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Abstract. Wormholes are theoretical objects of great intrigue in physics. When a wormhole
model has been suggested, we can attempt to measure any associated energy. One method
of doing this uses Møller energy. First, we define the Møller energy-momentum complex.
Then we compute the Møller energy for a spherically symmetric spacetime with a diagonal
metric. Lastly, we go through several examples of wormhole metrics and use the formula
obtained to compute the energy in these cases.
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1. Introduction

A wormhole is a region which connects two places within the same spacetime or connects
two asymptotically flat spacetimes (parallel universes) via an Einstein-Rosen bridge (worm-
hole throat). The Kruskal extension of Schwarzschild geometry suggests the existence of the
latter type of wormholes; in this case, however, the wormhole is not static and does not stay
open. Rather, “the wormhole throat decreases and eventually pinches off in a singularity”
as is written in [3]. For this reason, we say these wormholes are non-traversable.

Morris and Thorne studied the possibility of static, spherically symmetric wormholes, but
they discovered that the Einstein equation implies such a geometry would violate the weak
energy condition, meaning traversable wormholes will likely require the existence of so-called
exotic matter (i.e., matter having negative energy). Even so, it is commented in [4] that “this
condition can be violated quantum-mechanically, e.g. in the Casimir effect, or in alternative
gravity theories.” Also, in [7], it’s proposed how a wormhole might be constructed with very
particular matter sources which are nonetheless not exotic.

Given a possible wormhole metric, one would like to make energy measurements to see,
for example, how such a wormhole could be supported or even constructed in the first place.
How do we measure the energy in a wormhole? We need an appropriate notion of energy
density, but, as noted in [6], the “problem of defining in an acceptable manner the energy-
momentum density hasn’t got a generally accepted answer yet.” However, of the many
different energy-momentum complexes, there is only one notable definition which does not
require quasi-Cartesian coordinates. Indeed, the Møller energy-momentum complex, to be
defined below, allows computation of energy densities independent of coordinates. We’ll
use this definition to compute the Møller energy of a physical system in general spherical
coordinates, and then we’ll specialize to the case of a spherically symmetric spacetime with a
diagonal metric. In turn, we’ll use this calculation in several examples of wormhole metrics.
Throughout, the signature of every metric is (−,+,+,+) and we take c = G = ~ = ε04π = 1
for convenience.

2. Møller Energy-Momentum Complex

Let gµν denote the metric coefficients of a four-dimensional spacetime with coordinates

x0 = t

x1 = r

x2 = θ

x3 = φ

where t is the time component, r is the radial component, 0 ≤ θ ≤ π, and 0 ≤ φ ≤ 2π.
Then, as in [1], [2], [6] or [8], we define the Møller energy-momentum complex by

Mν
µ =

1

8π

∂χνσµ
∂xσ

where
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χνσµ =
√
−g
(
∂gµα
∂xβ

− ∂gµβ
∂xα

)
gναgβσ

is the superpotential with

g = det(gµν).

Note that the superpotential is anti-symmetric since the symmetry of the metric coefficients
implies

χσνµ =
√
−g
(
∂gµα
∂xβ

− ∂gµβ
∂xα

)
gσαgβν

= −
√
−g
(
∂gµβ
∂xα

− ∂gµα
∂xβ

)
gνβgασ

= −χνσµ .

Like the stress-energy tensor T µν , the Møller energy-momentum complex has the following
conservation laws

∂M ν
µ

∂xν
= 0.

Also similar to the stress-energy tensor, the Møller energy density is given by M0
0 while

M0
σ represents the momentum density components for σ = 1, 2, 3. Thus the energy of the

physical system within a ball B of radius r = R is given by

P0 =

∫∫∫
B

M0
0 dx

1dx2dx3.

