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Abstract This article resolves several long-standing conjectures about Artin
groups of Euclidean type. Specifically we prove that every irreducible
Euclidean Artin group is a torsion-free centerless group with a decidable word
problem and a finite-dimensional classifying space.We do this by showing that
each of these groups is isomorphic to a subgroup of a group with an infinite-
type Garside structure. The Garside groups involved are introduced here for
the first time. They are constructed by applying semi-standard procedures to
crystallographic groups that contain Euclidean Coxeter groups but which need
not be generated by the reflections they contain.
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Arbitrary Coxeter groups are groups defined by a particularly simple type
of presentation, but the central motivating examples that lead to the general
theory are the irreducible groups generated by reflections that act geometrically
(i.e. properly discontinuously and cocompactly by isometries) on spheres and
Euclidean spaces. Presentations for these spherical and Euclidean Coxeter
groups are encoded in the well-known Dynkin diagrams and extended Dynkin
diagrams, respectively.

Arbitrary Artin groups are groups defined by a modified version of these
simple presentations, a definition designed to describe the fundamental group
of a space constructed from the complement of the hyperplanes in a com-
plexified version of the reflection arrangement for the corresponding Coxeter
group.

The spherical Artin groups, i.e. the Artin groups corresponding to Coxeter
groups that act geometrically on spheres, have been well understood ever since
Artin groups themselves were introduced in Deligne [14] and by Brieskorn
and Saito [8] in adjacent articles in the Inventiones. Given the centrality of
Euclidean Coxeter groups in Coxeter theory and Lie theory more generally,
it has been somewhat surprising that the structure of most Euclidean Artin
groups has remained mysterious for the past forty plus years.

In this article we clarify the structure of all Euclidean Artin groups by
showing that they are isomorphic to subgroups of a new class of Garside
groups that we believe to be of independent interest. More specifically we
prove four main results. The first establishes the existence of a new class of
Garside groups based on intervals in crystallographic groups closely related
to the irreducible Euclidean Coxeter groups.

Theorem A (CrystallographicGarside groups) Let W = Cox(˜Xn) be an irre-
ducible Euclidean Coxeter group and let R be its set of reflections. For each
Coxeter element w ∈ W there exists a set of translations T and a crystal-
lographic group Cryst(˜Xn, w) containing W with generating set R ∪ T so
that the weighted factorizations of w over this expanded generating set form
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Euclidean Artin groups 233

a balanced lattice. As a consequence, this collection of factorizations define a
group Gar(˜Xn, w) with a Garside structure of infinite-type.

The second shows that these crystallographic Garside groups contain sub-
groups that we call dual Euclidean Artin groups.

Theorem B (Dual Artin Subgroups) For each irreducible Euclidean Coxeter
group Cox(˜Xn) and for each choice of Coxeter element w, the Garside group
Gar(˜Xn, w) is an amalgamated free product of explicit groups with the dual
Artin group Art∗(˜Xn, w) as one of its factors. In particular, the dual Artin
group Art∗(˜Xn, w) injects into the Garside group Gar(˜Xn, w).

The third shows that this dual Euclidean Artin group is isomorphic to the
corresponding Artin group.

Theorem C (Naturally isomorphic groups) For each irreducible Euclidean
Coxeter group W = Cox(˜Xn) and for each choice of Coxeter element w

as the product of the standard Coxeter generating set S, the Artin group
A = Art(˜Xn) and the dual Artin group Ww = Art∗(˜Xn, w) are naturally
isomorphic.

Andfinally, our fourthmain result uses theGarside structure of the crystallo-
graphic Garside supergroup to derive structural consequences for its Euclidean
Artin subgroup.

Theorem D (Euclidean Artin groups) Every irreducible Euclidean Artin
groupArt(˜Xn) is a torsion-free centerless groupwith a solvableword problem
and a finite-dimensional classifying space.

The relations among these groups are shown in Fig. 1. The notations in
the middle column refer to the Coxeter group and the Artin group as defined
by their dual presentations. These dual presentations facilitate the connec-
tion between the Coxeter group Cox(˜Xn) and the crystallographic group
Cryst(˜Xn, w) and between the Artin groupArt(˜Xn) and the crystallographic
Garside group Gar(˜Xn, w).

TheoremD represents a significant advance over what was previous known.
In 1987, Craig Squier analyzed the Euclidean Artin groups with three gen-
erators: Art(˜A2),Art(˜C2) and Art(˜G2) [30]. His main technique was to

Fig. 1 For each Coxeter element w in an irreducible Euclidean Coxeter group of type ˜Xn we
define several related groups

123



234 J. McCammond, R. Sulway

analyze the presentations as amalgamated products and HNN extensions of
known groups, a technique that does not appear to generalize to the remain-
ing groups. The ones of type A have been understood via a semi-classical
embedding Art(˜An−1) ↪→ Art(Bn) into a type B spherical Artin group
[1,11,22,33].

More recently François Digne used dual Garside structures to successfully
analyze the Euclidean Artin groups of types A and C [15,16]. This article is
the third in a series which continues the investigation along these lines. The
first two papers are [7] and [25] and there also is a survey article [24] that
discusses the results in all three papers. The main result of [25] was a negative
one: types A,C and G are the only Euclidean types whose dual presentations
are Garside. The results in this article show how to overcome the deficiencies
that arise in types B, D, E and F .

Overview The article is divided into four parts. Part I contains basic back-
ground definitions for posets, Coxeter groups, intervals andGarside structures.
Part II introduces an interesting discrete group generated by coordinate permu-
tations and translations by integer vectors whose structure is closely related by
the Coxeter and Artin groups of type B. These “middle groups” and the struc-
ture of their intervals play a major role in the proofs of the main results. Part III
shifts attention to intervals in arbitrary irreducible Euclidean Coxeter groups
and introduces various new groups including the crystallographic groups and
crystallographic Garside groups mentioned above. Part IV contains the proofs
of our four main results.

Part 1. Background

This part contains background material with one section focusing on posets
and Coxeter groups, another on intervals and Garside structures.

1 Posets and Coxeter groups

This section reviews some basic definitions for the sake of completeness. Our
conventions follows [18], and [20,31].

Definition 1.1 (Coxeter groups) A Coxeter group is any group W that can
be defined by a presentation of the following form. It has a standard finite
generating set S and only two types of relations. For each s ∈ S there is a
relation s2 = 1 and for each unordered pair of distinct elements s, t ∈ S there
is at most one relation of the form (st)m = 1 where m = m(s, t) > 1 is an
integer.When no relation involving s and t occurs we considerm(s, t) = ∞. A
reflection inW is any conjugate of an element of S and we use R to denote the
set of all reflections inW . In other words, R = {wsw−1 | s ∈ S, w ∈ W }. This
presentation is usually encoded in a labeled graph � called a Coxeter diagram
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Euclidean Artin groups 235

with a vertex for each s ∈ S, an edge connecting s and t if m(s, t) > 2 and a
label on this edge if m(s, t) > 3. When every m(s, t) is contained in the set
{2, 3, 4, 6, ∞} the edges labeled 4 and 6 are replaced with double and triple
edges, respectively. The group defined by the presentation encoded in � is
denoted W = Cox(�). A Coxeter group is irreducible when its diagram is
connected.

Definition 1.2 (Artin groups) For each Coxeter diagram � there is an Artin
groupArt(�) defined by a presentation with a relation for each two-generator
relation in the standard presentation ofCox(�).More specifically, if (st)m = 1
is a relation in Cox(�) then the presentation of Art(�) has a relation that
equates the two length m words that strictly alternate between s and t . Thus
(st)2 = 1 becomes st = ts, (st)3 = 1 becomes sts = tst, (st)4 = 1 becomes
stst = tsts, etc. There is no relation when m(s, t) is infinite.

The general theory of Coxeter groups is motivated by those which act geo-
metrically (i.e. properly discontinuously and cocompactly by isometries) on
spheres and Euclidean spaces and they are classified by the famous Dynkin
diagrams and extended Dynkin diagrams, respectively.

Definition 1.3 (Extended Dynkin diagrams) There are four infinite families
and five sporadic examples of irreducible Euclidean Coxeter groups. The
extended Dynkin diagrams for the infinite families, including the unusual ˜A1
diagram, are shown in Fig. 2 and the five sporadic examples are shown in
Fig. 3. The large white dot connected to the rest of the diagram by dashed
lines is the extending root and the diagram with this dot removed is the ordi-
naryDynkin diagram for the corresponding spherical Coxeter group. The large
shaded dot is called the vertical root of the diagram. Its definition andmeaning
are discussed in Sect. 6.

Fig. 2 Diagrams for the four
infinite families
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236 J. McCammond, R. Sulway

Fig. 3 Diagrams for the five
sporadic examples

Since we do not need most of the heavy machinery developed to study
Euclidean Coxeter groups, it suffices to loosely introduce some standard ter-
minology.

Definition 1.4 (Simplices and tilings) One way to understand the meaning of
the extended Dynkin diagrams is that they encode the geometry of a Euclidean
simplex σ in which each dihedral angle is π

m for some integer m. The vertices
correspond to facets of σ and the integer m associated to a pair of vertices
encodes the dihedral angle between these facets. The reflections that fix the
facets of σ then generate a group of isometries which tile Euclidean space
with copies of σ . For example, the ˜G2 diagram corresponds to a triangle in the
plane with dihedral angles π

2 , π
3 , and

π
6 and the corresponding tiling is shown

in Fig. 11 on page 26. The top dimensional simplices in this tiling are called
chambers.

Definition 1.5 (Roots and reflections) The root system �Xn associated with
the ˜Xn tiling is a collection of pairs of antipodal vectors called roots which
includes one pair ±α normal to each infinite family of parallel hyperplanes
and the length of α encodes the consistent spacing between these hyperplanes.
The G2 root system is shown in Fig. 4. The ˜Xn tiling can be reconstructed
from �Xn root system as follows. For each α ∈ �Xn and for each k ∈ Z,
let Hα,k be a hyperplane {x | x · α = k} orthogonal to α and let rα,k be
the reflection that fixes Hα,k pointwise. The chambers of the tiling are the
connected components of the complement of the union of all such hyperplanes
and the set R = {rα,k} is the full set of reflections in the irreducible Euclidean
Coxeter group W = Cox(˜Xn). The reflections S ⊂ R that reflect in the
facets of a single chamber σ are a minimal generating set corresponding to the
vertices of the ˜Xn Dynkin diagram.
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Euclidean Artin groups 237

Fig. 4 The G2 root system

Definition 1.6 (Coroots and translations) One consequence of these defini-
tions is that a longer root corresponds to a family of hyperplanes that are more
closely spaced. Let tλ be the translation produced by multiplying reflections
associated with adjacent and parallel hyperplanes such as rα,k+1 and rα,k . The
translation vector is amultiple ofα andone can computeλ = ( 2

α·α
)

α. This vec-
tor is called the coroot α∨ corresponding toα. In otherwords, tα∨ = rα,k+1rα,k .

We also record basic terminology for lattices and posets.

Definition 1.7 (Posets) Let P be a partially ordered set. If P contains both
a minimum element and a maximum element then it is bounded. For each
Q ⊂ P there is an induced subposet structure on Q by restricting the partial
order on P . A subposet C in which any two elements are comparable is called
a chain and its length is |C |−1. Every finite chain is bounded and its maximum
and minimum elements are its endpoints. If a finite chain C is not a subposet
of a strictly larger finite chain with the same endpoints, then C is saturated.
Saturated chains of length 1 are called covering relations. If every saturated
chain in P between the same pair of endpoints has the same finite length, then
P is graded. There is also a weighted version where one defines a weight
or length to each covering relation and calls P weighted graded when every
saturated chain in P between the same pair of endpoints has the same total
weight. When varying weights are introduced they shall always be discrete in
the sense that the set of all weights is a discrete subset of the positive reals
bounded away from zero. The dual P∗ of a poset P has the same underlying
set but the order is reversed, and a poset is self-dual when it and its dual are
isomorphic.

Definition 1.8 (Lattices) Let Q be any subset of a poset P . A lower bound for
Q is any p ∈ P with p ≤ q for all q ∈ Q. When the set of lower bounds for
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Fig. 5 A bounded graded
poset that is not a lattice

Q has a unique maximum element, this element is the greatest lower bound or
meet of Q. Upper bounds and the least upper bound or join of Q are defined
analogously. The meet and join of Q are denoted

∧

Q and
∨

Q in general
and u ∧ v and u ∨ v if u and v are the only elements in Q. When every pair
of elements has a meet and a join, P is a lattice and when every subset has a
meet and a join, it is a complete lattice.

Definition 1.9 (Bowties) Let P be a poset. A bowtie in P is a 4-tuple of distinct
elements (a, b : c, d) such that a and b are minimal upper bounds for c and
d and c and d are maximal lower bounds for a and b. The name reflects the
fact that when edges are drawn to show that a and b are above c and d, the
configuration looks like a bowtie. See Fig. 5.

In [6, Proposition 1.5] Tom Brady and the first author noted that a bounded
graded poset P is a lattice if and only if P contains no bowties. The same
result holds, with the same proof, when P is graded with respect to a discrete
weighting of its covering relations. We reproduce the proof for completeness.

Proposition 1.10 (Lattice or bowtie) If P is a bounded poset that is graded
with respect to a set of discrete weights, then P is a lattice if and only if P
contains no bowties.

Proof If P contains a bowtie (a, b : c, d), then c and d have no join and P is
not a lattice. In the other direction, suppose P is not a lattice because x and
y have no join. An upper bound exists because P is bounded, and a minimal
upper bound exists because P is weighted graded. Thus x and y must have
more than one minimal upper bound. Let a and b be two such minimal upper
bounds and note that x and y are lower bounds for a and b. If c is a maximal
lower bound of a and b satisfying c ≥ x and d is a maximal lower bound of
a and b satisfying d ≥ y, then (a, b : c, d) is a bowtie. We know that a and b
are minimal upper bounds of c and d and that c and d are distinct since either
failure would create an upper bound of x and y that contradicts the minimality
of a and b. When x and y have no meet, the proof is analogous. �

We conclude with a remark about subposets. Notice that bowties remain
bowties in induced subposets. Thus if P is not a lattice because it contains
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Euclidean Artin groups 239

a bowtie (a, b : c, d) and Q is any subposet that contains all four of these
elements, then Q is also not a lattice since it contains the same bowtie.

