑n−1

i=1
pi(p−1)2

[(i+1)p−i][ip−i+1]
χ(Nn−i, AL) (mod pn)

3. ordp|H2(G,PL)| ≤ nλK + ordp|H1(G,PL)|+ χ(G, IL)

where Gi = Gal(Ki/K), Ni = Gal(L/Ki), and G = Gn = N0.

Proof. For part 1, we only need to prove that for all i = 1, . . . , n

λKi
≡ λKi−1

(mod ϕ(pi)), (8.7.1)

which we’ll do by strong induction on n. We’ve already proven the base case n = 1

in Corollary 6.6 (and the case n = 2 in Corollary 7.4). Suppose then that Equation

8.7.1 holds for all i < n. Then for all i = 1, . . . , n− 1

pn−i(λKi
− λKi−1

) ≡ 0 (mod ϕ(pn)),
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so

λKn − λKn−1 ≡ λKn − λKn−1 +
n−1∑
i=1

pn−i(λKi
− λKi−1

)

=
n−1∑
i=0

ϕ(pi)λKn−i
− pn−1λK0

= pn−1(1 + n(p− 1))λK0 + ϕ(pn)χ(Gn, AKn)− pn−1λK0

= ϕ(pn)λK0 + ϕ(pn)χ(Gn, AKn) ≡ 0 (mod ϕ(pn)).

For part 2, the first statement (a) follows immediately from Theorem 8.4 while the

second statement (b) follows immediately from Theorem 8.8 below. To prove part 3,

we note that

0 ≤
n−1∑
i=0

λKn−i
− λKn−i−1

ϕ(pn−i)
=

1

ϕ(pn)

n−1∑
i=0

pi(λKn−i
− λKn−i−1

)

=
1

ϕ(pn)

(
n−1∑
i=0

piλKn−i
−

n∑
i=1

pi−1λKn−i

)

=
1

ϕ(pn)

(
λKn +

n−1∑
i=1

(pi − pi−1)λKn−i
− pn−1λK0

)

=
1

ϕ(pn)

(
n−1∑
i=0

ϕ(pi)λKn−i
− pn−1λK0

)
=

1

ϕ(pn)

(
pn−1(1 + n(p− 1))λK0 + ϕ(pn)χ(Gn, AKn)− pn−1λK0

)
= nλK0 − χ(Gn, PKn) + χ(Gn, IKn)

= nλK − ordp|H2(G,PL)|+ ordp|H1(G,PL)|+ χ(G, IL),

which finishes the proof.

Now we relate the n Euler characteristics associated to subgroups (instead of quotients

or subquotients)

χ(N0, AKn), χ(N1, AKn), . . . , and χ(Nn−1, AKn)

to the 2 lambda invariants λKn and λK0 . The result is of different nature since it

involves non-integer coefficients.
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Theorem 8.8. Let p be prime and K0 ⊆ K1 ⊆ . . . ⊆ Kn be a tower of Zp-fields such

that for all i the extension Ki/K0 is cyclic of degree pi. Suppose µK0 = 0 and Kn/K0.

Then µK1 = · · · = µKn = 0 and

λKn − pnλK0

p− 1
=

pn

np− n+ 1
χ(N0, AKn) +

n−1∑
i=1

pi(p− 1)

[(i+ 1)p− i][ip− i+ 1]
χ(Nn−i, AKn)

where Ni = Gal(Kn/Ki).

The following lemma will make the proof of the above theorem much easier.

Lemma 8.9. For all n ∈ N we have
n−1∑
i=1

pi(p− 1)i

[(i+ 1)p− i][ip− i+ 1]
=
pn−1 + pn−2 + · · ·+ 1− n

np− n+ 1

and
n−1∑
i=1

1

[(i+ 1)p− i][ip− i+ 1]
=

n− 1

p(np− n+ 1)
.

Proof. We use induction on n. If n = 1, then both right hand sides are zero and

both left hand sides are empty sums, so the lemma is clear in this case. Now suppose

n ≥ 2 and the statement is true for n− 1. Then
n−1∑
i=1

pi(p− 1)i

[(i+ 1)p− i][ip− i+ 1]

=
pn−1(p− 1)(n− 1)

(np− n+ 1)((n− 1)p− n+ 2)
+

n−2∑
i=1

pi(p− 1)i

[(i+ 1)p− i][ip− i+ 1]

=
pn−1(p− 1)(n− 1)

(np− n+ 1)((n− 1)p− n+ 2)
+
pn−2 + pn−3 + · · ·+ 1− (n− 1)

(n− 1)p− n+ 2

=
pn−1(p− 1)(n− 1) +

(
pn−1−1
p−1

− (n− 1)
)

(np− n+ 1)

(np− n+ 1)((n− 1)p− n+ 2)

=
pn−1(p− 1)(n− 1) +

(
pn−1−1
p−1

− (n− 1)
)

(p− 1)

(np− n+ 1)((n− 1)p− n+ 2)
+

pn−1−1
p−1

− (n− 1)

np− n+ 1

=
(pn−1 − 1)(p− 1)(n− 1) + pn−1 − 1

(np− n+ 1)((n− 1)p− n+ 2)
+

pn−1−1
p−1

− (n− 1)

np− n+ 1
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=
pn−1 − 1

np− n+ 1
+
pn−2 + pn−3 + · · ·+ 1− (n− 1)

np− n+ 1

=
pn−1 + pn−2 + · · ·+ 1− n

np− n+ 1

and
n−1∑
i=1

1

[(i+ 1)p− i][ip− i+ 1]

=
1

(np− n+ 1)((n− 1)p− n+ 2)
+

n−2∑
i=1

1

[(i+ 1)p− i][ip− i+ 1]

=
1

(np− n+ 1)((n− 1)p− n+ 2)
+

n− 2

p((n− 1)p− n+ 2)

=
p+ (n− 2)(np− n+ 1)

p(np− n+ 1)((n− 1)p− n+ 2)

=
p+ (n− 2)(p− 1) + (n− 2)((n− 1)p− n+ 2)

p(np− n+ 1)((n− 1)p− n+ 2)

=
(n− 1)p− n+ 2 + (n− 2)((n− 1)p− n+ 2)

p(np− n+ 1)((n− 1)p− n+ 2)
=

n− 1

p(np− n+ 1)

as claimed.

