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Chapter 1

Introduction

When studying a topological space, a mathematician invariably encounters a dichotomy be-
tween properties that are local and properties that are global. For example, consider smooth
functions on smooth manifolds. A smooth function f : M → R on a compact smooth man-
ifold M can be expressed as a formula using local coordinates but cannot be expressed as
a formula globally. Conversely, compatible smooth functions de�ned locally can be �glued�
together to form a global smooth function. One can ask, given something de�ned locally
on a topological space, when can it be extended to de�ne something global? On the other
hand, given something de�ned globally, what can one say about local restrictions?

Sheaves are designed to formalize this dichotomy. The simplest de�nition of sheaves is
formulated in the language of categories and functors. Namely, given a topological space X,
one can form a category Top(X) whose objects are the open sets of X and whose morphisms
are inclusion maps. A sheaf of abelian groups is a contravariant functor F : Top(X) → Ab

that satis�es an extra axiom that we will call the �gluing axiom.� A similar construction
yields sheaves of commutative rings, R-modules, etc. Examples of sheaves include smooth
functions on smooth manifolds, holomorphic or meromorphic functions on complex mani-
folds, and sections of vector bundles over manifolds.

It turns out that the collection of all sheaves with values in a speci�ed abelian category
C over a topological space X forms an abelian category C(X). If C has enough injectives,
so does C(X). The image of the entire space X under a sheaf F ∈ C, sometimes denoted
Γ(X,F ), de�nes an additive left-exact functor from C(X) to C. This functor, called the
global section functor, can be used to de�ne sheaf cohomology. Speci�cally, the sheaf coho-
mology groups of a sheaf F on a topological space X, denoted Hn(X,F ), are de�ned to be
the right derived functors of the global section functor. Under fairly tame conditions, the
sheaf cohomology groups coincide with the Čech cohomology groups, which we will de�ne
below. The Čech cohomology groups can be computed. For example, we will show below
that for the sheaf F of locally constant functions on a smooth manifold, the Čech coho-
mology groups Ȟn(X,F ) coincide with the de Rham cohomology groups. The �rst half of
this paper will lay the groundwork be de�ning all the necessary terms and proving necessary
results leading up to sheaf cohomology and Čech cohomology.

The last chapter of this paper will turn to what the sheaf cohomology tells us about the un-
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4 CHAPTER 1. INTRODUCTION

derlying topological space. Since the global sheaf functor is left exact, the zeroth level sheaf
cohomology is naturally isomorphic to the global sheaf functor itself. The �rst cohomology is
more interesting. For simplicity, we will restrict our attention to compact Riemann surfaces.
We will �x a sheaf of commutative rings (with identity) O and de�ne invertible sheaves with
respect to O. The set of isomorphism classes of invertible sheaves form a group under the
tensor product, called the Picard group. It turns out that for the sheaf O× of units of O,
the �rst sheaf cohomology H1(X,O×) is naturally isomorphic to the Picard group. In the
context of compact Riemann surfaces, the Picard group is also isomorphic to the divisor
class group of X as well as the group of line bundles over X. This interpretation brings
geometry together with number theory and illustrates the power of sheaf cohomology.

As a convention, in this paper all rings will be rings with identity.



Chapter 2

Sheaves and Presheaves

One of the earliest results in complex analysis was the discovery that if a collection of
holomorphic functions agree on open subsets then there exists an analytic continuation
which �glues together� the local data to produce a global function. Speci�cally, if {Un} is
a �nite collection of open subsets of C and fn : Un → C are holomorphic functions which
agree on overlaps, fn|Un∩Um = fm|Un∩Um for all Un ∩ Um 6= ∅, then there is a meromorphic
function f such that f |Un = fn for all n. The modern de�nition of sheaves comes from
Cartan's attempt to generalize the notion of �compatible� holomorphic functions to multiple
variables ([Uen97] pg 69).

2.1 De�nitions

Due to the strict nature of the compatibility conditions it is useful to weaken the axioms
and de�ne a presheaf before de�ning a sheaf.

Let X be a topological space and Top(X) the category of open subsets of X; the morphisms
in the category are just the inclusion maps between open subsets.

De�nition 2.1. A presheaf F of abelian groups is a contravariant functor F : Top(X) →
Ab. The classical presheaf axioms are a consequence of the categorical de�nition:

1. If V ⊆ U are open sets then there must exist a map ρUV : F (U) → F (V ),

2. ρUU = idF (U) is the identity,

3. If W ⊆ V ⊆ U are open sets then ρUW = ρV W ◦ ρUV .

A presheaf of rings, modules or with values in any category C is de�ned similarly. Some
authors include a presheaf axiom requiring F (∅) to be the terminal object in the category
C. We omit this axiom in our treatment, and simply note that it follows from the gluing
axiom for a sheaf, de�ned below.

Elements of F (U) are called sections, sometimes denoted Γ(U,F ) . Elements of Γ(X,F )
are called global sections . The maps ρUV are called restrictions. If V ⊆ U and s ∈ F (U),
then the restriction of s to the subset ρUV (s) is frequently written s|V .

5



6 CHAPTER 2. SHEAVES AND PRESHEAVES

De�nition 2.2. Let F be a presheaf on X and U ⊆ X an open subset. F is a sheaf if it

has the following property: for every open cover U =
⋃
α∈I

Uα and every collection of sections

sα ∈ F (Uα), α ∈ I that agree on the intersections sα|Uα∩Uβ
= sβ|Uα∩Uβ

, there exists a unique
s ∈ F (U) such that s|Uα = sα for each α.

Throughout the paper we shall refer to this as the �gluing axiom� for a sheaf. If {Uα} is
an open cover of X and f |Uα = 0 for all α then the gluing axiom implies that f ≡ 0 on all
of X. [Sha94]

Example 2.3. Let X be a topological space and S a set with the discrete topology. For
an open subset U ⊆ X de�ne F (U) = {f : X → S|f is continuous}. If S has an abelian
group structure, then F (U) is the section of locally constant functions on U . Any function
f ∈ F (X) is constant on connected components of X, so the �gluing axioms� are trivially
satis�ed and F is a sheaf, called the constant sheaf.

Example 2.4. Let M be a smooth manifold. The functor F which takes open subsets
U to the ring of smooth functions C∞(U) is a sheaf of commutative rings on M . Suppose
that V ⊂ U ⊂ M are open subsets and f ∈ C∞(U). Then the restriction map is simply
ρUV (f) = f |V . The remaining axioms of a presheaf are trivially satis�ed. Now suppose that
{Vi}i∈I form a locally �nite open cover of U with corresponding smooth functions fi : Vi → R
such that fi|Vi∩Vj

= fj|Vi∩Vj
. Any open subset of a manifold is a smooth manifold, so we can

take a partition of unity {ϕi} subordinate to {Vi} and de�ne f(x) =
∑
i∈I

fi(x)ϕi(x). f(x) is

a global section whose restriction of to each Vi is fi, so F is a sheaf.

Example 2.5. Let X be a compact Riemann surface and letM(X) be the �eld of globally
meromorphic functions on X (sometimes called the �eld of rational functions on X). The
sheaf OX,alg of regular functions on X is de�ned by

OX,alg(U) = {f ∈M(X) such that f |U is holomorphic}

Example 2.6. If F is a sheaf on X then a subsheaf F ′ is a sheaf on X such that for
every open subset U ⊆ X, F ′(U) ⊆ F (U) and F ′ is compatible with the restriction maps
of F .

Example 2.7. Let Y ⊂ X be an open subset and ι : Y ↪→ X the inclusion map. For a sheaf
F on X, the restriction sheaf ι−1F is de�ned by

ι−1F (V ) = F (V )

for every open V ⊂ Y . This is often written F |Y .
Example 2.8. Let f : X → Y be a continuous map of topological spaces and F a sheaf
on X. The direct image sheaf f∗F on Y is de�ned by (f∗F )(U) = F (f−1(U)) for each
open set U ⊆ Y .

For each p ∈ X the collection F (U) for open neighborhoods p ∈ U ⊆ X form a directed
system under restriction.

De�nition 2.9. Let F be a sheaf on X and p ∈ X. The stalk of F at p is de�ned to be
the direct limit Fp = lim−→F (U) of neighborhoods U containing p. A germ of F at p is an
element sp ∈ Fp.
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2.2 The Category of Sheaves

If C is a category, the collection of sheaves with values in C on X is denoted C(X). This
forms a category, also denoted by C(X). A morphism ϕ : F → G in the category C(X) is
a collection of morphisms ϕU : F (U) → G (U) in C that are compatible with restriction. If
ϕ : F → G then for every pair of open sets V ⊆ U the following diagram commutes:

F (U)
ϕ(U)

> G (U)

F (V )

ρUV

∨ ϕ(V )
> G (V )

ρ′UV

∨

Unsurprisingly, an isomorphism of sheaves is a morphism which has a two sided inverse.

If C is an abelian category then C(X) is also an abelian category. The zero object Z
in C(X) is de�ned by Z (U) = 0 for every open U ⊂ X, where 0 denotes the zero object in
C. If F and G are sheaves in C(X), we can de�ne the direct sum of the sheaves F ⊕ G by
taking the direct sum of the corresponding sections, (F ⊕ G )(U) = F (U) ⊕ G (U). Using
the universal property of direct sums in the category C, is is easy to see that the direct sum
of presheaves is a presheaf, and the direct sum of sheaves is another sheaf.

The image, kernel, and cokernel of a morphism of presheaves ϕ : F → G are presheaves
de�ned locally by Im (ϕU), ker(ϕU) and coker(ϕU). A morphism of sheaves is said to be
injective if the kernel is the zero object C(X). Similarly, a morphism of sheaves is surjective
if its cokernel is zero.

The kernel of a sheaf is always a sheaf. However, the image and cokernel of of a sheaf
is generally a presheaf that is not a sheaf. This is illustrated in the following example.

Example 2.10. Let X = C \ {0} be the punctured complex plane. De�ne O to be the
sheaf which takes each open subset U to the additive group of holomorphic functions on U .
De�ne O× to be the sheaf which takes each open subset of X to the multiplicative group
of nonvanishing holomorphic functions on U ; then the map ϕ(f) = e2πif is a morphism of
sheaves. The image Im (ϕ) will not be a sheaf. Let U = C \ R≥0 and V = C \ R≤0, then
U ∪ V = X. Using the missing line as a branch cut, log(z) can be de�ned on U and V .
If log1(z) denotes the choice of log de�ned on U and log2(z) denotes the branch of log on
V , then ϕU(log1)|C\R = ϕV (log2)|C\R = z|C\R. However, ϕU(log1) cannot be the restriction
of a holomorphic function de�ned on all of X because log(z) is discontinuous on C \ {0}.
Therefore there is no way to �glue together� the image of the two functions to realize them
as the restriction of a element of F (X).

The way to remedy this problem is to take the shea�cation of a presheaf. This process
in similar to the way that one completes a metric space.
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Proposition 2.11. Let F be a presheaf on a space X with values in an abelian category
C. Then there is a sheaf F ′ ∈ C(X) and an injective morphism θ : F → F ′ such that for
any G ∈ C(X) and morphism of presheaves ϕ : F → G , there exists a unique morphism of
sheaves ϕ̃ : F ′ → G such that ϕ = ϕ̃θ. The pair (F ′, θ) is unique up to unique isomorphism.

Sketch of Proof. De�ne F ′ by:

F ′(U) =

{
f : U →

∐
p∈U

Fp

}

where f ∈ F ′(U) satis�es:

1. For each p ∈ U , f(p) ∈ Fp.

2. For every point p ∈ U there is a neighborhood V contained in U such that there exists
g ∈ F (V ) with the property that for all q ∈ V , the germs gq = f(q).