2 Intervals and Garside structures

As mentioned in the introduction, attempts to understand Euclidean Artin
groups of Euclidean type directly have onlymetwith limited success. Themost
promising progress has been by François Digne and his approach is closely
related to the dual presentations derived from an interval in the corresponding
Coxeter group [25]. We first recall how a group with a fixed generating set
naturally acts on a graph and how assigning discrete weights to its generators
turns this graph into a metric space invariant under the group action.

Definition 2.1 (Marked groups) A marked group is a group G with a fixed
generating set S which, for convenience, we assume is symmetric and injects
into G. The (right) Cayley graph of G with respect to S is a labeled directed
graph denoted Cay(G, S) with vertices indexed by G and edges indexed by
G × S. The edge e(g,s) has label s, it starts at vg and ends at vg′ where
g′ = g · s. There is a natural faithful, vertex-transitive, label and orientation
preserving left action of G on its right Cayley graph and these are the only
graph automorphisms that preserve labels and orientations.

Definition 2.2 (Weights) Let S be a generating set for a groupG. We say S is a
weighted generating set if its elements are assigned positive weights bounded
away from 0 that form a discrete subset of the positive reals. The elements
s and s−1 should, of course, have the same weight. For finite generating sets
discreteness and the lower bound are automatic but these are important restric-
tions when S is infinite. One can always use a trivial weighting which assigns
the same weight to each generator. When G is generated by a weighted set S,
its Cayley graph can bemade into a metric space where the length of each edge
is its weight. The length of a combinatorial path in the Cayley group is then
the sum of the weights of its edges and the distance between two vertices is
the minimum length of such a combinatorial path. For infinite generating sets
the lower bound on the weights can be used to bound on the number of edges
involved in a minimum length path and the discreteness condition ensures that
the infimum of these path lengths is actually achieved by some path.

In any metric space, one can define the notion of an interval.

Definition 2.3 (Intervals in metric spaces) Let x, y and z be points in a metric
space (X, d). We say z is between x and y if the triangle inequality is an
equality: d(x, z) + d(z, y) = d(x, y). The interval [x, y] is the collection of
points between x and y, and note that this includes both x and y. Intervals can
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240 J. McCammond, R. Sulway

also be endowed with a partial ordering by defining u ≤ v when d(x, u) +
d(u, v) + d(v, y) = d(x, y).

We are interested in intervals in groups.

Definition 2.4 (Intervals in groups) Let G be a group with a fixed symmetric
discretely weighted generated set and let d(g, h) denote the distance between
vg and vh in the corresponding metric Cayley graph. Note that the symmetry
assumption on the generating set allows us to restrict attention to directed paths.
From this metric on G we get bounded intervals with a weighted grading: for
g, h ∈ G, the interval [g, h]G is the poset of group elements between g
and h with g′ ∈ [g, h]G when d(g, g′) + d(g′, h) = d(g, h) and g′ ≤ g′′
when d(g, g′)+ d(g′, g′′)+ d(g′′, h) = d(g, h). In this article we include the
superscript G as part of the notation since we often consider similar intervals
in closely related groups.

Remark 2.5 (Intervals in Cayley graphs) The interval [g, h]G is a bounded
poset with discrete levels whose Hasse diagram is embedded as a subgraph
of the weighted Cayley graph Cay(G, S) as the union of all minimal length
directed paths from vg to vh . This is because g′ ∈ [g, h]G means vg′ lies on
some minimal length path from vg to vh and g′ < g′′ means that vg′ and vg′′
both occur on a common minimal length path from vg to vh with vg′ occurring
before vg′′ . Because the structure of such a poset can be recovered from its
Hasse diagram, we let [g, h]G denote the edge-labeled directed graph that is
visible inside Cay(G, S). The left action of a group on its right Cayley graph
preserves labels and distances. Thus the interval [g, h]G is isomorphic (as a
labeled oriented directed graph) to the interval [1, g−1h]G . In other words,
every interval in the Cayley graph of G is isomorphic to one that starts at the
identity. We call g−1h the type of the interval [g, h]G and note that intervals
are isomorphic if and only if they have the same type.

Intervals in groups can be used to construct new groups.

Definition 2.6 (Interval groups) Let G be a group generated by a weighted
set S and let g and h be distinct elements in G. The interval group G[g,h] is
defined as follows. Let S0 be the elements of S that actually occurs as labels
of edges in [g, h]G . The group G[g,h] has S0 as its generators and we impose
all relations that are visible as closed loops inside the portion of the Cayley
graph of G that we call [g, h]G . The elements in S \ S0 are not included since
they do not occur in any relation. More precisely, if they were included as
generators, they would generate a free group that splits off as a free factor.
Thus it is sufficient to understand the group defined above. Next note that this
group structure only depends on the type of the interval so it is sufficient to
consider interval groups of the form G[1,g]. For these groups we simplify the
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Euclidean Artin groups 241

notation to Gg and say that Gg is the interval group obtained by pulling G
apart at g.

The interval [1, g]G implicitly encodes a presentation of Gg and various
explicit presentations can be found in [25] and [23]. Dual Artin groups are
examples of interval groups.

Definition 2.7 (Dual Artin groups) LetW = Cox(�) be a Coxeter groupwith
standard generating set S and let R be the full set of reflections with a trivial
weighting. For any fixed total ordering of the elements of S, the product of
these generators in this order is called a Coxeter element and for each Coxeter
element w there is a dual Artin group defined as follows. Let [1, w]W be the
interval in the left Cayley graph ofW with respect to R and let R0 ⊂ R be the
subset of reflections that actually occur in some minimal length factorizations
of w. The dual Artin group with respect to w is the group Ww = Art∗(�, w)

generated by R0 and subject only to those relations that are visible inside the
interval [1, w]W .

An explicit presentation for the dual ˜G2 Artin group is given at the end of
Sect. 5.

Remark 2.8 (Artin groups and dual Artin groups) In general the relationship
between the Artin group Art(�) and the dual Artin group Art∗(�, w) is not
yet completely clear. It is straightforward to show using the Tits representation
that the product of the elements in S that producew is a factorization ofw into
reflections of minimum length which means that this factorization describes
a directed path in [1, w]W . As a consequence S is a subset of R0. Moreover,
the standard Artin relations are consequences of relations visible in [1, w]W
(as illustrated in [5] and in Example 2.9) so that the injection of S into R0
extends to a group homomorphism from Art(�) to Art∗(�, w). See also
Proposition 10.1. When this homomorphism is an isomorphism, we say that
the interval [1, w]W encodes a dual presentation of Art(�).

To date, every dual Artin group that has been successfully analyzed is iso-
morphic to the corresponding Artin group and as a consequence its group
structure is independent of the Coxeter element w used in its construction.
In particular, this is known to hold for all spherical Artin groups [3,9] and
we prove it here for all Euclidean Artin groups as our third main result. It is
precisely because this assertion has not been proved in full generality that dual
Artin groups deserve a separate name. The following example illustrates the
relationship between Artin group presentations and dual presentations.

Example 2.9 (Dihedral Artin groups) The spherical Coxeter groups with two
generators are the dihedral groups. LetW be the dihedral group of order 10with
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242 J. McCammond, R. Sulway

Coxeter presentation 〈a, b | a2 = b2 = (ab)5 = 1〉 where a and b are reflec-
tions of R

2 through the origin with an angle of π/5 between their fixed lines.
The correspondingArtin group has presentation 〈a, b | ababa = babab〉. The
set S = {a, b} is a standard generating set forW and the set R = {a, b, c, d, e}
is its full set of reflections where these are the five reflections in W in cyclic
order. The Coxeter element w = ab is a 2π/5 rotation and its minimum
length factorizations over R are ab, bc, cd, de and ea. The dual Artin group
has presentation 〈a, b, c, d, e | ab = bc = cd = de = ea〉. Systematically
eliminating c, d and e recovers the original Artin group presentation.

The dual presentations for the spherical Artin groups were introduced and
studied by Bessis [3] and by Brady and Watt [9]. Here we pause to record one
technical fact about Coxeter elements in the corresponding spherical Coxeter
groups.

Proposition 2.10 (Spherical Coxeter elements) Let w0 be a Coxeter element
for a spherical Coxeter groupW0 = Cox(Xn) and let R be its set of reflections.
For every r ∈ R there is a chamber in the corresponding spherical tiling and
an ordering on the reflections fixing its facets so that (1) the product of these
reflections in this order is w0 and (2) the leftmost reflection in the list is r .

One reason that dual presentations of Artin groups are of interest is that they
satisfy almost all of the requirements of a Garside structure. In fact, there is
only one property that they might lack.

Proposition 2.11 (Garside structures) Let G be a group with a symmetric
discretely weighted generating set that is closed under conjugation. If for
some element g the weighted interval [1, g]G is a lattice, then the group Gg is
a Garside group. In particular, if W = Cox(�) is a Coxeter group generated
by its full set of reflections with Coxeter element w and the interval [1, w]W
is a lattice, then the dual Artin group Ww = Art∗(�, w) is a Garside group.

The reader should note that we are using “Garside structure” and “Gar-
side group” in the expanded sense of Digne [15,16] rather than the original
definition that requires the generating set to be finite. The discreteness of the
grading of the interval substitutes for finiteness of the generating set. In par-
ticular, the discreteness of the grading forces the standard Garside algorithms
to terminate. The standard proofs are otherwise unchanged. Proposition 2.11
was stated by Bessis in [3, Theorem 0.5.2], except for the shift from finite
to infinite discretely weighted generating sets. For a more detailed discussion
see [3] and particularly the book [13]. Interval groups appear in [12] and in
[13, Chapter VI] as the “germ derived from a groupoid”. The terminology is
different but the translation is straightforward.When an interval such as [1, w]
is a lattice and it is used to construct a Garside group, the interval [1, w] itself
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Euclidean Artin groups 243

embeds in the Cayley graph of the new group G and the element w, viewed
as an element in G, is called a Garside element. Being a Garside group has
many consequences.

Theorem 2.12 (Consequences) If G is a group with a Garside structure in
the expanded sense of Digne, then its elements have normal forms and it has a
finite-dimensional classifying space whose dimension is equal to the length of
the longest chain in its defining interval. As a consequence, G has a decidable
word problem and it is torsion-free.

Proof The initial consequences follow from [17] and [10] with minor modifi-
cations to allow for infinite discretely weighted generating sets, and the latter
ones are immediate corollaries. �

A detailed description of the Garside normal form is never needed, but we
give a coarse description sufficient to state a key property of elements that
commute with the Garside element.

Definition 2.13 (Normal forms) Let G be a Garside group in the expanded
sense used here and with Garside element w. The elements in the interval
[1, w] are called simple elements. For every u ∈ G there is an integer n and
simple elements ui such that u = wnu1u2 · · · uk . If we impose a few additional
conditions, the integer n and the simples ui are uniquely determined by u and
this expression is called its (left-greedy) normal form N F(u). Note that the
integer n might be negative. When this happens, it indicates that the word u
does not belong to the positive monoid generated by the simple elements. The
value of n is the smallest integer such that w−nu lies in this positive monoid.

One consequence of being aGarside group is that the set of simples is closed
under conjugation by w. In fact, conjugation by w is a lattice isomorphism
(but one that typically does not preserve edge-labels) sending each simple to
the left complement of its left complement. In particular, the simple by simple
conjugation of the normal form for u remains in normal form, its product is
uw and by the uniqueness of normal forms, this must be the normal form for
uw. In particular, this proves the following.

Proposition 2.14 (Normal forms) Let G be a Garside group with Garside
element w. For each u ∈ G, the Garside normal form of uw is obtained by
conjugating each simple in the Garside normal form for u. In other words, if
N F(u) = wnu1u2 · · · uk then N F(uw) = wnuw

1 u
w
2 · · · uw

k . In particular, an
element in G commutes with w if and only if its normal form is built out of
simples that commute with w.

There is one final fact about Garside structures that we need in the later
sections, and that is an elementary observation about nicely situated sublattices
of lattices and how they relate to normal forms.
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Proposition 2.15 (Injective maps) Let G ′ be a subgroup of G and let S′ and S
be their conjugacy closed generating sets with S′ ⊂ S. Ifw is an element of G ′
and there is aweighting on S such that (1) both [1, w]G ′

and [1, w]G are lattices
and (2) the inclusion map [1, w]G ′

↪→ [1, w]G is a lattice homomorphism
preserving meets and joins, then the interval groups G ′

w and Gw are both
Garside groups and the natural map G ′

w → Gw is an injection.

Proof First note that there is a naturalmap fromG ′
w toGw because the relations

defining G ′
w are included among the relations that define Gw. For injectivity,

let u be a nontrivial element ofG ′
w with normal form NF(u) = wnu1u2 · · · uk .

Suppose we view this as an expression representing an element of Gw. The
fact that the inclusion of the smaller interval into the larger one preserves
meets and joins means that this expression remains in normal form in this new
context. Therefore the image of u in Gw is also nontrivial and the map is an
injection. �
Part 2. Middle groups

This part focuses on a series of elementary groups that we call “middle groups”
and it establishes their key properties.

3 Permutations and translations

The discrete group of Euclidean isometries generated by all coordinate per-
mutations and all translations by vectors with integer coordinates is a group
that plays an important role in the proofs of our main results. In this section we
record its basic properties and relate it to the spherical Coxeter groupCox(Bn)

which encodes the symmetries of the n-cube.