Proof of Theorem 8.8. We may assume n ≥ 1 since the statement is obvious in

the case where n = 0 since then both sides of the equation are zero. Proposition 8.3

implies that there are r0, . . . , rn ∈ N0 such that

λK0 = rankZp((A∗Kn
)N0) = r0,

λKn = rankZp(A∗Kn
) =

n∑
t=0

rtϕ(pt)

and

χ(Ni, AKn) = −χ(Ni, A
∗
Kn

) = −(n− i)
i∑
t=0

rtϕ(pt) + pi
n∑

t=i+1

rt

for all i ∈ {0, . . . , n}. On the one hand,

λKn − pnλK0

p− 1
=

∑n
t=0 rtϕ(pt)− pnr0

p− 1
= −(pn−1 + pn−2 + · · ·+ 1)r0 +

∑
t=1

rtp
t−1.
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On the other hand, the coefficient of r0 occurring on the right hand side of the

statement is

pn

np− n+ 1
(−n) +

n−1∑
i=1

pi(p− 1)(−i)
[(i+ 1)p− i][ip− i+ 1]

=
−npn

np− n+ 1
− pn−1 + pn−2 + · · ·+ 1− n

np− n+ 1

=
−npn + n− pn−1

p−1

np− n+ 1

=
−n(p− 1)p

n−1
p−1
− pn−1

p−1

np− n+ 1

= −p
n − 1

p− 1

= −(pn−1 + pn−2 + · · ·+ 1)

and the coefficient of rt for t ≥ 1 is

pn

np− n+ 1
+ ϕ(pt)

n−t∑
i=1

pi(p− 1)(i)

[(i+ 1)p− i][ip− i+ 1]
+

pn(p− 1)
n−1∑

i=n−t+1

1

[(i+ 1)p− i][ip− i+ 1]

=
pn

np− n+ 1
− pt−1(p− 1)

pn−t+1−1
p−1

− (n− t+ 1)

(n− t+ 1)p− (n− t+ 1) + 1
+

pn(p− 1)

(
n− 1

p(np− n+ 1)
− n− t
p((n− t+ 1)p− (n− t+ 1) + 1)

)
=
pn + pn−1(p− 1)(n− 1)

np− n+ 1
−

pt(pn−t+1 − 1− (p− 1)(n− t+ 1)) + pn(p− 1)(n− t)
p((n− t+ 1)p− n+ t)

= pn−1 − pn+1 − pt((n− t+ 1)p− n+ t) + (n− t)pn(p− 1)

p((n− t+ 1)p− n+ t)

= pn−1 + pt−1 − pn+1 + (n− t)pn(p− 1)

p((n− t+ 1)p− n+ t)

= pn−1 + pt−1 − pn p+ (n− t)(p− 1)

p((n− t+ 1)p− n+ t)

= pn−1 + pt−1 − pn−1 = pt−1,
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which completes the proof.

8.2 Λ-Modules

In the late summer of 2009, I sent an email to Ralph Greenberg, Professor of math-

ematics at the University of Washington, asking if anyone had used the structure

theorem (Theorem 7.1) of ZpG-modules which are free of finite rank over Zp with

G ∼= Z/(p2) to derive a formula in the spirit of Iwasawa’s as found in Theorem 6.2.

He responded by saying that he wasn’t aware of anyone doing this, but he further sug-

gested that I consider all ZpG-modules with G ∼= Z/(pn) as Λ = Zp[[T ]]-modules. In

this way, I can use the following structure theorem for finitely generated Λ-modules,

which is the very result one can use to prove Iwasawa’s growth formula (Theorem 3.2.

Theorem 8.10. Let M be a finitely generated Λ-module. Then there is a Λ-module

homomorphism

θ : M → Λr ⊕
s⊕
i=1

Λ

(fi(T )mi)
⊕

t⊕
j=1

Λ

(pnj)

such that ker(θ), coker(θ) are finite and where each fi(T ) ∈ Zp[T ] is irreducible with

fi(T ) ≡ power of T (mod p).

We’ll now use this theorem to prove the following proposition from which Propo-

sition 8.3 follows as an easy corollary.

Proposition 8.11. Let G = 〈g〉 ∼= Z/(pn) for some prime p and some n ∈ N0.

Suppose M is a ZpG-module which is free of finite rank over Zp. There is an injective

ZpG-module homomorphism with finite cokernel

M �
n⊕
i=0

Zp[ζpi ]⊕ri

for some r0, . . . , rn ∈ N0 where each Zp[ζpi ] has ZpG-module structure given by

Zp[ζpi ] ∼=
ZpG

Φpi(g)ZpG
.
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Proof. We know

Λ ∼= lim←−
m∈N

Zp[Z/(pm)] : T 7→ (gm − 1)m∈N

with Z/(pm) = 〈gm〉 written multiplicatively, so ZpG is a quotient ring of Λ. In this

way, every ZpG-module is a Λ-module with T acting as g−1, so Theorem 8.10 implies

there is a Λ-module homomorphism

θ : M → Zp[[T ]]r ⊕
s⊕
i=1

Zp[[T ]]

(fi(T )mi)
⊕

t⊕
j=1

Zp[[T ]]

(pnj)

such that ker(θ), coker(θ) are finite and where each fi(T ) ∈ Zp[T ] is irreducible with

fi(T ) ≡ power of T (mod p). Immediately, we see that ker(θ) = 0 since M is a free

over Zp. If we tensor with Qp, we get an isomorphism

M ⊗Zp Qp
∼= Qp[[T ]]⊕r ⊕

s⊕
i=1

Qp[T ]

(fi(T )mi)

of Qp[T ]-modules, but dimQp(M ⊗Zp Qp) = rankZp(M) < ∞ while dimQp(Qp[[T ]]) =

∞, so r = 0. Now xp
n − 1 kills the left hand side where x := T + 1, so xpn − 1 kills

each

Qp[x]

