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Abstract. In any Coxeter group, the conjugates of elements in its Coxeter generating
set are called reflections and the reflection length of an element is its length with
respect to this expanded generating set. In this article we give a simple formula that
computes the reflection length of any element in any affine Coxeter group. In the affine
symmetric group, we have a combinatorial formula that generalizes Dénes’ formula for
reflection length in the symmetric group.
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Introduction

In any Coxeter group W, the conjugates of elements in its standard Coxeter generating
set are called reflections and we write R for the set of all reflections in W. The reflections
generate W and the associated reflection length function `R : W → Z≥0 records the length
of w with respect to this expanded generating set. When W is spherical, i.e., finite,
reflection length can be given an intrinsic, geometric definition, as follows. Define a
root subspace to be any space spanned by a subset of the corresponding root system and
define the dimension dim(w) of an element w in W to be the minimum dimension of
a root subspace that contains the move-set of w. (See Section 3 for the details.) The
following result is due to Carter [2].

Theorem ([2, Lemma 2]). Let W be a spherical Coxeter group and let w ∈ W. Then `R(w) =
dim(w).
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When W is infinite, much less is known [8, 4, 9], even in the affine case. In this work,
we give a simple, analogous formula that computes the reflection length of any element
in any affine Coxeter group.1

Theorem A (Formula). Let W be an affine Coxeter group and let p : W � W0 be the projection
onto its associated spherical Coxeter group. For any element w ∈W, its reflection length is

`R(w) = 2 · dim(w)− dim(p(w)) = 2d + e,

where e = dim(p(w)) and d = dim(w)− dim(p(w)).

We call e = e(w) = dim(p(w)) the elliptic dimension of w and we call d = d(w) =
dim(w) − dim(p(w)) the differential dimension of w. Both statistics are geometrically
meaningful. For example, e(w) = 0 if and only if w is a translation (that is, if it sends
every point x to x + λ for some fixed vector λ), and d(w) = 0 if and only if w is elliptic
(that is, if it fixes a point) – see Proposition 3.4. In [7], we prove Theorem A by showing
the claimed value is both a lower bound and an upper bound for the reflection length of
w.

The translation and elliptic versions of our formula were already known (see [8] and
[2], respectively) and these special cases suggest that the formula in Theorem A might
correspond to a carefully chosen factorization of w as a product of a translation and an
elliptic element. This is indeed the case.

Theorem B (Factorization). Let W be an affine Coxeter group. For every element w ∈W, there
is a translation-elliptic factorization w = tλu such that `R(tλ) = 2d(w) and `R(u) = e(w). In
particular, `R(w) = `R(tλ) + `R(u) for this factorization of w.

The proof of Theorem B relies on a nontrivial technical result recently established
by Vic Reiner and the first author [6, Corollary 1.4]. Elements in an affine Coxeter
group typically have many different potential translation-elliptic factorizations and the
most common way to find one is to view the group as a semidirect product. For an
affine Coxeter group W that naturally acts cocompactly on an n-dimensional euclidean
space, the set of translations in W forms a normal abelian subgroup T isomorphic to
Zn, and the quotient W0 = W/T is the spherical Coxeter group associated with W.
An identification of W as a semidirect product T o W0 corresponds to a choice of an
inclusion map i : W0 ↪→W that is a section of the projection map p : W � W0. There is a
unique point x fixed by the subgroup i(W0) and every element has a unique factorization
w = tλu where tλ is a translation in T and u is an elliptic element in the copy of W0 that
fixes x. However, for some elements w none of the translation-elliptic factorizations
that come from an identification of W as a semidirect product satisfy Theorem B – see
Example 2.4 of [7].

1This note is a condensed version of [7], in which we provide a simple uniform proof of Theorem A.
Indeed, proofs of all results are omitted here but can be found in the full paper.
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In the particular case of the symmetric group Sn (the spherical Coxeter group of type
A), reflection length also has a natural combinatorial characterization: `R(w) = n− c(w),
where c(w) is the number of cycles of the permutation w [3]. When W is the affine
symmetric group S̃n, we show that the differential and elliptic dimensions of an element
can also be given a combinatorial interpretation, leading to the very similar formula in
Theorem 5.3.