The map θ : F → F ′ is given by θ(s) = {p 7→ sp ∈ Fp} and is an injection.

For proof of the universal property, see Proposition 1.2 in Chapter II of [Har77].

De�nition 2.12. The sheaf F ′ in Proposition 2.11 is called the shea�cation of the presheaf
F .

The shea�cation is sometimes called the sheaf associated to F . If F is a sheaf, then
F ′ ∼= F .

The image and cokernel sheaves are the shea�cation of the presheaves de�ned by Im (ϕU)
and coker(ϕU). Viewing the kernels and images of morphisms as subsheaves, we are
�nally able to de�ne an exact sequence in the category of sheaves. The sequence

· · · → F i−1 ϕi−1

→ F i ϕi

→ F i+1 ϕi+1

→ . . .

is exact if kerϕi = Im ϕi−1 for all i.

We leave to the reader the exercise of using the above constructions to check the axioms
required for C(X) to be an abelian category.

Note that if ϕ : F → G is an injective morphism of sheaves, and the category C ad-
mits quotients, then the intuitive way to de�ne the quotient F/G is using the quotient in
C: (F/G )(U) = F (U)/G (U). However, the quotient as de�ned is usually not a sheaf so it
is necessary to take the shea�cation of the presheaf de�ned by taking local quotients.

Suppose that ϕ : F → G are sheaves on X and p ∈ X. Since the stalk at a point p
is the direct limit of the sections of neighborhoods of p, ϕ induces a morphism on stalks by
the universal mapping property of direct limits. The stalks of a sheaf completely characterize
the sheaf in a way that the sections alone do not. For instance, a surjective morphism of
sheaves induces a surjection on stalks, but may not be surjective on sections.
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Proposition 2.13. Let ϕ : F → G be a morphism of sheaves, then ϕ is an isomorphism if
and only if the induced maps ϕp : Fp → Gp is an isomorphism for all p ∈ X.

Proof. If ϕ is an isomorphism then it induces isomorphisms on the sections. The stalks are
direct limits of sections, so F clearly induces an isomorphism on stalks.

Now suppose that ϕp : Fp → Gp is an isomorphism for all p ∈ X. First we show that
ϕ is injective. Let s ∈ kerϕU ⊆ F (U). Then for every p ∈ U the germ at that point satis�es
ϕ(s)p = 0. By hypothesis, the induced maps on the stalks are isomorphisms, so sp = 0 for
each p ∈ U . Since this is true in neighborhoods of every point the gluing axiom implies that
s = 0. Therefore the maps of sections are injective.

Surjectivity is accomplished by building a preimage from pullbacks of local neighbhorhoods
and then gluing them together. Let t ∈ G (X) be a section and for each p ∈ X de�ne tp ∈ Gp

to be the germ of t at p. ϕp is surjective, so there exists an sp ∈ Fp such that ϕp(sp) = tp.
The stalks are direct limits, so sp can be represented by a section s(p) on a neighborhood Vp

of p. ϕ(s(p)) and ϕp(sp) are both elements of G (Vp) and share the same germ at p. Without
loss of generality we can assume that ϕ(s(p)) = t|Vp in G (Vp) by choosing Vp to be smaller
if necessary. X can be covered by the open neighborhoods Vp and for each Vp there is such
a section s(p) ∈ F (Vp). For all p, q ∈ X

ϕ(Vp∩Vq)(s(p)|Vp∩Vq) = ϕ(Vp∩Vq)(s(q)|Vp∩Vq) ∈ F (Vp ∩ Vq)

and since we're already shown injectivity s(p)|Vp∩Vq = s(q)|Vp∩Vq . Therefore they agree on
overlaps and by the gluing axiom there exists an s ∈ F (X) such that F |Vp = s(p) for every
point p. ϕ(s), t ∈ G (X) and for every p they agree on the neighborhoods ϕ(s)|Vp = t|Vp , so
by the gluing axiom again ϕ(s)− t ≡ 0 on all of X and ϕ(s) = t.

Remark 2.14. A consequence of the proof is that a collection of injective morphisms of
stalks induces an injective morphism of sheaves.

Proposition 2.15. Let X be a topological space. Let C be an abelian category with enough
injectives. Suppose further that C is closed under arbitrary direct sums and products. Then
C(X) has enough injectives.

Proof. The proof follows the proof of Proposition 2.2 in Chapter III of [Har77].

Let F ∈ C(X). Since C is an abelian category with arbitrary direct sums, direct limits
exist in C. Therefore, for each point p ∈ X the stalk Fp is an object in the category C.
Since C has enough injectives, for every object A in C there exists an injective object I in
C together with an injective morphism A ↪→ I. Accordingly, for every p ∈ X let Ip be an
injective object in C such that there exists an injective morphism ϕp : Fp ↪→ Ip.

For a point p ∈ X the map ι : {p} ↪→ X is a continuous map of topological spaces. It
is clear that Ip de�nes a sheaf over {p} so for each point p we can form the direct image
sheaf ι∗(Ip):

ι∗(Ip)(U) =

{
∅ if p 6∈ U
Ip if p ∈ U
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De�ne a sheaf I with values in C by

I (U) =
∏
p∈U

ι∗(Ip).

I claim that there exists an injection ϕ : F ↪→ I and that I is an injective object in C(X).

First we show the existence of an injection ϕ. Let G be a sheaf with values in C, then

HomC(G ,I ) = HomC

(
G ,
∏
p∈X

ι∗(Ip)

)
∼=
∏
p∈X

HomC(G , ι∗(Ip))

By de�nition of the direct image sheaf, HomC(G , ι∗(Ip)) ∼= HomC(Gp,Ip). Therefore

HomC(G ,I ) ∼=
∏
p∈X

HomC(Gp,Ip). When G = F , the injections on the stalks φp : Fp ↪→ Ip

induce an injection ϕ : F ↪→ I by Remark 2.14. The establishes the �rst claim.

By de�nition, I is an injective object in C(X) if and only if HomC(X)(−,I ) is an ex-
act functor. A morphism of sheaves is entirely determined by its action on the stalks, so
if Fp : G → Gp are the family of functors that take the sheaf G to its stalk at p and

Gp : Gp 7→ HomC(−,Ip) are the local Hom functors, then HomC(X)(−,I ) ∼=
∏
p∈X

Gp ◦ Fp.

Fp is always exact, and since for every p ∈ X Ip is an injective object in C, so is Gp. The
composition of exact functors if an exact functor, therefore HomC(−,I ) is exact and I is
an injective object in C(X).

Therefore for every sheaf F in C(X), there is an injective object I in C(X) together with
an injective morphism of sheaves ϕ : F ↪→ I . Thus C(X) has enough injectives.

2.3 Sheaf Cohomology

Let F be a sheaf on X with values in a category C. Recall that Γ(U,F ) = F (U) where
U ⊆ X is an open subset . Then Γ(X,−) : C(X) → C is a functor which takes a sheaf on X
to its global section, suitably called the global section functor on X.

Proposition 2.16. If C is an abelian category then the global section functor Γ(X,−) :
C(X) → C is additive and left exact.

Sketch of Proof. Let F ,G be sheaves on X and let ϕ, ψ : F → G be morphisms of sheaves.
For an arbitrary s ∈ F (U) we have (ϕ+ψ)(U)(s) = ϕ(U)(s)+ψ(U)(s). Applying the global
section functor, Γ(ϕ+ψ) = Γϕ+Γψ. The remaining axioms for the de�nition of an additive
functor are left to the reader.

Let 0 → F ′ µ→ F
ε→ F ′′ be a left exact sequence of sheaves on X, then we claim that

0 → Γ(X,F ′)
µ∗→ Γ(X,F )

ε∗→ Γ(X,F ′′) is exact. The induced sequence is exact at Γ(X,F )
since ε∗µ∗(s) = (εX ◦ µX)(s) = 0 and s ∈ ker ε∗ ⇐⇒ εX(s) = 0 ⇐⇒ s ∈ Im µX ⇐⇒
s ∈ Im µ∗. Suppose that µ∗(s) = 0, then for every open neighborhood U the restriction
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µ∗(s)|U = 0. But for each point the induced map on stalks ϕp : Fp → Gp is an injection, so
s = 0.

We can �nally de�ne sheaf cohomology on an arbitrary space. We specialize to the
category C = Ab of abelian groups.

De�nition 2.17. LetX be a topological space. The nth cohomology functorHn(X,−) =
RnΓ(X,−) is de�ned to be the nth right derived functor of Γ(X,−). If F is a sheaf on X
then Hn(X,F ) is the nth cohomology group of F .

Remark 2.18. Since Γ(X,−) is left exact H0 ∼= Γ(X,−) are naturally equivalent functors.
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Chapter 3

�Cech Cohomology of Manifolds and

Presheaves

In this chapter, we'll de�ne the �Cech cohomology for an open cover of a manifold and
then more generally for an arbitrary presheaf on a topological space. In both cases, special
hypotheses about the cover or scheme ensure that the �Cech cohomology is, in fact, something
more familiar such as de Rham or sheaf cohmology. This allows one to perform computations.
Speci�cally, when we �x a presheaf and vary the space we'll get objects resembling singular
cohomology with coe�cients or when we �x the space and vary the sheaf we get objects
resembling sheaf cohomology.

3.1 The �Cech-de Rham Complex

First we setup the machinery needed to de�ne �Cech cohomology for an open cover of a
manifold. We will then prove results about this cohomology on covers by introducing a
double complex with exact rows and turning this into a single complex.

Let M be a smooth manifold and U = (Un)n∈N0 be an open cover of M . For p ∈ N0

de�ne

Np := {(n0, . . . , np) ∈ Np+1
0 |n0 < . . . < np},

and for

σ = (n0, . . . , np+1) ∈ Np+1 and k ∈ {0, . . . , p+ 1}

de�ne

σ̂(k) := (n0, . . . , nk−1, nk+1, . . . , np+1) ∈ Np and σ(k) := nk;

also, de�ne the notation

n ∈ σ

to mean that there is some j ∈ {0, . . . , p+ 1} with

n = nj.

13
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Now let Ωq denote smooth q-forms on a manifold and consider the inclusions

Uσ :=
⋂
n∈σ

Un ⊆
⋂

n∈bσ(k)

Un =: U
bσ(k).

These inclusions induce restriction maps

Ωq(U
bσ(k)) → Ωq(Uσ)

given by
ω 7→ ω|Uσ .

So we're �xing q and dealing with all possible intersections and the induced maps on smooth
q-forms obtained above.

Now we bundle together the smooth q-forms for all p+ 1-fold intersections (again with q
still �xed). De�ne

Cp(U ,Ωq) :=
∏

τ∈Np

Ωq(Uτ )

and de�ne
δp : Cp(U ,Ωq) → Cp+1(U ,Ωq)

by

(ωτ )τ∈Np 7→

(
p+1∑
k=0

(−1)kω
bσ(k)|Uσ

)
σ∈Np+1

with each
ωτ ∈ Ωq(Uτ ).

The δ maps here look quite similar to the boundary maps encountered for simplicial homol-
ogy.

It's useful to have a convention for the index −1. De�ne

C−1(U ,Ωq) := Ωq(M)

and de�ne
δ−1 : C−1(U ,Ωq) → C0(U ,Ωq)

by
ω 7→ (ω|Un)n∈N0 .