(hi(x)mi )

where hi(x) = fi(x−1) is monic and irreducible. Hence each hi(x)mi divides xpn−1 in

Qp[x], but xpn − 1 is the squarefree product of the (monic, irreducible) pj-cyclotomic

polynomials Φpj(x) for 0 ≤ j ≤ n, so every mi is 1 and every hi(x) is Φpj(x) for some

0 ≤ j ≤ n. Hence our isomorphism becomes

M ⊗Zp Qp
∼=

s⊕
i=1

Qp[x]

(hi(x))
=

n⊕
j=0

(
Qp[x]

(Φpj(x))

)⊕rj
∼=

n⊕
j=0

(
QpG

Φpj(g)QpG

)⊕rj
as QpG-modules for some r0, . . . , rn ∈ N0. We’ll use this isomorphism in the next

section to analyze Qp-representations. In the meantime, we have

θ : M �
n⊕
j=0

(
Zp[[x]]

(Φpj(x))

)⊕rj
⊕

t⊕
j=1

Zp[[x]]

(pnj)
,
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but we know im(θ) has trivial intersection with each Zp[[x]]/(pnj) factor since pnj -

xp
n − 1, so there can be no such factors since coker(θ) is finite while Zp[[x]]/(pm) is

infinite when m ∈ N. Also, since each fi(T ) ≡ power of T (mod p), we may apply a

division algorithm (see Proposition 7.2 in [Was96]) to conclude

Zp[[x]]

(hi(x))
=

Zp[[T ]]

(fi(T ))
∼=

Zp[T ]

(fi(T ))
=

Zp[x]

(hi(x))

as Zp[x]-modules where again x = T + 1. Therefore

θ : M �
n⊕
j=0

(
Zp[x]

(Φpj(x))

)⊕rj
∼=

n⊕
j=0

(
ZpG

Φpj(g)ZpG

)⊕rj
is a ZpG-module homomorphism with finite cokernel.

Remark 8.12. Let M,G = 〈g〉 ∼= Z/(pn) be as in Proposition 8.11. As men-

tioned above, the proposition can be used to give another proof of Proposition 8.3.

To see this, we observe that if C is a finite ZpG-module, then χ(Ni, C) = 0 and

rankZp(CNi) = 0 for all i ∈ {0, . . . , n} where (as in 8.3) Ni = 〈gpi〉. Thus since χ

and rankZp are additive on short exact sequences, we see that it suffices to do the

following computations:

Zp[ζpj ]Ni =

{
Zp[ζpj ] if j ≤ i
0 if j > i

χ(Ni,Zp[ζpj ]) = ordp

(
|H2(Ni,Zp[ζpj ])|
|H1(Ni,Zp[ζpj ])|

)

=


ordp

∣∣∣ Zp[ζ
pj

]

pn−iZp[ζ
pj

]

∣∣∣ = (n− i)ϕ(pj) if j ≤ i

ordp

∣∣∣∣ |Zp[ζ
pj

]

(1−ζp
i

pj
)Zp[ζ

pj
]

∣∣∣∣−1

= −pi if j > i.

8.3 Qp-Representations

Again evoking the ideas of Section 6.2, the proofs of Proposition 8.11 and Theorem 8.4

actually show more than just formulas for Euler characteristics and lambda invariants.

They show a statement about representations. Let K = K0 ⊆ K1 ⊆ . . . ⊆ Kn = L
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be a tower of Zp fields with Gi = Gal(Ki/K) and Ni = Gal(L/Ki) = 〈gpi〉 ∼= Z/(pi)

for all i ∈ {0, . . . , n}. Assume µK = 0 and define

VL := A∗L ⊗Zp Qp.

Consider the corresponding representation

πL/K : G→ GL(VL).

There is the following result about the decomposition of πL/K .

Corollary 8.13. Let K = K0 ⊆ K1 ⊆ . . . ⊆ Kn = L be as above with µK = 0. Then

we have an isomorphism of Qp-representations

πL/K ∼= λKπG ⊕
n⊕
i=1

(
χ(Gi, AKi

)− χ(Gi−1, AKi−1
)
)
πϕ(pi)

where πG is the regular representation and πd is the unique faithful irreducible repre-

sentation of degree d ∈ {ϕ(p), ϕ(p2), . . . , ϕ(pn)}.

Proof. We’ll use all the notation in the proof of Proposition 8.11. In the proof of

8.11 with A∗L = M , we had r0, r1, . . . , rn ∈ N0 such that

VL ∼=
n⊕
j=0

(
Qp[x]

(Φpj(x))

)⊕rj
as QpG-modules where our generator g of G acts as x on Qp[x]. Remark 8.12 shows

that these r0, . . . , rn are the same as those found in the proof of Theorem 8.4. In

particular, this means r0 = λK , so

VL ∼= (QpG)⊕λK ⊕
n⊕
j=1

(
Qp[x]

(Φpj(x))

)⊕rj−r0
where (as always) we interpret negative exponents as a difference of representations.
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It remains only to determine r1− r0, r2− r0, . . . , rn− r0. To do this, we first compute

χ(Gi, AKi
) = −χ(Gi, A

∗
Ki

) = −χ(G/Ni, (A
∗
K)Ni) = −

n∑
j=0

rjχ(G/Ni,Zp[ζpj ]Ni)

= −
i∑

j=0

rjχ(G/Ni,Zp[ζpj ]) = −r0χ(G/Ni,Zp)−
i∑

j=1

rjχ(G/Ni,Zp[ζpj ])

= −ir0 + r1 + · · · ri.

This shows

r1 − r0 = χ(G1, AK1) = χ(G1, AK1)− χ(G0, AK0),

r2 − r0 = r1 + r2 − 2r0 − (r1 − r0) = χ(G2, AK2)− χ(G1, AK1),

and, in general,

ri − r0 = r1 + · · ·+ ri − ir0 − (r1 + · · ·+ ri−1 − (i− 1)r0)

= χ(Gi, AKi
)− χ(Gi−1, AKi−1

)

by induction.

