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In 1987 Robert Bieri, Walter Neumann, and Ralph Strebel introduced a geometric

invariant of a discrete group that is now known as its BNS invariant [4]. For �nitely

generated groups the invariant is a subset of a sphere associated to the group called

its character sphere. �ey proved that their invariant is an open subset of the char-

acter sphere and that it determines which subgroups containing the commutator

subgroup are �nitely generated. In particular, the commutator subgroup is itself

�nitely generated if and only if the BNS invariant is the entire character sphere.

For fundamental groups of smooth compact manifolds, the BNS-invariant con-

tains information about the existence of circle �brations of the manifold and for

fundamental groups of 3-dimensional manifolds, the BNS-invariant can be de-

scribed in terms of the �urston norm. Given these connections, it is perhaps

not surprising that the BNS-invariant is typically somewhat di�cult to compute.

It has been completely described for some in�nite families of groups, including:

one-relator groups [6], right-angled Artin groups [11], and the pure symmetric au-

tomorphism groups of free groups [12]. In this article we combine aspects of the

proofs of these earlier results to compute and explicitly describe the BNS-invariant

for the pure braid groups.

�eorem A. �e BNS-invariant for the pure braid group Pn is the complement

of a union of the P3-circles and the P4-circles in its character sphere. �ere are

exactly
�

n
3

�

C
�

n
4

�

such circles.
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�e names “P3-circle” and “P4-circle” are introduced here in order to make

our main result easier to state. �eir de�nitions are given in Section 4.

Our computation of †1.Pn/ has a striking connection to the previously com-

puted resonance variety for the pure braid groups (see Proposition 6.9 in [8]). �e

resonance variety of a group is computed from the structure of its cohomology

ring. (For background information and full de�nitions, see [15].) In fact, there are

many resonance varieties just as there are many† invariants, but we are concerned

here with the simplest forms of each. In general there is only a weak connection

between the resonance variety of a group and its BNS-invariant, but when certain

conditions are met, the resonance variety is contained in the complement of the

BNS-invariant [14]. In some interesting cases it is known that the complement of

the �rst resonance variety is equal to the �rst BNS invariant (see [13] and [7]). In

section 9.9 of [15] it was asked if this equality holds for fundamental groups of

complements of hyperplane arrangements in Cn. �e pure braid groups are per-

haps the best known example of an arrangement group, and our result shows that

this equality does hold in this case. An example presented in [16]—constructed

by deleting one hyperplane from a re�ection arrangement—demonstrates that this

equality does not always hold for arrangement groups.

�e article is structured as follows. �e �rst three sections contain basic re-

sults about BNS-invariants, pure braid groups, and graphs. �e fourth section

�nds several circles of characters in the complement of the invariant for the pure

braid groups. �e �fth section establishes a series of reduction lemmas which

collectively show that every other character is contained in the invariant, thereby

completing the proof.

Acknowledgments. �e authors thank Ralph Strebel for requesting a description

of the BNS-invariant for the pure braid groups some time ago; his continuing

encouragement has helped bring this work to completion. We also thank Alex

Suciu for pointing out the relationship between our main result and the resonance

variety of the pure braid groups.

1. BNS invariants

In this section we recall the de�nition of the BNS-invariant and discuss two stan-

dard techniques used to compute them.
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De�nition 1.1 (BNS-invariant). Let G be a �nitely generated group. A charac-

ter of G is a group homomorphism from G to the additive reals and the set of

all characters of G is an n-dimensional real vector space where n is the Z-rank

of the abelianization of G. Let I � G be a generating set and let Cay.G; I /

denote the right Cayley graph of G with respect to I . For any character � we

let Cay�.G; I / denote the full subgraph of Cay.G; I / determined by the vertices

whose �-values are non-negative. �e property that the BNS-invariant captures is

whether or not Cay�.G; I / is connected. It is somewhat surprising, but nonethe-

less true, that whether or not Cay�.G; I / is connected is independent of the choice

of �nite generating set I and thus only depends on �. It is much easier to see that

this property is preserved when � is composed with a dilation of R. As a conse-

quence, one can replace characters with equivalence classes of characters where

equivalence is de�ned by composition with dilations by positive real numbers r .