In this brief note, we highlight the key definition at play in Theorem A, namely
the notion of dimension of an element. We assume the reader is familiar with Coxeter
groups at the level of Humphreys [5]. Full details can be found in [7].

1 Points, vectors, and affine Coxeter groups

Before we define affine Coxeter groups, it is helpful to establish notions for spherical
Coxeter groups.

Definition 1.1 (Spherical Coxeter groups). A euclidean vector space V is an n-dimensional
real vector space equipped with a positive definite inner product 〈·, ·〉. A crystallographic
root system Φ is a finite collection of vectors that span a real euclidean vector space V
satisfying a few elementary properties – see [5] for a precise definition. (While there are
non-crystallographic root systems as well, it is only the crystallographic root systems
that arise in the study of affine Coxeter groups.) The elements of Φ are called roots. Each
crystallographic root system corresponds to a finite (or spherical) Coxeter group W0, as
follows: for each α in Φ, Hα is the hyperplane through the origin in V orthogonal to α,
and the unique nontrivial isometry of V that fixes Hα pointwise is a reflection that we call
rα. The collection R = {rα | α ∈ Φ} generates the spherical Coxeter group W0, and R is
its set of reflections.

In the same way that doing linear algebra using fixed coordinate systems can obscure
an underlying geometric elegance, working in affine Coxeter groups with a predeter-
mined origin can have an obfuscating effect. One way to avoid making such a choice is
to distinguish between points and vectors, as in [11] and [1].

Definition 1.2 (Points and vectors). Let V be a euclidean vector space. A euclidean space is
a set E with a uniquely transitive V-action, i.e., for every ordered pair of points x, y ∈ E
there exists a unique vector λ ∈ V such that the λ sends x to y. When this happens we
write x + λ = y. The preceding sentences illustrate two conventions that we adhere to
throughout the paper: the elements of E are points and are denoted by Roman letters,
such as x and y, while the elements of V are vectors and are denoted by Greek letters,
such as λ and µ.

The main difference between E and V is that V has a well-defined origin, but E does
not. If we select a point x ∈ E to serve as the origin, then V and E can be identified by
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sending each vector λ to the point x + λ. We use this identification in the construction
of the affine Coxeter groups.

Definition 1.3 (Affine Coxeter groups). Let E be a euclidean space, whose associated
vector space V contains the crystallographic root system Φ. An affine Coxeter group W
can be constructed from Φ, as follows. Fix a point x in E, to temporarily identify V and
E. For each α ∈ Φ and j ∈ Z, let Hα,j denote the (affine) hyperplane in E of solutions to
the equation 〈v, α〉 = j, where the brackets denote the standard inner product (treating
x as the origin). The unique nontrivial isometry of E that fixes Hα,j pointwise is a
reflection that we call rα,j. The collection R = {rα,j | α ∈ Φ, j ∈ Z} generates the affine
Coxeter group W and R is its set of reflections. A standard minimal generating set S can
be obtained by restricting to those reflections that reflect across the facets of a certain
polytope in E.

The affine Coxeter group W associated to a finite crystallographic root system Φ is
closely related to the spherical Coxeter group W0.

Definition 1.4 (Subgroups and quotients). Let W be an affine Coxeter group constructed
as in Definition 1.3. The map sending rα,j in W to rα in W0 extends to a group homomor-
phism p : W � W0. The kernel of p is a normal abelian subgroup T, isomorphic to Zn,
whose elements are called translations, and W0

∼= W/T. When x is the point used in the
construction of W, the map i : W0 ↪→ W sending rα to rα,0 is a section of the projection
p, identifying W0 with the subgroup of all elements of W that fix x. (Note also the com-
position i ◦ p sends reflection rα,j to rα to rα,0.) Thus W may be identified as a semidirect
product W ∼= T oW0.

Of course, the identification of W0 with a subgroup of W is not unique: conjugation
by elements of T gives an infinite family of such subgroups.

We now define two fundamental affine subspaces associated to any element w.