Theorem 3.1. The Z-graded R-module C = (Cp(U ,Ωq))p∈Z along with the map δ = (δp)p∈Z
form a cochain complex with trivial cohomology where we've extended the indexing by zero
(i.e., we de�ne Cp(U ,Ωq) = 0 whenever p < −1).

Proof. Since the restriction of a sum is the sum of the restrictions it's clear that δ : C → C
is an endomorphism of degree +1. Also, for each σ ∈ Np+2 we have that the σ-coordinate of

δp+1δp((ωτ )τ∈Np)
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is ∑
0≤j<k≤p+2

(−1)j(−1)kω
bσ(j,k)|Uσ +

∑
0≤k<j≤p+2

(−1)j−1(−1)kω
bσ(j,k)|Uσ = 0

where when j < k we have

σ̂(j, k) = ̂̂σ(k)(j)

and when k > j we have

σ̂(j, k) = ̂̂σ(k)(j − 1).

Since

δ0((ω|Un)n∈N0) = ((ω|Un)|U(m,n)
− (ω|Um)|U(m,n)

)m<n = (ω|U(m,n)
− ω|U(m,n)

)m<n = 0,

δ0δ−1 = 0.

Thus C is a cochain complex.

Next, we show that the cohomology of C is trivial. It's clear that ker(δ−1) = 0 since a
q-form ω will vanish if it vanishes on each set in a cover. Hence H−1(C) = 0. Now suppose
p ≥ 0 and (ωτ )τ∈Np ∈ ker(δp). Let (ψn : M → R)n∈N0 be a smooth partition of unity
subordinate to the cover U . Set

x =

(∑
n∈N0

ψnω(n,σ)

)
σ∈Np−1

with appropriate conventions taken when p = 0. One can check that, in fact,

δp−1(x) = (ωτ )τ∈Np ,

so the complex is exact as claimed.

Above, we �xed q and de�ned cochain complexes with the boundary maps δ. Now we
note that for each p ≥ 0, the exterior derivative

d : Cp(U ,Ωq) → Cp(U ,Ωq+1)

acting component-wise gives rise to the following double complex

...
...

C0(U ,Ω1)

d

OO

δ // C1(U ,Ω1)

d

OO

δ // · · ·

C0(U ,Ω0)

d

OO

δ // C1(U ,Ω0)

d

OO

δ // · · ·

This is called the �Cech-de Rham complex. We will construct a single complex. For n ∈ N0

consider the direct sum along a diagonal

Kn :=
⊕

0≤p≤n

Cp(U ,Ωn−p)
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and de�ne
Dn : Kn → Kn+1

by setting

Cp(U ,Ωn+1−p)-component of Dn =


d when p = 0
δ + (−1)pd when 0 < p < n+ 1
δ when p = n+ 1.

We illustrate this map below for the n = 1 case where we're temporarily taking Ca,b =
Ca(U ,Ωb) to unclutter notation:

D1 : C0,1 ⊕ C1,0 → C0,2 ⊕ C1,1 ⊕ C2,0

is given by
(x, y) 7→ (d(x), δ(x)− d(y), δ(y)).

The daunting diagram for an arbitrary n appears as follows:

C0,n+1

C0,n

d

OO

δ // C1,n

L
L

L
L

L

Cp−1,n−p+2

Cp−1,n−p+1

(−1)p−1d

OO

δ // Cp,n−p+1

J
J

J
J

J

Cn,1

Cn,0

(−1)nd

OO

δ // Cn+1,0.

Theorem 3.2. The Z-graded R-module K = (Kn)n∈Z along with the map D = (Dn)n∈Z
form a cochain complex where we've extended the indexing by zero as before. Moreover, the
maps δ−1 de�ned for each q induce a cochain map

δ−1 : (Ωq(M))q∈Z → K

which in turn induces isomorphisms on cohomology:

δ−1
∗ : Hn

dR(M) → Hn(K).

Proof. First, it's clear that D is homomorphism of degree +1. Also, the linear operator d
commutes with restriction and d acts pointwise on tuples, so d commutes with δ, giving

δ(δ + (−1)pd) + (−1)p+1d(δ + (−1)pd) = (−1)pδd+ (−1)p+1dδ = 0.
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It follows that D
2

= 0, so (K,D) is a cochain complex.

Next, we consider the composition

Ωq(M)
δ−1

→ C0(U ,Ωq) ↪→ Kq

which we also denote δ−1. Since

(δ0 + d)δ−1 = δ0δ−1 + dδ−1 = δ−1d,

δ−1 is a cochain map.

Thus there are induced maps δ−1
∗ on cohomology. We'll show these maps are surjective

and injective. Suppose φ = (φp)0≤p≤n ∈ ker(D : Kn → Kn+1) with φp ∈ Cp(U ,Ωn−p) for all
p. Then, in particular, we have

δ(φn) = 0.

The rows of the �Cech-de Rham complex are exact by (3.1), so

φn = δ(ψn−1)

for some ψn−1 ∈ Cn−1(U ,Ω0). Set ψ = (ψk)0≤k≤n−1 ∈ Kn−1 where if 0 ≤ k ≤ n− 2 we have
ψk = 0 ∈ Ck(U ,Ωn−1−k). Then

φ−D(ψ) = (φk −D(ψ)k)0≤k≤n

is cohomologous with φ and

φn −D(ψ)n = φn − δ(ψn−1) = φn − φn = 0.

Moreover,

φn−1 −D(ψ)n−1 = φn−1 − (δ(ψn−2) + (−1)n−1d(ψn−1))

= φn−1 − δ(0)− (−1)n−1d(ψn−1) = φn−1 + (−1)nd(ψn−1),

so

δ(φn−1 −D(ψ)n−1) = δ(φn−1) + (−1)nδ(d(ψn−1))

= δ(φn−1) + (−1)nd(δ(ψn−1)) = δ(φn−1) + (−1)nd(φn)

= D(φ)n = 0.

Therefore by replacing φ with φ−D(ψ) we may assume φn = 0 and δ(φn−1) = 0. Playing the
same game with the next row up, we may assume φn = φn−1 = 0 and δ(φn−3) = 0. Continue.
Hence without loss of generality φk = 0 whenever 0 < k ≤ n with δ0(φ0) = 0 = d(φ0), so
again by exactness of the rows we get

δ−1(η) = φ0

for some closed form η ∈ Ωn(M), whence

δ−1
∗ ([η]) = φ.
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This proves surjectivity.

Now suppose δ−1
∗ ([η]) = D(φ) for some closed η ∈ Ωn(M) and φ = (φk)0≤k≤n−1 ∈ Kn−1.

Then
δ−1(η) = d(φ0),

so η|Uk
is exact for all k ∈ N0, whence η is exact. This can be seen by using a partition of

unity argument. This proves injectivity.

3.2 �Cech Cohomology of Manifolds

For each k ∈ N0 de�ne

Ck(U ,R) := ker(d : Ck(U ,Ω0) → Ck(U ,Ω1)).

Then Ck(U ,R) is the set of locally constant functions on the (k + 1)-tuple intersections.
Letting δ denote the restriction of the δ maps in the previous section to ker(d), we have
that

· · · → 0 → 0 → C0(U ,R)
δ→ C1(U ,R)

δ→ · · ·
is a cochain complex. We de�ne the nth �Cech cohomology group of the cover U , denoted
Hn(U ,R), to be the nth cohomology group of this complex.

De�nition 3.3. An open cover U of a manifold M is called a good cover if all �nite
nonempty intersections from U are contractible.

Theorem 3.4. If U is a good cover of M , then for each n we have

Hn(U ,R) ∼= Hn
dR(M).

Sketch of Proof. We know Hq
dR(Uσ) = 0 for all q ≥ 1 and all σ ∈

⋃
p≥0N

p since U is a good

cover, so the columns of the �Cech-de Rham complex augmented with the row of �Cech coho-
mology groups by inclusion maps are exact. We may view the �Cech-de Rham complex again
as a single complex with the roles of δ and d interchanged, in which case it's not hard to see
this has the same cohomology as the single complex of the preceding section. Likewise, using
arguments similar to those in (3.2) (i.e., inductively removing components using exactness of
columns), we may conclude these cohomology groups are the �Cech cohomology groups.

This theorem is useful for computations and applications since every smooth manifold has a
good cover. A suitable choice can allow one to apply a generalized Mayer-Vietoris method
using the �Cech-de Rham complex. For example, one can compute the cohomology of the
spheres S1,S2 in this way. Also, (3.2) may be used in proving the Künneth formula:

H•
dR(M ×N) ∼= H•

dR(M)⊗R H
•
dR(N)

where M,N are smooth manifolds and N has �nite dimensional cohomology.

A couple of handy and immediate consequences of (3.2) are contained in the following
corollary.
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Corollary 3.5. The �Cech cohomology H•(U ,R) is the same for all good covers U of M ,
and if M has a �nite good cover (e.g., when M is compact), then the de Rham cohomology
H•

dR(M) is �nite-dimensional.

3.3 �Cech Cohomology of Presheaves

In the last section we de�ned the �Cech cohomology groups H•(U ,R) corresponding to an
open cover U of a smooth manifold M . Now we'll show how to generalize this construction
for an arbitrary presheaf F and an open cover U = (Uα)α∈I of a topological space X where
I is a well-ordered set. We've already dealt with two presheaves thus far, namely, Ωq and the
constant presheaf denoted R (which assigns to an open set U the locally constant functions
U → R).

For each p ∈ N0 take

Cp(U ,F ) :=
∏
σ∈Ip

F (Uσ)

where Ip now denotes the strictly increasing p+ 1 tuples of elements in the index set I and
Uσ is as before with the additional convention that if ω ∈ Cp(U ,F ) and σ is an arbitrary
(p+ 1)-tuple with entries in I, then

ωσ =

{
0 if σ has repeated entries
−ωτ if swapping two entries in σ gives τ

De�ne

δp : Cp(U ,F ) → Cp+1(U ,F )

by setting the σ ∈ Ip+1 component equal to

p+1∑
k=0

(−1)kF (ισk)

where

F (ισk) : F (U
bσ(k)) → F (Uσ)

is induced by the inclusion

ισk : Uσ ↪→ U
bσ(k).

Note that this de�nition of δ agrees with the one above regarding Ωq as a presheaf where
F (ισk) now takes the place of restriction. We have the following analogue for the �rst part
of (3.1) whose proof is similar.

Theorem 3.6. The Z-graded R-module CU = (Cp(U ,F ))p∈Z along with the map δ =
(δp)p∈Z form a cochain complex where we've extended the indexing by zero.

De�nition 3.7. We call the cohomology groups H•(U ,F ) of this complex the �Cech co-

homology groups of the cover U with values in F .
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De�nition 3.8. Let V = (Vβ)β∈J and U = (Uα)α∈I be open covers of a topological space X
where I, J are well-ordered sets. Then we say V is a re�nement of U and write U ≤ V if
there is a map φ : J → I with Vβ ⊆ Uφ(β) for all β ∈ J . Such a map φ is called a re�nement

map.

Suppose V = (Vβ)β∈J and U = (Uα)α∈I are open covers of X such that U ≤ V with
re�nement map φ. For each σ = (s0, . . . , sp) ∈ Jp consider

φ(σ) = (φ(s0), . . . , φ(sp));

we have inclusions
iσ : Vσ ↪→ Uφ(σ).

These inclusions induce maps

φp : Cp(U ,F ) → Cp(V ,F )

de�ned by taking the σ ∈ Jp component of φp(ω) to be

F (iσ)(ωφ(σ)).

Lemma 3.9. (i) The map φ : CU → CV is a cochain map.

(ii) If ψ : J → I is another re�nement map, then φ and ψ are homotopic.