Definition 3.1 (Cubical symmetries) Let [−1, 1]n denote the points in R
n

where every coordinate has absolute value at most 1. This n-dimensional cube
of side length 2 centered at the origin has isometry group Cox(Bn) also called
the signed symmetric group. It has n2 reflection symmetries. We give these
reflections nonstandard names based on an alternative realization of this group
described below. Let ri j be the reflection which switches the i-th and j-th
coordinates fixing the hyperplane xi = x j and let ti denote the reflection
which changes the sign of the i-th coordinate fixing the hyperplane xi = 0.We
call these collectionsR and T respectively. Together they generate Cox(Bn),
but they are neither a minimal generating set nor all of the reflections. The
remaining reflections are obtained by conjugation. Conjugating ri j by ti , for
example, produces an isometry which switches the i-th and j-th coordinates
and changes both signs fixing the hyperplane xi = −x j .

The unusual names for the reflections are explained by an alternative geo-
metric realization of Cox(Bn) as isometries of an n-torus.
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Definition 3.2 (Toroidal symmetries) Let T n be the n-dimensional torus
formed by identifying opposite sides of the n-cube [−1, 1]n and note that
the previously defined action of action of Cox(Bn) the n-cube descends to T n

and it permutes the 2n special points with every coordinate equal to ±1
2 . In

fact, the action of Cox(Bn) on these 2n special points is faithful. A new action
of Cox(Bn) on T n is obtained by leaving the action of the ri j ∈ R unchanged
and by replacing the “reflection” ti ∈ T with a “translation” which adds 1 to
the i-th coordinate mod 2. This has the net effect of switching the sign of the
i-th coordinate of each special point because the translation x �→ x + 1 in
R/2Z switches 1

2 and −1
2 . Since the elements in R ∪ T act on the 2n special

points as before, they generate the same group up to isomorphism.

The groupwewish to discuss is generated by lifts of these toriodal isometries
to all of R

n .

Definition 3.3 (Permutations and translations) Let ri j act on R
n as before

and let ti denote the translation which adds 1 to the i-th coordinate leaving
the others unchanged. The reflectionsR = {ri j } and the translations T = {ti }
generate a groupMid(Bn) that we call the middle group or more formally the
annular symmetric group. The names are explained below. The isometries in
R generates the symmetric group Symn and the isometries in T generate a
free abelian group Z

n . Moreover, because the Z
n subgroup generated by the

translations is normalizedby the permutations inSymn with trivial intersection,
the full group Mid(Bn) has the structure of a semidirect product Z

n
� Symn .

Every element of Mid(Bn) can be written uniquely in the form tλrπ where
λ ∈ Z

n is a vector with integer entries and π ∈ Symn is a permutation.

Definition 3.4 (Reflections) As in Cox(Bn) there are other reflections in
Mid(Bn) obtained by conjugation. The basic translations in T are closed under
conjugation but infinitely many new reflections are added toRwhen we close
this set under conjugation. For example, t1r12t

−1
1 is a reflection whose fixed

hyperplane is parallel to that of r12. We call this reflection r12(1). More gener-
ally, for each integer k we define ri j (k) := tki ri j t

−k
i = t−k

j ri j t kj . The original
reflections are ri j = ri j (0). Let R′ denote the set of all these reflections. The
setR′ ∪ T is called the full generating set of Mid(Bn).

The center of a middle group is easy to compute.

Proposition 3.5 (Center)The center of themiddle groupMid(Bn) is an infinite
cyclic subgroup generated by the pure translation t1 = ∏n

i=1 ti .

Proof Let u = tλrπ be an element in the center. Ifπ is a nontrivial permutation
and i is an index that is moved by π then u conjugates ti to tπ(i), contradiction.
Thus u must be a pure translation tλ. In order for tλ to be central λ must
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Fig. 6 The configuration
that explains the name
annular symmetric group

be orthogonal to all of the roots of the reflections and thus in the direction
1 = 〈1n〉. In particular, the center is contained in the infinite cyclic subgroup
generated by t1 = ∏n

i=1 ti which adds 1 to every coordinate. Conversely, t1
commutes with every element of M . �

We call the spherical Artin groupArt(Bn) an annular braid group because
it is the braid group of the annulus in the sense of Birman [4, p. 11]. The
analogous definition of an annular symmetric group leads to an alternative
perspective on the group Mid(Bn).

Definition 3.6 (Annular symmetric groups) Let N be an annulus, let D be a
disk contained in N and let pi , i ∈ {1, 2, . . . , n} be a set of n distinct points in
D. See Fig. 6. The annular braid group is defined as the fundamental group of
the configuration space of n unordered distinct points in the annulus with this
configuration as its base point. It keeps track of the way in which the points
braid around each other well as how much they wind around the annulus. An
annular symmetric group ignores the braiding and only keeps track of how the
points permute and wind around the annulus. More concretely, if we define ri j
as the motion which swaps pi and p j without leaving the disk D and define
ti as the motion which wraps the point pi once around the annulus N in the
direction considered positive in its fundamental group, then the elements of
this group can be identified with the elements ofMid(Bn) and its normal form
tλrπ can be recovered as follows. The permutationπ records the permutation of
the points and the vector λ is a tuple of winding numbers obtained by viewing
the path of the point pi as a (near) loop that starts and ends in the disk D and
letting its winding number be the i-th coordinate of λ.

The name “middle group” refers to its close connections with various other
groups as shown in Fig. 7.

Remark 3.7 (Affine braid groups) Since the groups Cox(An−1) and
Art(An−1) are symmetric groups and braid groups, we call their natural
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Fig. 7 Middle groups and
their relatives

Euclidean extensions, the Euclidean symmetric group Cox(˜An−1) and the
Euclidean braid group Art(˜An−1). The name “affine braid group” often
appears in the literature but its meaning is not stable. For geometric group
theorists it refers to the Euclidean braid group Art(˜An−1) [11] but for
representation theorists it refers to the annular braid group Art(Bn) [26].
Our alternative names aim to limit this potential confusion. The adjective
“Euclidean” also highlights that the Coxeter group preserves lengths and
angles.

The maps in Fig. 7 are easy to describe.

Definition 3.8 (Maps) The map from Mid(Bn) onto Cox(Bn) can be seen
geometrically. The squares of the basic translations in T generate a normal
subgroup K ∼= (2Z)n inMid(Bn) and if we quotient Rn by the action of K the
result is the n-torus T n . The kernel of the induced action ofMid(Bn) on T n is
K and the action itself is easily seen to be the toroidal action of Cox(Bn) on
T n . To understand the horizontal map from Cox(˜An−1) to Mid(Bn) we note
that the reflections in Mid(Bn) acting on the hyperplane in R

n perpendicular
to the vector 1 = 〈1n〉 is the standard realization of the Euclidean symmetric
group Cox(˜An−1). Its image in Mid(Bn) is normal and the quotient sends
u ∈ Mid(Bn) to the sum of the coordinates of the image of the origin under u.
We call the map fromMid(Bn) � Z the vertical displacement map. The map
fromArt(Bn) toMid(Bn) is clear when these are viewed as the annular braid
group and annular symmetric group and the horizontal maps along the top
row are well-known [11]. More precisely, the map from Art(Bn) to Z sends
elements to the sum of the winding numbers of the various paths from the disk
to itself and the kernel of thismap, the set of annular braidswith globalwinding
number 0 is the group Art(˜An−1). We call the map from Art(Bn) � Z the
global winding number map.

The middle column of Fig. 7 can be understood via presentations.

Definition 3.9 (Presentation) A standard minimal generating set forMid(Bn)

consists of adjacent transpositions S = {ri j | j = i + 1} ⊂ R and the
single translation t1. The set S generates all coordinate permutations and the
other basic translations can be obtained by conjugating t1 by a permutation.
There are a number of obvious relations among these generators in addition
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Fig. 8 Dynkin-diagram style presentations for the three groups Art(B5),Mid(B5) and
Cox(B5). In these diagrams solid circles indicate generators of order 2 and empty circles
indicate generators of infinite order

to the standard Coxeter presentation for the symmetric group. For example,
t1 commutes with ri j for i, j > 1 and t1r12t1r12 = r12t1r12t1 since both
motions are translations which add 1 to the first two coordinates leaving the
others unchanged. These relations can be summarized in a diagram following
the usual conventions: generators label the vertices, vertices not connected
by an edge indicate generators which commute, vertices connect by a single
edge indicate generators a and b which “braid” (i.e. aba = bab) and vertices
connected by a double edge indicate generators a and b which satisfy the
relation abab = baba. For Coxeter groups, the generators have order 2 and
forArtin groups they have infinite order. Themiddle groups are amixed case: t1
has infinite order but the adjacent transpositions have order 2. See Fig. 8. It is an
easy exercise to show that the relations encoded in the diagram forMid(Bn) are
a presentation and as a consequence the surjections fromArt(Bn) toMid(Bn)

to Cox(Bn) become clear. Also note that the composition of these maps is the
standard projection map from Art(Bn) to Cox(Bn).

And finally we record a slightly more general context where groups isomor-
phic to middle groups arise. These are the exact conditions which occur in the
later sections.

Proposition 3.10 (Recognizing middle groups) Suppose the symmetric group
Symn acts faithfully by isometries on an m-dimensional Euclidean space with
root system � and m ≥ n. In addition, let r be an element of a Coxeter
generating set S for Symn representing one of two ends of the corresponding
Dynkin diagram (so that r does not commute with exactly one element of S).
If t = tλ is a translation such that t does not commute with r, t does commute
with the rest of S, and λ is not in the span of root system �, then the group of
isometries generated by S ∪ {t} is isomorphic toMid(Bn).

Proof Let G be the group generated by these elements. First pick a point fixed
by Symn to serve as our origin and consider the n-dimensional subspace ofR

m

through this point spanned by the vectors � ∪ {λ}. Because S ∪ {t} preserves
this subspace and fixes its orthogonal complement, the same is true for the
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group G that these isometries generate. Thus we may restrict our attention to
this subspace. Next establish a coordinate system on this R

n so that Symn is
acting by coordinate permutations with the elements of S switching adjacent
coordinates and r = r12. From the conditions imposed on t we know that in
this coordinate system λ = (a, b, b, . . . , b) with a �= b. Finally, note that
the generators of G (and thus every element of G) commute with the linear
maps which fix the codimension one subspace spanned by � and rescale the
vectors perpendicular to this subspace, i.e. the vectors with all coordinates
equal. After conjugating G by the appropriate such map, we get the standard
realization ofMid(Bn) andbecause this conjugation is reversible the groups are
isomorphic. �

4 Intervals and noncrossing partitions

Section 3 discussed the groups Cox(Bn),Mid(Bn) and Art(Bn), the maps
between them, and a consistently labeled minimal generating set {t1} ∪ S with
S = {ri j | j = i + 1}. In this section we investigate intervals in these groups
and relate them to noncrossing partitions.

Definition 4.1 (Special elements) Recall that a Coxeter element is a element
obtained by multiplying together the elements of some Coxeter generating set
in a Coxeter group in some order and that for spherical Coxeter groups, or
more generally for Coxeter groups whose Dynkin diagram is a tree, all Cox-
eter elements belong to a single conjugacy class. For the group Cox(Bn) we
pick as our standard Coxeter element w the product on the standard minimal
generating set in the order they appear in the Dynkin diagram: t1, r12, r23, and
so on. Thus, for Cox(B5), shown in Fig. 8, we have w = t1r12r23r34r45
and since we compose these as functions (from right to left) the element
w sends the point (x1, x2, x3, x4, x5) to the point (−x5, x1, x2, x3, x4). The
groups Mid(Bn) and Art(Bn) have analogues of the standard Coxeter ele-
ment obtained by multiplying the corresponding generators together in the
same fashion. InMid(B5) the resulting Euclidean isometryw = t1r12r23r34r45
sends the point (x1, x2, x3, x4, x5) to the point (x5 + 1, x1, x2, x3, x4) which
is consistent with the reinterpretation of t1 as a translation. We call w the spe-
cial element in all three contexts but in Cox(Bn) it is more properly called a
Coxeter element and in Art(Bn) it is a dual Garside element.

Definition 4.2 (Noncrossing partitions) A noncrossing partition is a partition
of the vertices of a regular convex polygon so that the convex hulls of distinct
blocks are disjoint. A noncrossing partition of type B is a noncrossing partition
of an even-sided polygon whose blocks are symmetric with respect to a π -
rotation about its center. Figure 9 shows a type B noncrossing partition. One
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Fig. 9 A centrally
symmetric noncrossing
partition in a regular convex
decagon

partition is belowanother if every blockof thefirst is contained in someblockof
the second. Thus the partition where every block is a singleton is the minimum
element and the partition with only one block is the maximum element.

It is well-known, at this point, that the type B noncrossing partitions corre-
spond to the special interval in the type B Coxeter group [27].

Lemma 4.3 (Type B intervals) If W = Cox(Bn) is the type B Coxeter group
generated by all of its reflections and w is its special element, then there is
a natural identification of the interval [1, w]W and the type B noncrossing
partitions of a 2n-gon.

Proof Every element inW is determined by how it permutes the 2n unit vectors
{±ei } on the coordinate axes and under the elementw these form a single cycle
of length 2n: it sends ±ei to ±ei+1 for i < n and ±en to ∓e1. If we label the
vertices of a 2n-gon with the vectors in {±ei } so that w permutes them in a
clockwise fashion (the case n = 5 is shown in Fig. 9), then the interval [1, w]W
is isomorphic as a poset to the type B noncrossing partitions of this 2n-gon. The
identification goes as follows: associate to each type B noncrossing partition
the unique element of W which sends the vector ei to the vector which occurs
next in clockwise order in the boundary of the block to which ei belongs. For
example, the element u corresponding to the partition shown in Fig. 9 sends
e1 to e1, e2 to −e4, e3 to −e3 and e4 to e5 and e5 to −e2. Conversely, u ∈ W
lies in the interval [1, w]W if and only if the orbits of these vectors under u
form noncrossing blocks which u rotates in a clockwise manner. �

The following is thus only a minor extension of known results.

Theorem 4.4 (Special intervals) Let W = Cox(Bn), M = Mid(Bn) and
A = Art(Bn) be the Coxeter group of type B, the middle group, and the
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Artin group of type B with their standard full generating sets and let w denote
the special element in all three contexts. The intervals [1, w]W , [1, w]M and
[1, w]A are isomorphic as labeled posets and their common underlying poset
structure is that of the type B noncrossing partition lattice. As a consequence,
the group obtained by pulling a middle group apart at its special element is
an annular braid group.