8.4 Vanishing Criteria for λL

In this section we’d like to give a couple of generalized vanishing criteria for λL of

the kind found in Theorem 6.10 of Fukuda et al. in the case where L/K is a cyclic

p-extension of Zp-fields. We’ll need a couple of lemmas. The first lemma will lead to

the first vanishing criterion.

Lemma 8.14. Let L/K be a cyclic p-extension of Zp-fields with G = Gal(L/K).

Suppose µK = λK = 0. Then

ordp|H1(G,O×L )|+ ordp|(IGL PL)/(IKPL)| = χ(G, IL)
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Proof. There’s a short exact sequence of ZpG-modules

(IKP
G
L )/IK � IGL /IK � IGL /(IKP

G
L ).

Also, IK ∩ PG
L = PK since PG

L /PK
∼= H1(G,O×L ) being a p-group implies

(IK ∩ PG
L )/PK ⊆ PG

L /PK ⊆ AK ∼= 0

by our µK = λK = 0 assumption. Thus using the third isomorphism theorem twice

gives

IKP
G
L

IK
∼=

PG
L

IK ∩ PG
L

=
PG
L

PK
∼= H1(G,O×L )

and

IGL
IKPG

L

=
IGL

IGL ∩ (IKPL)
∼=
IGL PL
IKPL

.

This completes the proof since

ordp|IGL /IK | = χ(G, IL)

by the proof of Lemma 5.1.

Theorem 8.15. Let L/K be a cyclic p-extension of Zp-fields which is unramified at

every infinite place with G = Gal(L/K). Suppose µK = 0. Then λL = 0 if and only

if the following three conditions hold:

(i) λK = 0

(ii) ordp|H2(G,O×L )| = 0

(iii) ordp|(IGL PL)/(IKPL)| = 0

Proof. Condition (i) is obviously necessary for λL = 0, so we may assume that

λK = 0. Consider the tower

K = K0 ⊆ K1 ⊆ . . . ⊆ Kn = L
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of Zp-fields where Gi = Gal(Ki/K) ∼= Z/(pi) for all i = 0, . . . , n. Then Lemma 8.14

and Lemma 5.1 imply

χ(Gi, AKi
) = ordp|H2(Gi,O×Ki

)| − ordp|H1(Gi,O×Ki
)|+ χ(G, IKi

)

= ordp|H2(Gi,O×Ki
)|+ ordp|(IGi

Ki
PKi

)/(IKPKi
)| ≥ 0,

for all i = 1, . . . , n. Thus Corollary 8.5 shows that λL = 0 if and only if χ(Gi, AKi
) = 0

for all i = 1, . . . , n, and the above computation proves that χ(Gi, AKi
) = 0 if and

only if

ordp|H2(Gi,O×Ki
)| = ordp|(IGi

Ki
PKi

)/(IKPKi
)| = 0. (8.15.1)

To complete the proof, it suffices to show that if Equation 8.15.1 holds for i = n, then

it holds for all i = 1, . . . , n. To show this it’s enough to note that for all i = 1, . . . , n

we have a surjection

O×K
NL/K(O×L )

�
O×K

NKi/K(O×Ki
)

and an injection

IGi
Ki
PKi

IKPKi

�
IGL PL
IKPL

the second of which follows by observing that (IGi
Ki
PKi

) ∩ (IKPL) ⊆ IKi
∩ (IKPL) ⊆

IKPKi
.

We’ll need the following theorem to prove our next lemma.

Theorem 8.16. Let `/k be a Galois extension of number fields with G = Gal(`/k).

Then there is an exact sequence of abelian groups

0→ ker(J`/k)→ H1(G,O×` )→
⊕
v

Z
(e(w/v))

→ C
[G]
` /J`/k(Ck)→ 0
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where C [G]
` is the subgroup of CG

` generated by classes of G-fixed ideals, the direct sum

ranges over all finite places v of k having ramification index e(w/v) with w a place of

` lying over v, and

J`/k : Ck → C`

is the natural map sending the class [I] of an ideal I to the class [O`I]. Further, if G

is cyclic and `/k is unramified at every infinite place, then

q(O×` ) =
|H2(G,O×` )|
|H1(G,O×` )|

=
1

[` : k]
.

We will forego the proof of the first statement since we’ll prove a very similar

statement (with identical method of proof) for Zp-fields in Proposition 9.5. For a

proof of the second statement, the reader is referred to Proposition 1.2.4 in [Gre10].

Lemma 8.17. Let L/K be a cyclic p-extension of Zp-fields which is unramified at

every infinite place. Suppose K = k∞ is the cyclotomic Zp-extension of a number

field k such that p - h(k) and k has only one prime lying above p. Then

ordp|H2(G,O×L )| = 0.

where G = Gal(L/K).

Proof. Here we generalize the method of proof found in [FKOT97], where the result

is proved in the case that L is totally real and [L : K] = p. First, note that if p is

the unique prime ideal of k lying over p, then pn/p is totally ramified in kn/k and

p - h(kn) for all n ∈ N0. Thus using Theorem 8.16 on the extension kn/km with

Gn/m = Gal(kn/km) we find that for all m,n ∈ N0 with m ≤ n∣∣∣∣ O×km
Nkn/km(O×kn)

∣∣∣∣ = |H2(Gn/m,O×kn)| = p−(n−m)|H1(Gn/m,O×kn)|

= p−(n−m)e(pn/pm)
|ker(Jkn/km)|

|C [Gn/m]

kn
/Jkn/km(Ckm)|

= p−(n−m)pn−m
|Ckm|∣∣∣C [Gn/m]

kn

∣∣∣ = 1
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where the last equality follows because H2(Gn/m,O×kn) is a p-group and ordp|Ckm| =

ordp|C
[Gn/m]

kn
| = 0. Thus Nkn/km(O×kn) = O×km for all m,n ∈ N0 with m ≤ n, so if

L = `∞ for some number field ` with Gal(`/k) ∼= Gal(L/K) ∼= Z/(pd), then the

induced maps

Ñkn/km :
O×kn

N`n/kn(O×`n)
−→

O×km
N`m/km(O×`m)

are surjective for all m,n ∈ N0 with m ≤ n. On the other hand, using Theorem 8.16

on the extension `n/kn with Gn = Gal(`n/kn) ∼= Gal(L/K) ∼= Z/(pd) we find∣∣∣∣ O×kn
N`n/kn(O×`n)