Letting S denote the boundary of B, we may apply the divergence theorem (noting that
χ00

0 = 0) to get

P0 =
1

8π

∫ 2π

0

∫ π

0

∫ R

0

3∑
σ=1

∂χ0σ
0

∂xσ
dx1dx2dx3

=
1

8π

∫∫
S

3∑
σ=1

χ0σ
0 ησ dS

where (η1, η2, η3) is the outward unit normal vector of dS in (r, θ, φ)-coordinates.
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3. Møller Energy of a Spherically Symmetric Spacetime

Now we compute the energy P0 for a general spherically symmetric diagonal metric, which
will later be used to find P0 for various wormhole metrics. Each such metric under consid-
eration is of the form

ds2 = −A(r, t)2dt2 +B(r, t)2dr2 + C(r, t)2r2(dθ2 + sin2(θ)dφ),

with A,B,C ≥ 0, so we have

(gµ,ν) = diag(−A2, B2, C2r2, C2r2 sin2(θ))

and

(gµν) = (gµν)
−1 = diag(−A−2, B−2, C−2r−2, C−2r−2 csc2(θ)).

Hence

√
−g =

√
A2B2C4r4 sin2(θ) = ABC2r2 sin(θ)

and

χ01
0 =

√
−g
(
∂g0α

∂xβ
− ∂g0β

∂xα

)
g0αgβ1

=
√
−g
(
∂g00

∂x1
− ∂g01

∂x0

)
g00g11

=
√
−g
(
∂(−A2)

∂r
− 0

)
(−A−2)B−2

= ABC2r2 sin(θ)2A
∂A

∂r
A−2B−2

=
2C2r2 sin(θ)

B
· ∂A
∂r

while if i = 2, 3 then

χ0i
0 =

√
−g
(
∂g0α

∂xβ
− ∂g0β

∂xα

)
g0αgβi

=
√
−g
(
∂g00

∂xi
− ∂g0i

∂x0

)
g00gii

=
√
−g (0− 0) g00gii

= 0.

Therefore, by the above, the energy becomes
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P0 =
C(R, t)2R2

4πB(R, t)
· ∂A
∂r

(R, t)

∫ 2π

0

∫ π

0

sin(θ) dθdφ

=
C(R, t)2R2

B(R, t)
· ∂A
∂r

(R, t).

4. Examples of Wormhole Metrics

In this section we’ll explore several specific wormhole geometries, find a couple of embed-
dings which display wormhole throats, and compute the associated Møller energy.

• Hartle’s Toy Wormhole. Consider the metric (as found in [3])

ds2 = −dt2 + dr2 + (b2 + r2)(dθ2 + sin2(θ)dφ2)

where b > 0 is a constant. This represents a static spacetime which can be embedded
as a surface in three space. To visualize this geometry, we use the method of [3] as
follows. Fix a time t = t0 and the equatorial plane θ = π/2. The resulting slice has
the form

dΣ2 = dr2 + (b2 + r2)dφ2.

On the other hand, if (ρ, ψ, z) are cylindrical coordinates in R3 with

x = ρ cos(ψ)

y = ρ sin(ψ),

then the metric for flat space is

dS2 = dx2 + dy2 + dz2

= (cos(ψ)dρ− ρ sin(ψ)dψ)2 + (sin(ψ)dρ+ ρ cos(ψ)dψ)2 + dz2

= dρ2 + ρ2dψ2 + dz2.

Since the original spacetime is spherically symmetric, the embedding should be axis-
symmetric, so we assume that z, ρ are functions of r only and that ψ = φ. Using this
in the above we get

dS2 =

(
dρ

dr
dr

)2

+ ρ2dφ2 +

(
dz

dr
dr

)2

=

[(
dρ

dr

)2

+

(
dz

dr

)2
]
dr2 + ρ2dφ2.

Thus in order for dΣ2 = dS2, we need
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ρ2 = r2 + b2

1 =

(
dρ

dr

)2

+

(
dz

dr

)2

.

The first equation implies

(
dρ

dr

)2

=
r2

r2 + b2
,

so the second equation implies

(
dz

dr

)2

= 1−
(
dρ

dr

)2

=
b2

r2 + b2
,

whence choosing z = 0 when r = 0 we find

z = ±
∫ √

b2

r2 + b2
dr = ±b sinh−1(r/b) = ±b ln(

√
(ρ/b)2 − 1 + ρ/b).

Therefore, taking b = 1 for simplicity, the embedding in R3 is the surface of revolution
about the z-axis of the curve

z = ± ln(
√
x2 − 1 + x).