Proof It is well known that the intervals [1, w]W and [1, w]A are isomorphic as
labeled posets, that their common underlying poset is the type B noncrossing
partition lattice and that A is the group whose presentation is encoded in
[1, w]W . This is essentially what is meant when we say that spherical Artin
groups have dual Garside presentations. In particular, the final assertion is
immediate once we show that [1, w]M is isomorphic to the others as a labeled
poset. Showing that all the factorizations in [1, w]W lift from a factorization of
an isometry of the n-torus T n to a factorization of the corresponding isometry
of R

n and that no new factorizations arise is an easy exercise. �
These noncrossing diagrams make it easy to show that very few simples

commute with the special element.

Proposition 4.5 (Commuting withw) Let G be the groupCox(Bn),Mid(Bn)

or Art(Bn) with its standard generating set and let w be its special element.
The only elements in [1, w]G that commute with w are the bounding elements
1 and w.

Proof If an element u in [1, w]G commutes with w then it must correspond to
a centrally symmetric noncrossing partition of a 2n-gon that is invariant under
a π

n -rotation since this is how conjugation byw acts on the type B noncrossing
partitions. The only noncrossing partitions left invariant under this action are
the partition in which every vertex belongs to a distinct block and the partition
in which all the vertices belong to single block, and these correspond to 1 and
w respectively. �
Remark 4.6 (Generators and relations) The generators and relations visible
inside [1, w]M can be given more explicitly. The edge labels in the interval
[1, w]W are exactly the n2 reflection generators of W = Cox(Bn) but this
finite set is far from the full (infinite) generating set of M = Mid(Bn). In
fact, the only elements which appear are T = {ti },R = {ri j } and the set
R(1) = {ri j (1)}. The element ti corresponds to the diagonal edge connecting
ei and −ei , the element ri j corresponds to the pair of edges connecting ±ei to
±e j and the element ri j (1) corresponds to the pair of edges connecting ±ei
to ∓e j . If two generators correspond to edges which are completely disjoint,
then there exists a commutation relation visible in the interval [1, w]M . For
example, the length four cycle t1r23 = r23t1 can be found inside [1, w]M .
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If two generators correspond to pairs of nondiagonal edges with only one
endpoint in common, then dual braid relations are visible inside [1, w]M of
the following form: there are three generators a, b and c with ab = bc = ca
visible in the interval. To illustrate, the generators r45 and r25(1) share an
endpoint and we have relations r45r25(1) = r25(1)r24(1) = r24(1)r45 and so
r45 and r25(1) braid in the corresponding interval group. Finally, the generators
ti , ri j , t j and ri j (1) (with i < j) satisfy a dual Artin relation of length 4:
ti ri j = ri j t j = t j ri j (1) = ri j (1)ti . These relations, taken together, are a
complete presentation for the spherical Artin group Art(Bn).

Our final result in this section gives a new perspective on the horizontal
maps between the first two columns of Fig. 7.

Proposition 4.7 (Horizontal maps) If M = Mid(Bn) is a middle group with
special element w, then (1) the reflections labeling edges in [1, w]M generate
a copy ofCox(˜An−1) inside M, (2) the group generated by these elements and
subject only to the relations among them visible in [1, w]M is isomorphic to
Art(˜An−1), and (3) the natural projection map from this group to M factors
through and injects into the annular braid group Art(Bn).

Proof The reflections labeling an edge in [1, w]M are {ri j } ∪ {ri j (1)} and
the subset {ri j | j = i + 1} ∪ {r1n(1)} is already sufficient to generate the
Cox(˜An−1) subgroupofM since they bound a chamber in the ˜An−1 tiling of the
hyperplane orthogonal to the vector 1 = 〈1n〉. Next, notice that these elements
correspond to the boundary edges of the 2n-gon forw. As such they never cross
and either braid or commute depending on whether or not they have endpoints
in common. Thus the group defined by just these generators and relations is
isomorphic to the group Art(˜An−1). It is now straightforward to check the
other generators and relations are consistent with this identification and what
we have described is the standard copy of Art(˜An−1) inside Art(Bn). �
Part 3. New Groups

In this part we introduce several new groups closely related to each irreducible
Euclidean Coxeter group and its corresponding Artin group.

5 Intervals in Euclidean Coxeter groups

LetW = Cox(˜Xn) be an irreducible Euclidean Coxeter group with reflections
R and Coxeter element w. The coarse structure of the interval [1, w]W was
determined in the earlier articles [7] and [25] and in this section we recall the
revelant definitions and results. The first article, by Noel Brady and the first
author characterized the set of all possible minimum length factorizations of
a fixed Euclidean isometry into arbitrary reflections and the second showed
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that Coxeter intervals in irreducible Euclidean Coxeter groups are subposets
of the unrestricted intervals analyzed in the first article. We begin by recalling
the distinction between points and vectors.

Definition 5.1 (Points and vectors) Let V denote an n-dimensional real vec-
tor space with the standard positive definite inner product and let E be the
corresponding Euclidean analogue where the location of the origin has been
forgotten leaving only a simply transitive action of V on E . The elements of
V are called vectors and the elements of E are called points. Ordered pairs of
points in E determine a vector in V .

In [7] Euclidean isometries are analyzed in terms of their two basic invari-
ants: min-sets in E and move-sets in V .

Definition 5.2 (Basic invariants) Let u be an isometry of E . If λ is the vector
from x to u(x) then we say that x is moved by λ under u. The collection
Mov(u) = {λ | x + λ = u(x)} ⊂ V of all such vectors is the move-set of
u. The subset Mov(u) is an affine subspace of V and for each λ ∈ Mov(u)

the points of E moved by λ form an affine subspace of E [7, Proposition 3.2].
In particular, there is a unique vector μ inMov(u) of minimal length and the
corresponding points in E form the min-set of u,Min(u). An isometry u is
elliptic under the equivalent conditions that the vector μ is trivial, Mov(u)

contains the origin in V and there are points fixed by u. For elliptic isometries
we sometimes write Fix(u) instead ofMin(u). Isometries that are not elliptic
are called hyperbolic.

Let L = Isom(E) be the Lie group of all Euclidean isometries. The main
results in [7] analyze the structure of the intervals in Isom(E) with all reflec-
tions as its (trivially weighted) generating set. We call the interval [1, w]L an
ellptic or hyperbolic interval depending on the nature of w. In both cases,
the elements of the intervals and the ordering can be precisely described in
terms of their basic invariants. See [7] for details. In this article we only need
the coarse structure of hyperbolic intervals where w has maximal reflection
length, and in this context we define horizontal and vertical directions.

Definition 5.3 (Horizontal and vertical) If w is a hyperbolic isometry whose
min-set is a line, then the direction this line is translated is declared to be
vertical and the orthogonal directions are horizontal. A reflection, or more
generally an elliptic isometry is called horizontal if every point moves in a
horizontal direction and it is vertical otherwise. Thus a vertical elliptic isometry
merely needs to have some vertical component to the motion of some point.

A Coxeter element for the ˜G2 tiling is a glide reflection and thus an isometry
of this type (see Fig. 11). Of the 6 families of parallel reflections there is one
family of horizontal reflections and five families of vertical reflections. These
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Fig. 10 Coarse structure of
a hyperbolic interval

can be distinquished by whether or not their fixed hyperplanes cross the glide
axis.

Definition 5.4 (Coarse structure) Let L = Isom(E) be the Lie group of all
Euclidean isometries and let w be a hyperbolic Euclidean isometry whose
min-set is a line. For each element u in the interval [1, w]L we consider the
pair (u, v) where uv = w. There are exactly three possible cases: (1) u is a
horizontal elliptic isometry and v is hyperbolic, (2) both u and v are vertical
elliptic isometries, and (3) u is hyperbolic and v is horizontal elliptic. These
form the three rows of the coarse structure of the interval arranged frombottom
to top and shown in Fig. 10. The bottom row is graded by the dimension of the
fixed set of u from the identity element on the left to the elliptics fixing only
a vertical line on the right. The middle row has a similar grading: from those
that fix a non-vertically invariant hyperplane on the left to those fixing only a
single point on the right. Alternatively, we could focus on v instead of u. The
v on the left end of the middle row fix only a point and the v on the right fix a
non-vertically invariant hyperplane. Finally, the top row is also graded by the
fixed set of v: from v fixing a vertical line on the left to v equal to the identity
on the right. For every affine subspace of E there is exactly one elliptic u in
one of the bottom two rows whose fix-set is this subspace. Similarly, there is
exactly one elliptic v in one of the top two rows whose fix-set is this subspace.
Covering relations correspond to one horizontal or one vertical step in this
grid. Elements higher in the poset order are above and/or to the right while
those lower down are down and/or to the left. Finally, note that the second
box on the bottom row contains the horizontal reflections, the first box in the
middle row contains the vertical reflections, and the first box on the top row
contains pure translations.

It turns out that for any irreducible Euclidean Coxeter groupW = Cox(˜Xn)

with reflections R and Coxeter element w, the Coxeter interval [1, w]W is a
subposet of the corresponding hyperbolic interval in the full Euclidean isom-
etry group [25]. In particular, it has the same basic structure.

Definition 5.5 (Coxeter intervals) As described in [25], the min-set of the
Coxeter elementw is a line 	 called theCoxeter axis. Every point on this line is
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contained in the interior of some top-dimensional simplex, except for a discrete
set of equally spaced points xi for i ∈ Z. The simplices throughwhich 	 passes
are called axial simplices and the vertices of these simplices are axial vertices.
The reflections which occur as edge labels in the interval [1, w]W are precisely
those that contain an axial vertex in its fixed hyperplane [25, Theorem 9.6].
This includes all of the vertical reflections inW but only a finite number of the
horizontal ones. We call these sets RV and RH respectively. Since the Coxeter
axis passes through the interior of top-dimensional simplices, it does not lie
on the hyperplane of any horizontal reflection. For each family of parallel
horizontal reflections, the only ones in the interval are the ones determined by
the adjacent pair of hyperplanes which contain the Coxeter axis between them.
In other words, there are precisely two horizontal reflections in the interval for
each antipodal pair of horizontal roots in the root system.

The next lemma records a slightly technical fact about roots and axial ver-
tices that generalizes the observation above about horizontal reflections. It was
verified by computer for the sporadic types and by hand for the infinite families.

Lemma 5.6 (Convexity) Let W = Cox(˜Xn) be an irreducible Euclidean
Coxeter group with Coxeter element w and let r be a reflection that contains
at least one axial vertex in its fixed hyperplane H. If α is a root in the type
Xn root system such that α has a positive dot product with the direction of
the Coxeter axis and the image of α under the reflection r has a negative
dot product with the direction of the Coxeter axis, then the convex hull of the
axial vertices contained in H lies between two consecutive hyperplanes in the
Coxeter complex with normal vector α.

Heuristically, the reason why Lemma 5.6 is true is that there are Coxeter
elements whose axial vertices overlap with this set of axial vertices in the
hyperplane H and in this alternative world, the consecutive reflections with
normal vector α are horizontal with respect to the other Coxeter element and
bound its column of axial vertices.

Example 5.7 (˜G2 interval) The ˜G2 tiling of the plane is shown in Fig. 11 with
various aspects highlighted. The Coxeter elementw is a glide reflection whose
glide axis is its min-set. This is shown as a dashed line. The heavily shaded tri-
angles are the axial simplices ofw and the large dots indicate the axial vertices.
The lightly shaded vertical strip is the convex hull of the axial vertices and it
is bounded by the only two horizontal reflections which occur in the Coxeter
interval. The coarse structure of the interval is shown in Fig. 12. The numbers
along the top and bottom rows represent the finite number of elements of each
type in the interval. Thus, RH contain two horizontal reflections and T contains
two pure translations. The middle row requires a more detailed explanation.
The convex hull has a structure which repeats vertically and the numbers in
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Fig. 11 The ˜G2 tiling of the
plane with annotations
corresponding to a particular
Coxeter element w

Fig. 12 Coarse structure of
the ˜G2 interval

the middle row record how many distinct local situations there are in each
box. For example, there are infintely many vertical reflections in the interval
but only six different types and there are infinitely many elliptic isometries in
the interval that fix a single point but only six different types. In the former
case the reflections are mostly distinguished by their slope but there are two
with horizontal fixed lines that have distinct local neighborhoods. Similarly,
in the latter case the rotations are mostly distinguished by the horizontal dis-
placement of their fixed point except that there are two distinct types of fixed
points along the Coxeter axis itself. Both of these are π -rotations about their
fixed point but they have distinct local neighborhoods and thus decompose
into distinct types of reflections.

The coarse structure of the Coxeter interval in the largest of the sporadic
Euclidean Coxeter groups offers a more substantial illustration.

Example 5.8 (˜E8 interval) The coarse structure of theCoxeter interval [1, w]W
for the group W = Cox(˜E8) is shown in Fig. 13. From the figure we see that
it contains 28 horizontal reflections, 30 pure translations and 270 infinite fam-
ilies of similarly situated vertical reflections. In general, the numbers along
the top and bottom refer to the number of individual elements in that box and

123



Euclidean Artin groups 257

Fig. 13 Coarse structure of the ˜E8 interval

the numbers in the middle row refer to number of infinite families of simi-
larly situated elliptic elements. We should note representatives of the roughly
quarter-million types summarized in the figure were computed by a program
euclid.sage written by the first author and available upon request.

We conclude this section by reviewing an explicit presentation for the dual
Euclidean Artin group derived from the Hurwitz action of the braid group on
factorizations of w.

Definition 5.9 (Hurwitz action) Because reflections in W are closed under
conjugation, factorizations in [1, w]W can be rewritten in many ways and, in
fact, there is an action of the braid group on the minimal length factorizations
of w called the Hurwitz action. The i-th standard braid generator replaces the
two letter subword ab in positions i and i + 1 with the subword ca where
c = aba−1 and it leaves the letters in the other positions unchanged. It is easy
to check that this action satisfies the relations in the standard presentation of
the braid group.