Definition 1.5 (Move-sets). The motion of a point x ∈ E under a euclidean isometry w
is the vector λ ∈ V such that w(x) = x + λ. The move-set of w is the collection of all
motions of the points in E; by [1, Proposition 3.2], it is an affine subspace of V. In
symbols, Mov(w) = {λ | w(x) = x + λ for some x ∈ E} ⊂ V.

Definition 1.6 (Fixed space). The fixed space Fix(w) of an isometry w is the subset of
points x ∈ E such that w(x) = x. Equivalently, Fix(w) consists of all points whose
motion under w is the vector 0. When Fix(w) is nonempty, it is an (affine) subspace of
E.

When w is an element of a spherical Coxeter group, it is just an orthogonal transfor-
mation of V, so Fix(w) = Ker(w− 1) and Mov(w) = Im(w− 1). In particular, Fix(w)
and Mov(w) are orthogonal complements in V. However, this complementarity between
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Mov(w) and Fix(w) does not hold for isometries of euclidean space. It can be recovered
if the fixed space is replaced with the min-set of points that are moved a minimal dis-
tance under w. Then the space of directions for the move-set and the space of directions
for the min-set give an orthogonal decomposition of V – see [1, Lemma 3.6].

Move-sets for general euclidean plane isometries are given in Example 3.5.

2 Elliptics and translations

In this section, we record some basic facts about special kinds of elements in an affine
Coxeter group.

Definition 2.1 (Elliptic elements and elliptic part). An element w in an affine Coxeter
group W is called elliptic if its fixed space is non-empty. Equivalently, these are exactly
the elements of W of finite order. Given an arbitrary element w ∈ W, its elliptic part
we = p(w) is its image under the projection p : W � W0. (In particular, the elliptic part
is an element of W0, acting naturally on V rather than on E.)

Definition 2.2 (Coroots). Let Φ ⊂ V be a crystallographic root system. For each root
α ∈ Φ, its coroot is the vector α∨ = 2

〈α,α〉α. The collection of these coroots is another
crystallographic root system Φ∨ = {α∨ | α ∈ Φ}. The Z-span L(Φ∨) of Φ∨ in V is the
coroot lattice; as an abelian group, it is also isomorphic to Zn where n = dim(V).

Definition 2.3 (Translations). For every vector λ ∈ V there is a euclidean isometry tλ of
E called a translation that sends each point x ∈ E to x + λ. Let W be an affine Coxeter
group acting on E with root system Φ ⊂ V. An element of W is a translation in this
sense if and only if it is in the kernel T of the projection p : W � W0. Moreover, the set
of vectors in V that define the translations in T is identical to the set of vectors in the
coroot lattice L(Φ∨).

Definition 2.4 (Translation-elliptic factorizations). Let W be an affine Coxeter group.
There are many ways to write an element w ∈ W as a product of a translation tλ ∈ W
and an elliptic u ∈ W. We call any such factorization w = tλu a translation-elliptic
factorization of w. In any such factorization we call tλ the translation part and u the elliptic
part.

Definition 2.5 (Normal forms). Let W be an affine Coxeter group acting cocompactly on
a euclidean space E. An identification of W as a semidirect product T oW0 corresponds
to a choice of an inclusion map i : W0 ↪→ W that is a section of the projection map
p : W � W0. The unique point x ∈ E fixed by the subgroup i(W0) serves as our origin
and every element has a unique factorization w = tλu where tλ is a translation in T and
u is an elliptic element in i(W0). In particular, u = i(we) is the image under i of the
elliptic part of w (Definition 2.1). For a fixed choice of a section i, we call this unique
factorization w = tλu the normal form of w under this identification.
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If w = tλu is a translation-elliptic factorization then ue = we ∈ W0 and tλ is in the
kernel of p. Some translation-elliptic factorizations come from an identification of W and
T oW0 as in Definition 2.5, but not all of them do: see Example 2.4 of [7].

Remark 2.6 (Maximal elliptics). Let W be an affine Coxeter group acting cocompactly
on an n-dimensional euclidean space E. When u is an elliptic element of reflection
length n = dim(E) (such as a Coxeter element of a maximal parabolic subgroup of W),
its move-set Mov(u) is all of V, the elements tλu are elliptic for all choices of translation
tλ ∈ T and, in particular, `R(tλu) = `R(u) = n for every tλ ∈ T.