∣∣∣∣ = |H2(Gn,O×`n)| = p−d|H1(Gn,O×`n)|

= p−d

(
sn∏
i=1

e(wi/vi)

)
|Ckn|∣∣∣C [Gn]
`n

∣∣∣
= p−d

(
sn∏
i=1

e(wi/vi)

)∣∣∣C [Gn]
`n

∣∣∣
p

≤ p−dpds∞ = pd(s∞−1)

where sn is the number of ramified primes of kn in `n/kn and s∞ <∞ is the number

of ramified primes of K in L/K. Therefore the maps Ñkn/km are isomorphisms of

finite abelian groups for sufficiently large m,n. Now consider the canonical maps

ρ̃kn/km :
O×km

N`m/km(O×`m)
−→

O×kn
N`n/kn(O×`n)

form ≤ n. These maps have the property that Ñkn/km◦ρ̃kn/km is the exponentiation by

pn−m map when the groups are written multiplicatively. Thus when n−m ≥ d(s∞−1)

the composition Ñkn/km ◦ ρ̃kn/km is the trivial map, but Ñkn/km is an isomorphism for

sufficiently large m, so ρ̃kn/km is the trivial map when m is sufficiently large and

n ≥ m+ d(s∞ − 1). Therefore

H2(G,O×L ) ∼= lim−→
n

H2(Gn,O×`n) ∼= 0

which finishes the proof.
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Now we’re ready to give the more specialized and easily applicable vanishing criterion.

Theorem 8.18. Let L/K be a cyclic p-extension of Zp-fields which is unramified at

every infinite place. Suppose K = k∞ is the cyclotomic Zp-extension of a number

field k such that p - h(k) and k has only one prime lying above p. Then λL = 0 if and

only if, for all prime ideals p of K which ramify in L/K and do not lie over p, the

order in CL of the class of the product of prime ideals of L lying over p is prime to p.

Proof. The “⇒” implication is clear. The “⇐” theorem follows from Theorem 8.15

by noting that (1) the assumptions we’ve made ensure that conditions (i) and (ii) hold

by Theorem 3.3 and Lemma 8.17, respectively, and (2) (IGL PL)/(IKPL) is a p-group

generated by the classes of products of prime ideals of L lying over p where p runs

through all prime ideals of K which ramify in L/K and do not lie above p.
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Part III

OTHER DIRECTIONS
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Chapter 9

DEGREE q 6= p

There are difficulties in applying the methods of the prior chapters to the case where

L/K is a Z/(qn)-extension of Zp-fields for a prime q 6= p. One issue for cyclic q-

extensions is that if we now appropriately define

χ(G,−) := ordq

(
|H2(G,−)|
|H1(G,−)|

)
,

then χ(G, IL) is no longer finite (i.e., well-defined) since H2 will be infinite. The

following example illustrates this difficulty.

Example 9.1. Let p = 3, q = 2 with L/K = Q∞(i)/Q∞. Any rational non-p-prime

r ≡ 3 (mod 4) remains inert in Q(i)/Q, and consequently (since 2 6= 3) any prime r

in OK lying above r remains inert in L/K. This r contributes a factor of Z/qZ to

H2(G, IL). There are infinitely many such r, so χ(G, IL) is not finite.

The point here is that χ(G, IL) is a sum of terms of the form ordq(ef) where

e, f are the ramification index and residue degree, respectively, but when q = p we

always have f = 1, so there were only finitely many nonzero ordp(ef) (corresponding

to the ramified places not lying above p) in that case. It will turn out, however, that

|H1(G,O×L )|/|H1(G,PL)| is still finite in special cases, and, moreover, this quantity

is related to the q-part (not the p-part) of the class groups of L and K. Before

specializing to cyclic q-extensions, we’ll mention some results about fairly general

extensions of Zp-fields.

Lemma 9.2. Let `/k be an extension of number fields. We have homomorphisms

J`/k : Ck → C` : [p] 7→ [pO`]

N`/k : C` → Ck : [P] 7→ [pf ]
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where P is a prime ideal of O`, p = P ∩ Ok, and f = [O`/P : Ok/p]. We have

(N`/k ◦ J`/k)(c) = c[`:k]

and, if `/k is Galois,

(J`/k ◦N`/k)(d) =
∏

σ∈Gal(`/k)

σ(d)

for all c ∈ Ck and all d ∈ C`.

Proof. See Greenberg’s monograph [Gre10] for example.

Taking direct limits in the above lemma immediately yields the following.

Corollary 9.3. Let L/K be an extension of Zp-fields. We have homomorphisms

JL/K := lim−→
n

J`n/kn : CK → CL

NL/K := lim−→
n

N`n/kn : CL → CK

where L,K are the cyclotomic Zp-extensions of number fields `, k, respectively. We

have

(NL/K ◦ JL/K)(c) = c[L:K]

and, if L/K is Galois,

(JL/K ◦NL/K)(d) =
∏

σ∈Gal(L/K)

σ(d)

for all c ∈ CK and all d ∈ CL.

Corollary 9.4. Let L/K be an extension of Zp-fields. We have

[L : K]ker(JL/K) = 0

and, if L/K is Galois,

[L : K]CG
L ⊆ JL/K(CK).
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The following proposition is inspired by Proposition 1.2.3 in [Gre10].

Proposition 9.5. Let L/K be a Galois extension of Zp-fields with G = Gal(L/K).

Then there is an exact sequence of abelian groups

0→ ker(JL/K)→ H1(G,O×L )→
⊕
v

Z
(e′(w/v))

→ C
[G]
L /JL/K(CK)→ 0

where C [G]
L is the subgroup of CG

L generated by classes of G-fixed ideals, the direct sum

ranges over all finite places v of K with w a place of L lying over v and

e′(w/v) =

{
e(w/v) if v - p
e(w/v)|e(w/v)|p if v|p.