�e set of equivalence classes is identi�ed with the unit sphere in Rn and called

the character sphere of G:

S.G/ D ¹� j � 2 Hom.G;R/ � ¹0ºº=� � r � �

where r 2 .0;1/ � R. �e Bieri-Neumann-Strebel-invariant of G is the set of

equivalence classes of characters Œ�� such that Cay�.G; I / is connected. We write

†1.G/ for this invariant and we write †1.G/c for the complementary portion of

the character sphere.

Remark 1.2. �e superscript “1” in the notation †1.G/ indicates that there are

generalizations of these de�nitions. �e �rst of these was introduced by Bieri and

Renz in [5]. A computation of the †m invariants for the pure braid groups would

be very interesting, but we must say that the approach of this paper in computing

†1.Pn/ does not extend to these higher invariants.

�ese invariants have also been described in terms of Novikov homology [3],

and so our result relates to the work in [9]. Bieri and Geoghegan have presented

extensions of the original de�nition that are applicable to group actions on non-

positively curved spaces [2].

We use a common algebra metaphor to describe the images of elements un-

der �. We say that g lives or survives if �.g/ is not zero, that g dies or is killed

when �.g/ is zero, and we say that a set survives if every element in set survives.

�ere are two main techniques that we use to compute BNS-invariants. One is

used to show that characters are in the complement and the other is used to show

that characters are in the invariant. �e �rst is Proposition 3.3 from [4].
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Lemma 1.3 (epimorphisms). Let � W G � H be an epimorphism between �nitely

generated groups. If  is a character ofH and � is the character of G de�ned by

� D  ı �, then Œ�� 2 †1.G/ implies Œ � 2 †1.H/ and Œ � 2 †1.H/c implies

Œ�� 2 †1.G/c .

Proof. If we choose generating sets I and J for G and H respectively so that

�.I / D J , then the epimorphism � naturally extends to a continuous map from

the Cayley graph of G onto the Cayley graph of H which then restricts to a con-

tinuous map from Cay�.G; I / onto Cay .H; J /. Since the continuous image of a

connected space is connected, Cay�.G; I / connected implies Cay .H; J / is con-

nected and Cay .H; J / disconnected implies Cay�.G; I / is disconnected.

Lemma 1.3 is primarily used is to �nd characters in †1.G/c. For each ho-

momorphism � from G onto a simpler group H whose BNS-invariant is already

known, the preimage of †1.H/c under � is a subset of †1.G/c . A second use of

Lemma 1.3 is that it implies †1.G/ is invariant under automorphisms of G. For

any �nitely generated group G, precomposition de�nes a natural right action of

Aut.G/ on the character sphere with Œ�� �˛ de�ned to be Œ�ı˛� for all ˛ 2 Aut.G/

and all characters �. For each automorphism ˛ 2 Aut.G/, Lemma 1.3 can be ap-

plied twice, once with � D ˛ and a second time with � D ˛�1 to obtain the

following immediate corollary.

Corollary 1.4 (Automorphisms). For any �nitely generated group G, the subsets

†1.G/ and†1.G/c are invariant under the natural right action of Aut.G/ on the

character sphere of G.

�ere is an alternative description of †1.G/ using G-actions on R-trees.

De�nition 1.5 (Actions on R-trees). SupposeG acts by isometries on an R-tree T

and let ` W G ! RC be the corresponding length function. �e action is called non-

trivial if there are no global �xed points. It is exceptional if there are no invariant

lines. It is abelian if there exists a character � ofG such that the translation length

function `.g/ equals the absolute value of �.g/ for all g 2 G. When this occurs

we say that this action is associated to �.

�e following lemma, �eorem 5.2 in [6], describes †1.G/ in these terms.