3 Dimension of an element

This section shows how to assign a dimension to each element in a spherical or affine
Coxeter group. It is based on the relationship between move-sets and root spaces.

Definition 3.1 (Root spaces). Let V be a euclidean vector space with root system Φ. A
subset U ⊂ V is called a root space if it is the span of the roots it contains. In symbols,
U is a root space when U = Span(U ∩ Φ). Equivalently, U is a root space when U is
a linear subspace of V that is spanned by a collection of roots, or when U has a basis
consisting of roots. Since Φ is a finite set, there are only finitely many root spaces; the
collection of all root spaces in V is called the root space arrangement Arr(Φ) = {U ⊂ V |
U = Span(U ∩Φ)}.

Definition 3.2 (Root dimension). For any subset A ⊂ V, we define its root dimension
dimΦ(A) to be the minimal dimension of a root space in Arr(Φ) that contains A. Since
V itself is a root space, dimΦ(A) is defined for every subset A in V.

Definition 3.3 (Dimension of an element). When w is an element of a spherical or affine
Coxeter group, its move-set is contained in a euclidean vector space V that also contains
the corresponding root system Φ. The dimension dim(w) of such an element is defined
to be the root dimension of its move-set. In symbols, dim(w) = dimΦ(Mov(w)). Let
W be an affine Coxeter group acting on a euclidean space E and let p : W � W0 be its
projection map. For each element w ∈ W we can compute the dimension of w and the
dimension of its elliptic part we = p(w) ∈ W0. We call e = e(w) = dim(we) the elliptic
dimension of w. Instead of focusing on the dimension of w itself, we focus on the number
d = d(w) = dim(w)− dim(we), which we call the differential dimension of w. Note that
dim(w) = d + e.

The statistics d(w) and e(w) carry geometric meaning.

Proposition 3.4 (Statistics and geometry). Let W be an affine Coxeter group. An element
w ∈W is a translation if and only if e(w) = 0, and w is elliptic if and only if d(w) = 0.
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w Mov(w) d e `R
identity the origin 0 0 0

reflection a root line 0 1 1
rotation the plane 0 2 2

translation an affine point 1 or 2 0 2 or 4
glide reflection an affine line 1 1 3

Table 1: Basic invariants for the 5 types of elements in an affine Coxeter group acting
on the euclidean plane.

Thus one way to interpret these numbers is that, roughly speaking, d(w) measures
how far w is from being an elliptic element and e(w) measures how far w is from being
a translation.

Example 3.5 (Euclidean plane). The affine Coxeter groups that act on the euclidean plane
have five different types of move-sets (see Table 1). Among the elliptic elements, the
move-set of the identity is the point at the origin, the move-set of a reflection r with
root α ∈ Φ is the root line Rα, and the move-set of any non-trivial rotation is all of
V = R2. For these elements, d(w) = 0 and `R(w) = dim(w) = dim(we) = e(w) where
this common value is 0, 1, or 2, respectively. The move-set of a non-trivial translation tλ

is the single nonzero vector {λ}. Its elliptic dimension is 0 and its differential dimension
is either 1 (when λ is contained in a root line Rα) or 2. By [8, Proposition 4.3], `R(tλ) is
twice its dimension. Finally, when w is a glide reflection, Mov(w) is a line not through
the origin, so e = dim(we) = 1, dim(w) = 2, d = 2− 1 = 1, and `R(w) = 3.

We finish this section with a pair of remarks about computing e and d in general.
Let W be an affine Coxeter group with a fixed identification of W with T o W0 and let
w ∈ W be an element that is given in its semidirect product normal form w = tλu for
some vector λ in the coroot lattice L(Φ∨) and some elliptic element u. Computing the
elliptic dimension e(w) is straightforward.

Remark 3.6 (Computing elliptic dimension). To compute the elliptic dimension e(w) it is
sufficient to simply compute the dimension of the move-set of the elliptic part u of its
normal form. Indeed, by Definition 3.3, e(w) = dim(we), but since Mov(we) is itself
a root subspace, dimΦ(Mov(we)) = dim(Mov(we)). Finally, since p(u) = p(w) = we,
Mov(we) = Mov(u) and so dim(Mov(we)) = dim(Mov(u)).