When a standard braid generator replaces abwith ca inside aminimal length
factorization ofw, the relation ab = ca is visible in [1, w]W . Such a relation is
called a Hurwitz relation or a dual braid relation. When the Hurwitz action is
transitive on factorizations, these relations are sufficient to define the interval
group Ww [25, Proposition 3.2] and we call this the Hurwitz presentation. In
2010 Igusa and Schiffler proved transitivity of the Hurwitz action on reflection
factorizations of Coxeter elements in Coxeter groups in complete generality
[21] and in 2014 a short proof of this general fact was posted by Baumeister
et al. [2]. As an illustration, we give the Hurwitz presentation of the dual ˜G2
Artin group.We start with the generators. The dual generators are closely con-
nected to theCoxeter axis ofw andwe introduce a notation that reflects this fact.

Definition 5.10 (Dual ˜G2 generators) In the case of ˜G2 we use the letters
a through f to indicate the slope of its fixed line in the ascending order:
−√

3, −1√
3
, 0, 1√

3
,
√
3 and ∞, respectively. See Fig. 11. Next, recall that the
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hyperplanes of the vertical reflections intersect the axis in an equally spaced
set of points xi for i ∈ Z [25, Section 8]. We use subscripts on the vertical
reflections that indicates which xi its hyperplane contains. Note that not every
combination of letter and subscript actually occurs. For ˜G2 we let x0 be the
intersection of one of the horizontal lines with the axis, specifically one which
intersects an axial vertex on the lefthand side of the shaded vertical strip. There
are only two horizontal reflections in the interval [1, w]W and we call these f−
and f+. Putting this all together, the dual generators of Art∗(˜G2, w) are the
set {ai , b j , ck, di , e j , f	} where i = 1 mod 4, j = 3 mod 4, k = 0 mod 2
and 	 ∈ {+, −}.

The periodicity of the subscripts corresponds to the fact that there is a power
of w which acts as a pure translation in the direction of the Coxeter axis. In
Cox(˜G2) this power is w2 and the action of w2 on the plane shifts the point
xi to xi+4.

Definition 5.11 (Dual ˜G2 relations) The dual braid relations in the ˜G2 case
are obtained by factoring the elements in the interval [1, w]W of reflection
length 2. In the coarse structure, the elements to be factored belong to the third
box in the bottom row, the second box in the middle row and the first box in
the top row. The first type does not occur in ˜G2. The third type are the pure
translations and they have infinitely many factorizations. In the case of ˜G2
there are exactly two translations in the interval and their factorizations are as
follows.

· · · = a9a5 = a5a1 = a1a−3 = a−3a−7 = · · ·
· · · = e11e7 = e7e3 = e3e−1 = e−1e−5 = · · · (1)

It only remains to list the factorizations of the 6 infinite families of elliptic
elements that correspond to the second box in the middle row. In the ˜G2 case,
these are rotations that fix a single point. Representative sets of equations are
as follows.

a1d1 = d1a1
b3e3 = e3b3
c2a1 = e3c2 = a1e3
a1c0 = e−1a1 = c0e1

a−3 f− = b−1a−3 = c0b−1 = d1c0 = e3d1 = f−e3
e−1 f+ = d1e−1 = c2d1 = b3c2 = a5b3 = f+a5 (2)

To get all of the equations in the six infinite families, one should pick an
arbitrary multiple of 4 and consistently add it to each of the subscripts in each
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of six lines of equations above. This corresponds to the vertical shift which
conjugation by w2 produces. The +/− subscripts remain underchanged since
these reflections are invariant under vertical translation.

6 Horizontal roots and factored translations

In this section we describe the roots that are horizontal with respect to the
axis of a Coxeter element and we use their geometry to define a series of
crystallographic groups acting geometrically on Euclidean space. Although
Coxeter elements are usually defined as a product of the reflections fixing the
facets of a chamber in the Coxeter tiling, there are other factorizations and one
in particular where most of the reflections are horizontal with respect to its
axis.

Definition 6.1 (Horizontal roots) Ifw is a Coxeter element for the irreducible
EuclideanCoxeter groupW = Cox(˜Xn), thenw has a factorization into a pure
translation and n−1 horizontal reflections. To see this we start with a standard
factorization such as w = rα,1w0 where rα,1 is the reflection corresponding
to the root α used to extend the Dynkin diagram Xn shifted so it does not
fix the origin and w0 is a Coxeter element of the spherical Coxeter group
W0 = Cox(Xn). By Proposition 2.10 we can find an alternative factorization
of w0 as the product of a Coxeter generating set whose leftmost reflection
is rα . Thus we can write w0 = rαwh where wh is a Coxeter element of a
maximal parabolic subgroup of W0. This means that w = rα,1rαwh = tα∨wh .
Since the element wh is an elliptic isometry fixing a line and t = tα∨ is a
pure translation, the fixed line of wh must be parallel to the Coxeter axis of w.
As a consequence the n − 1 reflections multiplied together to produce wh are
horizontal with respect to the axis of w. Moreover, since the fixed line of wh
passes through the fixed point of w0 and every family of parallel hyperplanes
contains one which passes through this fixed point, these n − 1 horizontal
reflections generate a group Wh with one representative from every parallel
family of horizontal reflections in W . In other words, all reflections in Wh
are horizontal and every horizontal reflection is parallel to one in Wh . We call
Wh the horizontal Coxeter group and w = tα∨wh a horizontal factorization
of w. The horizontal roots associated to these reflections are a root system
described by the diagram for Wh , and this diagram is the diagram forW0 with
an additional vertex removed, the one shown in Figs. 2 and 3 as a large shaded
dot. We call the corresponding root the vertical root.

Remark 6.2 (Finding vertical roots) The vertical roots were first found in [25]
on a case-by-case basis but once the principles are clear they can be eas-
ily spotted. Because the simple system for W0 used to create the horizontal
factorization spans a positive cone, the vertical root should be as close to hori-
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zontal as possible. This favors branch points and vertices involved in multiple
bonds, specifically the end corresponding to the longer root. This rule uniquely
determines the vertice root in all cases except in type Awhere there are distinct
conjugacy classes of Coxeter element that lead to distinct choices of vertical
root.

The next proposition records some basic facts about the pure translations
that occur in the interval [1, w]W of an irreducible Euclidean Coxeter group
W . These are easily checked by hand for the infinite families and by computer
for the sporadic types.

Proposition 6.3 (Pure translations below w) If W = Cox(˜Xn) is an irre-
ducible Euclidean Coxeter group with Coxeter element w, then every pure
translation t contained in the interval [1, w]W is the translation part of some
horizontal factorization of w. Moreover, if t = r ′r is a factorization of t into a
pair of reflections, then r ′ = (w p)r(w−p) where w p is the smallest power of
w which acts on the Coxeter complex as a pure translation. In fact, all factor-
izations of t in [1, w]W are of the form t = ri+1ri where ri = (wi p)r(w−i p)

for some integer i .

Definition 6.4 (Components) The structure of the horizontal root system is
listed inTable 1 for each irreducible type andnote that the number of irreducible
components varies from one to three. The groups of type ˜Cn, ˜An (with q = 1)
and ˜G2 have a single component, the groups of type ˜Bn, ˜An (with q ≥ 2)
and ˜F4 have two components, and the groups of type ˜Dn, ˜E6, ˜E7 and ˜E8 have
three components. We orthogonally decompose the space V of vectors into
components as follows: V = V0⊕· · ·⊕Vk where V0 is the line spanned by the
direction of the Coxeter axis and the components Vi for 1 ≤ i ≤ k correspond
to the subspaces spanned by the irreducible components of the horizontal root
system. Since every horizontal reflection corresponds to a root in exactly one
of component Vi , we can partition any minimal Coxeter generating set SH for
Wh and the full set of reflections RH into disjoint subsets S(i)

H and R(i)
H .

It was an early hope that every dual Artin group would be a Garside group,
but it was shown in [25] that this is not always the case, even when attention
is restricted to Artin groups of Euclidean type. It turns out that the number of
components of the horizontal root system is crucial.

Remark 6.5 (Garside structures) In [25] the first author proved that the unique
dual presentation of Art(˜Xn) is a Garside structure when X is C or G and it
is not a Garside structure when X is B, D, E or F . When the group has type
A there are distinct dual presentations and the one investigated by Digne is the
only one that is a Garside structure. The positive results for types A and C are
due to Digne. The negative results are a direct consequence of horizontal root
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Table 1 The structure of the
horizontal root system for
each irreducible Euclidean
Coxeter group Cox(˜Xn)

Type Horizontal root system

An �Ap−1 ∪ �Aq−1

Cn �An−1

Bn �A1 ∪ �An−2

Dn �A1 ∪ �A1 ∪ �An−3

G2 �A1

F4 �A1 ∪ �A2

E6 �A1 ∪ �A2 ∪ �A2

E7 �A1 ∪ �A2 ∪ �A3

E8 �A1 ∪ �A2 ∪ �A4

For the group of type An we
list the structure of system of
roots horizontal with respect
to the axis of the
(p, q)-bigon Coxeter
elements defined in [25]

systems with more than one irreducible component. The reducibility leads
directly to a failure of the lattice condition [25, Theorem 10.3]. Knowing
explicitly how and why the lattice property fails led to the groups we introduce
below. The second author worked out the structure of the Artin group of type
˜B3 along the lines presented here in his dissertation under the supervision of
the first author and it is these arguments that have now been generalized to
arbitrary Artin groups of Euclidean type [32].

Definition 6.6 (Diagonal translations) Let w be a Coxeter element in an irre-
ducible Euclidean Coxeter group W = Cox(˜Xn) and let w = tλwh be a
horizontal factorization of w. We call the translation tλ a diagonal translation
because λ projects nontrivially to each of the components Vi 0 ≤ i ≤ k. The
vector λ projects nontrivially to V0, the direction of the Coxeter axis, because
w translates the axis vertically but the element wh only moves points horizon-
tally. And λ projects nontrivially to each horizontal component Vi with i > 0
because the vertical root is connected by an edge to each component of the
horizontal root system in the diagram Xn . Also note that tλ is not orthogonal
to exactly one reflection in each horizontal component.

Definition 6.7 (Factored translations) Let w be Coxeter element in an irre-
ducible Euclidean Coxeter group W = Cox(˜Xn) with a fixed horizontal
factorization of w and let k be the number of horizontal components. Let
tλ be the corresponding vertical root translation and let λi = projVi (λ) denote
the nontrivial projection vectors to each subspace Vi . Finally let ti = tλi + 1

k tλ0
so that t = ∏k

i=1 ti . The translations ti are called factored translations. If we
do this for every translation in the interval [1, w]W then we get a collection
TF of all factored translations. Like the horizontal reflections, they can be
partitioned into subsets T (i)

F based on the particular component of the horizon-

tal root system involved so that T (i)
F contains the factored translations whose

displacement vector lies in V0 ⊕ Vi .
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Table 2 Five Euclidean
isometry groups

Name Symbol Generating set

Coxeter W RH ∪ RV (∪ T )

Horizontal H RH

Diagonal D RH ∪ T

Factorable F RH ∪ TF (∪ T )

Crystallographic C RH ∪ RV ∪ TF (∪ T )

For each Coxeter element in an irreducible Euclidean Coxeter group there
are five closely related Euclidean isometry groups that are involved in our
proofs.

Definition 6.8 (Five Euclidean isometry groups) Let W = Cox(˜Xn) be an
irreducible Euclidean Coxeter group. For each choice of Coxeter element w,
we have defined four sets of Euclidean isometries: the horizontal reflections
RH and the vertical reflections RV labeling edges in the interval [1, w]W ,
the translations T and the factored translations TF . Various combinations of
these sets generate five Euclidean isometry groups as shown in Table 2. The
horizontal group H is the Euclidean isometry group generated by the set RH
of horizontal reflections below w. It contains but is bigger than the group Wh
because it contains two horizontal reflections for each horizontal root. The
diagonal group D is the Euclidean isometry group generated by RH ∪ T ,
the horizontal reflections and the pure translations below w. The factorable
group F is the Euclidean isometry group generated by RH ∪ TF . And the
crystallographic group C = Cryst(˜Xn, w) is the group generated by the
union of all four sets. Since every diagonal translation can be written either
as a product of two parallel vertical reflections or as a product of k factored
translations, the set T can be optionally included in the generating sets for
W, F and C without altering the group.

The crystallographic group C = Cryst(˜Xn, w) and the Coxeter group
W = Cox(˜Xn) have a very similar structure.

Remark 6.9 (Crystallographic) Recall that a group action on a metric space
is geometric when the group acts properly discontinuously and cocompactly
by isometries and that a group acting geometrically on a finite dimensional
Euclidean space is a crystallographic group. This category includes but is
larger than the class of EuclideanCoxeter groups since crystallographic groups
do not need to be generated by reflections. For example, most of the 17 distinct
wallpaper groups acting geometrically on the plane are not Euclidean Coxeter
groups. The groupC = Cryst(˜Xn, w) is crystallographic because its structure
is essentially the same as that of the Coxeter group W = Cox(˜Xn, w). In
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Fig. 14 Ten groups defined
for each choice of a Coxeter
element in an irreducible
Euclidean Coxeter group and
some of the maps between
them

particular, it has a normal translation subgroupwith quotient spherical Coxeter
groupW0 = Cox(Xn). The only difference is that the new translation subgroup
is slightly bigger: the old translation subgroup is finite index in the new one.

7 Intervals in the new groups

In this section we define and analyze intervals in four of the groups introduced
in the previous section. We begin by extending our system of weights to the
larger generating sets.

Definition 7.1 (Weights) We extend the trivial weighting on the full set R of
reflections so that the new factorizations preserve length. The natural weights
assign 1 to each horizontal and vertical reflection, 2 to each diagonal translation
and 2

k to each factored translation where k is the number of components of the
horizontal root system.