Lemma 1.6 (actions and characters). Let � be a character of a group G. �ere

exists an exceptional non-trivial abelian G-action on an R-tree associated to � if

and only if Œ�� 2 †1.G/c.
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For each g 2 G, let Tg denote the characteristic subtree of g: when g is

elliptic, Tg is its �xed point set, and when g is hyperbolic, Tg is the axis of g.

�ere are two main facts about characteristic subtrees that we need: (1) if g and h

are commuting hyperbolic isometries then Tg D Th and (2) if g commutes with a

hyperbolic isometry h then Tg � Th. Both properties are discussed in [12].

De�nition 1.7 (commutation). For any subset J of a group G there is a natural

graph that records which elements commute. It has a vertex set indexed by J

and two distinct vertices are connected by an edge if only if the corresponding

elements of J � G commute. We call this the commuting graph of J in G and

denote it by C.J /.

De�nition 1.8 (domination). Let I and J be subsets of a group G. We say that

J dominates I if every element of I commutes with some element of J . Since

elements commute with themselves, this is equivalent to the assertion that every

element in I n J commutes with some element of J .

Lemma 1.9 (connected and dominating). Let � be a character of a group G.

If there exist subsets I and J in G such that all of J survives under �, C.J / is

connected, J dominates I , and I generates G, then Œ�� 2 †1.G/.

Proof. Suppose there is an abelian action of G on an R-tree T associated to �.

Since elements of J survive under �, each is realized as a hyperbolic isometry

of the tree. Because C.J / is connected, all of these isometries share a common

characteristic subtree T 0 D Tj for all j 2 J . BecauseJ dominates I , each element

i 2 I commutes with a hyperbolic isometry j 2 J which implies Ti � Tj D T 0

for all i 2 I . Finally, I generates G, so the line T 0 is invariant under all of G, the

action is not exceptional, and Œ�� 2 †1.G/ by Lemma 1.6.

Lemma 1.9 is our primary tool for �nding characters in †1.G/. To illustrate

its utility we include an application: characters in the complement of the BNS-

invariant must kill the center of the group. (We note that this application is not

new; it occurs, for example, as Corollary 3.2 in the manuscript “Geometric invari-

ants for discrete groups” by Bieri and Strebel.)

Corollary 1.10 (central elements). If � is a character of a group G and � is not

identically zero on the center of G then Œ�� is in †1.G/.
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Proof. Let I be any generating set for G and let J D ¹gº where g is a central

element that lives under �. �e graph C.J / is connected because it only has one

vertex and J dominates I because g is central. Lemma 1.9 completes the proof.

2. Pure braid groups

Next we recall some basic properties of the pure braid groups.

De�nition 2.1 (pure braid groups). Let Cn be an n-dimensional complex vector

space with a �xed basis and letHij be the hyperplane inCn de�ned by the equation

zi D zj . �e set ¹Hij º of all such hyperplanes is called the braid arrangement and

it is one of the standard examples in the theory of hyperplane arrangements. �e

fundamental group of the complement of the union of these hyperplanes is called

the pure braid group Pn:

Pn D �1.C
n n ¹Hij º/:

De�nition 2.2 (points in the plane). �ere is a standard 2-dimensional way to

view points in the complement of the braid arrangement. For each vector in Cn we

have a con�guration of n labeled points in the complex plane. More concretely, the

point pi in C is meant to indicate the value of the i-th coordinate of the vector and

avoiding the hyperplanes Hij corresponds to con�gurations where these points

are distinct. Paths in the hyperplane complement correspond to motions of these

n labeled points in the plane which remain distinct throughout. If we trace out

these motions over time in a product of C with a time interval, then the points

become strands that braid.

De�nition 2.3 (basepoint). Computing the fundamental group of a hyperplane

complement requires a choice of basepoint. We select one corresponding to the

con�guration where the n labeled points are equally spaced around the unit circle

and p1 through pn occur consecutively as one proceeds in a clockwise direction.