Further, the exact sequence extends

0→ ker(JL/K)→ H1(G,O×L )→
⊕
v

Z
(e′(w/v))

→ CG
L /JL/K(CK)→ H1(G,PL)→ 0

Proof. We use the snake lemma on the following commutative diagram with exact

rows and columns:

0

��

// 0

��

// ker(JL/K)

��
0 // PK //

��

IK //

��

CK

JL/K

��

// 0

0 // PG
L

//

����

IGL
Ψ //

��

CG
L

ρ //

��

H1(G,PL)

H1(G,O×L ) // IGL /IK
// CG

L /JL/K(CK)

This proves the first part of the theorem. Additionally, we know that

IL ∼=
⊕
v

IL,v ∼=
⊕
v

HomZv(ZG,Rv)

as G-modules where the direct sum ranges over all finite places v of K with decompo-

sition group Zv of w/v for some place w on L lying over v and Rv has trivial G-action
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with Rv = Z if v - p while Rv = ∪n≥0p
−nZ if v|p. Thus Shapiro’s lemma implies

H1(G, IL) ∼=
⊕
v

H1(G,HomZv(ZG,Rv)) ∼=
⊕
v

H1(Zv, Rv) ∼= 0

since each Rv is torsion free. In this way, the map occurring in the above diagram

ρ : CG
L → H1(G,PL)

is surjective. Therefore we need only observe that

JL/K(CL) ⊆ C
[G]
L = im(Ψ) = ker(ρ)

and the proof is complete. See also Equation (A.4) in [HS05] and the proof of Propo-

sition 1.3.4 in [Gre10].

9.1 Abelian Zp-Fields

Lemma 9.6. Let L be an abelian Zp-field, i.e., L is the cyclotomic Zp-extension of

an abelian number field. Then µL = 0 and for every prime q 6= p, the q-primary part

of the class group, denoted by CL[q∞], is finite.

Proof. See Washington’s text [Was96].

Theorem 9.7. Let L/K be a cyclic extension of abelian Zp-fields with G = Gal(L/K)

and (p, |G|) = 1. Then

|H1(G,O×L )|
|H1(G,PL)|

·
|CG

L /JL/K(CK)|
|ker(JL/K)|

=
∏
v

e(w/v)

where the product ranges over all finite places v of K with w a place of L lying over

v.

Corollary 9.8. Let L/K be a cyclic q-extension of abelian Zp-fields with q 6= p and

G = Gal(L/K). Then

|H1(G,O×L )|
|H1(G,PL)|

· |C
G
L [q∞]|
|CK [q∞]|

=
∏
v

e(w/v)
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where the product ranges over all finite places v of K with w a place of L lying over

v.
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Chapter 10

DEDEKIND SCHEMES

In this chapter, we find a general context for which Dedekind’s different formula is

true, and we’ll see how this formula simultaneously encapsulates both the Hurwitz

formula for curves and Iwasawa’s formula. First, we’ll need to establish/review some

definitions and lemmas.

Definition 10.1. Suppose X, Y are schemes with Y locally Noetherian (i.e., there is

an affine open cover {Spec(Bi)}i∈I of Y with each Bi Noetherian). Let f : X → Y

be a morphism of finite type (i.e., for every affine open subset V of Y we have that

f−1(V ) is quasi-compact and OX(U) is a finitely generated OY (V )-algebra whenever

U is an affine open subset of f−1(V )). We say f is a local complete intersection

(or LCI) if for every x ∈ X there is an open neighborhood U of x such that f |U = g◦i

where i : U → W is a regular immersion (i.e., i is an immersion and for every x ∈ X

we have that ker(OY,f(x) → OX,x) is generated by a sequence b1, . . . bn ∈ OY,f(x) such

that bm is not a zero-divisor in OY,f(x)/(b1, . . . , bm−1) for all m) and g : W → Y is a

smooth morphism.

For schemes X f−→ Y −→ Z, we always have an exact sequence

f ∗ΩY/Z → ΩX/Z → ΩX/Y → 0

of sheaves of relative differentials. If f ∗ΩY/Z → ΩX/Z happens to be a monomorphism,

we can apply an ‘Euler characteristic’ χ (meaning a functor which is additive on short

exact sequences) to compute χ(ΩX/Y ) (which should contain ramification information)

via χ(ΩX/Z) = χ(f ∗ΩY/Z) + χ(ΩX/Y ). Indeed, this is the method Hartshorne uses

in [Har97] to prove the Riemann-Hurwitz formula for nonsingular, projective curves

over an algebraically closed field. The notion of an LCI (defined above) provides a
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general framework in which we might hope to employ the same tactics. The following

lemma, found in [Liu02], gives conditions for when this first morphism in the above

sequence is a monomorphism.

Lemma 10.2. Let f : X → Y be a dominant, separable LCI of Noetherian, integral

schemes over a scheme Z. Then there is a short exact sequence of OX-modules

0→ f ∗ΩY/Z → ΩX/Z → ΩX/Y → 0.

We want to consider morphisms which satisfy the hypotheses of the above result,

and we’ll be interested in a class of schemes which captures the similarities between

normal, projective curves over fields and spectrums of Dedekind domains. To this

end, we make the following definitions, as found in [Sza09] or with less restrictions in

[Liu02].

Definition 10.3. A Dedekind scheme is a normal, integral scheme of dimension 1

which is separated and Noetherian.

Remark 10.4. Let X be a Dedekind scheme. Then OX,x is a PID for all x ∈ X and

a DVR when x is a closed point. In particular, X is regular.

Example 10.5. If O is a Dedekind domain which is not a field, then Spec(O) is a

Dedekind scheme. In particular, Spec(Ok) is a Dedekind scheme when k is a number

field. Likewise, Spec(OK [1/p]) is a Dedekind scheme when K is a Zp-field; to see why

OK [1/p] is a Dedekind domain, we’ll use the following definition and lemma.

Definition 10.6. A Prüfer domain is an integral domain in which every finitely

generated, nonzero ideal is invertible.