With this system of weights, the intervals behave as expected. There are
inclusions among the intervals [1, w]X where X is D, F,W or C , that mimic
the relations between the groups as shown in Fig. 14. The next lemma records
additional relations among these intervals.

Lemma 7.2 (Interval relations) For each choice of a Coxeter element w in
an irreducible Euclidean Coxeter group, the intervals described above are
related as follows:

[1, w]C = [1, w]W ∪ [1, w]F
[1, w]D = [1, w]W ∩ [1, w]F

Proof The second equality is an immediate consequence of the relations
among the generating sets, as is the fact that [1, w]C ⊃ [1, w]W ∪ [1, w]F . It
only remains to show that there does not exist a minimal length factorization
of w in C that includes both a factored translation and a vertical reflection. To
see this consider the map from C toW0 obtained by quotienting out its normal
subgroup of pure translations. The image of w under this map is a Coxeter
element for the horizontal Coxeter group Wh . It fixes a line parallel to the
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Fig. 15 A very coarse
overview of the structure of
the interval [1, w]C

Coxeter axis through the unique point fixed by all ofW0. Since its move-set is
(n − 1)-dimensional, its minimal reflection length is n − 1, and this length is
only possible if each of the n − 1 reflections in the product contain the fixed
line in their fixed hyperplane. In other words, this happens only when they are
all horizontal reflections. When this minimum is not achieved, at least n + 1
reflections are involved because of parity issues. If we start with a factoriza-
tion of w that contains a factored translation, then its image in W0 has length
strictly less than n+1, and as a consequence all of the reflections involved are
horizontal. �

Using Lemma 7.2 we extend the notion of a coarse structure to these new
intervals.

Remark 7.3 (Coarse structure) The crystallographic interval [1, w]C is
obtained by adding additional elements to the original three rows in the coarse
structure of theCoxeter interval [1, w]W . This is schematically shown inFig. 15
but the reader should note that the box labeled Factored is not a single row
but rather it includes all factorization pairs (u, v) with uv = w where both u
and v require a factored translation in their construction. The original Coxeter
interval [1, w]W is the subposet containing the top, middle and bottom portion,
the diagonal interval [1, w]D is the poset containing only the top and bottom
rows, and the factor interval [1, w]F is the subposet containing only the top,
bottom and factored portions. One consequence of this is that the groups D
(and the pulled apart group Dw defined below) have alternate generating sets.
Instead of using RH ∪T we could instead use RH ∪{w}. This is because every
element in the bottom row is a product of horizontal reflections and every
element in the top row differs from w by a product of horizontal reflections.

There are other properties that are nearly immediate.

Proposition 7.4 (Balanced and self-dual) For each choice of a Coxeter ele-
mentw in an irreducible Euclidean Coxeter group, the interval between 1 and
w in each of D,W, F and C is a balanced and self-dual poset.

Proof Each interval is balanced because the generating sets are closed under
local conjugations. This also means that the map sending u to its left comple-
ment is an order-reversing poset isomorphism. �
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Using these intervals we can create new groups.

Definition 7.5 (Five groups via presentations) Four of the groups on the top
level of Fig. 14 are interval groups obtained by pulling apart the corresponding
groups on bottom level. The exception is Hw.We define this group as the group
generated by the horizontal reflections RH in the interval [1, w]W and subject
only to the relations among them that are visible there. There is not a natural
interval group here because w itself is not an element of H ; it is merely the
horizontal portion of the other groups on the top level. Finally, we should note
that the groups Cw and Ww turn out to be the Garside group described in the
introduction and the Artin group Art(˜Xn) respectively.

The inclusion relations among the various generating sets suffice to establish
the injections shown on the lower level of Fig. 14 and inclusions among the
sets of relations induce the homomorphisms on the top level. It turns out that
all the maps on the top level are also injective but this is not immediately clear.
Several of these groups are easily identified.

Proposition 7.6 (Products) If W = Cox(˜Xn) is an irreducible Euclidean
Coxeter group with Coxeter element w and k horizontal components, then the
interval [1, w]F is a direct product of k type B noncrossing partition lattices
and F is a central product of k middle groups. As a consequence:

(1) Fw is a direct product of k annular braid groups,
(2) Hw is a direct product of k Euclidean braid groups, and
(3) H is a direct product of k Euclidean symmetric groups.

Proof The group F isminimally generated by the set SH∪{ti } contained inside
RH ∪TF (with the ti being the factors of the diagonal translation tλ as described
in Definition 6.7) and note that both SH and {ti } can be partitioned based on
the unique component of the horizontal root system involved in each motion.
By Proposition 3.10 the elements associated with each component generate a
middle group. Moreover, since generators associated to different components
commute and w can be factored into a product of special elements for these
middle groups, the interval [1, w]F is a direct product of special intervals in
middle groups. By Theorem 4.4 each of these is a type B noncrossing partition
lattice. This also means that F is almost, but not quite, a direct product of
these middle groups because these groups have a nontrivial intersection. They
overlap in elements whose motions lie solely in the V0 direction, a description
which only applies to the pure translations that form their centers. Thus F is a
central product rather than a direct product. On the other hand, since [1, w]F
is a direct product of lattices with disjoint edge labels, Fw is a direct product
of annular braid groups. The group Hw and H are identified by applying
Proposition 4.7 to each factor. �
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We illustrate Proposition 7.6 with a concrete example.

Example 7.7 (˜E8 groups) Since the horizontal E8 root system decomposes
as �A1 ∪ �A2 ∪ �A4 (Table 1), the group F is a central product of
Mid(B2),Mid(B3) andMid(B5). In addition,

• [1, w]F ∼= NCB2 × NCB3 × NCB5 ,• Fw
∼= Art(B2) × Art(B3) × Art(B5),

• Hw
∼= Art(˜A1) × Art(˜A2) × Art(˜A4), and

• H ∼= Cox(˜A1) × Cox(˜A2) × Cox(˜A4).

Part 4. Main Theorems

In this final part we prove our four main results.

8 Proof of Theorem A: Crystallographic Garside groups

In this section we prove our first main result, that for every choice of a Coxeter
element w in an irreducible Euclidean Coxeter group W = Cox(˜Xn), the
group Cw = Gar(˜Xn, w) is a Garside group. The most difficult step is to
establish the lattice property and we begin with a lemma which shows that in
discretely graded posets, it is sufficient to work inductively and to establish
that all pairs of atoms have a well-defined join.

Lemma 8.1 (Atoms and subintervals) Let P be a bounded poset that is graded
with respect to a discrete weighting. If all pairs of atoms in P have well-defined
joins and P is not a lattice, then P contains a proper subinterval that is not a
lattice.

Proof Since P is not a lattice, it contains a bowtie (a, b : c, d) by Proposi-
tion 1.10. Let e and f be atoms in P below c and d respectively. By assumption
atoms e and f have a join g = e ∨ f and since a and b are upper bounds
for e and f , we have a ≥ g and b ≥ g by definition of being a join. Finally,
let h a maximal lower bound for a and b that is above g. See Fig. 16 and

Fig. 16 Posets elements
used in the proof of
Lemma 8.1
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note that such e, f and h exist because of the discreteness of the grading. If
h �= c, then (a, b : c, h) is a bowtie in the proper subinterval [e, 1], if h �= d,
then (a, b : h, d) is a bowtie in the proper subinterval [ f, 1], and one of these
conditions holds because c and d are distinct. �

The following corollary restates Lemma 8.1 as a positive assertion.

Corollary 8.2 (Lattice induction) If P is a discretely graded bounded poset
in which all atoms have joins and all proper subintervals are lattices, then P
itself is a lattice.

In order to help investigate the lattice question in this context, the first author
wrote a program euclid.sage which is available upon request. Using this
program we verified that these intervals are lattices up through dimensions 9
and we record this fact as a proposition.

Proposition 8.3 (Low rank) Let w be a Coxeter element in an irreducible
Euclidean Coxeter group Cox(˜Xn). If n ≤ 9 then the interval [1, w]C is a
lattice in the corresponding crystallographic group.

Since all five sporadic examples of irreducible Euclidean Coxeter groups
are covered by Proposition 8.3, we may turn our attention to the four infinite
families. Before considering joins of atoms in the intervals for the infinite
Euclidean families, it might be useful to consider the properties of atomic
joins in the Coxeter intervals of the most classical spherical family.

Remark 8.4 (Atomic joins in the symmetric group) If W is the symmetric
group, i.e. the spherical Coxeter group of type A, then its Coxeter element is
an n-cycle and the interval [1, w]W is the lattice of noncrossing partitions. The
atoms in this case are the transpositions and these are represented as boundary
edges or diagonals in the corresponding convex n-gon. Notice that the join of
two atoms always has very low rank: it is reflection length 2 or 3 regardless
of n. It has length 2 when the edges are noncrossing or share an endpoint and
it has length 3 when they cross. In all three situations the join is below the
element that corresponds to the triangle or square which is the convex hull of
the union of their endpoints.

The situation in the infinite Euclidean families is very similar in the sense
that joins of atoms are of uniformly low rank and they live in subposets defined
by the endpoints, or equivalently the coordinates, involved. The first crucial
fact is that there is a well-defined projection from the middle row to the top
and from the middle row to the bottom row.

Lemma 8.5 (Projection) Let w be a Coxeter element in an irreducible
Euclidean Coxeter group W = Cox(˜Xn). For each element u in the mid-
dle row of the coarse structure of [1, w]W , the set of elements in the top row
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that are above u have a unique minimum element. Similarly, the set of elements
in the bottom row that are below u have a unique maximum element.

Proof For the five sporadic examples and the beginnings of the infinite fami-
lies, we verified these assertions using the program euclid.sage. Next we
consider the elements in the first box of themiddle row, the ones corresponding
to vertical reflections. Because of the explicit and regular nature of the infinite
families (as illustrated by the computations given in [25, Section 11]), the list
of top row elements above each vertical reflection can be explicitly written
down and a unique minimal top element identified. In type A, regardless of
choice of Coxeter element, each vertical reflection is below a unique top row
element in first box (i.e. a pure translation). In type C , some vertical trans-
lations project upwards to elements in the first box of the row and other to
the second. In type B, each vertical translation projects upwards to a unique
element in either the first, the second or the third box in the top row. And in
type D, each vertical translation projects upwards to a unique element in either
the first or the fourth box in the top row.

Finally, let u be an arbitrary element of themiddle row and let a be one of the
vertical reflections below u. Such a reflection must exists in any factorization
of u because, by definition of themiddle row, some point experiences a vertical
motion under u. We claim that the unique minimum top row element above
u is the join of u and the projection of a to the top row inside the interval
[a, w]W . Because a is a vertical reflection, its complement is also a vertical
elliptic isometry and the interval [a, w]W is that of spherical type, thus a lattice,
and so the join of these two elements is well-defined. This element is clearly
in the top row (because it is above the upward projection of a) and above u. It
is the minimum such element because any v in the top row that is above u is
also above a, thus above the upward projection of a, and so above the join of
u and the upward projection of a. The second assertion follows immediately
from the first because these posets are self-dual (Proposition 7.4). �

Using Lemma 8.5 we define an upward projection map from [1, w]C to
[1, w]F which is the identity on [1, w]F and sends elements in the middle row
to the elements described in the lemma. It can be used to show that the meets
and joins that exist in the factor interval [1, w]F remain meets and joins inside
the crystallographic interval [1, w]C .
Lemma 8.6 (Factor meets and joins) For each choice of Coxeter element w

in an irreducible Euclidean Coxeter group W = Cox(˜Xn), the inclusion of
the factor lattice [1, w]F into the crystallographic interval [1, w]C preserves
meets and joins. In particular, any two elements in [1, w]F have a well-defined
meet in [1, w]C that agrees with their meet in [1, w]F and a well-defined join
in [1, w]C that agrees with their join in [1, w]F
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Proof Let P = [1, w]C be the crystallographic interval, let Q = [1, w]F be
the factor subposet and suppose that u and v are elements in Q with a maximal
lower bound a in P that is not their meet b = u ∧Q v in Q. If a is in Q then
a = b because Q is a lattice, in particular a product of type B noncrossing
partition lattices. Thus a is not in Q andmust lie in themiddle row of the coarse
structure. This means that u and v, being both above a and in Q, must both lie
in the top row. By Lemma 8.5 there is a unique minimum top row element c
above a which would, by definition, be below both u and v, contradicting the
maximality of a as a lower bound for these elements. Thus no such u and v

exist. The assertion involving joins is true by duality. �
Lemma 8.5 can also be used to show that joins with factored translations

are well-defined.

Lemma 8.7 (Translation joins) Let w be a Coxeter element in an irreducible
Euclidean Coxeter group W = Cox(˜Xn). If a and b are atoms in the crystal-
lographic interval [1, w]C and one of them is a factored translation then their
join is well-defined.

Proof Let b ∈ TF be the factored translation. If a is in F then by Lemma 8.6
the join of a and b is well-defined. The only remaining case is where a is in
the middle row of the coarse structure and we claim that the join of b with the
upward projection of a to the top row (Lemma 8.5) is the join of a and b. In
this case, the only upper bounds for a and b are to be found in the top row
of the coarse structure and any such element is above the projection of a by
definition and thus above its join with b. This completes the proof. �

And finally, we consider the case where both atoms are reflections.

Lemma 8.8 (Reflection joins) Let w be a Coxeter element in an irreducible
Euclidean Coxeter group W = Cox(˜Xn). If a and b are reflections in the
interval [1, w]C and a is a vertical reflection then their join is well-defined.

Proof If a and b have no upper bounds in themiddle row of the coarse structure
then their join is the join of their images under the upward projection map by
Lemmas 8.5 and 8.6. If W is of sporadic type then the join of a and b exists
by Proposition 8.3. And finally, if W belongs to one of the infinite Euclidean
families, one can use properties of the noncrossing partition lattices in the
spherical infinite families, and properties of the upward projection map to
show that every possible minimal upper bound for a and b is below a low-
rank top row element solely defined by the set of coordinates involved in
the roots of a and b and the type of W . This is the Euclidean analogue of
the situation described in Remark 8.4. In other words, if there is a pair of
reflection atoms in a crystallographic interval for one of the infinite families
that has no well-defined join, then there is such a pair in such an interval where
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the rank is low and uniformly bounded. And since no such pair exists in low
rank (Proposition 8.3), no such pair exists at all. �

Combining these lemmas establishes the following.