See Figure 1 for an illustration. Loops representing elements of the fundamental

group are motions of these points which start and end at this particular con�gura-

tion.
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p3

p2

p1
p9

p8

p7

p6
p5

p4

Figure 1. Nine points in convex position.

De�nition 2.4 (swing generators). For each set A � ¹1; 2; : : : ; nº of size at least

2 there is an element of Pn obtained as follows. Move the points corresponding

to the elements of A directly towards the center of their convex hull. Once they

are near to each other, rotate the small disk containing them one full twist in a

clockwise direction and then return these points to their original position traveling

back the way they came. When A is small we write Sij or Sijk with the subscripts

indicating the points involved. In [10] these elements are called swing generators.

One key property of the swing generator SA is that it can be rewritten as a product

of the swing generators Sij with ¹i; j º � A. �e order in which they are multiplied

is important, but it rarely arises in this context. As an illustration of this type of

factorization, the element S123 is equal to the productS12S13S23 and to S13S23S12

and to S23S12S13. (For the record we are composing these elements left-to-right as

is standard in the study of braid groups.) �is means that the
�

n
2

�

swing generators

which only involve two points are su�cient to generate Pn and we call this set the

standard generating set for this arrangement.

A presentation for the pure braid group was given by Artin in [1] and more

recent geometric variations are given by Margalit and McCammond in [10]. For

our purposes the most relevant fact about these various presentations is that all

of their relations become trivial when abelianized. �is immediately implies the

following:
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Lemma 2.5 (pure braid characters). �e abelianization of the pure braid group

is free abelian with the images of the standard generators as a basis. As a conse-

quence, there are no restrictions on the tuples of values a character may assign to

the standard generators. �us Hom.Pn;R/ ' R.
n
2/ and the character sphere has

dimension
�

n
2

�

� 1:

S.Pn/ D S.
n
2/�1:

�ere are two aspects of the pure braid group that are particularly useful in this

context. �e �rst is that many pairs of swing generators commute and the second

is that there is an automorphism of Pn whose net e�ect is to permute the labeled

points in the plane without changing the character values on the corresponding

standard generators.

Remark 2.6 (commuting swings). Let SA and SB be two swing generators in

Pn. �e elements SA and SB commute when A � B , B � A, or the convex

hull of the points in A does not intersect the convex hull of the points in B [10].

For example S23 and S145 commute as do S14 and S145, but S68 and S79 do not.

See Figure 1. One consequence of this property is that the element � D SA with

A D ¹1; 2; : : : ; nº is central in Pn. In fact � generates the center.

�ere is an obvious action of the symmetric group on the braid arrangement

which permutes coordinates. And since the union of the hyperplanesHij contains

all the points �xed under the action of a nontrivial permutation, the action on the

complement is free. If we quotient by this action, the e�ect is to remove the labels

from the points in the plane and the fundamental group of the quotient is the braid

group. �is relationship is captured by the fact that there is a natural epimorphism

from the braid group to the symmetric group (where the image of a braid is the

way it permutes its strands) and its kernel is the pure braid group.

�e symmetric group action on the braid arrangement essentially changes the

basepoint in the hyperplane complement and permutes the labels on the points in

the plane. For each such basepoint there is a set of swing generators but recall that

there is no natural isomorphism between the fundamental group of a connected

space at one basepoint and its fundamental group at another. To create an iso-

morphsim one selects a path from the one to the other and then conjugates by this

path. In our case such a path projects to a loop in the quotient by the symmet-

ric group action and thus represents an element of the braid group. In particular,

the resulting isomorphism between the fundamental groups is induced by an in-

ner automorphism of the braid group which descends to an automorphism of its
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pure braid subgroup. By Corollary 1.4 this automorphism of Pn does not alter the

BNS-invariant or its complement.