Computing the differential dimension d(w) is more complicated but it can be reduced
to computing the dimension of a point in a simpler arrangement of subspaces in a lower
dimensional space. How much lower depends on the elliptic dimension e(w).
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Remark 3.7 (Computing differential dimension). By Definition 3.3, to compute the differ-
ential dimension d(w), we need to find the minimal dimension of a root subspace con-
taining Mov(w) and then subtract e(w) from this value. Since w = tλu, Mov(w) = λ+U
where U = Mov(u) = Mov(we). As shown in [7], we only need to consider root
spaces that contain λ and U or, equivalently, root spaces that contain λ + U and U. Let
q : V � V/U be the natural quotient linear transformation whose kernel is U. Under
the map q, the coset λ + U is sent to a point in V/U that we call λ/U and the sub-
spaces in Arr(Φ) containing U are sent to a collection of subspaces in V/U that we call
Arr(Φ/U). Let dimΦ/U(λ/U) be the minimal dimension of a subspace in Arr(Φ/U)
that contains the point λ/U. Since the dimensions involved have all been diminished by
e(w) = dim(U), we have that dimΦ/U(λ/U) = d(w) is the differential dimension of w.

4 Local statistics

In a spherical Coxeter group W = W0, Shephard and Todd [10, Theorem 5.3] showed
that the generating function for reflection length has a particularly nice form:

f0(t) = ∑
u∈W0

t`R(t) =
n

∏
i=1

(1 + eit), (4.1)

where the numbers ei are positive integers called the exponents of W0. In earlier work [8],
the second and third authors asked whether there are similarly nice generating functions
associated to an affine Coxeter group. In this section, we explore this question.

For an affine Coxeter group W, reflection length is bounded and |W| is infinite, so
the naive generating function is not defined. A natural fix is to consider only a finite
piece of W.

Definition 4.1 (Local generating function). Given an element λ of the coroot lattice
L(Φ∨), define the bivariate generating function

fλ(s, t) = ∑
u∈W0

sd(tλu) · te(tλu) = ∑
u∈W0

sdim(tλu) · (t/s)dim(u)

that tracks the statistics of differential and elliptic dimension. By Theorem A, we have

fλ(t2, t) = ∑
u∈W0

t`R(tλ·u).

By mild abuse of notation, we let fλ(t) = fλ(t2, t) denote this local reflection length
generating function.



Computing reflection length in an affine Coxeter group 9

3

2

(a) (b)

Figure 1: For the affine Coxeter group of type B2, (a) alcoves shaded by reflection
length and (b) the translates tλ · P shaded by local generating function.

The term “local” here makes sense geometrically, once the elements of W have been
identified with alcoves in the reflecting hyperplane arrangement for W. The alcoves
neighboring the origin (each of which is identified with a unique element of W0) form
a W0-invariant polytope P. The set {tλu | u ∈ W0} corresponds to the set the of alcoves
in tλ · P, i.e., those alcoves neighboring λ. In Figure 1(a) we have shaded the alcoves
in affine B2 according to reflection length, while in Figure 1(b) we have colored the
translates tλ · P according to fλ(t). In Figure 1(a), the identity element is identified with
the black alcove, and lighter colored cells have greater reflection length. The coroots are
highlighted in white.

We collect here some easy facts about the local generating function.

Proposition 4.2 (Properties of local generating functions). Let λ be a vector in the coroot
lattice L(Φ∨).

1. (The origin) If λ = 0, then fλ(s, t) = f0(t) is the generating function for reflection length
in W0.

2. (Generic) If λ is generic, i.e., if it is not a member of any proper root subspace of V, then
fλ(s, t) = sn f0(t/s) = ∏n

i=1(s + eit), where the ei are the exponents of W0.

3. (Permutations) If λ and λ′ belong to the same W0-orbit (that is, there is some w ∈W0 such
that λ′ = w(λ)), then fλ(s, t) = fλ′(s, t).