Theorem 8.9 (Lattice) For each choice of Coxeter element w in an irre-
ducibleEuclideanCoxeter groupW = Cox(˜Xn), the crystallographic interval
[1, w]C, in the corresponding crystallographic group C = Cryst(˜Xn), is a
lattice.

Proof Proposition 8.3 covers the five sporadic examples. and for the four
infinite families we proceed by induction. The base cases are again covered by
Proposition 8.3, so suppose by induction that X is A, B,C or D and that all
crystallographic intervals are lattices for k < n. Atoms in [1, w]C correspond
to elements in RH∪RV ∪TF and all possible combinations of pairs of atoms are
covered by Lemmas 8.6, 8.7, or 8.8. Thus all pairs of atoms have well-defined
joins and the interval is a lattice by Corollary 8.2. �

Theorem 8.9 and Proposition 7.4 show that Proposition 2.11 can be applied
and this immediately proves the following slightly more explicit version of
Theorem A.

Theorem 8.10 (Crystallographic Garside groups) Let w be a Coxeter ele-
ment in an irreducible Euclidean Coxeter group W = Cox(˜Xn) and let
C = Cryst(˜Xn, w) be the corresponding crystallographic group with its
natural weighted generating set. The interval [1, w]C is a balanced lattice
and, as a consequence, it defines an interval group Cw = Gar(˜Xn, w) with a
Garside structure of infinite type.

9 Proof of Theorem B: Dual Artin subgroups

In this section we prove Theorem B by showing that the Garside group
Gar(˜Xn, w) is an amalgamated free product with the dual Artin group
Art∗(˜Xn, w) as one of its factors. The proof begins by noting the immediate
consequences of Lemma 7.2 on the level of presentations.

Lemma 9.1 (Presentation) For each choice of Coxeter element w in an
irreducible Euclidean Coxeter group W = Cox(˜Xn), the Garside group
Cw = Gar(˜Xn, w) has a presentation whose generators and relations are
obtained as a union of the generators and relations for presentations for
Dw, Fw and Ww.

Proposition 9.2 (Pushout)For each irreducible Euclidean Coxeter group and
for each choice of Coxeter element w, the Garside group Cw is the pushout
of the diagram Fw ← Dw → Ww. If the maps from Dw to Fw and Ww are

123



Euclidean Artin groups 271

both injective, then Cw is an amalgamated free product of Fw and Ww over
Dw and, in particular, Ww injects into Cw.

We now show that these maps are injective.

Lemma 9.3 (Hw ↪→ Fw) For each irreducible Euclidean Coxeter group and
for each choice of Coxeter element w, the horizontal group Hw injects into
the factorable interval group Fw. As a consequence, the horizontal group Hw

also injects into the diagonal interval group Dw.

Proof The first assertion is a consequence of Proposition 4.7 applied to each
factor and the second assertion follows immediately since Hw ↪→ Fw factors
through Dw. �
Lemma 9.4 (Dw ↪→ Fw) For each irreducible Euclidean Coxeter group and
for each choice of Coxeter element w, the diagonal interval group Dw injects
into the factorable interval group Fw.

Proof Recall that RH ∪ {w} is one possible generating set for the diagonal
interval group Dw (Remark 7.3) and let U be a word in these generators that
represents an element u ∈ Dw. If u is in the kernel of the map Dw → Fw, then
u is also in the kernel of the composite map Dw → Fw → F → Z where
the middle map is the natural projection and the final map to Z is the vertical
displacement map. Since this composition sends each horizontal reflection to
0 and each w to a nonzero integer, we conclude that the exponent sum of
the w’s inside U is zero. Using the relations in Dw which describe how w

conjugates the elements of RH , we can then find a wordU ′ with no w’s which
still represents u in Dw. This means that u is in the subgroup generated by
elements of RH which by Lemma 9.3 we can identify with Hw. In particular,
u is in the kernel of the map Hw → Fw which is trivial by Lemma 9.3 proving
Dw ↪→ Fw. �
Lemma 9.5 (Dw ↪→ Ww) For each irreducible Euclidean Coxeter group and
for each choice of Coxeter elementw, the factorable interval group Fw injects
into the Garside group Cw. As a consequence, the diagonal interval group Dw

injects into the Artin group Ww.

Proof The interval [1, w]F is a lattice because it is a product of type B partition
lattices and [1, w]C is a lattice byTheorem8.10. That they are balanced follows
immediately from the fact that the corresponding generating sets in F and C
are closed under conjugation. Finally, by Lemma 8.6 the inclusion of the
former into the latter preserves meets and joins. Thus by Proposition 2.15 the
induced map from Fw to Cw is injective. Since Dw ↪→ Fw by Lemma 9.4, the
composition injects Dw into Cw. But Dw ↪→ Cw factors through Ww, so the
map Dw → Ww is also one-to-one. �
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Proposition 9.2 combined with Lemmas 9.4 and 9.5 immediately prove the
following slightly more explicit version of Theorem B.

Theorem 9.6 (Amalgamated free product) For each irreducible Euclidean
Coxeter groupCox(˜Xn) and for each choice ofCoxeter elementw, theGarside
group G = Gar(˜Xn, w) can be written as an amalgamated free product
of Ww and Fw amalgamated over Dw where Ww is the dual Artin group
Art∗(˜Xn, w), Fw is the factorable interval group, and Dw is the diagonal
interval group. As a consequence, the dual Artin group Ww injects into the
Garside group G.

Note that when the horizontal root system has only a single component,
T ∼= TF , Dw

∼= Fw and Ww
∼= Cw. This occurs in types C and G and in type

A when q = 1.

10 Proof of Theorem C: Naturally isomorphic groups

In this section we prove that the dual Artin group Art∗(˜Xn, w) is isomorphic
to the Artin groupArt(˜Xn). The first step is to find homomorphisms between
them. In one direction this is easy to do.

Proposition 10.1 (A � Ww) For every irreducible Euclidean Coxeter group
W = Cox(˜Xn) and for each choice of Coxeter element w as the product of
the standard Coxeter generating set S, there is a natural map from the Artin
group A = Art(˜Xn) onto the dual Artin group Ww = Art∗(˜Xn, w) which
extends the identification of the generators of A with the subset of generators
of Ww indexed by S.

Proof For every pair of elements in S, there is a rewritten factorization of w

where theyoccur successively and then theHurwitz action on this pair produces
the dual dihedral Artin relations corresponding to the angle between these two
facets ofσ (Example 2.9). Systematically eliminating the other variables shows
that these two elements in the dual Artin group satisfy the appropriate Artin
relation. This shows that the function injecting the generating set of the Artin
group into the dual Artin group extends to a group homomoprhism. The fact
that it is onto is a consequence of the transitivity of the Hurwitz action. �
Remark 10.2 (A ˜G2 map) As an example of such a homomorphism, con-
sider the simplex in the ˜G2 tiling bounded by the lines c0, a1 and d1 with
bipartite Coxeter element w = a1d1c0 in the notation of Definition 5.10.
Proposition 10.1 gives a homomorphism from the Artin group Art(˜G2) with
generators that we call a, c and d satisfying the relations aca = cac, ad = da
and cdcdcd = dcdcdc to the dual Artin group Art∗(˜G2, w) extending the
map sending a, c and d to a1, c0 and d1, respectively.
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Defining a homomorphism in the other direction is more difficult because
we need to describe where the infinitely many generators are to be sent and
we need to check that infinitely many dual braid relations are satisfied. The
first step is to describe certain portions of the Cayley graph of an irreducible
Artin group that are alreadywell understood. These are portions of the Coxeter
group Cayley graph that lift to the Artin group.

Definition 10.3 (Cayley graphs and Coxeter groups) The standard way to
view the right Cayley graph of an irreducible Euclidean Coxeter group with
respect to a Coxeter generating set S is to consider the cell complex dual to the
Coxeter complex. The dual complex for the ˜A2 Coxeter group, for example, is
a hexagonal tiling of R

2. The dual complex has one vertex for each chamber
of the Coxeter complex (and thus one vertex for each element of W ) and it is
convenient to place this vertex at the center of the insphere of this simplex so
that it is equidistant from each facet. Once labels are added to the edges of the
1-skeleton of the dual cell complex, this becomes either the full right Cayley
graph ofW with respect a simple system S, or it is a portion of the left Cayley
graph with respect to the set of all reflections. To get the full right Cayley
graph we label the edges leaving a particular chamber σ and then propigate
the labels so that they are invariant under the group action. To get a portion of
the left Cayley graph we label the edges dual to the facets of the simplices by
the unique hyperplane the facet determines.

Converting between left Cayley graph labels and right Cayley graph labels
is a matter of conjugation.

Remark 10.4 (Converting Labels) Suppose that we have picked a vertex corre-
sponding to a chamber as our basepoint and indexed the vertices by the unique
group element in W which takes our base vertex to this vertex and suppose
further that a, c and d are part of the standard generating set leaving our base
vertex v1. In the right Cayley graph the edge connecting the adjacent vertices
vac and vacd is labeled by d but in the corresponding portion of the left Cayley
graph, its label is the reflection (ac)d(ac)−1. This is because this is the reflec-
tion we multiply by on the left to get from ac to acd. Geometrically we are
conjugating the label in the right Cayley graph by the path in the right Cayley
graph from v1 to its starting vertex.

There are a variety of ways that the unoriented right Cayley graph for an
irreducible Euclidean Coxeter group can be converted into a portion of the
right Cayley graph for the corresponding Artin group. We describe two such
procedures.

Definition 10.5 (Standard flats) Let W = Cox(˜Xn) be an irreducible
Euclidean Coxeter group and let A = Art(˜Xn) be the corresponding Artin
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group. If we pick a vector γ that is generic in the sense that none of the roots of
the hyperplanes of W are orthogonal to γ , then we can orient the edges of the
right Cayley graph of W (which are transverse to the hyperplanes) according
to the direction that forms an acute angle with γ . Such a Morse function turns
the boundary of every 2-cell in the dual cell complex into an Artin relation. In
particular, the 2-skeleton of the dual cell complex is simply connected and its
labeled oriented 1-skeleton is a portion of the right Cayley graph of A that we
call a standard flat. The terminology reflects the fact that the polytopes in the
dual cell complex with labelled oriented edges can be added to the presenta-
tion complex for the Artin group A without changing its fundamental group.
The universal cover of the result is known as the Salvetti complex [28,29].
If each polytope is given the natural Euclidean metric that it inherits, then a
standard flat represents the 1-skeleton of ametric copy ofR

n inside the Salvetti
complex.

An easy way to create a standard flat is to let γ be a generic perturbation of
the direction of the Coxeter axis. What we really need is a slight variation of
this procedure.

Definition 10.6 (Axial flats) Let W = Cox(˜Xn) be an irreducible Euclidean
Coxeter group with Coxeter element w and let A = Art(˜Xn) be the corre-
sponding Artin group. Orient the edges of the dual cell complex as follows.
For hyperplanes that cross the Coxeter axis, orient the transverse edges so that
their direction vector forms an acute angle with the direction of the Coxeter
axis. For the other hyperplaneswith horizontal normal vectors, orient the trans-
verse edges to point to the side that does not contain the Coxeter axis. We call
such an oriented 1-skeleton an axial flat. As before every 2-cell in the dual cell
complex has a boundary labelled by an Artin relation so this simply-connected
2-complex lives in the Salvetti complex for A. In fact, it is easy to see that it
can be constructed by assembling sectors of standard flats around the column
containing the Coxeter axis.

Next we use axial flats to define reflections in Euclidean Artin groups.

Definition 10.7 (Facets and reflections) LetW = Cox(˜Xn) be an irreducible
Euclidean Coxeter group with Coxeter element w and fix a simplex σ in the
Coxeter complex or, equivalently, fix a vertex in the dual cell complex. For
each facet of each simplex in the Coxeter complex we define a reflection in
the corresponding Artin group A = Art(˜Xn) as follows. Orient the edges of
the dual cell complex so that it is the axial flat for w and then conjugate the
labelled oriented edge transverse to the specified facet by a path in the axial
flat from the fixed basepoint to the start of the transverse edge.

Many of the facets belonging to a common hyperplane determine the same
reflection in the Artin group but describing which ones are equal is slightly
subtle.
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Lemma 10.8 (Consistency) Let W = Cox(˜Xn) be an irreducible Euclidean
Coxeter group with Coxeter element w and a fixed base simplex. Let H be
a hyperplane in the Coxeter complex, let P be the convex hull of the axial
vertices in H and suppose that P contains at least one facet of a chamber.
If σ1 and σ2 are simplices on the same side of H and P ∩ σi is a facet of σi
for i = 1, 2, then the reflections r1 and r2 that they define in the axial flat are
equal in the Artin group A = Art(˜Xn).

Proof The idea of the proof is straightforward. Let p be a path in the axial flat
from the fixed base simplex to σ1 and let q be a path from σ1 to σ2 (also in the
axial flat) that is as short as possible. By construction r1 = (p)s1(p)−1 and
r2 = (pq)s2(pq)−1 for appropriate standard generators s1 and s2. Because q
is as short as possible, it only crosses the hyperplanes that separate σ1 from σ2
and by Lemma 5.6 this only includes hyperplanes whose normal vectors do
not change sign in the axial flat when reflected across the hyperplane H . In
particular, the path qs2q−1s−1

1 is visible as a closed loop in the axial flat. As a
consequence it is trivial in A and this relation shows that the elements r1 and
r2 are equal. �

The necessity of the specificity given in Lemma 10.8 can be seen even in
the ˜G2 case. We continue to use the notation of Definition 5.10.