It does, however, change the standard generating set. If we keep track of the

motion of the points in the plane dictated by the path between the basepoints, we

�nd that the straight line segment between pi and pj used to de�ne Sij becomes

an embedded arc between the images of these points that is typically very convo-

luted. In other words, the image of the original swing generator Sij is a nonstan-

dard generator where the points pi and pj travel along the twisted embedded arc

from either end until they are very close, they then rotate fully around each other

clockwise and then they return the way they came. Despite the fact that the image

of a standard generator is no longer standard, it is true that the new nonstandard

generator is conjugate in Pn to the standard generator between these two points.

In particular, for any character �, the �-value of a standard generator Sij is equal

to the �-value of the standard generator between the images of pi and pj under

this automorphism of Pn.

We conclude this section with a discussion of epimorphisms between pure

braid groups.

De�nition 2.7 (natural projections). For every subset A � ¹1; 2; : : : ; nº of size k

there is a natural projecting epimorphism �A W Pn � Pk which can be described

topologically as “forgetting” what happens to the points not in A. Algebraically

�A sends a standard generator Sij to zero unless both endpoints belong to A. �is

produces
�

n
k

�

epimorphisms from Pn onto Pk which are all distinct. �e situations

with k D 3 or k D 4 are particularly important here and we denote these maps by

�ijk and �ijkl where the subscripts indicate the points contained in A.

�e fact that the complete graph on 4 vertices is planar leads to a nice presen-

tation for P4 and a surprising projection from P4 onto P3.

De�nition 2.8 (planar presentation of P4). If we pick a basepoint for the braid ar-

rangement that corresponds to the con�guration of points shown in Figure 2, then

the six straight segments connecting them pairwise produce six swing generators

that form a nonstandard generating set for P4. We denote these a through f as

indicated. �e following is a presentation for P4 in this generating set:

P4 Š

*

a; b; c; d; e; f

abc D bca D cab; ad D da

cde D dec D ecd; be D eb

bfd D fdb D dbf; cf D fc

+
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We call this the planar presentation ofP4. �is presentation appears to be folklore:

it is well-known to experts in the �eld but we cannot �nd a reference to it in the

literature. Since it is straightforward to produce this presentation from one of the

standard presentations, we omit the derivation.

p3

p2

p1 p4

a

b

c

d

e

f

Figure 2. A labeled planar embedding of K4.

Lemma 2.9 (an unusual map). �ere is a morphism � W P4 � P3 which sends

the pairs of generators representing disjoint edges in the planar presentation of

P4 to the same standard generator of P3. Concretely, the function that sends both

a and d to a D S12, both b and e to b D S13 and both c and f to c D S23 extends

to such an epimorphism.

Proof. Since the image of this function is a generating set, the only thing to check

is that images of the planar generators satisfy the planar relations. �is is clear

since a2 D a2, b2 D b2, c2 D c2 and abc D bca D cab in P3.

3. Graphs

In this section we record a few miscellaneous remarks related to graphs that we

use in the proof of the main result. �e �rst is the de�nition of an auxilary graph

that organizes information about a character, the second is an elementary result

from linear algebra, and the third is a structural result about graphs that avoid a

particular condition.
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De�nition 3.1 (graph of a character). For each character � of Pn we construct a

graph K� that we call the graph of �. It is a subgraph of the complete graph Kn,

it contains all vertices vi with i in ¹1; 2; : : : ; nº and it contains the edge eij from

vi to vj if and only if the standard generator Sij survives under �. When working

with examples, it is convenient to add labels to the edges of K� which record the

�-values of the corresponding standard generator. For example, the labeled graph

shown in Figure 3 comes from a character which sends S24 to 0 and S13 to 2.

For any set A � Œn�, the �-value of SA can be recovered fromK� by adding up the

labels on the edges with both endpoints in A. �us the character whose graph is

shown in Figure 3 sends S124 to �1, S123 to 0 and S1234 to �3.

v1 v2

v3v4
1

3

�5�4 2

Figure 3. �e graph of the character.

Lemma 3.2 (triple sums). Let � be a character for P4. If the four values �.S123/,

�.S124/, �.S134/ and �.S234/ are all zero, then �.S12/ D �.S34/, �.S13/ D

�.S24/, �.S14/ D �.S23/, and �.S1234/ D 0.