Lemma 10.7. Let O be a Prüfer domain, and let F be its field of fractions. Then

1. The integral closure of O in an algebraic extension of F is a Prüfer domain.
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2. If S is a ring such that O ⊆ S ⊆ F , then S is a Prüfer domain.

3. O is a Dedekind domain ⇔ O is Noetherian.

Proposition 10.8. Let K be a Zp-field. Then OK [1/p] is a Dedekind domain.

Proof. First, OK is a Prüfer domain by part 1 of the above lemma since it’s the

integral closure of Z (obviously a Prüfer domain) in K (an algebraic extension of

Q). Second, OK [1/p] is a Prüfer domain by part 2 of the above lemma since OK ⊆

OK [1/p] ⊆ K. Thus by part 3 of the above lemma it suffices to show OK [1/p] is

Noetherian. Ket k be a number field such that K = k∞. Every proper, nonzero ideal

in OK [1/p] is of the form I[1/p] where I is a nonzero ideal in OK such that

I ∩ {1, p, p2, . . .} = ∅.

Take

In := Okn ∩ I

for all n ∈ N0. Finite places are finitely split in cyclotomic Zp-extensions and non-p-

places are unramified in Zp extensions, so there is an m ∈ N0 such that

In = OknIm

for all n ≥ m. Hence

I =
∞⋃
n=1

In = OKIm

is finitely generated as an OK-module since Im is finitely generated as an Okm-module.

Therefore I[1/p] is finitely generated as an OK [1/p]-module.

Example 10.9. Normal, projective curves over a field F are Dedekind schemes.

The next lemma (proved in [Liu02]) will guarantee that the finite, separable mor-

phisms we consider are, in fact, LCIs.
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Lemma 10.10. Let f : X → Y be a morphism of finite type of regular, locally

Noetherian schemes. Then f is an LCI.

With lemmas 10.2 and 10.10 in hand, we immediately obtain the following corol-

lary by noting that finite, separable morphisms of Dedekind schemes are surjective

on the underlying topological spaces (whence dominant).

Corollary 10.11. Let f : X → Y be a finite, separable morphism of Dedekind

schemes over a scheme Z. Then there is a short exact sequence of OX-modules

0→ f ∗ΩY/Z → ΩX/Z → ΩX/Y → 0.

When X = C1, Y = C2 are nonsingular, projective curves over Z = Spec(F ) where

F is an algebraically closed field, we can take our Euler characteristic to be

χF (F ) :=
∞∑
n=0

(−1)n dimF (Hn(X,F )).

Then we follow suit as in the discussion before Remark 4.7. In what follows, we furnish

a more general notion of degree and Euler characteristic, and we outline a plan for

constructing a general Riemann-Hurwitz formula for finite, separable morphisms of

Dedekind schemes. In this context, ΩX/Y contains the ramification info via Dedekind’s

different formula as stated below. Now we define canonical sheaves which play a

crucial role in the proceeding discussion.

Definition 10.12. Let f : X → Y be a quasi-projective LCI with Y locally Noethe-

rian. Then f factors as

X
i−→ W

g−→ Y

where i is an immersion and g is smooth. The conormal sheaf CX/W and the sheaf of

relative differentials ΩW/Y are locally free of some finite ranks m and n, respectively.

Thus the determinants

det(CX/W ) =
m∧

CX/W det(ΩW/Y ) =
n∧

ΩW/Y
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are invertible sheaves, and we may define the canonical sheaf of X/Y as

ωX/Y := det(CX/W )∨ ⊗OX
i∗ det(ΩW/Y )

which is an invertible sheaf of OX-modules that turns out not to depend on the choice

of W . Note that if f happens to be smooth, then

ωX/Y = det(ΩX/Y ).

We know that finite, separable morphisms of Dedekind schemes are LCIs, and it’s

natural to guess more is true.

Proposition 10.13. Let f : X → Y be a finite, separable morphism of Dedekind

schemes. Then f is quasi-projective.

It is easy to see this proposition in some special cases. Specifically, finite mor-

phisms of affine schemes are projective, and finite, separable morphisms of normal

projective curves over a field F are quasi-projective. In these situations, we have the

following formula which Liu uses in [Liu02] to prove a fairly general Riemann-Hurwitz

formula for normal projective curves over an arbitrary base field F .

Theorem 10.14 (Adjunction Formula). Let X f−→ Y −→ Z be quasi-projective

LCIs. Then

ωX/Z ∼= ωX/Y ⊗OX
f ∗ωY/Z .

Next, we define a general Euler characteristic and degree, which can then be ap-

plied to the short exact sequence of sheaves of relative differentials and the adjunction

formula above.

Definition 10.15. Suppose X is a Dedekind scheme which is a quasi-projective LCI

over a scheme Z. For a sheaf F of OX-modules define

χZ(F ) :=
∞∑
n=0

(−1)n dimZ(Hn(X,F ))
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with

dimZ(M) :=
∑
x

lengthOZ,z
(Mx)

where the sum ranges over all closed points x ∈ X with images z ∈ Z. Also, for an

effective divisor D of X define

degZ(D) :=
∑
x∈D

lengthOX,x
(OD,x)[F(x) : F(z)]

where (D,OD) is the closed subscheme of X corresponding to the invertible sheaf of

ideals OX(−D) and F(x),F(y) are residue fields. Extend this definition to all divisors

D by

degZ(D) = degZ(E)− degZ(F )

where D = E − F and E,F are effective divisors.

As one would want, χZ is additive on short exact sequences and χZ = χF when

Z = Spec(F ) for some field F .

Lemma 10.16. Let X, Z be as above. For every short exact sequence of OX-modules

0→ F ′ → F → F ′′ → 0

we have

χZ(F ) = χZ(F ′) + χZ(F ′′)

whenever two of the three terms are finite.

Also, degZ and χZ are related by the following two lemmas.