(iii) For each n the collection (Hn(U ,F ))U∈S can be made into a directed system of groups
where S is the directed set of well-ordered covers U of M with the relation ≤ given by
re�nement.

Proof. (i) Let ω = (ωσ)σ∈Ip ∈ Cp(U ,F ) with ωσ ∈ F (Uσ). Then

δpφpω = δp(F (iτ )ωφ(τ))τ∈Jp

=

(
p+1∑
k=0

(−1)kF (ισk)F (ibσ(k))ωφ(bσ(k))

)
σ∈Jp+1

=

(
p+1∑
k=0

(−1)kF (iσ)F (ι
φ(σ)
k )ω

dφ(σ)(k)

)
σ∈Jp+1

= φp+1

(
p+1∑
k=0

(−1)kF (ιτk)ωbτ(k)

)
τ∈Ip

= φp+1δpω

as required.

(ii) De�ne Σq : Cq(U ,F ) → Cq−1(V ,F ) by

Σqω =

(
q−1∑
k=0

(−1)kF (̃iβk)ω
eβ(k)

)
β∈Jq−1
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where
β̃(k) = (φ(β0), . . . , φ(βk), ψ(βk), . . . ψ(βq−1))

and
ĩβk : Vβ ↪→ U

eβ(k)

are inclusion maps. It's a mildly painful computation to show that indeed

ψ − φ = δΣ + Σδ.

(iii) The relation ≤ on well-ordered covers is clearly re�exive (since the identity map on
the index set is a re�nement map) and transitive (since the composition of re�nement maps
is a re�nement map). If U = (Uα)α∈I and V = (Vβ)β∈J are arbitrary open covers of X with
well-ordered sets I, J , then I × J is a well-ordered set with the lexicographic ordering and
W = (Uα ∩ Vβ)(α,β)∈I×J is an open cover; moreover, W is a re�nement of both U and V
since, for example, the projection I × J � I is a re�nement map. Thus W ≥ U ,V , so S is
a directed set. If U ≤ V in S, then there is a unique induced map on cohomology since any
two re�nement maps are homotopic. Therefore we have a directed system as claimed since
the induced map of a composition is the composition of induced maps and the induced map
of an identity map is an identity map.

De�nition 3.10. We now de�ne the nth �Cech cohomology group of X with values in
F as the direct limit

H̆n(X,F ) = lim
−→
U
Hn(U ,F )

where the limit is taken over the directed set of well-ordered open covers U .

Theorem 3.11. We have H̆n(M,R) ∼= Hn
dR(M) for all n where R is the constant presheaf

with group R on M .

Sketch of Proof. Since every open cover on a manifold has a re�nement which is a good
cover, we may use only good covers in the direct limit de�ning H̆n(M,R), but then because
the re�nement is compatible with the isomorphisms in (3.4) we have the desired result.

3.4 A Note on Sheaf Cohomology

In a far more general setting, namely, that of schemes with nice properties, �Cech cohomology
serves the role of computational advantage. In particular, when the scheme and the cover
are nice enough, the �Cech and sheaf cohomology are the same. The following is Theorem
4.5 in Chapter III of [Har77].

Theorem 3.12. Suppose U is an a�ne open cover of a Noetherian, separated scheme X
and let F be a quasi-coherent sheaf on X. Then the �Cech cohomology of the cover U with
values in F and the sheaf cohomology of X with values in F are isomorphic.

With such a scheme taking the place of a manifold, we have a vast generalization of
theorem (3.11).

We can relax the conditions on X and F considerably if we're only interested in H1.
The following theorem is taken from part (c) of Exercise 4.4 in Chapter III of [Har77].
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Theorem 3.13. Let X be an arbitrary topological space and F be a sheaf of abelian groups
on X. Then

H̆1(X,F ) ∼= H1(X,F ).



Chapter 4

The Interpretation of H1(X,O×)

We will now interpret H1(X,F×) where F is a sheaf of commutative rings and F×(U) is
the group of units (F (U))× for every open U ⊂ X. To keep things simple, we will assume
X is a compact Riemann surface and F is the sheaf of regular functions OX,alg. We will
denote this sheaf by O. First we will de�ne invertible sheaves over O. It turns out the
isomorphism classes of invertible sheaves over O form a group, called the Picard group. The
Picard group is naturally isomorphic to the �rst sheaf cohomology H1(X,O×). Moreover, on
a Riemann surface, this group is isomorphic to the divisor class group as well as the group
of line bundles. All of these isomorphisms are natural. This illustrates the power of sheaf
cohomology. It is a versatile tool that on the one hand generalizes de Rham cohomology and
on the other hand provides a bridge between number theory and geometry.

4.1 Invertible Sheaves

We will study the invertible sheaves on a compact Riemann surface X. Let M(X) be the
meromorphic functions f : X → C. For each open subset U of X, de�ne

OX,alg(U) = {f ∈M(X)| f |U is holomorphic}.

This is the sheaf of regular functions on X. For simplicity, we will denote this sheaf by
O. The sheaf O is a sheaf of commutative rings. An invertible sheaf is a locally free rank
one sheaf of O-modules. Our �rst task is to understand what this statement means.

Before formally de�ning an invertible sheaf, we must de�ne a sheaf of O-modules.

De�nition 4.1. A sheaf F on X is a sheaf of O-modules if

1. for every open set U ⊂ X, F (U) is an O(U)-module; and

2. whenever V ⊂ U , the restriction map ρUV : F (U) → F (V ) is O-linear in the sense
that if r ∈ O(U) and f ∈ F (U) then ρUV (r · f) = ρUV (r) · ρUV (f).

Example 4.2. Let V be a complex vector bundle over a compact Riemann surface X. De�ne
F by

F (U) =
{
sections σ of V

∣∣ σ is meromorphic on V and σ
∣∣
U

is holomorphic
}
.

Then F is a sheaf of O-modules on X called the sheaf of regular sections of V .

23



24 CHAPTER 4. THE INTERPRETATION OF H1(X,O×)

A sheaf map φ : F → G between two O-modules is simply a sheaf map such that for
every U , φU : F (U) → G (U) is a homomorphism of O(U)-modules.

We can now state the de�nition of an invertible sheaf. Recall that if F is a sheaf on
X, and U ⊂ X is an open set, there is a restricted sheaf F |U on U de�ned by setting
F |U(V ) = F (V ) for any open set V ⊂ U .

De�nition 4.3. Let X be a topological space, and let F be a sheaf of O-modules. We
say F is invertible if for every p ∈ X there is an open neighborhood U of p, such that
F |U ∼= O|U as sheaves of O|U -modules on the space U .

An isomorphism F |U → O|U is called a trivialization of F over U . An equivalent way
of de�ning an invertible sheaf is to require that there is an open cover {Ui} of X such that
for each i, F |Ui

∼= O|Ui
as sheaves of O|Ui

-modules on Ui. Note that we will shortly see the
reason such sheaves are called �invertible.�

It is sometimes convenient to express the invertibility of a sheaf F in terms of genera-
tors for the modules F (V ). Suppose that U is an open subset of X on which F |U ∼= O|U
as sheaves of O|U -modules. Then there are isomorphisms φV : O(V ) → F (V ) for all open
V ⊂ U . Moreover each map φV is a map of O(V )-modules, and these isomorphisms commute
with the restriction maps. In particular there is an isomorphism φU : O(U) → F (U) on the
entire open subset U . Let fU ∈ F (U) be the image of 1U ∈ O(U). Then fU is a generator
for the free module F (U) over O(U). If we de�ne fV = ρUV (fU) for every open set V ⊂ U ,
then fV is also a generator of the free module F (V ), since fV = ρUV (fU) = ρUV (φU(1)) =
φV (ρUV (1)) = φV (1). Thus the element fU is not only a generator for F (U), but it restricts
to generators fV for F (V ) for every open V ⊂ U .

It is easy to express the fact that F (V ) is free of rank one over O(V ) using a genera-
tor fV . We simply require that fV generates F (V ) over O(V ), and that it has a trivial
annihilator in O(V ) - that is, if r ∈ O(V ) and r · fV = 0 then r = 0. This proves the
following:

Lemma 4.4. Let X be a compact Riemann surface, and let F be a sheaf of O-modules.
Then F is invertible if and only if for every p ∈ X there is an open neighborhood U of p and
a section fU ∈ F (U) such that for all V ⊂ U , the restricted section fV = ρUV (fU) generates
the module F (V ) over O(V ), and has a trivial annihilator.

Such an element fU will be called a local generator for the invertible sheaf F at the
point p. Hence we may loosely say that a sheaf F is invertible if it has a local generator at
every point of X.

Example 4.5. Let X be a Riemann surface. Then the sheaf Ω1 of 1-forms on X is invertible.
A local generator for Ω1 in a neighborhood of a point p is the 1-form dz, where z is a local
complex coordinate for X centered at p.

Let U = {Ui} be an open cover of X such that each F (Ui) has a local generator fi. If
Ui ∩Uj 6= ∅, then fi and fj both restrict to a local generator of F (Ui ∩Uj), hence fi and fj
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only di�er by a multiple of a unit in O(Ui ∩ Uj) on Ui ∩ Uj. Suppose fi = tijfj on Ui ∩ Uj,
where tij ∈ (O(Ui ∩ Uj))

×. Then fj = (tij)
−1fi = tjifi. On Ui, since Ui ∩ Ui = Ui, tii is

the identity. If Ui ∩ Uj ∩ Uk 6= ∅, then fi = tijfj and fj = tjkfk, hence fi = tijtjkfk on
Ui ∩ Uj ∩ Uj. On the other hand, fi = fikfk. Since fi, fj and fk are local generators, we get
the following conditions that the tij's satisfy:

1. tii is the identity;

2. tji = t−1
ij ; and

3. tik = tijtjk, whenever Ui ∩ Uj ∩ Uk 6= ∅.

These are called the cocycle conditions. We will see why below.

Finally, we turn to putting a group structure on the set of isomorphism classes of invertible
sheaves over (X,O). This requires us to generalize two constructions in the category of
R-modules. If M and N are two free modules of rank one over a ring R, then the tensor
product M ⊗R N and the dual module M∗ := HomR(M,R) are also free modules of rank
one over R.

One's �rst instinct in de�ning F ⊗O G and F ∗ is to set

F ⊗O G (U) = F (U)⊗O(U) G (U)

F ∗(U) = HomO(U)(F (U),O(U))

for all open sets U . This does produce presheaves of O-modules, but not in general sheaves
of O-modules. We need to use Proposition 2.11 to shea�fy the above presheaves to get the
correct sheaves.

De�nition 4.6. Let F and G be two invertible sheaves of O-modules on X. Then we
de�ne the tensor product F ⊗O G to be the sheaf associated to the presheaf de�ned by
U 7→ F (U) ⊗O(U) G (U), and de�ne the dual sheaf F ∗ to be the sheaf associated to the
presheaf de�ned by U 7→ HomO(U)(F (U),O(U)).

The above de�nitions do not give easy descriptions of the sheaves. Accordingly, we
describe more concrete de�nitions. Let {Ui} be the collection of all open subsets of X on
which both F and G may be trivialized. This forms an open covering of X. For any open
subset U of X, de�ne

F ⊗O G (U) = {(si) ∈
∏

i

F (U ∩Ui)⊗O(U∩Ui) G (U ∩Ui) | si|U∩Ui∩Uj
= sj|U∩Ui∩Uj

for all i, j}

F ∗(U) = {(si) ∈
∏

i

HomO(U∩Ui)(F (U ∩Ui),O(U ∩Ui)) | si|U∩Ui∩Uj
= sj|U∩Ui∩Uj

for all i, j}

Then F ⊗O G and F ∗ are the required sheaves.