Remark 10.9 (Consistency) Consider the four line segments of the hyperplane
e3 inside the lightly shaded strip of Fig. 11. The reflections in Art(˜G2)

that they determine are (d)c(d)−1, (dac)a(dac)−1, (dacd)a(dacd)−1 and
(dacdca)c(dacdca)−1. All four belong to the convex hull of the axial vertices
in the e3 hyperplane and it is straightforward to show that all four expressions
represent the same group element in Art(˜G2). On the other hand, consider
the two line segments of the c2 hyperplane inside the lightly shaded strip. The
reflections inArt(˜G2) that they determine are (ad)c(ad)−1 and (dc)a(dc)−1.
The first is bounded by two axial vertices, the second is not and these two
reflections are not equal in the Artin group.

Fortunately the level of consistency available is sufficient to establish the
homomorphism we require.

Definition 10.10 (Dual reflections in the Artin group) Let W = Cox(˜Xn) be
an irreducible Euclidean Coxeter group with Coxeter element w and a fixed
base simplex. For each reflection labeling an edge in the interval [1, w]W
we define an element of the Artin group A = Art(˜Xn) as follows. When
the axial vertices in the fixed hyperplane of a reflection r have a convex hull
which contains a facet of a simplex, we define the corresponding reflection
in A as described in Definition 10.7. By Lemma 10.8 the element defined is
independent of the facet in the convex hull that we use. This applies to all
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vertical reflections and to those horizontal reflections which contain a facet of
the boundary of the convex hull of all axial vertices.We call these the standard
horizontal reflections. For the nonstandard horizontal reflections we proceed
as follows. By Proposition 7.6 the subgroup Hw generated by the horizontal
reflections can be identified with a product of k Euclidean braid groups. From
this identification it is clear that the standard horizontal reflections generate.
Next, in the axial flat we can see that the reflections in A corresponding to the
standard horizontal reflections satisfy the Artin relations associated with the
dihedral angles between their hyperplanes. This means that there is a natural
homomorphism from the subgroup of Hw to the subgroup generated by the
images of the standard horizontal reflections in A. We use this map to define
the images of the nonstandard horizontal reflections in A.

Proposition 10.11 (Pure Coxeter element) Let W = Cox(˜Xn) be an irre-
ducible Euclidean Coxeter group with Coxeter element w and a fixed base
simplex. If w p is the smallest power of w which acts on the Coxeter complex
as a pure translation and r is a standard horizontal reflection in the Artin
group A = Art(˜Xn), then w p and r (viewed as elements in A) commute.
As a consequence, w p centralizes the full subgroup of A generated by these
standard horizontal reflections.

Proof This follows immediately fromLemma10.8. The convex hull of all axial
vertices is, metrically speaking, a product of simplices cross the reals and the
convex hull P of the axial vertices contained in the fixed hyperplane of r is
one facet of this product of simplices cross the reals. The entire configuration
in the axial flat is invariant under the vertical translation induced by w p and
thus r and (w p)r(w p)−1 define the same reflection in A. �

We are now ready to define a homomorphism from the dual Artin group to
the Artin group.

Proposition 10.12 (Ww � A)For every irreducible EuclideanCoxeter group
W = Cox(˜Xn) for every choice of Coxeter element w as the product of
the standard Coxeter generating set S, the map on generators described
above extends to a group homomorphism from the dual Artin group Ww =
Art∗(˜Xn, w) onto the Artin group A = Art(˜Xn).

Proof Let σ be the chamber in the Coxeter complex ofW bounded by the fixed
hyperplanes of the reflections indexed by S and consider the function from the
reflections in [1, w]W to Awhich sends each reflection to the reflection in A as
defined in Definition 10.10. We only need to show that this function extends
to a homomorphism. As mentioned in Definition 5.11 there are three types
of dual braid relations in the interval [1, w]W . The ones indexed by the third
box in the bottom row are relations among horizontal reflections and their
satisfaction was described in Definition 10.10.
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The ones indexed by the second box in the middle row are vertical elliptics
which rotate around a codimension 2 subspace. Since its right complement is
also vertical elliptic, all the reflections in the factorization fix an axial vertex v

which belongs to some axial simplex σ ′. The reflections in the Artin group A
that fix the facets of σ ′ form an alternative simple system S′ for A. Using an old
result from van der Lek’s thesis, the subset of elements of S′ that fix v generate
an Artin group which injects into A, in this case an Artin group of spherical
type [34]. Using the known equivalence of dual and standard presentations for
spherical Artin groups we see that these dual braid relations are satisfied by
their images in A.

Finally, the ones indexedby thefirst box in the top roware the variousways to
factor a pure translation t inW and these are described inProposition 6.3.Using
the Hurwitz action there is a factorization of w in A that maps to a horizontal
factorization of w in W . In particular, there is an element t in A that differs
from w by a product of (the images of) horizontal reflections and which has a
factorization t = r ′r in A into reflections where r and r ′ = (w p)r(w−p) are
definedbyvertically shifted facets of simplices. Thefirst observation combined
with Proposition 10.11 shows that this t commutes with w p inside A. If we
define reflections ri = (wi p)r(w−i p) as the reflections in A defined by the
various vertical shifts of the facet that defines r , then t = (wi p)t (w−i p) =
(wi p)r1r0(w−i p) = ri+1ri shows that all of factorizations of t in the interval
[1, w]W are also satisfied in A. Since all three types of dual braid relations
are satisfied, the function on reflections extends to a homomorphism, and this
homomorphism is onto because its image includes a generating set for the
Artin groups A. �

Our third main result now follows as a easy corollary.

Theorem C (Naturally isomorphic groups) For each irreducible Euclidean
Coxeter group W = Cox(˜Xn) and for each choice of Coxeter element w

as the product of the standard Coxeter generating set S, the Artin group
A = Art(˜Xn) and the dual Artin group Ww = Art∗(˜Xn, w) are naturally
isomorphic.

Proof Let σ be the chamber in the Coxeter complex forW whose facets index
the reflections in S. Because w is obtained as a product of the elements in S,
every vertex of σ is an axial vertex and all of σ is contained in the convex hull
of the axial vertices. By composing the surjective homomorphisms described
in Propositions 10.1 and 10.12 we find a map from A to itself which must be
the identity homomorphism since it fixes each element of the generating set
S. This means the first map in the composition from A to Ww is injective as
well as surjective and thus an isomorphism. �
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11 Proof of Theorem D: Euclidean Artin groups

In a recent survey article Eddy Godelle and Luis Paris highlighted how little
we know about general Artin groups by stating four basic conjectures that
remain open [19]. Their four conjectures are:

(A) All Artin groups are torsion-free.
(B) Every non-spherical irreducible Artin group has a trivial center.
(C) Every Artin group has a solvable word problem.
(D) All Artin groups satisfy the K (π, 1) conjecture.

Godelle and Paris also remark that these conjectures remain open and are a
“challenging question” even in the case of the Euclidean Artin groups. These
are precisely the conjectures that we set out to resolve. In this section we
prove our final main result, Theorem D, which resolves the first three of these
questions for Euclidean Artin groups. Most of the structural properties follows
from the existence of a classifying space which is itself an easy corollary of
Theorems B and C.

Proposition 11.1 (Classifying space) Every irreducible Artin group of
Euclidean type is the fundamental group of a finite dimensional classifying
space.

Proof By Theorem 2.12, the Garside group Gar(˜Xn, w) has a finite-
dimensional classifying space and the cover of this space corresponding to
the subgroup Art(˜Xn) is a classifying space for the Artin group. �
Remark 11.2 (Finite-dimensional) The reader should note that the spaces
involved are finite-dimensional but not finite. More precisely, because the
interval [1, w]C has infinitely many elements, the natural classifying space
constructed for Gar(˜Xn, w) has infinitely many simplices, but their dimen-
sion is nevertheless bounded above by the combinatorial length of the longest
chain.

To compute the center of Art(˜Xn) we recall an elementary observation
about Euclidean isometries which quickly leads to the well-known fact that
irreducible Euclidean Coxeter groups are centerless.

Lemma 11.3 (Coxeter groups) Let W = Cox(˜Xn) be an irreducible
Euclidean Coxeter group, let u ∈ W be an elliptic isometry and let v ∈ W be
a hyperbolic isometry. If λ is the translation vector of v onMin(v) and Fix(u)

is not invariant under λ, then u and v do not commute.

Proof Because v lives inW , there is a power vm that is a pure translation with
translation vector mλ. If u commutes with v then u commutes with vm but the
fixed set of the conjugation of u by vm is the translation of the fixed set of u
by mλ, contradiction. �
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Corollary 11.4 (Trivial center) Every irreducible Euclidean Coxeter group
has a trivial center.

Proof Using the criterion of Lemma 11.3, it is easy to find a noncommut-
ing hyperbolic for each elliptic in W and a noncommuting elliptic for each
hyperbolic in W . �

We note one quick consequence for Artin groups.

Lemma 11.5 (Powers of w) For each irreducible Euclidean Coxeter group
and for each choice of Coxeter element w, the nontrivial powers of w are not
central in the Artin group Ww.

Proof For each nonzero integer m, the element wm projects to a nontrivial
hyperbolic element in W . By Corollary 11.4 there is an element u in W that
does not commute with wn and because the projection mapWw � W is onto,
it has preimages that do not commute with wn in Ww. �

We also derive a second more substantial consequence.

Lemma 11.6 (Cw � Fw) For each irreducible Euclidean Coxeter group and
for each choice of Coxeter element w, the simples in Cw which commute with
w are simples in Fw. As a consequence, the elements of Cw which commute
with w are contained in the subgroup Fw.

Proof If u is a simple in Cw which commutes with w then the image of u as a
Euclidean isometry commutes with the powerwm whose image as a Euclidean
isometry in C is a pure translation in the direction of the Coxeter axis. When
u is elliptic, by Lemma 11.3 it has a vertically invariant fixed set, it does not
belong to the middle row of the coarse structure, and thus u ∈ [1, w]F . The
extension from simples to elements follows from Proposition 2.14. �
Lemma 11.7 (Fw � Z

k) For each irreducible Euclidean Coxeter group and
for each choice of Coxeter element w, the centralizer of w in Fw is the group
Z
k ∼= 〈wi 〉 where the wi are the special elements in the factors whose product

is w.

Proof ByProposition 7.6, the group Fw and the interval [1, w]Fw split as direct
products. Thus the simples that commute with w are products of the simples
in each factor that commute with the factor wi . Since by Proposition 4.5
such a simple in each factor must be 1 or wi , there are exactly 2k simples
that commute with w. And since the wi commute with each other in Fw they
generate a subgroup isomorphic toZ

k ∼= 〈wi 〉, with oneZ from each factor. All
of these commute with w and by Proposition 2.14 these are the only elements
that commute with w. �
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Lemma 11.8 (Zk � Z) For each irreducible Euclidean Coxeter group and
for each choice of Coxeter element w, the intersection of Dw and the group
Z
k (generated by the wi factors of w) is an infinite cyclic subgroup generated

by w. In symbols Dw ∩ 〈wi 〉 ∼= 〈w〉.
Proof Combining the global winding number maps for each factor (Defini-
tion 3.8) produces a map Fw → Z

k which sends wi to ei , the i-th unit vector
in Z

k which restricts to an isomorphism on the subgroup 〈wi 〉 in Fw. The
image of Dw under the composition Dw ↪→ Fw → Z

k is the set of k-tuples
with all coordinates equal. To see this we view an element of Dw as a product
of simples thought of as elements of D rather than Dw. The relevant maps
are now vertical displacement maps rather than global winding number maps.
From this perspective it is clear that the horizontal reflections are sent to the
zero vector under this composition and that every diagonal translation t is sent
to the vector with all coordinates equal to 1. Thus the only elements in the
intersection are those with the same number of wi ’s for each i . Using the fact
that they commute with each other, we can thus rewrite this expression as a
power of w = ∏k

i wi . �
And finally we put all the pieces together.

Proposition 11.9 (Center) An irreducible Euclidean Artin group has a trivial
center.

Proof LetWw be a dual Euclidean Artin group with special element w. If u is
central in Ww then u commutes with w and by Proposition 2.14, u, viewed as
an element ofCw, has a Garside normal form built out of simples that commute
with w. By Lemma 11.6 the only such simples are simples in Fw, so u ∈ Fw

and by Lemma 11.7 the element u in fact belongs to the subgroup Z
k ∼= 〈wi 〉

generated by the special factors wi of w. This means that u is in Fw ∩Ww and
thus in Dw by the amalgamated free product structure of Cw (Theorem 9.6).
But by Lemma 11.8 the only portion of the Z

k ∼= 〈wi 〉 contained in Dw is
the subgroup Z ∼= 〈w〉. In particular, u = wn for some n. And finally, by
Lemma 11.5 the nontrivial powers of w are not central inWw, so the center of
Ww is trivial. �

These combine to give our main result.

Theorem D (Euclidean Artin groups) Every irreducible Euclidean Artin
groupArt(˜Xn) is a torsion-free centerless groupwith a solvableword problem
and a finite-dimensional classifying space.

Proof Because Art(˜Xn) is isomorphic to Ww which is a subgroup of a Gar-
side group Cw = Gar(˜Xn, w), the standard solution to the word-problem in
Cw gives a solution to the word problem in Ww and by Proposition 11.1 it
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has a finite dimensional classifying space. Groups with finite-dimensional
classifying spaces are torsion-free and by Proposition 11.9 its center is
trivial. �

The fourth question of Godelle and Paris, the K (π, 1) conjecture, would
have a positive resolution if one could establish the following.

Conjecture 11.10 (Homotopy equivalence) The classifying space for each
irreducible Artin group of Euclidean type constructed here, should be homo-
topy equivalent to the standard topological space with this fundamental group
constructed from the action of the corresponding Coxeter group on its com-
plexified hyperplane complement.

And finally, there is another obvious question to ask at this point, although
we suspect that it may have a negative answer.

Question 11.11 Is there a natural way to extend the definitions of
Cryst(˜Xn, w) and Gar(˜Xn, w) to other infinite Coxeter groups so that they
retain their key properties? In particular, is every Artin group isomorphic to a
subgroup of a suitably-defined Garside group?
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