Lemma 10.17. Suppose X is a Dedekind scheme and D is an effective divisor. Then

degZ(D) = χZ(OD).
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Proof. We know (D,OD) is affine, so

χZ(OD) = dimZ(H0(D,OD)) =
∑
x∈D

lengthOZ,z
(OD,x)

=
∑
x∈D

lengthOX,x
(OD,x)[F(x) : F(z)] = degZ(D).

Lemma 10.18. Suppose X is a Dedekind Z-scheme and D is a divisor on X. Then

degZ(D) = χZ(OX(D))− χZ(OX)

when these quantities are finite.

Sketch. We proceed as in [Liu02]. Write D = E−F for effective divisors E,F . Note

that there is a short exact sequence of OX-modules

0→ OX(−F )→ OX → OF → 0.

Then apply the exact functor −⊗OX
OX(E) to conclude by Lemma 10.17 that

χZ(OX(D)) = χZ(OX(E))− degZ(F ) = degZ(E) + χZ(OX)− degZ(F )

which leads to the desired result.

We are prompted by this second statement to make the following definition.

Definition 10.19. Suppose X is a Dedekind scheme over a scheme Z and F is an

invertible sheaf of OX-modules. Define

degZ(F ) := χZ(F )− χZ(OX).

Now we state the result (found in [Sza09] e.g.) which motivates why we would ex-

pect there to be a general Riemann-Hurwitz formula in the context of finite, separable

morphisms of Dedekind schemes.
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Theorem 10.20 (Dedekind’s Different Formula). Let f : X → Y be a finite, sepa-

rable morphism of Dedekind schemes. Define the different DX/Y as the annihilator

sheaf of ΩX/Y . Then DX/Y = OX(−DX/Y ) where

DX/Y =
∑
i

mixi

is an effective divisor supported at the points xi where f is not étale, and we have

mi = e′i − 1

where e′i = ei is the ramification index of xi/yi when f is tamely ramified at xi and

e′i > ei when f is wildly ramified at xi.

From the theory of normal, projective curves over a field F , it’s natural to con-

jecture the following relationship between the different and the canonical sheaf.

Conjecture 10.21. Let f : X → Y be a finite, separable morphism of Dedekind

schemes which are quasi-projective LCIs over a scheme Z. Then f is quasi-projective

and

degZ(ωX/Y ) = − degZ(DX/Y ).

As soon as this conjecture holds, we get a family of Riemann-Hurwitz formulas

parameterized by the base scheme Z.

Corollary 10.22. Let X f−→ Y be a finite, separable morphism of Dedekind schemes

which are quasi-projective LCIs over a scheme Z. Then

degZ(ωX/Z) = deg(f) degZ(ωY/Z) +
∑
x

[F(x) : F(z)](e′x/y − 1)

where the sum ranges over the closed points x of X with images y in Y , z in Z and

e′x/y = ex/y at tame ramification while e′x/y > ex/y at wild ramification.
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Even if the above conjecture is not true in the generality stated, it is true at least

for normal projective curves over fields and for affine schemes. This captures the

classical Hurwitz formula and Iwasawa’s formula together.

Proposition 10.23. Conjecture 10.21 above is true when X, Y are affine. More

precisely,

ωX/Y ⊗OX
DX/Y ∼= OX .

Sketch. The idea is to use Theorem 4.32 in [Liu02] which says that if f : X → Y is a

flat, projective LCI of some relative dimension r with Y locally Noetherian, then the

“r-dualizing sheaf” ωf is isomorphic to ωX/Y . On the other hand, if f is, moreover,

finite and X is also locally Noetherian, then

ωf = f !OY := HomOY
(f∗OX ,OY ).

For affine Dedekind schemes X = Spec(B), Y = Spec(A) where A ↪→ B is an

inclusion of Dedekind domains such that the induced inclusion of function fields L/K

is a finite, separable extension, we know that the natural morphism f : X → Y is

indeed a flat, projective, finite LCI, so

ωX/Y ∼= HomA(B,A)∼,

but there is an isomorphism

WB/A
∼= HomA(B,A)

where

WB/A = {β ∈ L|TrL/K(βB) ⊆ A}

is the codifferent, which is the inverse fractional ideal of the different.

We can actually compute deg(ωX/Z), deg(ωY/Z) in a special Iwasawa theoretic context.
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Corollary 10.24. Let K0 = Q∞ ⊆ . . . ⊆ Km = K ⊆ . . . ⊆ Kn = L be a tower of

Z/(p)-extensions unramified at the infinite places. Putting X = Spec(OL[1/p]), Y =

Spec(OK [1/p]), Z = Spec(OQ∞ [1/p]) we have

deg(ωY/Z) = λK − qK

deg(ωX/Y ) =
∑
w-p

(ew − 1)

deg(ωX/Z) = λL − qL

= [L : K] deg(ωY/Z) + deg(ωX/Z)

where

qKj
= (p− 1)

j∑
i=1

pj−iχ(Gal(Ki/Ki−1),O×Ki
).

Remark 10.25. A purely geometric proof of the above corollary or, more generally,

Iwasawa’s formula seems within the realm of possibility but is lacking. In particular,

there is a way of realizing the quantity λL−qL as an Euler characteristic coming from

sheaf cohomology. Let L/K be a p-extension of Zp-fields with p an odd prime. Then

for a sheaf F of G = Gal(L/K)-modules on X = Spec(OL[1/p]) we may define

χG(F ) =
∞∑
n=0

(−1)n dimG(Hn(X,F ))

where for any fixed tower of Z/(p)-extensions K = K0 ⊆ K1 ⊆ . . . ⊆ Km = L we

take

dimG(M) =
m∑
i=1

ϕ(pm+1−i)χ(Ni−1/Ni,M
Ni)

with Ni = Gal(L/Ki). In this notation, we have

pm − 1− χG(O×X) = λL − pmλK −
m∑
i=1

ϕ(pm+1−i)χ(Ni−1/Ni,O×Ki
) = χY (ODX/Y

).

Here we are cheating a bit since we’re using Iwasawa’s formula, but if one could estab-

lish the equality of the left and right hand sides of the above equation independently



138

(by knowing some general results about how χG and χY are related), then this would

actually prove Iwasawa’s formula in a more geometric fashion.
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