Remark 4.7. In the de�nitions above, we used every open set Ui on which both F and G
could be trivialized. This is not necessary. If we use any collection of such Ui's which cover
X, we will obtain sheaves isomorphic to the those de�ned above.
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Note that if F and G both trivialize on an open set U , then so does F ⊗O G . Moreover
a local generator is induced by the tensor product of the local generators for F and G .

Lemma 4.8. Let F , G and H be three invertible sheaves. Then:

1. O ⊗O F ∼= F ;

2. F ⊗O G ∼= G ⊗O F ;

3. (F ⊗O G )⊗O H ∼= F ⊗O (G ⊗O H ); and

4. F ⊗O F ∗ ∼= O.

Sketch of Proof. We only prove the last isomorphism F ⊗O F ∗ ∼= O and leave the others
to the reader. Let {Ui} be an open cover on which F may be trivialized. Let fi be a local
generator of F (Ui). For each i, de�ne a morphism of O(Ui)-modules f ∗i : F (Ui) → O(Ui) by
setting f ∗i (fi) = 1. Then f ∗i is a local generator of F ∗(Ui). Thus fi⊗ f ∗i is a local generator
of F ⊗F ∗(Ui). We de�ne homomorphisms of O(Ui)-modules φUi

: F ⊗F ∗(Ui) → O(Ui)
by setting φUi

(fi⊗ f ∗i ) = 1. Then it is easy to see that each φUi
is an isomorphism and these

maps can be extended to a sheaf isomorphism F ⊗F ∗ ∼= O.

This lemma shows that the set of isomorphism classes of invertible sheaves forms an
abelian group, where ⊗O gives a group multiplication, the class of O gives the identity and
the class of the dual sheaves gives the inverse.

De�nition 4.9. The group of isomorphism classes of invertible sheaves on a topological
space X is called the Picard group and denoted Pic(X).

4.2 The Picard Group and H1(X,O×)

Given the sheaf O of commutative rings, we de�ne the sheaf O× by O×(U) = (O(U))×,
the group of units of O(U). A function f ∈ O(U) is a unit if and only if f does not van-
ish on U . Therefore, if f ∈ O×(U) and V ⊂ U , ρUV (f) doesn't vanish on V and hence
ρUV (f) ∈ O×(V ). Therefore O× de�nes a presheaf of abelian groups on X. If U is covered
by open sets Vi and for each i we have fi ∈ O×(Vi) such that fi = fj on Vi ∩ Vj, since O
is a sheaf there is a function f ∈ O(U) such that ρUVi

(f) = fi. Since fi is non-vanishing
on each Vi it follows that f is non-vanishing on U and hence f ∈ O×(U). Therefore O×

satis�es the gluing axiom and de�nes a sheaf of abelian groups on X. Since the category of
abelian groups is an abelian category with enough injectives that is closed under arbitrary
direct sums and products, we can de�ne the sheaf cohomology groups Hn(X,O×). We are
speci�cally interested in interpreting H1(X,O×). Since the group operation in O×(U) is
multiplication of functions, we will write the group operation in our cohomology groups as
multiplication for the remainder of this chapter.

Now we prove the main theorem of this chapter, that Pic(X) ∼= H1(X,O×). We will do
so by proving Pic(X) ∼= Ȟ1(X,O×), which will su�ce by Theorem 3.13 above.

We de�ne a map from Pic(X) to Ȟ1(X,O×). Let F ∈ Pic(X). Then there is an open
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cover U = {Ui} of X such that F trivializes over each Ui. For each i, let fi be a local
generator of F over Ui. For each pair i, j there exists tij ∈ O×(Ui ∩ Uj) such that fi = tijfj

in F (Ui ∩ Uj). Since tij ∈ O×(Ui ∩ Uj), tij 6= 0 on Ui ∩ Uj. The functions {tij} will be
referred to below as the transition functions of F with respect to the open cover U .

Lemma 4.10. The tuple (tij) de�ned above is a cocycle in Ȟ1(U ,O×).

Proof. The tuple (tij)i<j is a cochain in Č1(U ,O×) by the �rst two cocycle conditions. By
the third cocycle condition, for every i, j, k then tijtjktki is the identity on Ui∩Uj ∩Uk. Since
tki = t−1

ik , tijt
−1
ik tjk = tijtjkt

−1
ik = 1. On the other hand:

δtij = tijt
−1
ik tjk.

Thus δtij = 1 and therefore (tij)i<j is a cocycle for the sheaf O× with respect to U . Thus
(tij)i<j represents a class in Ȟ1(U ,O×). Since the direct limit is taken over re�nements of
the open covers, and F trivializes over any re�nement of U , (tij)i<j de�nes an element of
Ȟ1(X,O×).

Now de�ne H : Pic(X) → Ȟ1(X,O×) by H(F ) = (tij) where (tij) is as de�ned above.

Lemma 4.11. The map H is well de�ned.

Proof. We have to show that H is independent of the choice of local generators, the choice
of open cover and choice of representative of the isomorphism class of F .

Starting with the generators, suppose {gi} are another collection of local generators of F
with respect to the open cover U . Then for every i there is a nowhere zero regular function
si such that gi = sifi. The tuple (si) forms a cochain in C0. Since si 6= 0 on Ui for every i,
fj = s−1

j gj. Thus on Ui ∩ Uj we have

gi = sifi = sitijfj = sitijs
−1
j gj.

Observe that sis
−1
j

∣∣
Ui∩Uj

= dsi and therefore is a coboundary. Thus, (tij) and (sitijs
−1
j )

de�ne the same cohomology class in Ȟ1(U ,O×), and it follows that they de�ne the same
class in the limit Ȟ1(X,O×).

Now we show that H is independent of our choice of open cover. As a consequence of
part (iii) of Lemma 3.9, any two open covers have a common re�nement. Accordingly it
su�ces to show that H(F ) is invariant under re�nement. Suppose V = {Vj} is a re�nement
of U with re�nement map r : J → I. Then for each j, Vj ⊂ Ur(j). As a consequence, for each
j we can choose fr(j) as a local generator with respect to the cover V . Let (t′ij) be the co-cycle

computed using V . It follows that (t′ij) = H(r)(tij) where H(r) : Ȟ1(U ,O×) → Ȟ1(V ,O×)
is the map obtained via re�nement. Since the direct limit is taken over the directed system
(H1(W ,O×))W∈S (using the notation from Lemma 3.9), and H(r) is one of the maps making
this collection into a directed system, it follows that (t′ij) = (tij) in Ȟ1(X,O×) and H is
independent of the choice of open cover.

Finally, suppose F ∼= F ′ are isomorphic invertible sheaves. Then both F and F ′ triv-
ialize over the open cover U = {Ui}i∈I , and have respective local generators {fi} and {fi}′
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with respective transition functions {tij} and
{
t′ij
}
. Since F ∼= F ′, for each i ∈ I there is

an isomorphism ϕUi
: F (Ui) → F ′(Ui) such that ϕUi

(fi) = f ′i . Then on Ui ∩ Uj:

tijf
′
i = tijϕUi

(fi) = ϕUi
(tijfi) = ϕUi

(fj) = f ′j = t′ijf
′
i .

It follows that tij = t′ij and hence H(F ) = H(F ′). Thus H is independent of the choice of
representative for F ∈ Pic(X).

Therefore H : Pic(X) → Ȟ1(X,O×) is a well de�ned map.

Next I will show that H is bijective by de�ning an explicit inverse.

Lemma 4.12. Suppose U = {Ui} is an open cover of X with a well-ordered indexing set I.
Let (tij) ∈ Ȟ1(U ,O×). Then there exists a corresponding invertible sheaf F that trivializes
over U whose transition functions with respect to U are given by (tij). The sheaf F is unique
up to isomorphism.

Proof. First we prove existence. De�ne a sheaf E as follows. For an open set V ⊂ X,

E (V ) =
⋃
i∈I

(O(V ∩ Ui)× {i}) .

This is the precisely the disjoint union, but it is convenient to be explicit. It is clear that E
is a sheaf of abelian groups since O satis�es the gluing axioms.

If (f, i) ∈ E (V ), f ∈ M(X) and is holomorphic on V ∩ Ui. For h ∈ O(V ), hf ∈ M(X)
and is holomorphic on V ∩ Ui and thus (hf, i) ∈ E (V ). It is clear that this multiplication
is compatible with the restriction maps. We therefore de�ne a O(V )-module structure on
E (V ) by function multiplication. This makes the sheaf E into a sheaf of O-modules.

Now we de�ne an equivalence relation on E (V ) for all open sets V ⊂ X. The compo-
nents of the cocycle (tij) only exist for i < j. Accordingly, we extend the collection tij by
de�ning tji = 1/tij when i < j and de�ning tii = 1. We will say that (fi, i) ∼ (fj, j) ∈ E (V )
if fi = tijfj on V ∩ Ui ∩ Uj. By our conventions for tii and tji with i < j, this relation
is re�exive and symmetric. Since the tuple (tij) is a cocycle in Ȟ1(X,O×), the relation is
transitive and de�nes an equivalence relation.

Suppose h ∈ O(V ) and (fi, i) ∼ (fj, j) in E (V ). Then fi = tijfj on V ∩ Ui ∩ Uj and
therefore

hfi = h(tijfj) = tij(hfj)

on V ∩Ui∩Uj. Thus hfi ∼ hfj. Therefore the O-module action is well de�ned on equivalence
classes.

De�ne a sheaf F by F (V ) = E (V )/ ∼ . It is clear that the sheaf structure of E de-
scends to F , and since the O-module action is well de�ned on equivalence classes in E , F
is a sheaf of O-modules. I claim that F is an invertible sheaf that trivializes over U with
transition functions tij with respect to U .
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For every i, let 1Ui
be a generator of O(Ui). For an open subset V ⊂ Ui, set fV = ρUiV (1Ui

).
I claim that the class [fV ] generates F (V ) as an O(V )-module and the annihilator of fV is
trivial.

Suppose [g] ∈ F (V ). Since V ⊂ Ui, the set of representatives for [g] in E is {tijg}j∈I .
Each of these representatives de�nes a function tijg ∈ O(V ∩ Uj). By de�nition of the
equivalence relation, for j, k ∈ I, tijg = tikg on V ∩ Uj ∩ Uk. Since {V ∩ Uj}j∈I covers V ,

by the gluing axiom there is some ĥ ∈ O(V ) such that ρV (V ∩Uj)ĥ = tijg. Since fV generates

O(V ), there is some h ∈ O(V ) such that h̃ = hfV . By construction, [g] = [h̃] and therefore
by de�nition of theO(V )-module structure on F (V ), [g] = h[fV ]. Thus [fV ] generates F (V ).

Now suppose α annihilates fV . Thus α[fV ] = [αfV ] = 0. Therefore tijαfV = 0 for ev-
ery j ∈ I. In particular, tiiαfV = 0. But tii is the identity on Ui and V ⊂ Ui. Hence
αfV = 0. Since fV = ρUiV (1Ui

) 6= 0 and O(V ) has no zero divisors, it follows that α = 0.
Therefore the annihilator of fV is trivial.

Thus, [fV ] generates F (V ) as an O(V )-module and has trivial annihilator. It follows by
Lemma 4.4 that F is an invertible sheaf. It is clear from the construction that F trivializes
over U and has transition functions tij with respect to U . This establishes existence.