Proof. �e proof is elementary linear algebra. If we expand the four given values

as sums over the edges of K� and then add all four equations together, we �nd

that twice the sum over all six edges is zero. If we then add two of the triangle

equations and subtract the sum of six edges, we �nd that di�erence in the values

of � on a pair of disjoint edges is zero. In other words, their values are equal. �is

completes the proof.

And �nally, we consider a condition on a graph that arises in Section 5 and

which has quite strong structural implications.

Lemma 3.3 (star or small). Let � be a graph with no isolated vertices. If �

does not contain an edge disjoint from two other edges, then all edges of � have

an endpoint in common, or they collectively have at most 4 endpoints. In other

words, � is a star or a subgraph of K4.
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Proof. If � has a vertex v of valence more than 3, then edges ending at v are its

only edges. Otherwise, the additional edge is disjoint from at least two of the edges

with v as an endpoint, contradicting our assumption. If � has a vertex of valence

3, then these four vertices are the only vertices of �. Otherwise, there is an edge

with only one endpoint in this set, it must end at one of the vertices other than v

(since the edges ending at v are already accounted for) and thus it avoids two of

the edges with v as an endpoint, contradiction. Finally, if � only has vertices of

valence 1 and 2, it is a collection of disjoint paths and cycles. If there is a cycle,

then there can be no other components and the cycle must have length at most 4.

If there are multiple paths, there can only be two and they must both consists of a

single edge. If there is only one path, it can have at most 3 edges. �is completes

the proof since a cycle of length at most 4, two paths of length 1 and a single path

of length 3 are all subgraphs of K4.

4. Characters in the complement

In this section we recall the BNS-invariants for P2 and P3 and then use the vari-

ous epimorphisms between pure braid groups to produce a series of circles in the

complement of†1.Pn/ that we call P3-circles andP4-circles. Since P2 is abelian,

its invariant is trivial to compute by Corollary 1.10.

Lemma 4.1 (2 points). �e groupP2 is isomorphic toZ, its character sphere is S0,

the set †1.P2/
c is empty and †1.P2/ includes both points.

�e group P3 is only slightly more complicated.

Lemma 4.2 (3 points). �e groupP3 is isomorphic to F2�Z, its character sphere

is S2, the set†1.P3/
c is the equatorial circle de�ned by �.�/ D 0, where� is the

generator of the center, and †1.P3/ is the complement of this circle.

Proof. One presentation for P3 is ha; b; c j abc D bca D cabi where a D S12,

b D S13 and c D S23. If we add d D � D S123 as a generator and use the

equation abc D d to eliminate c we obtain the following alternative presentation:

P3 Š ha; b; d j ad D da; bd D dbi, from which it is clear that P3 Š F2�Z with

the free group F2 generated by a and b and the central Z generated by d D �.

By Corollary 1.10 characters in †1.P3/
c must send � to zero. On the other hand,

those which do send � to zero are really characters of F2 and it is well-known

that the BNS-invariant for a free group is empty. �us Œ�� 2 †1.P3/
c if and only

if �.�/ D 0.
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It is the circle of characters that forms the complement of †1.P3/ which pro-

duces multiple circles in the complement of †1.Pn/ for n > 3.

De�nition 4.3 (P3-circles and P4-circles). We say that � is part of a P3-circle

if there exists a natural projection map �ijk (described in De�nition 2.7) and a

character  where Œ � 2 †1.P3/
c, such that � D  ı �ijk:

Pn
�ijk

�! P3
 

�! R:

More concretely, � is part of a P3-circle if and only if all the endpoints of edges in

K� belong to a three element subset ¹vi ; vj ; vkº and the value of �.Sijk/ is zero.