The resulting picture is seen below.

Figure 1. Embedding of Toy Wormhole

Now we use the formula for P0 at the end of the last section to compute the energy.
Here A(r, t) = 1, so ∂A/∂r = 0, giving P0 = 0.
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• Conformal Wormhole. Consider the metric (as found in [1])

ds2 = Ω(t)

[
−dt2 +

(
1− b(r)

r

)−1

dr2 + r2(dθ2 + sin2(θ)dφ2)

]

where Ω(t) > 0 is the conformal factor and b(r) < r is the shape function. As
mentioned in [1], this metric “was considered by Kar (1994) in order to find out if
within classical general relativity a class of nonstable... wormholes [which do not
violate energy conditions] could exist. It was found that evolving geometry can
support a wormhole.” To visualize this geometry we mimic the method above by
fixing t = t0 and θ = π/2, so cylindrical coordinates (ρ, ψ, z) give the conditions

ρ2 = Ω(t0)r
2

Ω(t0)

1− b(r)/r
=

(
dρ

dr

)2

+

(
dz

dr

)2

.

These imply

dz

dr
= ±

√
Ω(t0)

b(r)

r − b(r)
,

so if b(r) = b is constant, then choosing z = 0 when r = 0 gives

z = ±2
√

Ω(t0)b(r − b).

Therefore taking b = 1 for simplicity, the embedding in R3 is the surface of revolution
about the z-axis of the curve

z = ±2
√

Ω(t0)(x− 1),

which is a family of hyperboloids when we allow t to vary. The resulting pictures for
Ω(t) = (t+ 1)2 at t = 0, t = 1 are seen below.
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t = 0 t = 1

Figure 2. Embeddings of Conformal Wormhole with b(r) = 1,Ω(t) = (t+ 1)2

As with the toy wormhole, the energy here is zero since A(r, t) =
√

Ω(t) does not
depend on r.

• Charged Wormhole. Consider the metric (c.f. [8], which has an abundance of
errors)

ds2 = −
(

1 +
Q2

r2

)
dt2 +

(
1− b(r)

r
+
Q2

r2

)−1

dr2 + r2(dθ2 + sin2(θ)dφ2)

where Q is the charge and again b(r) is the shape function. Note that if b(r) ≡ 0, then
this spacetime becomes a Reissner-Nordström black hole with no mass. An embed-
ding here for special choices of b(r), Q could be obtained with symbolic integration,
but one finds this to be unenlightening. The Møller energy, however, is nontrivial;
specifically, we have

A(R, t)2 = 1 +
Q2

R2

∂A

∂r
(R, t) =

1

2

(
1 +

Q2

R2

)−1/2 −2Q2

R3

B(R, t) =

(
1− b(R)

R
+
Q2

R2

)−1/2

C(R, t)2 = 1,

so
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P0 =
1 ·R2(

1− b(R)
R

+ Q2

R2

)−1/2

(
1 +

Q2

R2

)−1/2 −Q2

R3

=
−Q2

R

√
R2 − b(R)R +Q2

R2 +Q2
.

• Inflating Wormhole. Consider the metric (as found in [1])

ds2 = −A(r)2dt2 + e2χt

[(
1− b(r)

r

)−1

dr2 + r2(dθ2 + sin2(θ)dφ2)

]
where Λ = 3χ2 is the cosmological constant. As pointed out in [1], “Roman (1993)
[explored] the possibility that inflation might provide a natural mechanism for the
enlargement of such wormholes to macroscopic size... It was shown that the throat
and the proper length of the wormhole inflate.” If b(r) = b is a constant, then this
spacetime has the same embedding as the conformal wormhole with the conformal
factor equal to an exponential function. The energy here, however, does not vanish
as it did for the conformal wormhole since we allow A to depend on r; specifically,
we have

A(R, t)2 = A(R)2

∂A

∂r
(R, t) =

dA

dr
(R)

B(R, t) = eχt
(

1− b(R)

R

)−1/2

C(R, t)2 = e2χt,

so

P0 =
e2χt ·R2

eχt
(

1− b(R)
R

)−1/2
· dA
dr

(R)

= eχt
dA

dr
(R)
√
R− b(R).
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