Now suppose G is another invertible sheaf that trivializes over U and has transition functions
{tij} with respect to U . Since F and G trivialize over U , for each i we obtain an isomor-
phism F (Ui) ∼= G (Ui) by sending a generator to a generator. Since F and G have the same
transition functions with respect to the open cover U , the isomorphisms are compatible with
restriction. It follows that for any p ∈ X, taking the direct limit over open sets containing
p we obtain an isomorphism of the stalks Fp

∼= Gp. Therefore by Proposition 2.13, F ∼= G
as sheaves.

Accordingly, for each open cover U ∈ S we get a map KU : Ȟ1(U ,O×) → Pic(X).

Lemma 4.13. The maps KU induce a unique map K : Ȟ1(X,O×) → Pic(X) such that
KιU = KU .

Proof. Since the maps KU are invariant under re�nement, for any re�nement V of U with
re�nement map r, KUH(r) = KV . Therefore the desired result follows by the universal
property of direct limits.

Lemma 4.14. The maps H and K are inverses and H is a bijection.

Proof. Suppose τ = (tij) ∈ Ȟ1(X,O×). Then for any open cover U over which K(τ) triv-
ializes, and any local generators fi for K(τ), by de�nition fj = tijfj in Ui ∩ Uj and hence
HK(τ) = τ . In the other direction, let G = KH(F ). Then H(G ) = H(F ). This implies
that there is an open cover over which both F and G trivialize and have the same transition
functions. Hence by uniqueness up to isomorphism in Lemma 4.12, G ∼= F , soKH(F ) ∼= F
and de�ne the same element of Pic(X). Therefore H and K are inverses and it follows that
H is bijective.
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We now have that H is a bijection from Pic(X) onto Ȟ1(X,O×). The last step is showing
that H is a group homomorphism.

Lemma 4.15. The map H is a group homomorphism.

Proof. Suppose F ,G ∈ Pic(X). Let U = {Ui} be a covering of X over which both F and
G trivialize. Let fi be local generators for F and gi be local generators of G . Then fi ⊗ gi

are local generators for F ⊗O G . For any Ui ∩ Uj, there is rij, sij ∈ O×(Ui ∩ Uj) such that
fj = rijfi and gj = sijgi. Then:

fj ⊗ gj = (rijfi)⊗ (sijgi) = (rijsij)fi ⊗ gi.

Since rij, sij ∈ O×(Ui ∩ Uj) then rijsij ∈ O×(Ui ∩ Uj). Therefore:

H(F ⊗O G ) = (rijsij) = (rij)(sij) = H(F )H(G ).

Thus H is a group homomorphism.

Finally, our theorem has been reduced to a consequence of the above lemmas.

Theorem 4.16. Pic(X) ∼= H1(X,O×).

Proof. By Lemmas 4.11, 4.14 and 4.15 the map H : Pic(X) → Ȟ1(X,O×) is a well-de�ned
bijective group homomorphism and therefore Pic(X) ∼= Ȟ1(X,O×). By Theorem 3.13,
Ȟ1(X,O×) ∼= H1(X,O×) completing the proof.

Note that the only reason we needed X to be a Riemann surface was to have a concrete
description of the sheaf O×. The arguments can be abstracted to show that this result
holds for any �ringed space� (X,OX) (where X is a topological space and OX is a sheaf of
commutative rings called the structure sheaf). Therefore, we can interpret the �rst sheaf
cohomology to be the group of invertible sheaves. Note that if f : (X,OX) → (Y,OY ) is a
morphism of ringed spaces, we can use the isomorphism between the Picard group and the
�rst sheaf cohomology to de�ne an induced map f ∗ : Pic(Y ) → Pic(X). This can be de�ned
independent of the isomorphism. For the construction, see Lecture 5 in [Mum66], which uses
the construction of the pullback of a sheaf of modules f ∗F de�ned in Section 5 of Chapter
II in [Har77]. It turns out the isomorphism Pic(X) ∼= H1(X,O×) is natural.

4.3 The Divisor Class Group

The divisor class group is an analogue for function �elds of the ideal class group for rings of
integers. As such, it has applications in number theory. On a Riemann surface, the divisor
class group is isomorphic to the Picard group (sometimes the divisor class group is called
the Picard group). We identify the connection in this section. We will begin by de�ning
the divisor class group, and then we will identify the isomorphism with the Picard group.
We will conclude with identifying a direct isomorphism between the divisor class group and
H1(X,O×).

Let X be a Riemann surface. Denote the set of all functions X → Z by ZX . For any
function D : X → Z, the support of D is the set of all p ∈ X such that D(p) 6= 0.
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De�nition 4.17. A function D : X → Z is called a divisor on X if its support is discrete.
The set of all divisors on X from a group under pointwise addition denoted by Div(X).

A divisor D is typically denoted by

D =
∑
p∈X

D(p) · p.

Since X is a compact Riemann surface, the support of every divisor is �nite. Therefore the
group Div(X) for a compact Riemann surface X is precisely the free abelian group on the
points of X. Now we de�ne a subgroup of Div(X) called the principal divisors. Suppose f
is a nonzero meromorphic function on X. Then we make the following de�nition.

De�nition 4.18. For every point p ∈ X, the order of f at p is de�ned by

ordp(f) =


k : if p is a zero of f of order k

−k : if p is a pole of f of order k
0 : otherwise

.

Note that a nonzero meromorphic function f : X → C de�nes a holomorphic function
f : X → CP1 (see Theorem 1.15 of [For81]). Accordingly, by the identity theorem, the zeros
of f (and poles of f) form a discrete (and therefore �nite) subset of X. See pages 6 - 8 of
[For81] for details. Accordingly we can make the following de�nition.

De�nition 4.19. The divisor of f, denoted by div(f), is the divisor de�ned by the order
function:

div(f) =
∑
p∈X

ordp(f) · p.

A divisor of this form is called a principal divisor.

The set of principal divisors is a subset of Div(X). In fact, it is a subgroup. The proofs
of the following are left to the reader.

Proposition 4.20. Suppose f and g are nonzero meromorphic functions on X. Then for
every p ∈ X:

1. ordp(fg) = ordp(f) + ordp(g)

2. ordp(f/g) = ordp(f)− ordp(g)

3. ordp(1/f) = −ordp(f).

4. ordp(f ± g) ≥ min{ordp(f), ordp(g)}

Corollary 4.21. Suppose f and g are nonzero meromorphic functions on X. Then for every
p ∈ X:

1. div(fg) = div(f) + div(g)

2. div(f/g) = div(f)− div(g)

3. div(1/f) = −div(f).
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Corollary 4.22. The set of principal divisors on X forms a subgroup of Div(X) denoted
by PDiv(X).

We can now de�ne the divisor class group.

De�nition 4.23. For a Riemann Surface X, the divisor class group, which we will denote
by DCl(X)1 is the quotient

DCl(X) =
Div(X)

PDiv(X)
.

We will de�ne a partial ordering on the divisors on X which will allow us to identify
the relationship between DCL(X) and Pic(X). Given a divisor D ∈ Div(X), we say D ≥ 0
if D(p) ≥ 0 for all p ∈ X, and we say D > 0 if D ≥ 0 and D 6= 0. Given two divisors
D1, D2 ∈ Div(X), we say D1 ≥ D2 if D1 − D2 ≥ 0, and D1 > D2 if D1 − D2 > 0. This
de�nes a partial ordering on Div(X).

Given a divisor D on X, we use the partial ordering on Div(X) to construct the sheaf
of meromorphic functions with poles bounded by D:

O[D](U) =
{
f ∈M(X)

∣∣ div(f) ≥ −D on U
}
.

As a consequence of Proposition 4.20, for each U we have O[D](U) is an O×(U)-module,
the action being multiplication of functions. On a compact Riemann surface X, the sheaf
O[D] is an invertible sheaf. For any p ∈ X, a local generator is given by z−D(p) where z
is a meromorphic function on X with a simple zero at p. See Lemma 1.5 in Chapter XI
of [Mir95] for the proof. If [D1] = [D2] in DCl(X), there is some f ∈ M(X) such that
D1 −D2 = div(f). Multiplication by f induces an isomorphism O[D1] ∼= O[D2] This gives
us a well de�ned map

O[−] : DCl(X) → Pic(X).

We will show O[−] is a group isomorphism.

Lemma 4.24. The map
O[−] : DCl(X) → Pic(X)

is a group homomorphism.

Proof. It su�ces to show that for any two divisors D1 and D2 on X,

O[D1 +D2] ∼= O[D1]⊗O O[D2].

The local generator for O[D] for any divisor D is the map f = z−D(p), where in the appro-
priate neighborhood of p we have −D = div(f).

Let {Ui} be an open covering on which both sheaves O[D1] and O[D2] trivialize. Let f
(1)
i and

f
(2)
i be local generators for O[D1] and O[D2] respectively. Then for each j = 1, 2, on Ui we

have div(f
(j)
i ) = −Dj. Hence by Proposition 4.21 it follows that div(f

(1)
i f

(2)
i ) = −D1 −D2

and thus f
(1)
i f

(2)
i is a local generator for O[D1 +D2] on Ui.

1
This notation is not standard.
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By the �rst statement of Corollary 4.21, there is a natural bilinear map induced by multi-
plication from O[D1]×O[D2] to O[D1 +D2]. By the universal properties of tensor products
and shea�cation, this descends to the tensor product inducing a map of sheaves

µ : O[D1]⊗O O[D2] → O[D1 +D2].

Since O[D1]⊗O O[D2] trivializes over {Ui} with local generators f
(1)
i ⊗ f

(2)
i , and

µ(f
(1)
i ⊗ f

(2)
i ) = f

(1)
i f

(2)
i , it follows that µ sends local generators to local generators. Hence

µ is an isomorphism of sheaves and

O[D1 +D2] ∼= O[D1]⊗O O[D2].

Therefore O[−] is a group homomorphism.

We need a couple of lemmata before we can show that O[−] is bijective.

Lemma 4.25. On an open set U ⊂ X, for a meromorphic function f ∈M(X), a meromor-
phic function g ∈ M(X) is an element of O[−div(f)](U) if and only if there is h ∈ M(X)
that is holomorphic on U such that g = fh on U .

Proof. One direction is trivial. By Lemma 4.21, if g = fh on U then div(g) = div(h)+div(f).
It follows that div(g)− div(f) = div(h). Since h is holomorphic on U and therefore has no
poles on U , div(h) ≥ 0 on U . Hence div(g) ≥ div(f) and g ∈ O[−div(f)](U).

For the other direction, we suppose g ∈ O[−div(f)](U). Then div(g) ≥ div(f) and thus
div(g) − div(f) ≥ 0. Tracing the de�nitions, this implies that for every p ∈ U , ordp(g) −
ordp(f) ≥ 0. Therefore, if p is a zero of f then p is a zero of g of higher order. Similarly if
p is a pole of g then p is a pole of f of higher order. It follows by expanding the Laurent
series for f and g (and noting that U is biholomorphic to an open subset of C) that there is
a holomorphic function h on U such that g = fh. This concludes the proof.

Lemma 4.26. If O[D1] = O[D2], then D1 = D2.

Proof. Let p ∈ X be arbitrary and suppose D1(p) < D2(p). There exists a meromorphic
function z with order one at p. Then for an open neighborhood U of p, z−D2(p) ∈ O[D2](U)
but z−D2(p) 6∈ O[D1](U). This contradicts the hypothesis that O[D1] = O[D2]. Hence
for every p ∈ X, D1(p) ≥ D2(p). By symmetry D2(p) ≥ D1(p) for every p ∈ X. Thus
D1(p) = D2(p) for every p ∈ X and hence D1 = D2.

Proposition 4.27. The homomorphism O[−] is injective.