From the pictures it appears that the local generating functions line up along faces of
a hyperplane arrangement. The faces of the arrangement are intersections of maximal
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Figure 2: The translates tλ · P in type A3 colored according to the local distribution of
reflection length.

root subspaces, and if two coroots lie in the same face, they have the same local gener-
ating function. However, note that while some of these intersections are themselves root
subspaces, not all of them are. For example, the white balls in Figure 2 lie along lines
that are not of the form Rα for any root α.

We make the phenomenon precise here.

Theorem 4.3 (Equality of local generating functions). Suppose that λ and µ are two elements
of the coroot lattice L. Suppose furthermore that λ and µ belong to the same collection of root
subspaces. Then fλ(s, t) = fµ(s, t).

Unfortunately, while Theorem 4.3 and Proposition 4.2 imply bounds on the number
of local generating functions in terms of the number of W0-orbits of intersections of root
subspaces, it is probably intractable to compute all fλ(s, t), or even all fλ(t), in general.
We show in the Appendix of [7] that computing d(tλ) for an element λ of the type An
coroot lattice is essentially equivalent to the NP-complete problem SubsetSum.

5 Affine symmetric groups

In this section, we restrict our attention to the affine symmetric groups and give simple
combinatorial descriptions of the statistics d(w) and e(w) used to define reflection length.
This provides an affine analog of the formula for the symmetric group given by Dénes
[3].



Computing reflection length in an affine Coxeter group 11

First, we briefly recall the normal form of an element in the affine symmetric group
S̃n. (See [7] for full details.) If w ∈ S̃n, we can write w = tλuπ, where π ∈ Sn is a
permutation and λ is a coroot, which we can express as a vector in Zn whose entries
sum to zero. For example, the pair λ = (−2,−1, 3, 1, 1,−2, 0) and π = (1, 5, 7)(2, 4)(3)(6)
determines a unique element w = tλuπ in S̃7. (Note we write π in cycle notation.) We
will fix this element as an example throughout this section.

Now we consider the elliptic dimension. Our result generalizes Dénes’s result that
the reflection length of a permutation π is n− |cyc(π)|.
Proposition 5.1 (Elliptic dimension). Let w ∈ S̃n be an affine permutation, with normal form
w = tλuπ (so that uπ is the elliptic part of w). Then e(w) = n− |cyc(π)|.

The elliptic dimension of our running example is thus e(w) = 7− 4 = 3.
In Remark 3.7, we have that d(w) = dimΦ/U(λ/U). In the more combinatorial set-

ting of the affine symmetric group, this relative dimension boils down to a statement
about partitioning the vector λ. We use the term nullity, denoted ν(λ), to describe the
maximal size of a partition of the entries of λ whose blocks all sum to zero. For example,
ν((−2,−1, 3, 1, 1,−2, 0)) = 3 since the partition {{−2,−1, 3}, {−2, 1, 1}, {0}} has all its
blocks sum to zero, and no partition into four or more parts has all its parts sum to
zero. (Note that the partition {{−2,−2, 1, 3}, {−1, 1}, {0}} is also maximally refined in
this way.) The relative nullity, denoted ν(λ/π), is the nullity of the vector λ′ obtained
by first coarsening λ according to the cycle structure of π. With our running example,
π = (1, 5, 7)(2, 4)(3)(6), so λ′ = (λ1 + λ5 + λ7, λ2 + λ4, λ3, λ6) = (−1, 0, 3,−2). This
vector has nullity 2, so the relative nullity is ν(λ/π) = 2.

We now state the combinatorial result for differential dimension.

Proposition 5.2 (Differential dimension). An affine permutation w ∈ S̃n with normal form
w = tλuπ has d(w) = |cyc(π)| − ν(λ/π).

Thus in our example, the differential dimension is d(w) = 4− 2 = 2.
Combining these propositions with the result Theorem A, that `R(w) = 2d(w)+ e(w),

gives us a combinatorial formula for the reflection length of an element in an affine
symmetric group.

Theorem 5.3 (Formula). An affine permutation w ∈ S̃n with normal form w = tλuπ has
`R(w) = n− 2 · ν(λ/π) + |cyc(π)|.

For our running example, we compute the reflection length as `R(w) = 2 · 2 + 3 = 7
or as `R(w) = 7− 2 · 2 + 4 = 7.
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