In a similar fashion we say that � is part of a P4-circle if there exists a triple

of maps:

Pn
�ijkl

�! P4
�

�! P3
 

�! R

whose composition is � where �ijkl is one of the natural projection maps, � is the

unusual map described in Lemma 2.9 and Œ � 2 †1.P3/
c . More concretely, � is

part of a P4-circle if and only if all the endpoints of edges in K� belong to a four

element subset ¹vi ; vj ; vk; vlº, the equations �.Sij / D �.Skl/, �.Sik/ D �.Sjl/,

�.Sil/ D �.Sjk/ hold and the sum of these three shared values is zero.

Using Lemma 1.3 we immediately conclude the following:

�eorem 4.4 (characters in the complement). Let � be a character of Pn. If � is

a part of a P3-circle or a P4-circle, then Œ�� 2 †1.Pn/
c. �is produces

�

n
3

�

C
�

n
4

�

circles in the complement.

Proof. �e de�nitions of P3-circles and P4-circles ensure that Lemma 1.3 may be

applied to � to complete the proof. �e second assertion comes from the number

of natural projections onto 3 points plus the number of natural projections onto 4

points.

5. Characters in the invariant

In this �nal section we show that every character of Pn that is not part of a P3-

circle or a P4-circle is in†1.Pn/. We begin with a series of lemmas which follow,

directly or indirectly, from Lemma 1.9. Recall that we use� to denote the element

SA with A D ¹1; 2; : : : ; nº which generates the center of Pn.
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Lemma 5.1 (zero sum). If � is a character of Pn and �.�/ is not zero, then Œ�� 2

†1.Pn/.

Proof. Since � is central in Pn, this follows from Corollary 1.10.

Lemma 5.2 (disjoint triple). If � is a character of Pn and K� contains three

pairwise disjoint edges, then Œ�� 2 †1.Pn/.

Proof. First permute the points so that e12, e34 and e56 are edges in K�. �en let

J D ¹S12; S34; S56º and let I be the full standard generating set for this arrange-

ment. �e graph C.J / is a triangle and J dominates I because every standard

generator commutes with at least one element in J . Lemma 1.9 completes the

proof.

Lemma 5.3 (disjoint from a pair). If � is a character of Pn and K� contains an

edge disjoint from two other edges, then Œ�� 2 †1.Pn/.

Proof. If all three edges are disjoint then Lemma 5.2 applies. Otherwise, permute

the points so that e12, e34 and e45 are edges in K�. �en let J D ¹S12; S34; S45º

and let I be a modi�cation of the standard generating set for this arrangement

where S14 and S24 are removed and S145 and S245 are added in their place. �is

remains a generating set because S145 D S14S15S45 so that S14 can be recovered

from the other three, and likewise, S245 D S24S25S45 so S24 can be recovered.

�e graph C.J / is connected since both S34 and S45 commute with S12. Since

every standard generator (with the exception of S14 and S24) commutes with some

element in J , and S145 and S245 commute with S45, J dominates I . Lemma 1.9

completes the proof.

At this point, the Star-or-Small Lemma, Lemma 3.3, implies that our search

for characters in †1.Pn/
c can be restricted to those whose graph is a star or a

subgraph of K4, plus possibly some isolated vertices.

Lemma 5.4 (stars). If � is a character of Pn and the edges ofK� form a star with

at least 3 edges, then Œ�� 2 †1.Pn/.

Proof. If �.�/ is not zero, then Œ�� 2 †1.Pn/ by Lemma 5.1. Otherwise, permute

the points so that v1, v2 and v3 are leafs of K� and v4 is the vertex all edges have

in common. �en let I be the standard generators for this arrangement and let J

consist of the six elements S14, S24, S34, SA1
, SA2

, and SA3
where Ai is the set
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¹1; 2; : : : ; nº with i removed. Because �.�/ D 0 and v1, v2 and v3 are leaves of

K�, we have that

�.SAi
/ D �.�/� �.Si4/ D ��.Si4/ ¤ 0

for i 2 ¹1; 2; 3º. In particular, all of J survives under �. Next since ¹j; 4º � Ai

so long as i and j are distinct elements in ¹1; 2; 3º, we have that SAi
commutes

with Sj4 in these situations. As a consequence, the graph C.J / is connected by a

hexagon of edges. Finally, J dominates I since every standard generator avoids

one of the �rst three points and thus commutes with one of the elements SAi
.