Proof. Suppose [D] ∈ ker(O[−]). Recall that the sheaf O is the identity element of Pic(X).
Therefore O[D] ∼= O. It follows that O[D] is globally trivial and has a global generator
f . Therefore for every open set U ⊂ X, f generates the free rank-one O-module O[D](U).
Therefore O[D](U) is precisely the set of multiples of f by elements of O(U). Since O(U)
by de�nition consists precisely of meromorphic functions on X that are holomorphic on U ,
it follows that

O[D] =
{
fh
∣∣ h ∈M(X) such that h is holomorphic on U

}
.
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Therefore by Lemma 4.25,

O[D] = O[−div(f)].

This is an equality, not a mere isomorphism. Hence by Lemma 4.26, D = −div(f) which,
by the fourth part of Lemma 4.21 implies D = div(1/f). It follows that D is principal and
thus D ∈ PDiv(X). Hence [D] = 0 in DCl(X). Therefore ker(O[−]) is trivial and O[−] is
injective.

Proposition 4.28. The homomorphism O[−] is surjective.

Proof. Let F be an invertible sheaf on X and let {Ui} be an open cover of X over which F
trivializes. Choose corresponding local generators {fi}.

Choose an index, say i = 0 (where the symbol `0' stands for the minimal element of the
well ordered index set I). Then for each i, there are nonzero meromorphic functions ti0 on
Ui that are holomorphic on Ui ∩ U0 such that fi = ti0f0. On U0, t00 = 1. Hence for each
p ∈ U0, ordp(t00) = 0. Note that for each i, on Ui \ (Ui ∩ U0), ti0 may have zeros or poles.

Now we de�ne a divisor be de�ning a function D : X → Z. De�ne D by

D(p) = −ordp(ti0) if p ∈ Ui.

This is well de�ned because of the cocycle condition. To wit, if p ∈ Ui ∩ Uj, ti0 = tijtj0 on
Ui ∩ Uj and ordp(tij) = 0 on Ui ∩ Uj. Hence by the �rst part of Lemma 4.20, ordp(ti0) =
ordp(tj0). By de�nition, O[D] trivializes over {Ui} and has local generators {ti0} .

Finally, we show O[D] ∼= F . For each i, since both sheaves trivialize on Ui, we can de-
�ne an isomorphism O[D] → F by mapping ti0 7→ fi. These maps are compatible with
restrictions by the cocycle condition. It follows that this collection of isomorphisms in-
duce an isomorphism O(D)p

∼= Fp of stalks for each p ∈ X. Hence by Proposition 2.13,
O[D] ∼= F .

Therefore for every F ∈ Pic(X), there is a divisor D on X such that F ∼= O[D] and
O[−] is surjective.

Theorem 4.29. The map O[−] : DCl(X) → Pic(X) is an isomorphism of groups.

Proof. By Lemma 4.24, O[−] is a group homomorphism and by Propositions 4.27 and 4.28,
O[−] is bijective. Hence O[−] is a group isomorphism.

The isomorphism O[−] is natural, in the sense that given a holomorphic map of Rie-
mann surfaces f : X → Y , one can use precomposition to induce a group homomorphism
f ∗ : DCl(Y ) → DCl(X) making DCl into a contravariant functor. Then the isomorphism
O[−] becomes a natural equivalence between the functors DCl and Pic.

As a consequence, it follows that for any Riemann surface X, DCl(X) is naturally isomorphic
toH1(X,O×). This can be accomplished directly using a long exact sequence on cohomology.
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First we �x the following sheaves. De�ne the sheaf M∗ to be the constant sheaf of mero-
morphic functions on X that are not identically zero. De�ne a sheaf Div by

Div(U) = {divisors with �nite support contained in U}

for each open set U . For each f ∈M∗(X) and each open set U ⊂ X, we can de�ne a divisor
by

Df,U(p) =

{
ordp(f) : p ∈ U

0 : otherwise
.

This gives us a sheaf map

div : M∗ → Div.

It turns out div is surjective. See Lemma 3.1 in Chapter XI of [Mir95]. A meromorphic
function f will satisfy Df,U(p) = 0 for all p ∈ U if and only if f has no poles or zeros on U ,
which in turn is true if and only if f ∈ O×(U). Hence the kernel of div is exactly the sheaf
O×. This gives us a short exact sequence of shaves:

0 → O× →M∗ div→ Div → 0.

This short exact sequence of sheaves induces a long exact sequence on cohomology. Recall
that since the global section functor is left exact, there is a natural equivalence H0(X,F ) ∼=
F (X) for any appropriate sheaf F . Moreover, since M∗ is a constant sheaf, H1(X,M∗) is
trivial (see Proposition 2.1 in Chapter X of [Mir95]). Therefore, if we denote the connecting
homomorphism by ∆, the zeroth-level of the long-exact sequence of cohomology is given by

0 → O×(X) →M∗(X)
div→ Div(X)

∆→ H1(X,O×) → 0.

SinceX is assumed to be a compact Riemann surface andO×(X) is the ring of global nonzero
holomorphic functions, which are constant, O×(X) ∼= C∗. The group M∗(X) is simply the
multiplicative group of the rational function �eld M, which is M(X) \ {0}. Finally, by
de�nition the group Div(X) is the group Div(X) of global divisors on X. Therefore we have
the following exact sequence:

0 → C∗ →M(X) \ {0} div→ Div(X)
∆→ H1(X,O×) → 0.

Thus ∆ : Div(X) → H1(X,O×) is the cokernel of the map div. The image of the global
divisor map div : M(X)\{0} → Div(X) is PDiv(X). Therefore it follows that the connecting
homomorphism induces a natural isomorphism

∆ : DCl(X) → H1(X,O×).

This isomorphism is explicitly described on page 347 of [Mir95]. This is used to show that
the isomorphisms O[−] : DCl(X) → Pic(X) and H : Pic(X) → H1(X,O×) satisfy

∆ = H ◦ O[−].

See Proposition 3.7 in Chapter XI of [Mir95] for the proof.
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4.4 Line Bundles

Now we look at the geometric side of the story. We will consider the collection of line bundles
over a Riemann surface X. It turns out they form an abelian group that is also isomorphic
to the Picard group. We will �rst show the group of line bundles is isomorphic to H1(X,O×)
and then consider the resulting isomorphism onto Pic(X). We will complete the picture by
determining the isomorphism with DCl(X).

We remind the reader of the de�nition of an arbitrary rank k vector bundle over a smooth
manifold M .

De�nition 4.30. Let M be a smooth manifold. A vector bundle of rank k over M is a
smooth manifold E together with a surjective smooth map π : E →M satisfying:

1. For each p ∈M , the �ber Ep = π−1(p) is endowed with the structure of a k-dimensional
vector space over some �xed �eld F , and

2. For each p ∈ M , there exists a neighborhood U of p in M and a di�eomorphism
Φ : π−1(U) → U × F k (called a local trivialization of E over U) , such that the
following diagram commutes:

π−1(U)
Φ //

π
##FF

FF
FF

FF
F U × F k

π1
{{wwwwwwwww

U

(where π1 is projection onto the �rst factor); and such that for each q ∈ U , the
restriction of Φ to Eq is a linear isomorphism from Eq onto {q} × F k ∼= F k.

When the rank k = 1, the vector bundle is called a F -line bundle. For a Riemann
surface X, we denote the set of isomorphism classes of complex line bundles by LB(X).

Note that for a complex line bundle L over X, we can use a cover {Ui} of complex charts to
obtain the local trivialization for L. Then for each i, we call zi := Φ−1

i (p, 1) for p ∈ Ui a �ber
coordinate with respect to Φi. On overlaps, we have well-de�ned nonzero holomorphic
functions, called the transition functions. To be precise, if Ui ∩ Uj 6= 0, then there exists a
holomorphic function tij on Ui ∩ Uj such that the local trivializations Φi and Φj satisfy

tij = ΦiΦ
−1
j : C× (Ui ∩ Uj) → C× (Ui × Uj).

The maps tij are called the transition functions . They satisfy three particular conditions:

1. tii = 1 on Ui;

2. tji = 1/tij on Ui ∩ Uj; and

3. tkitijtjk = 1 on Ui ∩ Uj ∩ Uk.

These conditions are called the cocycle conditions .
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Proposition 4.31. Let X be a Riemann surface, {Ui} an open cover of X, and for each pair
of indices i, j, suppose that tij is a nowhere zero holomorphic function on Ui ∩Uj, such that
the collection {tij} satis�es the cocycle conditions. Then there is a line bundle L, unique up
to isomorphism, with local trivializations over the cover {Ui} and the collection {tij} as its
transition functions. For any �ber coordinate zi on π

−1(Ui) we have

zi = tijzj

on Ui ∩ Uj.

Sketch of Proof. Let L̃ be the disjoint union

L̃ =
∐

i

(C× Ui).

De�ne a relation ∼ on L̃ by declaring (s, p) ∈ C × Uj to be related to (tijs, p) ∈ C × Ui

whenever p ∈ Ui ∩ Uj. The cocycle conditions for the transition functions imply that ∼ is
an equivalence relation. Let

L = L̃/ ∼ .

Then L is the desired line bundle, where π : L→ X is given by π([s, p]) = p (which is clearly
well de�ned and holomorphic). The composition

C× Ui ↪→ L̃→ L

is injective, and the local trivializations are given by the inverse of this composition on
π−1(Ui). See Theorem 29.7 of [For81] for the details. Alternatively, one may at this point
invoke the vector bundle construction lemma, which is Lemma 5.5 of [Lee03].

The point of Proposition 4.31 is that a line bundle is de�ned uniquely (up to isomor-
phism) by the local data provided by its transition functions. This is the fact we will exploit
to show LB(X) ∼= Pic(X).

First we will show that there is a bijective correspondence between LB(X) and H1(X,O×).
Given a line bundle L trivialized over an open cover U = {Ui} of X, de�ne H ′(L) = (tij),
where the collection {tij} are the transition functions. As with Lemma 4.10, the cocycle
conditions imply that {tij} de�ne a cocycle class in Ȟ1(U ,O×) and hence in the direct limit
Ȟ1(X,O×). Using a nearly identical proof as Lemma 4.11, this gives a well de�ned map
H ′ → Ȟ1(X,O×).

Proposition 4.32. The map

H ′ : LB(X) → Ȟ1(X,O×)

is a bijection.

Proof. Since the cocycle conditions are precisely the conditions for (tij) to be a cocycle class
in Ȟ1(X,O×), Proposition 4.31 implies that H ′ is surjective.

It remains to show injectivity. Suppose L1, L2 are line bundles over X and H ′(L1) = H ′(L2).
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We assume we have a cover over which L1 and L2 both trivialize. Since H ′(L1) = H ′(L2), we
may pass to a possibly �ner cover such that the cocycles forming H ′(L1) and H

′(L2) di�er

by a coboundary. Let U = {Ui} denote this cover. Let
{
t
(l)
ij

}
denote the transition functions

for the line bundles Ll, with l = 1, 2 and let Φ
(l)
i denote the maps for the local trivialization

over Ui for Ll, with l = 1, 2. Since the cocycles forming H ′(L1) and H
′(L2) over U di�er by

a coboundary, there are holomorphic nowhere zero functions si on Ui for each i such that
t
(1)
ij si/sj = t

(2)
ij on Ui ∩ Uj for every i and j.

For each i, we can construct a line bundle automorphism Si : C × Ui → C × Ui given
by Si(zi, p) = (sizi, p). This gives us a local trivialization Φ

(1a)
i : π−1(Ui) → C × Ui de�ned

by Φ
(1a)
i = Si ◦ Φ

(1)
i . Since the maps Φ

(1a)
i are compatible with the maps Φ

(1)
i (in the sense

that Φ
(1a)
i ◦ (Φ

(1)
i )−1 is a biholomorphism from C × Ui → C × Ui), it follows that the maps

Φ
(1a)
i de�ne a compatible local trivialization for L1. The transition maps become exactly

t
(1a)
ij = t

(1)
ij si/sj = t

(2)
ij .

Hence L1
∼= L2 as line bundles by the uniqueness statement of Proposition 4.31.

De�ne a new map
H ′′ : LB(X) → H1(X,O×)

by H ′′(L) = 1/H ′(L). The map H ′′ is also a bijection. Since Ȟ1(X,O×) ∼= H1(X,O×)
we may assume that H ′′ is a bijection between LB(X) and H1(X,O×). As a consequence
we have a bijective correspondence between LB(X) and Pic(X). We will determine this
bijection explicitly. This relationship comes via the notion of a section of a line bundle.

De�nition 4.33. Let π : L→ X be a line bundle over a compact Riemann surface X and
let U ⊂ X be an open subset. A regular section of L over U is a function s : U → L
such that

1. for every p ∈ U , s(p) lies in the �ber of L over p and

π ◦ s = IdU

and

2. for every local trivialization ΦV : π−1(V ) → C× V for L, the composition

pr1 ◦ ΦV ◦ s
∣∣
U∩V

: U ∩ V → C

is a holomorphic function on U ∩ V .

Denote the set of regular sections of L over U by O{L}(U). This de�nes a sheaf O{L}
for any line bundle L over X. The sheaf O{L} is an invertible sheaf. See Proposition 2.14
in Chapter XI of [Mir95] for the proof.

We have now de�ned a function

O{−} : LB(X) → Pic(X).

We will show that this is a bijection, and is related to the map H ′′ de�ned above.
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Proposition 4.34. For a compact Riemann surface X, the map O{−} : LB(X) → Pic(X)
is a bijection. Moreover, the composition

LB(X)
O{−}−→ Pic(X)

H−→ H1(X,O×)

is the bijection H ′′.

Proof. Only the last statement requires proof, the former statement is an immediate con-
sequence. Suppose L is a line bundle over X. Let U = {Ui} be an open cover of X over
which L trivializes. Denote the �ber coordinate with respect to Φi by zi. Let {tij} be the
transition functions. Then H ′(L) = (tij), so by the second cocycle condition, H ′′(L) = (tji).

The invertible sheafO{L} also trivializes over U . For each i, a local generator forO{L}(Ui) is
given by the section si where si(zi) ≡ 1 on Ui. We obtain the cocycle representing H(O{L})
by writing the local generator for Ui as a multiple of the local generator for Uj. When zi = 1
(which de�nes si), we have

zj = tjizi = tji

and as a consequence
si = tjisj.

Thus the cocycle (t′ij) representing H(O{L}) satis�es

t′ij = tji.

Therefore:
H(O{L}) = (t′ij) = (tji) = H ′′(L)

completing the proof.

We now have compatible bijections between LB(X) and H1(X,O×) and between LB(X)
and Pic(X). We can use these bijections to induce a group structure on LB(X). The group
structure on LB(X) is very similar to the group structure for invertible sheaves. The oper-
ation is the tensor product, the identity is the �trivial line bundle� X × C and the inverse
of a line bundle is its dual. It also follows, tautologically, that the maps H ′′ and O{−} are
natural group isomorphisms.

Before re�ecting on our results, we should wrap this discussion up with a description of
the direct relationship between line bundles and divisors. In the interest of brevity, we will
not prove any of the assertions that follow but merely reference where they can be obtained.

In order to de�ne a map from LB(X) to DCl(X), we must start with a couple of de�ni-
tions.

De�nition 4.35. Let π : L → X be a line bundle over a compact Riemann surface X. A
rational section of L is map s : X → L that is a regular section on an open set U ⊂ X
whose complement is �nite such that for every local trivialization ΦV : π−1(V ) → C×V the
composition

pr1 ◦ ΦV ◦ s
∣∣
V

: V → C
is meromorphic.
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As with meromorphic functions, given a rational section s of a line bundle L on X, we
can de�ne the order of s at a given point.

De�nition 4.36. Let π : L→ X be a line bundle over a compact Riemann surface and let
s : X → L be a rational section. The order of s at a point p ∈ X, denoted by ordp(s), is
the order of the rational function f = pr1 ◦ ΦU ◦ s where ΦU : π−1(U) → C × U is a local
trivialization of L in a neighborhood of p.

This is clearly well de�ned, since for another choice of local trivialization ΨV : π−1(V ) →
C× V on another neighborhood V of p the resulting rational function f ′ is related to f by
f ′ = tf where t is the transition function. Since t is a nonvanishing holomorphic function
on U ∩ V , it follows that

ordp(f
′) = ordp(tf) = ordp(t) + ordp(f) = ordp(f).

All but �nitely many p ∈ X will have ordp(s) = 0 and therefore we can de�ne a divisor by

div(s) =
∑
p∈X

ordp(s) · p.

Finally, given any two rational sections s1 and s2 of a line bundle L, the transition functions
give an equivalence div(s1) ∼ div(s2) modulo the subgroup of principal divisors. Hence in
DCl(X), [div(s1)] = [div(s2)]. See Proposition 2.23 in Chapter XI of [Mir95] for the proof.
Hence we have a well de�ned map

div : LB(X) → DCl(X).

Finally, this map is a group isomorphism and we have

∆ ◦ div = H ′′.

For the proof, see Proposition 3.11 of Chapter XI in [Mir95].

4.5 What Does This Mean?

We have now de�ned a series of natural isomorphisms allowing for several interpretations of
the �rst sheaf cohomology group H1(X,O×) for a compact Riemann surface. The isomor-
phisms can be organized into a commutative tetrahedron:

DCl(X)
O[−] //

∆

$$JJJJJJJJJJJJJJJJJJJJ
Pic(X)

H

zzuuuuuuuuuuuuuuuuuuuu

H1(X,O×)

LB(X)

H′′

OO O{−}

CC��������������������������������

div

[[77777777777777777777777777777777
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We can interpret the �rst cohomology group H1(X,O×) as the Picard group, the group of
invertible sheaves over the ringed space (X,O). This group has a number-theoretic inter-
pretation as the divisor class group of X and has a geometric interpretation as the group of
line bundles over X. In such a way, the sheaf cohomology brings together number theory
and geometry. In some literature, the divisor class group is called the Picard group, while
sometimes the group of line bundles is called the Picard group.

As an example, one can show that for the Riemann sphere CP1, H1(CP1,O×) ∼= Z (see
the computation with a sheaf of di�erential forms in Example 4.0.3, Chapter III of [Har77]
and its connection with H1(X,O×) in Exercise 1.8, Chapter V of [Har77]). The generator for
the group of line bundles is the tautological line bundle that assigns to each point p ∈ CP1

the complex line in C2 represented by p.

The equivalences above can be generalized ringed spaces (X,OX). In particular, we can
use this equivalence to de�ne divisors or line bundles in a more abstract context.

The natural equivalences between H1(X,O×), the group of invertible sheaves and the group
of line bundles are manifestations of a deeper principle about sheaf cohomology.

Invertible sheaves are �locally trivial� in the sense that there is an open cover U of X over
which the sheaf restricted to Ui ∈ U is isomorphic to the �trivial sheaf� restricted to Ui,
where the �trivial sheaf� is the structure sheaf in the de�nition of a ringed space (X,O).
The automorphisms of a ring as a module over itself are given by multiplication by a unit.
For an open set U ⊂ X, the units of O(U) are precisely O×(U). Hence on a ringed space
(X,O), one can de�ne on X the sheaf of automorphisms of O which is isomorphic to the
sheaf O×.

Line bundles are �locally trivial� in the sense that there is an open cover U of X where
the restriction to a subset Ui ∈ U is isomorphic to the �trivial bundle� X × C restricted to
Ui. A homomorphism of a trivial line bundle must have the form

α(z, p) = (f(p) · z, p)

where f is a holomorphic function. For this homomorphism to be an automorphism of the
trivial line bundle, f must be nonvanishing. It follows that if we form a sheaf of automor-
phisms of the trivial line bundle, the sheaf will be isomorphic to the sheaf O×.

In both of these cases, we had a collection of trivializations which naturally gave a 1-cocycle
for the sheaf O× for a particular covering U of X. Changing the trivializations changed
the cocycle by a coboundary. Passing to a �ner open cover in the cohomology amounts to
passing to a �ner collection of trivializations. The limit group H1(X,O×) then classi�es
isomorphism classes of both invertible sheaves and line bundles.

More generally, the �rst sheaf cohomology group can be used to classify �locally triv-
ial� objects. This is accomplished as follows. Suppose X is a topological space, F : Top → C

is a functor and T = F (X) is �trivial� in some sense which in particular requires the ability
to construct a sheaf of automorphisms Aut(T ) on X. Moreover, suppose we have a set X of
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isomorphism classes of �locally trivial objects� in C. Such an object is �locally isomorphic�
to T in the sense that we can de�ne a restriction S

∣∣
U
for any open set U ⊂ X and that

there is an open cover U = {Ui} such that for every i, S
∣∣
Ui

∼= T
∣∣
Ui

:= F (Ui) in C . Then

X is in bijective correspondence with H1(X,Aut(T )). For the proof, see Proposition 4.3 in
Chapter XI of [Mir95]. This principle can be applied, for example, to vector bundles of rank
k over a complex manifold (see Exercise 5.18 in Chapter II of [Har77]) or to Pn bundles over
a scheme (see Exercise 7.10 in Chapter II of [Har77]).



Chapter 5

Concluding Remarks

Sheaf cohomology is a powerful generalization of de Rham cohomology. The �rst sheaf co-
homology group unites number theory and geometry. This allows one to consider number
theoretic or geometric notions in contexts where they would otherwise not be obvious. More
generally, the �rst sheaf cohomology group can be used to classify properly de�ned �locally
trivial� objects in some category.

This paper is a starting point for the investigation of sheaves and sheaf cohomology. One
can proceed in several di�erent directions for further study. There are several vanishing
theorems that describe conditions under which Hn(X,F ) = 0 for n > 0. For example, there
is a vanishing theorem for �asque sheaves. A �asque sheaf is a sheaf whose restriction maps
are surjective. It follows that if there is some n > 0 such that Hn(X,F ) 6= 0 there is a
cohomological obstruction to the ability to extend sections of F . See Section 2, Chapter
III of [Har77]. One can also describe Ext groups on sheaves. This leads to Serre duality,
which says roughly that if X is a scheme with dimension n (using some appropriate notion
of dimension), for certain types of sheaves F over X there is an isomorphism between the
ith Ext group of F (with respect to some �dualizing� sheaf ω) and the dual of Hn−i(X,F )
for every 0 ≤ i ≤ n. See Sections 6 and 7 of Chapter III in [Har77] for the details. One can
also proceed to add more structure to the Picard group. There is a canonical way in which
the Picard group can be turned into a scheme. See [Mum66] for the construction and its
applications.

All of this abstraction has brought together seemingly unrelated �elds of mathematics and
has broken many barriers. Sheaves, sheaf cohomology, and schemes have been used to solve
formerly intractable problems, such as classi�cation theorems for algebraic curves. The in-
terested reader who would like to read more on the general theory should consult [Har77]
or [Sha94]. If the reader is willing to specialize to Riemann surfaces and algebraic curves,
[Mir95] is also a useful reference.
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