Lemma 1.9 completes the proof.

Lemma 5.5 (disjoint leaves). Let � be a character of Pn. If K� contains two

vertices of valence 1 and the unique edges that end at these vertices are disjoint,

then Œ�� 2 †1.Pn/.

Proof. If �.�/ is not zero, then Œ�� 2 †1.Pn/ by Lemma 5.1. Otherwise, permute

the points so that v1 and v3 are leaves and e12 and e34 are in K�. �en let I be the

standard generators for this arrangement and let J consist of the �ve elements S12,

S34, S123, SA1
and SA3

where Ai is the set ¹1; 2; : : : ; nº with i removed. Because

�.�/ D 0 and v1 and v3 are leaves of K�, we have that �.SA1
/ D ��.S12/,

�.SA3
/ D ��.S34/, and �.S123/ D �.S12/. In particular, all of J survives under

�. �e graphC.J / is connected since both SA3
andS123 commutes with S12 which

commutes with S34 which commutes with SA1
. Finally, the set J dominates I

because the only standard generator which does not commute with SA1
or SA3

is

S13 and it commutes with S123. Lemma 1.9 completes the proof.

Lemma 5.6 (disjoint edges and one triangle). Let � be a character of Pn. If K�

contains a pair of disjoint edges and three of these endpoints form a triangle whose

�-value is not zero, then Œ�� 2 †1.Pn/.

Proof. Permute the points so that e12 and e34 are edges in K� and �.S123/ is

not zero. �en let J D ¹S12; S123; S34º and let I be the standard generating set

for this arrangement with S14 and S24 removed and S134 and S234 added in their

place. �e set I still generatesPn since S134 D S13S14S34 and S234 D S23S24S34

so S14 and S24 can be recovered from the ones that remain. �e graph C.J / is

connected since S12 commutes with both S123 and S34. Every standard generator

with an endpoint outside the set ¹1; 2; 3; 4º commutes with either S12 or S34. Of

the six standard generators with both endpoints in this set, two are not in I , three

commute with S123, and S34 commutes with itself. Finally, the added elements
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S134 and S234 both commute with S34 so J dominates I . Lemma 1.9 completes

the proof.

Figure 4. �ree subgraphs of K4.

Figure 5. Four subgraphs of K4.

�ese lemmas combine to prove the following.

�eorem 5.7 (Characters in the invariant). Let � be a character of Pn. If Œ�� is

not part of a P3-circle or a P4-circle then Œ�� 2 †1.Pn/.

Proof. Let � be the graph K� with isolated vertices removed. By Lemma 5.3,

Lemma 5.4, and Lemma 3.3, Œ�� is in †1.Pn/ unless � has at most 4 vertices.

By Lemma 5.1, Œ�� 2 †1.Pn/ unless the sum of the edge weights is zero. So

assume that� has at most 4 vertices, none of them isolated and the sum of the edge

weights is zero. �ere are no 2 vertex graphs satisfying these conditions and the

only 3 vertex graphs remaining are those which represent characters in P3-circles.

�us we may also assume that � has exactly 4 vertices. Up to isomorphism there

are precisely seven such graphs and they are shown in Figures 4 and 5. If � is

isomorphic to one of three graphs in Figure 4, then Œ�� 2 †1.Pn/ by Lemma 5.4 or

Lemma 5.5. Finally, the four graphs in Figure 5 all have disjoint edges. If any triple

of vertices have edges whose �-values have a non-zero sum, then Œ�� 2 †1.Pn/

by Lemma 5.6. �e only remaining case is where all such triples sum to zero. By

Lemma 3.2 this means that disjoint edges are assigned equal values. �is rules

out the two graphs on the left of Figure 5 and reduces the other two to graphs

representing characters in P4-circles. And this completes the proof.

�eorem 4.4 and �eorem 5.7 prove �eorem A.
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